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Exercise 1: One-loop calculation in φ4 theory - Part 3

In Part 2 we deduced the renormalization constants δZλ and δZm in the MS renormalization
scheme, which is e.g. often applied in QCD calculations. However, e.g. in electroweak theory
the masses of the particles are measurable quantities, such that we want them to be constants.
In a sloppy formulation we thus demand that one-loop corrections should vanish at physical
masses for the self-energy corrections (and similarly at a certain momentum for the scattering
amplitude). This leads to the concept of on-shell renormalization.

(a) We obtained the correction −iM(p2) in Part 2 of this exercise. Combine this correction
to the infinite series of propagator corrections

+ + + . . .

and use the geometric series to get the all-order loop-corrected propagator

i

p2 −m2 −M(p2)
≈ i

p2 −m2

(
1 +

M(p2)

p2 −m2

)
,

where the latter expression corresponds to the pure one-loop result. Demand that the
location of the pole and the residue of the propagator do not change between one-loop
and tree-level through

lim
p2→m2

i

p2 −m2

(
1 +

M(p2)

p2 −m2

)
!

= lim
p2→m2

i

p2 −m2
.

Perform a Taylor expansion of M(p2) around p2 = m2 and thus show M(p2)|p2=m2 = 0
and d

dp2
M(p2)|p2=m2 = 0. Show that the first equation leads to

δZOS
m =

λ

32π2

(
1

ε
− γE + log(4π) + 1 + log

(
µ2

m2

))
.

(b) We know that the bare mass parameter m2
0 is independent of the chosen scheme. We

can thus obtain a relation between the MS mass and the on-shell mass, which yields
m2

OS = m2
MS

(µ)ZMS
m (ZOS

m )−1. Insert the expressions obtained for the renormalization
constants and expand in λ to first order. You should obtain a finite expression, which for
µ = mMS simplifies to

m2
OS = m2

MS
(mMS)

(
1− λ

32π2
+O(λ2)

)
.

Thus, for the choice µ = mMS potentially large logarithms cancel out of the relation.

Exercise 2: Higgs boson decay into gluons - Part 1

The aim of this exercise is to calculate the partial decay width of the Standard Model Higgs
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boson into a pair of gluons, h0 → gg, in the first non-vanishing order. The decay is loop-mediated,
i.e. the Higgs boson couples to two gluons through quark loops. The quark running in the
loop with mass m couples to the Higgs boson with the Yukawa coupling yq = m

v
with the

vacuum expectation value v = 1/
√√

2GF . The relevant two Feynman diagrams for each quark,
depicting the four-momenta, are given by

l + p1

l − p2

l

p2

p1

+

−l + p2

−l

−l − p1

p2

p1

.

The two final-state gluons have outgoing momenta p1 and p2 as well as Lorentz indices µ and
ν and colors a and b, respectively. Accordingly, the initial-state Higgs boson has momentum
p1 + p2. We want all particles to be on-shell, i.e. (p1 + p2)

2 = m2
h0 , p

2
1 = p22 = 0. Since there are

no tree-level diagrams and thus no counterterms, the final result of the loop diagrams cannot
develop an ultraviolet divergence.

(a) Show that the amplitude in dimensional regularisation (d = 4− 2ε) involving one quark q
with mass m is of the form

Mq = ε∗1,µε
∗
2,ν(igs)

2(−iyq)(−1)i3µ4−d
∫

ddl

(2π)d
T aijT

b
jiTr[Sµν ]

(l2 −m2)((l + p1)2 −m2)((l − p2)2 −m2)

with Sµν = γµ(/l +/p1+m)(/l −/p2+m)γν(/l +m)+(−/l +m)γν(−/l +/p2+m)(−/l −/p1+m)γµ.
Hint: Remember the quark-quark-gluon coupling igsγ

µT a and T aijT
b
ji = 1

2
δab (sheet 3).

(b) Show that Tr[Sµν ] = 8m(gµν(m2 − l2 − p1 · p2) + 4lµlν + pµ2p
ν
1). Argue why the second

term in Sµν yields the same contribution as the first term.

(c) Introduce Feynman parameters in the form

1

abc
= 2

∫
dxdydz

δ(1− x− y − z)

(xa+ yb+ zc)3
= 2

∫ 1

0

dy

∫ 1−y

0

dz
1

((1− y − z)a+ yb+ zc)3

and shift the loop momentum l such that the denominator takes the form (l2 − (zp2 −
yp1)

2−m2)3 = (l2 + yzm2
h0 −m2)3 =: (l2−M2)3. Transform the numerator accordingly.

(d) Use the tensor integrals from sheet 10 to show that

Mq = −ε∗1,µε∗2,νg2syq
δab

24π2

m2
h0

m
ε∗1,µε

∗
2,ν

(
gµν − 2

m2
h0
pν1p

µ
2

)
f

(
m2
h0

m2

)
with

f(x) = 3

∫ 1

0

dy

∫ 1−y

0

dz
1− 4yz

1− xyz .

Hint: gµνId(0, 2,M
2) + 4Iµνd (0, 3,M2) might be a useful relation.

(e) Check gauge invariance explicitly by replacing the polarisation vector of each gluon through
the corresponding momentum. Introduce a sum over different quarks M =

∑
qMq with

masses mq. Square the amplitude M and perform the polarisation sum over the gluon
polarisation. You should obtain

|M|2 = α2
s

√
2GF

4m4
h0

9π2

∣∣∣∣∣∑
q

f

(
m2
h0

m2
q

)∣∣∣∣∣
2

.

(f) Finally calculate the partial decay width using |M|2 from the previous exercise.
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