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Exercise 1: Dilogarithm

A special function, that very often appears in the calculation of loop diagrams, is the dilogarithm

Lia(2) = —/OZ =1 g —/01 It =2 .

t t

On the main branch, which is determined by the main branch of In(z), the dilogarithm Liy(2)
is a well-defined analytic function for z € C, except for z > 1 on the real axis. For |z| < 1
the integral representations can be rewritten in a series of the form Lis(z) = > ;- 2—’; From

this series we can determine the value Lis(1) = ((2) = %2. To determine Liy(z) outside the

unit circle, we need transformation rules for analytic continuation. For this purpose prove the
following identities:

(a) Lis(1 — 2) = —Liy(2) — In(1 — 2) 1nz+%2.

(b) Li, (Zfl) :—Lig(z)—%IHQ(l—z).

(c) Liy (Z;1> —Lig(z)+1n(l—z)ln(z)—%1112(,2)—%2.
(d) Liy (%) = —Liy(2) — %m?(—z) - %2

(e) Li, (1 ! Z) = Lin(z) — 5 (1 — 2) + In(1 — z) In(~2) + %2 .

Exercise 2: Higgs boson decay into gluons - Part 2

We continue with the exercise on the decay of the Higgs boson in a pair of gluons started on
sheet 12. Hint: All relevant results are given on sheet 12.

(a) Perform the integrations in the definition of f(x) by using the results obtained for
the dilogarithm in the previous exercise. Hint: Perform the integration over z and
determine the roots of the argument of the remaining logarithm named g, such that
1 —zy+2y* = (v —y)(y_ — y)z. Split the logarithm, use (d) and (e) of the previous
exercise and use

1
22—1+z>5
arcsin(z) = —i¢In(iz £ vV1 — 22) = —iln _—
() = —iln(iz £ VI = 2) (Vo

If you succeed, you should get f(z) = ¢ — SU-) arcsin? (‘/75) for x < 4.

x2

(b) What value does f(x) take for heavy quarks (heavy-top limit), i.e. m, — oo and
mzo/ mg — 07 Why does the measurement of the decay of a Higgs boson to gluons or
the production of a Higgs boson from gluons allow to make a statement on the number
of heavy quark generations?
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Exercise 3: Emission of a collinear photon

The focus of this exercise is on the emission of a collinear photon from an initial-state electron
and its “absorbtion” into a distribution function associated with the electron. This collinear
splitting is also the basis of the parton distribution functions employed at hadron colliders,
which map from an initial-state proton to the proton ingredients, the quarks and the gluon. For
simplicity we consider a massive gauge boson B with mass M, which couples to the left- and
right-handed component of the electron equally, i.e. the Feynman rule of the ete™ B coupling is
—igy“ﬂ Since we couple B to a conserved current, we can also use the simplified polarisation
sum » eff)el(f)* = —guw- In the first subexercise we consider the electron to be massless.

(a) Compute the cross section for ete™ — B. You should obtain
2
o(ete” = B) = %5([ — M) = 7g?5(s — M?) .

(b) Compute the differential cross section for ee™ — B, for which you can draw a ¢- and a
u-channel diagram. The Feynman rule for the photon coupling to the electron is —iey*,
as discussed on sheet 13. The result for the squared amplitude should be

1 t 2sM?
ZZ'M‘2:26292[E+_+ i }

t u tu

Go to the center-of-mass frame and introduce the scattering angle 6 between the initial-
state electron and the photon. The result is of the form
do ag®(1—M?/s) 4sM?
dcos 2ssin? 0 (s—MZ)Q}

(¢) The result is divergent in the limit # — 0 and # — m, which are the collinear and
anticollinear limit, respectively. These are the regions where the massless photon is close
to the incoming massless electron or positron, respectively. We consider the limit § — 0
in more detail. We want to rearrange the formula to understand the physical origin of
this (infrared) divergence. The divergence can be cut off by an electron mass m: Let
the electron momentum be p* = (E, 0,0, E? —m?), and let the photon momentum
carry away a fraction of it, k* = (zE,xEsin 6,0, zF cos ). Determine the Mandelstam
variables for this case. The denominator of the propagator then never becomes smaller
than O(m?/s). Finally integrate the cross section over forward angles only, cutting off the
0 integral at 6% ~ (m?/s) keeping only the logarithmic term proportional to log(s/m?).
Show that in this approximation the cross section for forward photon emission can be
written as

[1 + cos 6% +

olete” = yB) ~ /dxf(m)a(e+e_ — B at E2 =(1-2)s), (1)

where the annihilation cross section is evaluated for the collision of a positron of energy
E and an electron of energy (1 — z)E. The function f(z) is the Weizsacker-Williams
distribution function and given by
al+(1—umx)? s
fz) = o x log <W) '

It describes the collinear splitting of a photon from the initial-state electron, independent of
the subsequent dynamics. Hint: Integrate over x in Eq. by just employing §(M?—(1—x)s)
and show that the result equals the one with a limited integration range in 6.

3Considering instead a Z boson does not introduce new phenomena.
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