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Exercise 1: Dilogarithm

A special function, that very often appears in the calculation of loop diagrams, is the dilogarithm

Li2(z) = −
∫ z

0

ln(1− t)
t

dt = −
∫ 1

0

ln(1− zt)
t

dt .

On the main branch, which is determined by the main branch of ln(z), the dilogarithm Li2(z)
is a well-defined analytic function for z ∈ C, except for z > 1 on the real axis. For |z| < 1

the integral representations can be rewritten in a series of the form Li2(z) =
∑∞

k=1
zk

k2
. From

this series we can determine the value Li2(1) = ζ(2) = π2

6
. To determine Li2(z) outside the

unit circle, we need transformation rules for analytic continuation. For this purpose prove the
following identities:

(a) Li2(1− z) = −Li2(z)− ln(1− z) ln z +
π2

6
.

(b) Li2

(
z

z − 1

)
= −Li2(z)− 1

2
ln2(1− z) .

(c) Li2

(
z − 1

z

)
= Li2(z) + ln(1− z) ln(z)− 1

2
ln2(z)− π2

6
.

(d) Li2

(
1

z

)
= −Li2(z)− 1

2
ln2(−z)− π2

6
.

(e) Li2

(
1

1− z

)
= Li2(z)− 1

2
ln2(1− z) + ln(1− z) ln(−z) +

π2

6
.

Exercise 2: Higgs boson decay into gluons - Part 2

We continue with the exercise on the decay of the Higgs boson in a pair of gluons started on
sheet 12. Hint: All relevant results are given on sheet 12.

(a) Perform the integrations in the definition of f(x) by using the results obtained for
the dilogarithm in the previous exercise. Hint: Perform the integration over z and
determine the roots of the argument of the remaining logarithm named y±, such that
1− xy + xy2 = (y+ − y)(y− − y)x. Split the logarithm, use (d) and (e) of the previous
exercise and use

arcsin(z) = −i ln(iz ±
√

1− z2) = −i ln

[(√
z2 − 1 + z√
z2 − 1− z

)2
]
.

If you succeed, you should get f(x) = 6
x
− 6(4−x)

x2
arcsin2

(√
x
2

)
for x < 4.

(b) What value does f(x) take for heavy quarks (heavy-top limit), i.e. mq → ∞ and
m2
h0/m

2
q → 0? Why does the measurement of the decay of a Higgs boson to gluons or

the production of a Higgs boson from gluons allow to make a statement on the number
of heavy quark generations?

https://www.itp.kit.edu/courses/ws2019/ttp2 page 1 of 2

mailto:stefan.liebler@kit.edu
mailto:martin.gabelmann@kit.edu
mailto:jonas.mueller@kit.edu
https://www.itp.kit.edu/courses/ws2019/ttp2


Exercise 3: Emission of a collinear photon

The focus of this exercise is on the emission of a collinear photon from an initial-state electron
and its “absorbtion” into a distribution function associated with the electron. This collinear
splitting is also the basis of the parton distribution functions employed at hadron colliders,
which map from an initial-state proton to the proton ingredients, the quarks and the gluon. For
simplicity we consider a massive gauge boson B with mass M , which couples to the left- and
right-handed component of the electron equally, i.e. the Feynman rule of the e+e−B coupling is
−igγµ.3 Since we couple B to a conserved current, we can also use the simplified polarisation
sum

∑
i ε

(i)
µ ε

(i)∗
ν = −gµν . In the first subexercise we consider the electron to be massless.

(a) Compute the cross section for e+e− → B. You should obtain

σ(e+e− → B) =
πg2

2M
δ(
√
s−M) = πg2δ(s−M2) .

(b) Compute the differential cross section for e+e− → γB, for which you can draw a t- and a
u-channel diagram. The Feynman rule for the photon coupling to the electron is −ieγµ,
as discussed on sheet 13. The result for the squared amplitude should be

1

4

∑
|M|2 = 2e2g2

[
u

t
+
t

u
+

2sM2

tu

]
.

Go to the center-of-mass frame and introduce the scattering angle θ between the initial-
state electron and the photon. The result is of the form

dσ

d cos θ
=
αg2(1−M2/s)

2s sin2 θ

[
1 + cos θ2 +

4sM2

(s−M2)2

]
.

(c) The result is divergent in the limit θ → 0 and θ → π, which are the collinear and
anticollinear limit, respectively. These are the regions where the massless photon is close
to the incoming massless electron or positron, respectively. We consider the limit θ → 0
in more detail. We want to rearrange the formula to understand the physical origin of
this (infrared) divergence. The divergence can be cut off by an electron mass m: Let
the electron momentum be pµ = (E, 0, 0,

√
E2 −m2), and let the photon momentum

carry away a fraction of it, kµ = (xE, xE sin θ, 0, xE cos θ). Determine the Mandelstam
variables for this case. The denominator of the propagator then never becomes smaller
than O(m2/s). Finally integrate the cross section over forward angles only, cutting off the
θ integral at θ2 ∼ (m2/s) keeping only the logarithmic term proportional to log(s/m2).
Show that in this approximation the cross section for forward photon emission can be
written as

σ(e+e− → γB) ≈
∫
dxf(x)σ(e+e− → B at E2

cm = (1− x)s) , (1)

where the annihilation cross section is evaluated for the collision of a positron of energy
E and an electron of energy (1 − x)E. The function f(x) is the Weizsäcker-Williams
distribution function and given by

f(x) =
α

2π

1 + (1− x)2

x
log
( s

m2

)
.

It describes the collinear splitting of a photon from the initial-state electron, independent of
the subsequent dynamics. Hint: Integrate over x in Eq. 1 by just employing δ(M2−(1−x)s)
and show that the result equals the one with a limited integration range in θ.

3Considering instead a Z boson does not introduce new phenomena.
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