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Exercise 1: Running coupling in quantum electrodynamics (QED)

The aim of this exercise is to deduce the renormalization-scale dependence of the fine-structure
constant α = e2

4π
in quantum electrodynamics (QED) in the MS renormalization scheme and

thus the running of the coupling as a function of the energy.

(a) Calculate the photon self-energy Σµν(k) for a photon with momentum k involving a
fermion with mass m at one-loop. Express the loop integrals through the standard
integrals A0, B0, B1, B00 and B11 and show that

Σµν(k) =
α

π

{
gµν
[
2B00(k,m,m)− A0(m)− k2B1(k,m,m)

]
+kµkν [2B11(k,m,m) + 2B1(k,m,m)]} .

(b) Split the self-energy of the photon into a transverse and longitudinal component

Σµν(k) =

(
gµν − kµkν

k2

)
ΣT (k2) +

kµkν

k2
ΣL(k2)

to show that

ΣL(k2) = 0, ΣT (k2) =
α

3π

[
(k2 + 2m2)B0(k,m,m)− 1

3
k2 − 2m2B0(0,m,m)

]
.

Use the relations A0(m) = m2B0(0,m,m) +m2 and

B1(p,m,m) = −1

2
B0(p,m,m)

B00(p,m,m)
d→4
=

1

6

[
A0(m) + 2m2B0(p,m,m) + p2B1(p,m,m) + 2m2 − p2

3

]
B11(p,m,m)

d→4
=

1

6p2

[
2A0(m)− 2m2B0(p,m,m)− 4p2B1(p,m,m)− 2m2 +

p2

3

]
.

(c) The vacuum polarisation is defined through Π(k2) = ΣT (k2)/k2. Calculate Π(0). For
this purpose expand B0 in small |k2| � m2 by using

B0(k,m,m) = ∆− ln

(
m2

µ2

)
+

k2

6m2
+O

(
k4

m4

)
with ∆ = 2

4−d − γE + ln(4π) = 1
ε
− γE + ln(4π) for d = 4− 2ε.

(d) We finally need the ultraviolet divergence and thus the scale dependence of the fermion-
fermion-photon vertex. Show that the relevant ultraviolet contribution is given by

Mµ =
α

4π
∆ · Mµ

born

withMµ
born = ieγµ. Hint: Write down the loop integral with two fermion and one photon

propagator, which takes the form

Mµ = (ie)3i3µ4−d
∫

ddl

(2π)d
γρ(/l + /p2 +m)γµ(/l + /p1 +m)γσ(−gρσ)

l2((l + p1)2 −m2)((l + p2)2 −m2)
.
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The ultraviolet-divergent contribution is the one with two occurences of the loop momen-
tum l in the numerator, i.e. γρ/l γµ/l γρ. Why? This leads to the integrals B0 and C00,
which have a divergence parametrised by ∆ and 1

4
∆, respectively. All other Cij are finite.

(e) Use multiplicative renormalization defined through

Aµ0 =
√
ZAA

µ , ψ0 =
√
Zψψ , e0 = µεZee

and the expansion Zi = 1 + δZi at one-loop to deduce the counterterm of the fermion-
fermion-photon vertex at one-loop.4

(f) In the MS renormalization scheme we obtained δZA = − α
3π

∆ from the vacuum polarisation
Π(0). The result for the fermionic wave-function renormalization constant can be derived
in a similar way from the fermionic self-energy. It is given by δZψ = − α

4π
∆. Use the

previous two exercises to obtain δZe.

(g) In the previous subexercise we deduced the relation between the bare coupling e0 and
the renormalized coupling e, which is

e0 =

(
1 +

e2

24π2
∆

)
eµε .

Differentiate with respect to µ and thus prove the differential equation µ ∂e
∂µ

= e3

12π2 . For
this purpose expand in small e and derive the limit ε→ 0. Integrate the relation to show
that

e2(µ) =
e2(µ0)

1− e2(µ0)
6π2 ln

(
µ
µ0

) .
Hint: You can neglect divergent contributions proportional to O(e5), as we do not perform
a two-loop calculation taking into account the the corresponding counterterms.
Add-on: In the lecture you obtain a similar expression for the strong-coupling constant αs,
however with a different sign (and factor) in the denominator. Thus, whereas with
increasing energy the fine-structure constant α increases and eventually hits a Landau
pole, the strong-coupling constant αs is asymptotically free, i.e. it decreases.

Throughout the exercise you may use the following standard loop integrals

A0(m) =
16π2µ4−d

i

∫
ddk

(2π)d
1

k2 −m2

B0(p,m0,m1) =
16π2µ4−d

i

∫
ddk

(2π)d
1

[k2 −m2
0][(k + p)2 −m2

1]

Bµ(p,m0,m1) =
16π2µ4−d

i

∫
ddk

(2π)d
kµ

[k2 −m2
0][(k + p)2 −m2

1]
= B1pµ

Bµν(p,m0,m1) =
16π2µ4−d

i

∫
ddk

(2π)d
kµkν

[k2 −m2
0][(k + p)2 −m2

1]
= B00gµν +B11pµpν

C{0;µ;µν}(p1, p2,m0,m1,m2) =
16π2µ4−d

i

∫
ddk

(2π)d
{1; kµ; kµkν}

[k2 −m2
0][(k + p1)2 −m2

1][(k + p2)2 −m2
2]

Cµ =
2∑
i=1

Cipiµ, Cµν = C00gµν +
2∑

i,j=1

Cijpiµpjν .

4The replacement g → µεg guarantees the right mass/energy dimension for all terms in the Lagrangian.
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