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Exercise 1: W pair production in the high-energy limit

We consider the scattering process

e (p)e’ (p2) = W~ (p3)W ™ (pa)
in the high-energy limit with s := k% > m?,, with k = p; + p» = p3 + ps. The gauge-boson
masses cannot be neglected, in contrast to the fermion masses, which we set to zero.
(a) Assume that there is no three gauge-boson self interaction in the Standard Model. Show

2
that in leading order in ™% ie. mj, < s,t,u, the averaged squared amplitude, which
only emerges from a t-channel neutrino exchange depicted by the Feynman diagram

e W=
o — 4 o2n? s
Ve ,is given by Z|M|2% —1684—m4t(5—|—t) Sy — (1 —cos*0) ,
ww w M
et w+

where s and t = (p; — p3)? = m¥, — 2p1 - p3 = (p2 — pa)? = m¥, — 2ps - p4 are Mandelstam
variables and # denotes the scattering angle between the incoming electron e~ and
the outgoing W~ in the center-of-mass frame. The sine of the weak mixing angle is
sw := sin 6y, and the fine structure constant is defined by a = Ly

4
Hint: Argue why the polarisation sum of the W bosons can be approximated by

2
Yo Nes(p,A) =~ fn“—%’v”. Neglect all non-leading terms in ™% in the calculation
of the trace. A collection of relevant Feynman rules is given at the end of this exercise.

2
(b) Determine the total cross section in leading order in mTW in the center-of-mass system of
the incoming particles, based on the calculation of the squared amplitude in the previous
exercise. What happens to the cross section in the high-energy limit, i.e. s — o0?

(¢) The correct high-energy behaviour is obtained, when the three gauge-boson self-interaction
is added. The calculation of the total cross section for this case is, however, quite lengthy,
such that we consider the high-energy limit only for one helicity combination. Examine
the amplitude for epe; — W, W, for an incoming right-handed electron and left-handed
positron and two outgoing longitudinally polarised W bosons and show that in leading

2
order in mTW the sum of all diagrams yields

L (p) (s — B)unp)

Mlerer > WWE) ™ 553
Hint: Use the equation of motions for massless fermions being - Ww-
U(pa)py = 0 and pyu(p;) = 0 as well as the approximation, that the vZ
polarisation vector of the longitudinal W boson in the high-energy

limit is given by €7 (p) ~ %. If you failed in (a) or (b), you can 4 W
also restart here.
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(d) Determine the total cross section for eze; — W, W, and examine the behaviour in the
high-energy limit, i.e. s — oc.

(e) The Goldstone-boson equivalence theorem states that the amplitudes of longitudinally
polarised gauge bosons in the high-energy limit equal the amplitudes, in which the gauge
bosons are replaced by their Goldstone bosons (except from an unobservable phase).
Show the equivalence of

M(egep — ¢~ ¢") = M(egef — W, W)
2

in leading order in mTW

(f) Determine the amplitude for eZej;2 — W, WEL for an incoming left-handed electron
and right-handed positron and two outgoing longitudinally polarised W bosons using
the Goldstone-boson equivalence theorem. Lastly obtain the total cross section for
e"et — W, W, which is the sum of o(ezef — W, W;") and o(e el = W, W), as
other helicity combinations vanish and no interference terms appear.

Relevant Feynman rules for the interactions are given by the following expressions:

e e
e
T = —iey*(Pp+ P W= “Pp
y*(Pr + Pr) N
€+ Ve
.
zZ = e u ((—l + s34, P, + (S%/V)PR)
Swew 2 )
6+
¢~ (p-) N ¢~ (p-) AN
IS IS ie(3 — sty)
S~~~ Y =e(p_ — H S~~~ 7 — 2 w e Y
/ (p— —p+) o po— (p— —py)
¢t (py) ¢t (py)
W= (p-v) W= (p-v)
TN R ) = e N
T A sw
WH(ps ) WH(py )

Therein the momentum flow is indicated through the additional arrows. The left- and
right-handed projection operators are given by P = 1*% and Prp = H% Moreover
it yields f** = g (p- — p4)? + ¢"’(—=q — p-)* + ¢”*(q + p+)". Again sy and ey are
defined through sin 6y, and cos 6y, respectively. The propagators of the photon and the
Z boson in Feynman gauge are given by

_iguu _iguu
12 and FEpp—y mZ

Goldstone bosons do not couple to massless fermions.

, respectively.
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Solution of exercise [

Before going into the details of this exercise you may elaborate on the polarisation vectors and
the polarisation vector sum of massive gauge bosons, as there was some confusion in the lecture,
apparently. I copy the results of an exercise on sheet 8 from TTP1:

Exercise: We introduce a Fourier decomposition for the massive vector boson in analogy to the
photon field, i.e.

At () = / dl%z (e#(k)a,(k)e ™ + e (k)al (k)e™ ™) .

r=0

A priori, this includes four polarization vectors e# (k). Due to 9, A" = 0 and thus ) | _k,e*(k)a, (k) =
0 only three polarization vectors are physical. Show that a convenient basis for these polarization
vectors, in the reference frame with & = (0,0, |k|), is given by

1 nd
51:(0717070)7 52:(0707170)7 53:—(|l€|,0,0,Wk>
m

for the three physical polarization vectors, which are orthogonal to the unphysical polarization
vector e = k*/m. The physical polarization vectors obey the orthonormality condition
et(k)er (k) = —0,s. Using these explicit expressions show that the completeness relation of the
physical polarization vectors reads

%
D elk)er (k) = =g +

m2

Hint: In the rest frame of the particle, k' = (m,0,0,0), we e.g. choose g = (1, 0) and the three
unit vectors €; = (0, ;). Then the vectors ] automatically fulfill ke = 0. Boost from the rest
frame into the above reference frame. Add-on: We showed the completeness relation in a special
frame, but it is actually Lorentz-covariant.

Solution: Since A" is a real massive field which satisifes a Klein-Gordon equation, the solution

has the same form of the one for a real scalar field (and the one of the photon), i.e.

A () — / AR S (e (k)ap (K)e = + e (k)a ()e™)

Therein we decomposed the vector boson A*(x) onto a basis of polarization vectors e#(k). We
choose the basis such that the following orthonormality condition is satisifed:

Eﬁf(k)g;s = Grs;

which for r = s = {1, 2,3} results in —J,5s. An example of such a basis is given in the exercise
and reads

56(k) = (170)7 5/'(]{) = (0,6}) 1= {17273}:

1

where €; is the set of the three unit vectors along the directions of the euclidean space. Imposing
0,A* = 0 we obtain the relation ) kLa;,“(k’ )a, (k") = 0, which implies that only three of the
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four polarization vectors are physical. If the vector boson is at rest, we can write the momentum
as k'™ = (m,0,0,0), from which we obtain

k’mﬁou 7& 0 k‘luz’:‘w = 0,

such that we discard the non-physical polarization vector ¢y, i.e. in practice the Fourier
coefficients have to vanish. Thus in practice we get

At(x) = /dlzrz (e#(k)a,(k)e ™ + e (k)al (k)e™™) .

We now perform a boost along the z direction by applying
= ALK = (wy, 0,0, |E])

for which the boost takes the form

v 0 0 By i
0 10 0 W k
e .1 _ 7l
Ay 0 0 1 O 9 '7 m7 /6 k'
By 0 0 ~

As the boost is orthogonal to €; and e, the two polarization vectors €; = £} and g9 = €/, remain
identical. For the longitudinal polarization we obtain

1 —
eh = Alef = E(Ug\,O,O,wk) )

Similarly we can confirm that eff = k*/m. Using the explicit expression we can write down the
sum over the physical polarizations, which is

B
[ V]
g
=
=

) 0 0 el
, 0 10 0
Semeth = o o5 o
r=1 - w2
w800 %

In the same way we can just write down the right-hand side of the expression using Ak =
(wk, 0,0, |k|) and obtain

14+ 0 0 ef EE g o el
g R o 10 0 | [0 10 0
g me 0o 00 1 =10 01 o0
alll g g 14 5 wlfl g oo 9

Although we derived the relation in a special frame, it holds in any other reference frame as
well, since both sides transform equally under Lorentz transformations. One can even make
a generic ansatz Ag"” + Bk!EkY and obtains the same form as these are the only two Lorentz
structures that can appear.

For the photon the Gupta-Bleuler formalism was used to remove another degree of freedom. We
now continue with the main exercise:
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(a) We start with a few necessary relations. The projection operators are inherited from the
fact that the Standard Model is a chiral theory, in which left- and right-handed fermions
transform differently under SU(2),. For the projection operators we obtain

o (LF\ _Lt1F2s _ 1F9 o,
LE= N\ - 4 -2 THE
Moreover we note that
T T
— LF 7 1¥7
(V“PL/R):’)/O (fy“ 5 ) 70:70757:‘”70 (1)
1+ 1F
= Ryt = R = Py

Lastly we simplify the polarisation sum for the massive W boson as follows:

) kuk, ksmw Kok,
D ek, Nep(kA) = —gu + o o Ky

3 W myy

since g,, has entries of order 1. For the two fermions we can use ), u(p1, \)a(p1, ) = p;
and ), v(p2, A)0(p2, A) = pPy. The matrix element for the process is based on the following
Feynman diagrams

et wt

if we neglect the corresponding three gauge-boson self-interactions. The matrix element
yields

M =T(p) (p1)€;(ps)€,(pa)

\/_SW ﬁ 153 \/_8W7 P

This expression makes use of the Feynman rules provided on the sheet and Eq. . We
can just square the expression, which results in

1 e
SIME = 1o

The factor }l averages the initial-state fermion spins. We move all P’s to the very left,
which due to the crossing of multiples of two « matrices and P? = P, results in

4 4
P4apPao P3vP3p

2 2
my, My

Tr [P2Y" Pr(py — P3)7" Prpyy" Pr(py — 3)77 PL] <p1 ipg)

4

SIMP = o T — ) — )P

64

= Tr [abolba (D1 — P3)Ps103(b1 — P3) Prl

16(p1 — ps )4mWSW
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Now we use p,popy, = —miyhy + 2ps - Papy, Psribs = —miyhy + 2p1 - pspy and p, — ps =
—(py — p4) and get
4

DM = g i T [l 4 22 pip) (0 — B + 201 bt — o) P

64

_ 2 2
= 16(p1 — p3)*mb sk, Tr [(mwﬁﬂﬁ + 2pa - papaie — 2miypy)
X (miy iy + 201 - p3pspy — 2miyp1 - p3) Pr]
We transform pop, = —pPyps + 2p2 - ps and pyps = —pPspy + 2p1 - p3, which allows to cancel
many terms, and — noting the definition of ¢ in the exercise hint — are left with

4

S oIMI = g T [ thuho) (~thp) P

1
Sy
et 1
~ 16md Sty 24[]94 P2P3 - Py + Pa- PiP2 P3 — Pa- P3Pz - P
W
el ) ) , )
T BR2mist [(miy = 1) + (myy — w)” = s(s — 2miy)]
wSW
© [t* + (s + )7 — & . (262 + 2st]
N oo s — sl =— s
32myy sy 32miy, sty
4
e
16my, sy (s+1)

Therein we used m#, < s,t,u. The contribution proportional to s yields ¢**?, which
cancels, since one of the vectors can be replaced through momentum conservation with
the other three vectors. We finally consider the center-of-mass frame, in which we write
four-momentum conservation as follows

AN\ (ETRN  (VET

2 2

0 01 gsinf —qsinf

o | o~ 0 * 0

\/75 \/75 q cos —qcosf
From this relation we deduce

Z:qQ—f—m%/V — q2—Z—mI2/V
We can then deduce t from (p; — p3)? = (0, —¢sin 6,0, ﬁ qcos 0)?, which results in
2
t=—q’s; — <§ — qcos@) = —¢*sin? 4 — Z — ¢*cos? 0 + 2\/75(10086
s

:—Z—i%-m%/v%—\/g Z—m%,cos@w—34—20089:—3(1—0089)

Thus we obtain

Z\MP a ———ts+t)= L i(1 —2cosf + cos® ) — 5—2(1 — cos )
miy sty 16my, sy, \ 4 2
42 2.2 2
6— 84 (1 —cos? ) = aj i —— (1 —cos).
6458, miy, 4sy, myy,
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(b) In this subexercise we need to add the phase space to the result of the previous subexercise
to obtain the total cross section. For this purpose we need the phase space discussed in
TTP1 and mentioned already on the first exercise sheet of TTP2, which results in

2 \/s2—4 1 4Am?
/dqh:/dQ)\(S’mW’mW /dcos@ sy /dcos@— 1 M

3272s 167s

If we were to neglect the W mass for the kinematics, we are just left with 16% [ dcosé.
We obtain

do s
1 —cos?6).
dcosl  2s 1671'2‘ Sty m%v< cos”0)

Integration f dcosf(1 — cos® §) = 5 yields

a’r s
T ondd 4
965y, My,

This result diverges for s — co. The divergence is cured by the inclusion of the three
gauge-boson self-interaction, which we consider in the next subexercise.

(c) Since taking into account the three gauge-boson self-interaction yields a quite lengthy
result, we write down the amplitude for ezef — W W, for one helicity combination.
Due to the right-handed electron and the left-handed positron in the initial-state the
t-channel contribution involving a neutrino is absent. For this combination we just have
to add the two s-channel contributions involving the photon and the Z boson. The
corresponding Feynman diagrams are

The amplitude is given by

—i(gu — (1 — €)"32)

M =7(ps) Py ((—z‘e’y“PR) (1ef7P")

. I
ies —i(gw — (1 — &) terz m2 7)
cw k%2 —m?

(e f”’””) Pru(p1)e,(ps)€; (pa)
We first discuss the two terms proportional to k,k,, which due to f7* = ¢7?(—ps+ps3)" +
g”" (—p3 — k)7 4+ ¢"? (k + p4)” and due to the replacement € ~ p*/myy, are proportional to

kupsppac [T = D3 - pa(—Da-k +p3-k) +p3-k(—ps-ps—k-ps) +ps-k(k-ps+ps-p3)=0.
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The two contributions with k,k, therefore vanish, such that also the gauge choice is not
of relevance. We are thus left with

M =70(p2) Pp ((—’LGVMPR) kguv (ief7")

eSSy

9w . CW op * *
o R g e T >) Pru(pr)€;(ps)e; (pa)

. 1 1 opv * *
007 (1600 (G = 7 ) 77 ) Prati)smn)es o)

Again replacing the external polarisation vectors with the aligned momenta, we can
transform

G F7 p3ppac = p3 - pa(—Py + P3) + P3(—D3 - s — k- pa) + Py(k - p3 + p3 - pa)
= —psk - pa+ Pk - p3 = (g — P3) (M3 + p3 - pa)

In the last step we replaced k = p3 + p4, such that k- py = p3 - ps +mé, = k- ps. We
thus obtain

M=)y (i€ (5 = ) (= B+ ) ) Pra)

mz My
_ 2 1 1 1
= 1€ VR(p2) (P4 — Ps) UL(pl)\ B_mi I IQ/V(mW +p3- p4)}
—J

We transform J using k% = s = (p3 + ps)? = 2m¥, + 2p3 - p4 and obtain

1 1 1 s
J— _( 2 5 2)
(s—mZ 5) mi, M g T M
)

s—(s—m?%

2 2
s my . my 1

s(s —m2) 2m2, (s —m%)2m%, ~ 2sm?, a 2scd,
This results in the expression provided on the exercise sheet

M = i€*Ta(pa) (hy — ) s (01)

w

(d) We square the expression and calculate the fermion trace. The polarisation sum was
indirectly performed through the replacement with the momenta. Note that

M = ieTa(ps) (s — 1) w(pgﬁ — ie*0n(ps) (~24,) wnﬁ ,

since p, — P3 = Py + Py — P3 — P53 and p; + P, vanish when combined with the external
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spinors. We thus get

S IMP = 12—4Trw2¢3¢1¢3PR]
44s

4

e
= 1A 24 (2p2 - psp1 - p3 — p1 - P2iy)
Cw S
e! 2 2 2
= ((mW —u)(my —t) — smW)
Cw
et (=t)(s+1t) 4r*a’1s s
~ I, 2 = o ;5(1 — cost) <s - 5(1 — cos@))
2.2
= Wf (1 — cos?6)
‘w

As before we can add the two—particle phase space and obtain the cross section

do o?r 1
= 1 — cos? 0
dcosf  2s 167TZ| Ws( cos” )
B o’r 1
© 24ch, s

In contrast to the result to the t-channel neutrino exchange in (b) we obtain o(s —
o0) — 0.

(e) In this subexercise we show that the amplitude obtained in (c¢) equals the amplitude
when we replace the two W bosons with Goldstone bosons. Also the Feynman diagrams
are the same as in (c) with the two W bosons replaced by the charged Goldstone bosons.
The amplitude is of the form

2 2
= 29w v oswlay —sw)  gw v
M = Vg(p2) <—Z€ ﬁ(p — pa)” +ie Sswcty K2 —mi (ps — pa) ) Y ur(pr) -
We have dropped the contributions proportional to k,k, in the propagators right from the
start, since they yield contributions proportional to k,k,(ps — pa)"v" = Kk - (p3 — pa) =
F(ps + pa) - (p3 — pa) = F(m¥, — m¥,) = 0. We are therefore left with

9 Ps — pa) civ — Sty (ps — pa)
M = i¢? Z - s -
ie"0R(p2)y" ur(p1) ( 2T 2a R—m

= z’eziR(p:s)(]é:s — Py)ur(pr) (_20W<S _SZZZ—;;ZC%_V S0~ CW))

N J/

—~
=:J

We transform J as follows

_ 2cymy —s 1
2¢2,8(s —m?%) 2scd,’
such that
_ ie? 1
M =Tr(p2) (P = Ps)ur(pr) 55— -
s

This is indeed identical to the result we obtained in the high-energy limit for the external
gauge bosons.
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(f) We repeat the calculation for a different helicity combination of the initial state, namely
eref — ¢~ ¢t, which results in

M =T (pa)y ur(pr) ((—ie) _Zgz“”ie(ps —pa)” + (—%’e . (% - 5%)) LG (Z’ffC%V — S%V)> :

CuwSw k% —m? 2ew Sw

Again we dropped k,k, contributions in the propagator, see the previous subexercise.
There is no t-channel neutrino contribution because of the massless initial state. We can
transform the matrix element further and obtain
o 1 (& —s%)? 1
M= i)~ puslpn) (- - U )

2 2
s deyy sy s—my)

=
Again we transform J and get

4c, sts — Ack, shm% + scy, + ssyy, — 285,658

J
4c,s%:5(s —m%)
NC%V—FS%V-}-QC%VSI%V_ 1
4¢3, s%,8 N 4scd, sty
We are thus left with
e 1.
M ~Up,(p2) (B3 — Pa)ur(pr) -

T A8 s
We therefore conclude

1
253,

Mlegef, = ¢~ ¢") = M(epef — ¢~ ¢")

We can now build up the total cross section for eTe™ — W/ W in the high-energy limit,
since there are no further interference terms. Also the LL and RR contributions vanish.
We thus get

o’r 1 1 oro 1
7 24cy, s < * 45%) 96¢y sty ( * SW)

We provide a notebook, which indeed shows that taking into account all diagrams, there
is no divergence in the high-energy limit.
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