Wintersemester 2019/20

Exercise 1: Propagator of a free particle

We want to evaluate the path integral of a free particle in one-dimension by parametrizing all potential paths through a variation of the coefficients of a Fourier series. The propagator is defined by

$$
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\int \mathcal{D} q e^{\frac{i}{\hbar} S} \quad \text { with } \quad S=\int_{t_{i}}^{t_{f}} d t \frac{m}{2} \dot{q}^{2}
$$

with the boundary conditions $q\left(t_{i}\right)=q_{i}$ and $q\left(t_{f}\right)=q_{f}$.
(a) Find the classical path of the particle $q_{c}(t)$ as a function of q_{i}, q_{f}, t_{i} and t_{f}.
(b) In order to evaluate the path integral we allow for quantum mechanical perturbations around the classical path, $q(t)=q_{c}(t)+\delta q(t)$, and expand $\delta q(t)$ in a Fourier series knowing that the fluctuations vanish at q_{i} and q_{f}. We therefore obtain

$$
\delta q(t)=\sum_{n=1}^{\infty} a_{n} \sin \left[\frac{n \pi}{t_{f}-t_{i}}\left(t-t_{i}\right)\right] .
$$

Using the orthogonality of different modes, show that the action S turns into

$$
S=\frac{m}{2} \frac{\left(q_{f}-q_{i}\right)^{2}}{t_{f}-t_{i}}+\frac{m}{2} \sum_{n=1}^{\infty} \frac{1}{2} \frac{(n \pi)^{2}}{t_{f}-t_{i}} a_{n}^{2} .
$$

(c) In this example the path integral can be rewritten in terms of integrals over the spectrum of the Fourier coefficients, such that $\int \mathcal{D} q=c \int \prod_{n=1}^{\infty} d a_{n}$ with a normalization constant c. Rearrange the integrals and show

$$
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\tilde{c}\left(t_{f}-t_{i}\right) \exp \left[\frac{i}{\hbar} \frac{m}{2} \frac{\left(q_{f}-q_{i}\right)^{2}}{t_{f}-t_{i}}\right],
$$

where the normalization constant $\tilde{c}\left(t_{f}-t_{i}\right)$ can only be a function of the time difference.
Hint: You can use $\int_{-\infty}^{\infty} d a \exp \left[\frac{i}{\hbar} \frac{m}{2} \frac{1}{2} \frac{(n \pi)^{2}}{t_{f}-t_{i}} a^{2}\right]=\left(-\frac{i m n^{2} \pi}{2 \hbar\left(t_{f}-t_{i}\right)}\right)^{-1 / 2}$.
(d) Show that the normalization constant $\tilde{c}(t)$ is given by

$$
\tilde{c}(t)=\sqrt{\frac{m}{2 \pi i \hbar t}} \text { from the requirement } \quad \int d q\left\langle q_{f}, t_{f} \mid q, t\right\rangle\left\langle q, t \mid q_{i}, t_{i}\right\rangle=\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle .
$$

Hint: You can use $\int_{-\infty}^{\infty} d q \exp \left[\frac{i}{\hbar} \frac{m}{2}\left(\frac{\left(q_{f}-q\right)^{2}}{\left(t_{f}-t\right)}+\frac{\left(q-q_{i}\right)^{2}}{\left(t-t_{i}\right)}\right)\right]=\sqrt{\frac{2 \pi i \hbar\left(t_{f}-t\right)\left(t-t_{i}\right)}{m\left(t_{f}-t_{i}\right)}} \exp \left[\frac{i}{\hbar} \frac{m}{2} \frac{\left(q_{f}-q_{i}\right)^{2}}{t_{f}-t_{i}}\right]$.
(e) The wave-function of the particle thus evolves according to

$$
\psi(q, t)=\int d q_{i}\left\langle q, t \mid q_{i}, 0\right\rangle \psi\left(q_{i}, 0\right)
$$

Show that $\psi(q, t)$ satisfies the Schrödinger equation and that $\psi(q, t) \rightarrow \psi(q, 0)$ for $t \rightarrow 0$. Hint: Fresnel representation of the δ distribution.

Exercise 2: Path integral formalism for the harmonic oscillator

We investigate the propagator $\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle$ of the one-dimensional harmonic oscillator in the path integral formalism of quantum mechanics. In contrast to the previous exercise we use $\hbar=1$.
(a) Show that due to the completeness relation of the energy eigenstates $|n\rangle$ with energy E_{n} we can write

$$
\begin{equation*}
\left\langle q_{f}, T \mid q_{i}, 0\right\rangle=\sum_{n} \Phi_{n}\left(q_{f}\right) \Phi_{n}^{*}\left(q_{i}\right) e^{-i E_{n} T} \tag{1}
\end{equation*}
$$

with $\Phi_{n}(q)=\langle q \mid n\rangle$.
(b) The propagator of the harmonic oscillator can be determined from the path integral formalism and yields

$$
\begin{equation*}
\left\langle q_{f}, T \mid q_{i}, 0\right\rangle=\sqrt{\frac{m \omega}{2 \pi i \sin \omega T}} \exp \left\{\frac{i m \omega}{2 \sin \omega T}\left[\left(q_{f}^{2}+q_{i}^{2}\right) \cos \omega T-2 q_{i} q_{f}\right]\right\} \tag{2}
\end{equation*}
$$

Determine the wave function of the ground state $\Phi_{0}(q)$. In order to do so, set the time to an imaginary value $T=-i t, t \rightarrow \infty$, rewrite sin and cos in terms of exponentials and compare Eq. 1 and Eq. 2. For this purpose rewrite Eq. 2 in the form $e^{-\omega / 2 t} f\left(e^{-\omega t}\right)$ and expand around the argument of $f(x)$. The first term corresponds to the ground state. Note: We refer to the literature for the derivation of the path integral representation of the harmonic oscillator.
(c) Calculate the wave function of the first excited state $\Phi_{1}(q)$.
(d) Show that the energy levels are given by $E_{n}=\omega\left(n+\frac{1}{2}\right)$.

Hint: Again compare Eq. 1 and Eq. 2 .
(e) We finally allow the harmonic oscillator to be influenced by an external driving force $J(t)$. The propagator then takes the form

$$
\begin{equation*}
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle_{J}=\int \mathcal{D} q \exp \left[i \int_{t_{i}}^{t_{f}} d t\left(\frac{1}{2} \dot{q}^{2}-\frac{1}{2} \omega^{2} q^{2}+J(t) q(t)\right)\right] \tag{3}
\end{equation*}
$$

with the boundary conditions $q\left(t_{i}\right)=q_{i}$ and $q\left(t_{f}\right)=q_{f}$.
(f) Show that for $\omega^{2} \rightarrow \omega^{2}-i \epsilon$ the propagator in Eq. 3 can be rewritten in the form

$$
\begin{equation*}
Z[J]=\left\langle q_{f}, \infty \mid q_{i},-\infty\right\rangle_{J}=\left\langle q_{f}, \infty \mid q_{i},-\infty\right\rangle_{0} \exp \left[-\frac{i}{2} \int d E \frac{\tilde{J}(E) \tilde{J}(-E)}{E^{2}-\omega^{2}+i \epsilon}\right] \tag{4}
\end{equation*}
$$

where we have introduced

$$
\tilde{J}(E)=\int_{-\infty}^{\infty} \frac{d t}{\sqrt{2 \pi}} e^{-i E t} J(t) \quad \leftrightarrow \quad J(t)=\int_{-\infty}^{\infty} \frac{d E}{\sqrt{2 \pi}} e^{i E t} \tilde{J}(E)
$$

Hints: Make use of a Fourier transform $(t \leftrightarrow E)$ in the exponent of Eq. 3 for both $J(t)$ and $q(t)$, write $J q=\frac{1}{2}[J q+q J]$, use $\int d t \exp \left[i\left(E+E^{\prime}\right) t\right]=2 \pi \delta\left(E+E^{\prime}\right)$ and motivate a $\operatorname{shift} \tilde{q}(E) \rightarrow \tilde{q}(E)-\frac{\tilde{J}(E)}{E^{2}-\omega^{2}}$.
(g) Transform the exponent in Eq. 4 into a time integral, i.e.

$$
-\frac{i}{2} \int d t d t^{\prime} J(t) \Delta\left(t-t^{\prime}\right) J\left(t^{\prime}\right) \quad \text { with } \quad \Delta\left(t-t^{\prime}\right)=\int \frac{d E}{2 \pi} \frac{e^{-i E\left(t-t^{\prime}\right)}}{E^{2}-\omega^{2}+i \epsilon}
$$

and discuss its physical meaning.

