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1. [8 points] Bilinear Forms of Dirac Spinors

The basis of a relativistic field theory is the Lorentz invariance of the Lagrangian density (i.e. the
Lagrangian transforms like a Lorentz scalar). It is therefore useful to understand the transformation
properties of terms involving Dirac spinors under a Lorentz transformation (LT). The latter can be
split up into two categories: the proper orthochonous LTs ΛL and the discrete transformations such as
parity transformations (ΛP ) and time reversal (ΛT ). In the following, we only discuss orthochronous
transformations (i.e. no time reversal).

Under a LT Λ,
xµ → x′µ = Λµν x

ν ,

a Dirac spinor ψ(x) transforms as:

ψ(x)→ ψ′(x′) = S(Λ)ψ(x),

where S(Λ) is a (4 × 4)-matrix which depends on the Lorentz transformations. For the proper LTs
and parity transformations, it can be shown that:

S−1 = γ0S†γ0.

For the Dirac equation to be covariant under LTs, the following relation for S and the γ matrices has
to hold:

S−1(Λ)γµS(Λ) = Λµνγ
ν . (1)

For the proper LTs SL ≡ S(ΛL) it can be shown that:

[SL, γ
5] = 0.

For parity transformations SP ≡ S(ΛP ) with ΛP = diag(1,−1,−1,−1), Eq. (1) becomes:

[SP , γ
0] = 0,

{SP , γk} = 0 for k = 1, 2, 3,

and the following applies:
{SP , γ5} = 0.

(a) [7 points] Show that the following bilinear forms exhibit the given properties:
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(i) [1 point] ψ̄ψ: scalar,

(ii) [1 point] ψ̄γ5ψ: pseudoscalar,

(iii) [1 point] ψ̄γµψ: vector,

(iv) [2 point] ψ̄γ5γµψ: axialvector,

(v) [2 point] ψ̄σµνψ: (antisymmetric) tensor.

(b) [1 points] What about ψ†ψ? Does it transform like a Lorentz scalar?

2. [8 points] Energy and Momentum of the Dirac Propagator

In analogy to exercise 1 of sheet 8, where we considered and calculated the energy and momentum of
the real Klein-Gordon field, we’ll now consider the Dirac field. The corresponding Lagrangian is given
by:

L = ψ̄(x)
(
i/∂ −m

)
ψ(x) = ψ̄(x)

(
iγµ∂

µ −m
)
ψ(x)

where the fields ψ and ψ̄ are considered as independent variables. For the Dirac field we use the
Ansatz:

ψ(x) =

∫
d3p

(2π)32Ep

∑
λ

[
aλ(p)uλ(p)e−ipx + b†λ(p)vλ(p)eipx

]
(2)

for λ = ±1.

(a) [2 points] What is the corresponding energy-momentum tensor Tµν? Why does the term pro-
portional to gµν vanish?

(b) [2 points] Use this and the results from exercise 1 on sheet 8 to calculate the 4-momentum
vector:

Pµ =

∫
d3xT 0µ

and show that this leads to the normal-ordered form:

: Pµ :=

∫
d3p

(2π)3
pµ
∑
λ

(
Ña
λ(p) + Ñ b

λ(p)
)

(c) [2 points] Show that the current:

jµ = ψ̄(x)γµψ(x)

is conserved. Hint: This can be done without using the explicit form of ψ.

(d) [2 points] The corresponding charge is given by:

Q =

∫
d3xj0(x)

Write the normal-ordered charge explicitly in terms of the operators a, a†, b, b†.

3. [4 points] Two Particle Phase Space

To calculate decay rates and cross sections we need an integration over the phase space of the particles
in the final state. For a general process with two particles (momenta p1, p2, masses m1,m2) in the
final state, this phase space integral is given by:∫

dΦ2 =

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(q − p1 − p2),
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where q is the four-momentum of the incoming particles. This integral acts on the squared matrix
element and a step function which represents the cuts on the final-state particles. Show that one can
rewrite the integral as:∫

dΦ2 =

∫
dΩ

1

32π2q2
λ(q2,m2

1,m
2
2)Θ(q0)Θ(q2 − (m1 +m2)

2)

where we have used the Källén function:

λ(a2, b2, c2) =
√
a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2 =

√
(a2 − b2 − c2)2 − 4b2c2,

and the Heavyside step function Θ, and dΩ = d(cos θ1)dφ1 is the integration over the solid angle
of particle 1 in the centre-of-mass frame of the two-particle system. The function λ describes the
momentum of both particles in the centre-of-mass frame:

|~p1|2 = |~p2|2 =
λ(q2,m2

1,m
2
2)

2
√
q2

Hints:

• Use the relation:

d3p

2E
= d4pΘ(p0)δ(p

2 −m2)

• Work in the centre-of-mass frame of the two final-state particles. Justify this!
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