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1. [8 points| Bilinear Forms of Dirac Spinors

The basis of a relativistic field theory is the Lorentz invariance of the Lagrangian density (i.e. the
Lagrangian transforms like a Lorentz scalar). It is therefore useful to understand the transformation
properties of terms involving Dirac spinors under a Lorentz transformation (LT). The latter can be
split up into two categories: the proper orthochonous LTs Ay, and the discrete transformations such as
parity transformations (Ap) and time reversal (Ar). In the following, we only discuss orthochronous
transformations (i.e. no time reversal).

Under a LT A,
at — o't = A* ) 2,

a Dirac spinor ¢(z) transforms as:
Y(x) = P(2) = S(A) (),

where S(A) is a (4 x 4)-matrix which depends on the Lorentz transformations. For the proper LTs
and parity transformations, it can be shown that:

S—l _ ’YOST’YO

For the Dirac equation to be covariant under LTs, the following relation for S and the v matrices has
to hold:

STHANW!S(A) = A" (1)
For the proper LTs S;, = S(Apr) it can be shown that:
[S£,7°) = 0.
For parity transformations Sp = S(Ap) with Ap = diag(1, —1,—1,—1), Eq. (1) becomes:

[SP/YO] = 07
{Sp,v*} =0 for k=1,2,3,

and the following applies:
{Sp,7°} =0.

(a) [7 points] Show that the following bilinear forms exhibit the given properties:



1 pomt]

[ ]1/_) 51/) pseudoscalar,

[1 point] yH1): vector,

[2 point] yPyH4): axialvector,

[2 point] Yo#¥4): (antisymmetric) tensor.

(b) [1 points] What about v¢? Does it transform like a Lorentz scalar?

Ynp: scalar,

2. [8 points] Energy and Momentum of the Dirac Propagator

In analogy to exercise 1 of sheet 8, where we considered and calculated the energy and momentum of
the real Klein-Gordon field, we’ll now consider the Dirac field. The corresponding Lagrangian is given

by:

=1 (@) (id — m)P(z) = (@) (ir.0" — m)Y ()

where the fields 1 and v are considered as independent variables. For the Dirac field we use the

Ansatz:
3
00) = [ g 3 (@) + 1 )nw)e] 2
LD
for A = £1.

(a) [2 points] What is the corresponding energy-momentum tensor 7#”? Why does the term pro-
portional to g vanish?
(b) [2 points| Use this and the results from exercise 1 on sheet 8 to calculate the 4-momentum

vector:
Pt = / 4T
and show that this leads to the normal-ordered form:

: PH ::/ 3P“Z (N,\ ‘f‘N/\( ))

(c) [2 points] Show that the current:

3" = ()" (@)

is conserved. Hint: This can be done without using the explicit form of .

(d) [2 points] The corresponding charge is given by:

Q= [ @@

Write the normal-ordered charge explicitly in terms of the operators a, af, b, b.

3. [4 points] Two Particle Phase Space
To calculate decay rates and cross sections we need an integration over the phase space of the particles
in the final state. For a general process with two particles (momenta p;, p2, masses mi,mg) in the
final state, this phase space integral is given by:

/d(I)Q / d3p1 P2 (27’[’)4(5(4) (q —p - ]32)
27)32E; (27)32Es !




where ¢ is the four-momentum of the incoming particles. This integral acts on the squared matrix
element and a step function which represents the cuts on the final-state particles. Show that one can
rewrite the integral as:

1
[ a2 = [ a0z Ak md) O (@) — (m + ma)?)

where we have used the Killén function:

Aa?, 0%, ) = Vat + bt + ¢t — 20202 — 2022 — 202¢2 = /(a2 — b2 — 2)2 — 4b%¢2,

and the Heavyside step function ©, and dQ2 = d(cosf;)d¢; is the integration over the solid angle
of particle 1 in the centre-of-mass frame of the two-particle system. The function A describes the
momentum of both particles in the centre-of-mass frame:

Aq?,m3, m3)

— |52 =

p1[?
Hints:

e Use the relation:
d3p 4 2 2
5 = 4POp)é(p” —m?)

e Work in the centre-of-mass frame of the two final-state particles. Justify this!



