Einführung in Theoretische Teilchenphysik

Lecture: PD Dr. S. Gieseke - Exercises: Dr. Christoph Borschensky, Dr. Cody B Duncan

Exercise Sheet 10

Hand-in Deadline: Mo 17.01.22, 12:00.
Discussion: Di 18.01.22, Mi 19.01.22.

1. [8 points] Bilinear Forms of Dirac Spinors

The basis of a relativistic field theory is the Lorentz invariance of the Lagrangian density (i.e. the Lagrangian transforms like a Lorentz scalar). It is therefore useful to understand the transformation properties of terms involving Dirac spinors under a Lorentz transformation (LT). The latter can be split up into two categories: the proper orthochonous LTs Λ_{L} and the discrete transformations such as parity transformations $\left(\Lambda_{P}\right)$ and time reversal $\left(\Lambda_{T}\right)$. In the following, we only discuss orthochronous transformations (i.e. no time reversal).

Under a LT Λ,

$$
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu},
$$

a Dirac spinor $\psi(x)$ transforms as:

$$
\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x),
$$

where $S(\Lambda)$ is a (4×4)-matrix which depends on the Lorentz transformations. For the proper LTs and parity transformations, it can be shown that:

$$
S^{-1}=\gamma^{0} S^{\dagger} \gamma^{0}
$$

For the Dirac equation to be covariant under LTs, the following relation for S and the γ matrices has to hold:

$$
\begin{equation*}
S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda)=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu} . \tag{1}
\end{equation*}
$$

For the proper LTs $S_{L} \equiv S\left(\Lambda_{L}\right)$ it can be shown that:

$$
\left[S_{L}, \gamma^{5}\right]=0
$$

For parity transformations $S_{P} \equiv S\left(\Lambda_{P}\right)$ with $\Lambda_{P}=\operatorname{diag}(1,-1,-1,-1)$, Eq. (1) becomes:

$$
\begin{aligned}
{\left[S_{P}, \gamma^{0}\right] } & =0, \\
\left\{S_{P}, \gamma^{k}\right\} & =0 \quad \text { for } k=1,2,3,
\end{aligned}
$$

and the following applies:

$$
\left\{S_{P}, \gamma^{5}\right\}=0
$$

(a) [7 points] Show that the following bilinear forms exhibit the given properties:
(i) [1 point] $\bar{\psi} \psi$: scalar,
(ii) [1 point $] \bar{\psi} \gamma^{5} \psi$: pseudoscalar,
(iii) [1 point] $\bar{\psi} \gamma^{\mu} \psi$: vector,
(iv) [2 point $] \bar{\psi} \gamma^{5} \gamma^{\mu} \psi$: axialvector,
(v) [2 point] $\bar{\psi} \sigma^{\mu \nu} \psi$: (antisymmetric) tensor.
(b) [1 points] What about $\psi^{\dagger} \psi$? Does it transform like a Lorentz scalar?

2. [8 points] Energy and Momentum of the Dirac Propagator

In analogy to exercise 1 of sheet 8 , where we considered and calculated the energy and momentum of the real Klein-Gordon field, we'll now consider the Dirac field. The corresponding Lagrangian is given by:

$$
\mathcal{L}=\bar{\psi}(x)(i \not \partial-m) \psi(x)=\bar{\psi}(x)\left(i \gamma_{\mu} \partial^{\mu}-m\right) \psi(x)
$$

where the fields ψ and $\bar{\psi}$ are considered as independent variables. For the Dirac field we use the Ansatz:

$$
\begin{equation*}
\psi(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E_{p}} \sum_{\lambda}\left[a_{\lambda}(p) u_{\lambda}(p) e^{-i p x}+b_{\lambda}^{\dagger}(p) v_{\lambda}(p) e^{i p x}\right] \tag{2}
\end{equation*}
$$

for $\lambda= \pm 1$.
(a) [2 points] What is the corresponding energy-momentum tensor $T^{\mu \nu}$? Why does the term proportional to $g^{\mu \nu}$ vanish?
(b) [$\mathbf{2}$ points] Use this and the results from exercise 1 on sheet 8 to calculate the 4 -momentum vector:

$$
P^{\mu}=\int \mathrm{d}^{3} x T^{0 \mu}
$$

and show that this leads to the normal-ordered form:

$$
: P^{\mu}:=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} p^{\mu} \sum_{\lambda}\left(\tilde{N}_{\lambda}^{a}(p)+\tilde{N}_{\lambda}^{b}(p)\right)
$$

(c) [2 points] Show that the current:

$$
j^{\mu}=\bar{\psi}(x) \gamma^{\mu} \psi(x)
$$

is conserved. Hint: This can be done without using the explicit form of ψ.
(d) [2 points] The corresponding charge is given by:

$$
Q=\int \mathrm{d}^{3} x j^{0}(x)
$$

Write the normal-ordered charge explicitly in terms of the operators $a, a^{\dagger}, b, b^{\dagger}$.

3. [4 points] Two Particle Phase Space

To calculate decay rates and cross sections we need an integration over the phase space of the particles in the final state. For a general process with two particles (momenta p_{1}, p_{2}, masses m_{1}, m_{2}) in the final state, this phase space integral is given by:

$$
\int \mathrm{d} \Phi_{2}=\int \frac{\mathrm{d}^{3} p_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{\mathrm{~d}^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{4} \delta^{(4)}\left(q-p_{1}-p_{2}\right)
$$

where q is the four-momentum of the incoming particles. This integral acts on the squared matrix element and a step function which represents the cuts on the final-state particles. Show that one can rewrite the integral as:

$$
\int \mathrm{d} \Phi_{2}=\int \mathrm{d} \Omega \frac{1}{32 \pi^{2} q^{2}} \lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right) \Theta\left(q_{0}\right) \Theta\left(q^{2}-\left(m_{1}+m_{2}\right)^{2}\right)
$$

where we have used the Källén function:

$$
\lambda\left(a^{2}, b^{2}, c^{2}\right)=\sqrt{a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}-2 b^{2} c^{2}}=\sqrt{\left(a^{2}-b^{2}-c^{2}\right)^{2}-4 b^{2} c^{2}},
$$

and the Heavyside step function Θ, and $\mathrm{d} \Omega=\mathrm{d}\left(\cos \theta_{1}\right) \mathrm{d} \phi_{1}$ is the integration over the solid angle of particle 1 in the centre-of-mass frame of the two-particle system. The function λ describes the momentum of both particles in the centre-of-mass frame:

$$
\left|\vec{p}_{1}\right|^{2}=\left|\vec{p}_{2}\right|^{2}=\frac{\lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right)}{2 \sqrt{q^{2}}}
$$

Hints:

- Use the relation:

$$
\frac{\mathrm{d}^{3} p}{2 E}=\mathrm{d}^{4} p \Theta\left(p_{0}\right) \delta\left(p^{2}-m^{2}\right)
$$

- Work in the centre-of-mass frame of the two final-state particles. Justify this!

