Einführung in Theoretische Teilchenphysik

Lecture: PD Dr. S. Gieseke - Exercises: Dr. Christoph Borschensky, Dr. Cody B. Duncan

Exercise Sheet 11

Hand-in Deadline: Mo 24.01.22, 12:00.
Discussion: Di 25.01.22, Mi 26.01.22.

1. [10 points] Gamma Algebra (II)

In this continuation of exercise 2 on sheet 9 , we look once more at properties of the γ matrices. Again, only the Clifford algebra,

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \cdot \mathbb{1}_{4},
$$

is necessary, and you should not use any explicit form of the γ matrices.
(a) [1 point] Besides the four standard γ matrices, a particular combination called γ^{5} is usually defined as

$$
\gamma^{5}:=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} .
$$

Show that this is equivalent to

$$
\gamma^{5}:=-\frac{i}{4!} \varepsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma},
$$

where $\varepsilon_{\mu \nu \rho \sigma}$ is the (totally antisymmetric) Levi-Civita symbol in four dimensions with $\varepsilon_{0123}=-1$.
(b) [2 points] Show the following relations for γ^{5} :

$$
\left(\gamma^{5}\right)^{\dagger}=\gamma^{5}, \quad\left(\gamma^{5}\right)^{2}=\mathbb{1}_{4}, \quad\left\{\gamma^{\mu}, \gamma^{5}\right\}=0
$$

Note: You may use the relation $\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$ without deriving it.
(c) [4 points] Show the following identities for traces over γ matrices:
(i) $\operatorname{Tr}\left[\gamma^{\mu}\right]=0$,
(ii) $\operatorname{Tr}\left[\gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}}\right]=0$, if n is odd,
(iii) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right]=4 g^{\mu \nu}$,
(iv) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right]=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)$.
(d) [3 points] Show the following identities for traces involving γ^{5} :
(i) $\operatorname{Tr}\left[\gamma^{5}\right]=0$,
(ii) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{5}\right]=0$,
(iii) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right]=-4 i \varepsilon^{\mu \nu \rho \sigma}$.

2. [$\mathbf{9}$ points] Scattering Processes in QED

In this exercise, you will discuss two important processes in QED: eletron-positron annihilation into photons, which will be discussed in the lecture, as well as electron-photon scattering, also known as Compton scattering.
(a) [1 point] Consider first the process of electron-positron annihilation into two photons,

$$
e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right) \rightarrow \gamma\left(k_{1}\right)+\gamma\left(k_{2}\right) .
$$

Draw all Feynman diagrams contributing at leading order. Label them with the momenta of the internal propagators and the wave function factors for the external particles (including their momenta).
(b) [$\mathbf{2}$ points] Use the Feynman rules of QED to write down the contribution of the diagrams of (a) to the scattering amplitude. You should obtain the following result:

$$
\begin{aligned}
i \mathcal{M}_{e^{-} e^{+}} & =i \mathcal{M}_{e^{-} e^{+}, t}+i \mathcal{M}_{e^{-} e^{+}, u} \\
& =i e^{2} \varepsilon_{\mu}^{\left(\lambda_{1}\right) *}\left(k_{1}\right) \varepsilon_{\nu}^{\left(\lambda_{2}\right) *}\left(k_{2}\right) \bar{v}_{s_{2}}\left(p_{2}\right)\left[\frac{2 p_{1}^{\mu} \gamma^{\nu}-\gamma^{\nu} \not k_{1} \gamma^{\mu}}{2 p_{1} \cdot k_{1}}+\frac{2 p_{1}^{\nu} \gamma^{\mu}-\gamma^{\mu} \not k_{2} \gamma^{\nu}}{2 p_{1} \cdot k_{2}}\right] u_{s_{1}}\left(p_{1}\right)
\end{aligned}
$$

where $s_{1}, s_{2}\left(\lambda_{1}, \lambda_{2}\right)$ are the spins (polarizations) of the electrons (photons).
Note: You may use any of the results that are derived in the lecture. Furthermore, the on-shell relations $p_{1}^{2}=p_{2}^{2}=m^{2}$ (with m the mass of the electron and positron) and $k_{1}^{2}=k_{2}^{2}=0$, the anticommutation relation for γ matrices as well as the Dirac equations for the spinors might be helpful for simplifying the amplitude.
(c) [2 points] A correction to the process of (a) is given by an additional emission of a photon into the final state, leading to the process

$$
e^{-} e^{+} \rightarrow \gamma \gamma \gamma .
$$

Draw the corresponding Feynman diagrams for this process (you do not need to add labels for the momenta). Can you guess how many diagrams there are for n photons in the final state?
(d) [1 point] A related process is Compton scattering, which is the dominant interaction between electromagnetic radiation and matter for photon energies of roughly 100 keV to 10 MeV . It is described by the inelastic scattering process:

$$
e^{-}(p)+\gamma(k) \rightarrow e^{-}\left(p^{\prime}\right)+\gamma\left(k^{\prime}\right) .
$$

Draw the leading-order Feynman diagrams for this process. How do they differ to the ones from part (a)?
(e) [3 point] Write down the scattering amplitude for the diagrams of (d). You should obtain:

$$
\begin{aligned}
i \mathcal{M}_{e^{-} \gamma} & =i \mathcal{M}_{e^{-} \gamma, s}+i \mathcal{M}_{e^{-} \gamma, u} \\
& =-i e^{2} \varepsilon_{\mu}^{(\lambda)}(k) \varepsilon_{\nu}^{\left(\lambda^{\prime}\right) *}\left(k^{\prime}\right) \bar{u}_{s^{\prime}}\left(p^{\prime}\right)\left[\frac{2 p^{\mu} \gamma^{\nu}+\gamma^{\nu} \not k \gamma^{\mu}}{2 p \cdot k}-\frac{2 p^{\nu} \gamma^{\mu}-\gamma^{\mu} \not k^{\prime} \gamma^{\nu}}{2 p \cdot k^{\prime}}\right] u_{s}(p),
\end{aligned}
$$

where again $s, s^{\prime}\left(\lambda, \lambda^{\prime}\right)$ are the spins (polarizations) of the electrons (photons). Can you think of a set of rules (for the momenta, spinors, ...) to relate this scattering amplitude to the result of part (b)?

