Einführung in Theoretische Teilchenphysik

Lecture: PD Dr. S. Gieseke - Exercises: Dr. Christoph Borchensky, Dr. Cody B Duncan

Exercise Sheet 2

Hand-in Deadline: Mo 01.11.21, 12:00.
Discussion: Di 02.11.21, Mi 03.11.21.

1. [7 points] Lie Algebra structure of $S U(N)$ and $S O(N)$

(a) [1 point] Show that real $N \times N$ unimodular (i.e. $\operatorname{det}(R)=+1$) and orthogonal ($R^{\mathrm{T}} R=\mathbb{1}_{N}$) matrices (i.e. the elements of $S O(N)$) have $N(N-1) / 2$ independent parameters.
(b) [1 point] Show that complex $N \times N$ unimodular (i.e. $\operatorname{det}(U)=+1$) and unitary ($R^{\dagger} R=\mathbb{1}_{N}$) matrices (i.e. the elements of $S U(N)$) have $N^{2}-1$ independent parameters.
(c) [2 points] Prove that any finite transformation $U \in S U(N)$ may be written as a combination of infinitesimal transformations $U(\theta)=\exp \left(i \theta_{a} J^{a}\right)$ where $a=1,2, \ldots, N^{2}-1$, and the basis elements of the Lie algebra J_{a} are: (i) hermitian, and (ii) traceless matrices, $\operatorname{Tr}\left(J_{a}\right)=0 \forall a$

Hint: Take the limit $\theta^{a} \rightarrow 0 \forall a$. To check that $\operatorname{Tr}\left(J_{a}\right)=0$, recall that the identity $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{Tr} A}$.
We will from now on focus only on the $S U(2)$ case.
(d) [1 points] Convince yourself that a generic $S U(2)$ transformation can be parameterized as:

$$
A=\left(\begin{array}{cc}
a_{0}+i a_{3} & a_{2}+i a_{1} \\
-a_{2}+i a_{1} & a_{0}-i a_{3}
\end{array}\right)=a_{0}+i \vec{a} \cdot \vec{\sigma}
$$

where $\left(a_{0}, \vec{a}\right)=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ are real-valued parameters satisfying $\sum_{i} a_{i}^{2}=1$, and the vector $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{2}\right)$ contains the Pauli matrices:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(e) [2 points] Prove that the parameterization of A above is equivalent to:

$$
A=\exp \left[i \frac{\theta}{2}(\vec{\sigma} \cdot \vec{n})\right],
$$

where the rotation angle θ and the unit vector \vec{n} are related to $\left(a_{0}, \vec{a}\right)$. Make these relations explicit.
2. [6 points] A closer look at $S O(3)$
(a) [1 point] Given a generic $S O(3)$ transformation represented in the form $R(\theta)=\exp \left(\theta_{a} K_{a}\right)$, show that the generators K_{a} are real and antisymmetric matrices.
(b) [1 point] If instead the transformation is represented as $R(\theta)=\exp \left(i \theta_{a} J_{a}\right)$, show that the generators J_{a} are imaginary and hermitian.
The following matrices implement independent rotations of angles $\theta_{a}, a=1,2,3$ around the x, y, z axis in 3-dimensional Euclidean space:

$$
\begin{aligned}
R_{x}\left(\theta_{1}\right) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{1} & -\sin \theta_{1} \\
0 & \sin \theta_{1} & \cos \theta_{1}
\end{array}\right) \\
R_{y}\left(\theta_{2}\right) & =\left(\begin{array}{ccc}
\cos \theta_{2} & 0 & \sin \theta_{2} \\
0 & 1 & 0 \\
-\sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right) \\
R_{z}\left(\theta_{3}\right) & =\left(\begin{array}{ccc}
\cos \theta_{3} & -\sin \theta_{3} & 0 \\
\sin \theta_{3} & \cos \theta_{3} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(c) [2 points] Taking the limit $R\left(\delta \theta_{a}\right)=1+i \delta \theta_{a} J^{a}+\mathcal{O}\left(\theta^{2}\right)$, obtain the matrix form of $J_{a}, a=1,2,3$. Check that your result is equivalent to the systematic recipe for computing the group generators:

$$
J_{a}=\left.\frac{1}{i} \frac{\partial U\left(\theta_{a}\right)}{\partial \theta_{a}}\right|_{\theta_{a}=0} .
$$

(d) [2 points] Using their explicit matrix form, check that J_{a} satisfy the commutation relation:

$$
\left[J_{a}, J_{b}\right]=f_{a b}^{c} J_{c}
$$

Determine the structure constants of the Lie algebra $f_{a b}^{c}$.

3. [7 points] Tensors under Lorentz transformations

Taking $x \rightarrow x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$ and the orthogonality condition, $\Lambda^{\mu}{ }_{\nu} \Lambda^{\rho}{ }_{\sigma} g_{\mu \rho}=g_{\nu \sigma}$,
(a) [1 point] Show that $a^{\mu} b_{\mu}$ is invariant under Lorentz transformations.
(b) [2 points] Let $\left(\Lambda^{-1}\right)^{\mu}{ }_{\nu}$ be the inverse of $\Lambda_{\nu}{ }^{\mu}$, meaning that

$$
\left(\Lambda^{-1}\right)^{\mu}{ }_{\nu} \Lambda^{\nu}{ }_{\rho}=\delta_{\rho}^{\mu} .
$$

Show that $\left(\Lambda^{-1}\right)^{\mu}{ }_{\nu}=\Lambda_{\nu}{ }^{\mu}$.
(c) $\left[\mathbf{2}\right.$ points] Show that $\partial_{\mu}{ }^{\prime}=\left(\Lambda^{-1}\right)^{\nu}{ }_{\mu} \partial_{\nu}$ where $\partial_{\mu}^{\prime}=\frac{\partial}{\partial x^{\prime \mu}}$.
(d) [2 points] Show that for a general 2 -index tensor $M_{\mu \nu}$, that $M^{\mu}{ }_{\nu}$ and $M_{\nu}{ }^{\mu}$ are not necessarily equal. On the other other hand, show that $\delta^{\mu}{ }_{\nu}=\delta_{\nu}{ }^{\mu}$. Why is the ordering not relevant in the latter case?

