
Einführung in Theoretische Teilchenphysik

Lecture: PD Dr. S. Gieseke – Exercises: Dr. Christoph Borschensky, Dr. Cody B Duncan

Exercise Sheet 4

Hand-in Deadline: Mo 22.11.21, 12:00.
Discussion: Di 23.11.21, Mi 24.11.21.

1. [6 points] Pion-Nucleon Scattering and Isospin Invariance

Consider pion-nucleon scattering processes of the form {Π + N → Π′ + N ′}, with pions denoted
Π = {π+, π0, π−} and nucleons N = {p, n}, mediated by the strong interaction.

(a) [1 points] List down all of the possible processes (there are 10) and classify them according to
the total isospin of the initial (final) states in the coupled basis.

(b) [1 point] If we denote the 3rd component of the isospin of each initial (and final respectively)
state particles as:

IΠ
3 = µ, IN3 = ν and IΠ′

3 = µ′, IN
′

3 = ν ′,

show that the S-matrix elements 〈Π′ +N ′| Ŝ |Π +N〉 in the isospin space can be written as:

〈1, µ′, 1

2
, ν ′| Ŝ |1, µ, 1

2
, ν〉 =

[
C1µ, 1

2
ν; 1

2
,µ+νC1µ′, 1

2
ν′; 1

2
,µ′+ν′A

1
2
Π+N→Π′+N ′

+C1µ, 1
2
ν; 3

2
,µ+νC1µ′, 1

2
ν′; 3

2
,µ′+ν′A

3
2
Π+N→Π′+N ′

]
δµ+ν,µ′+ν′

in terms of the elements of the S-matrix AIΠ+N→Π′+N ′ = 〈I, µ′ + ν ′| Ŝ |I, µ+ ν〉 in the coupled
isospin basis, along with the corresponding Clebsch-Gordan coefficients. How does this result
reflect the Wigner-Eckart theorem?

(c) [2 points] Apply the above result to the specific channels π−+ p→ π−+ p and π−+ p→ π0 +n
to demonstrate that: 〈

Ŝ
〉
π−+p→π−+p

=
1

3

[
A

3
2

π−+p→π−+p
+ 2A

1
2

π−+p→π−+p

]
〈
Ŝ
〉
π−+p→π0+n

=

√
2

3

[
A

3
2

π−+p→π0+n
−A

1
2

π−+p→π0+n

]
Hint: You will need the Clebsch-Gordan coefficient table from last week.

(d) [2 points] Verify that the cross section ratio between the scattering processes with π+ + p and
π− + p initial states is approximately:

σ(π+ + p)

σ(π− + p)
≈ 3,

when measured in collision experiments with centre-of-mass energies
√
s ≈ m∆0 (see last sheet

for details about the neutral Delta baryon).
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2. [5 points] Relativistic Kinematics

We consider the fixed-target experiment π+ +p→ π+ +p, where the proton is initially at rest. Find an
expression for the lab-frame velocity of the outgoing pion as a function of an arbitrary centre-of-mass
energy

√
s.

You may find the Källén function useful:

λ2(a2, b2, c2) = (a2 − b2 − c2)2 − 4b2c2

Hinweis: You may find the hints attached at the end of the sheet to be a useful guide or set of
benchmarks to solving the problem.

3. [9 points] Flavour-spin wave function of a hadron

To completely characterize the quantum state of hadrons, we need a product wavefunction which
factorizes into several pieces, each of them corresponding to separate Hilbert spaces:

• a spatial part, describing the relative location and motion of the quarks,

• a spin part, representing the orientation of their spins,

• a flavour part, indicating the quark type (e.g. u, d),

• a colour part, specifying the individual quark colour charges.

|Ψ〉hadron = |Ψspace〉 ⊗ |Ψspin〉 ⊗ |Ψflavour〉 ⊗ |Ψcolour〉 .

From Pauli’s Exclusion Principle, we know that the total wavefunction of a baryon must be antisym-
metric under the permutation of two quarks.

For the spatial part, we will assume that the lowest-lying hadronic states are to be bound states
of (anti)quarks with no relative angular momenta, ~L = 0. The spatial wavefunction is therefore
symmetric for this question. The spin state can be either completely symmetric (j = s = 3/2) or
of mixed symmetry (j = s = 1/2). Finally, due to colour confinement, all hadron states are colour
singlets, hence the colour wavefunction is completely anti-symmetric.

(a) [0 points] With all these ingredients in mind, convince yourself, that the spin-flavour (sf) wave-
function of the state ∆++ from the baryon decouplet is given by (quite trivially!):

|Ψsf〉∆++ = |uuu〉 ⊗ |↑↑↑〉 = |u ↑ u ↑ u ↑〉

(b) [2 points] Using the same notation, write down the normalized spin-flavour wavefunction for the
∆+ (J = 3/2, spin-half, uud bound state). If it were feasible to pull one quark out, what would
the probability that it would be a d-quark with spin up?

Constructing |Ψspin〉 ⊗ |Ψflavour〉 for states of the baryon octet is a little trickier, as we must
combine states of mixed symmetry to make a completely symmetric combination. The general
recipe is:

|Ψspin〉 ⊗ |Ψflavour〉 = N
{
|Ψspin

12 〉 ⊗ |Ψ
flavour
12 〉+ |Ψspin

13 〉 ⊗ |Ψ
flavour
13 〉+ |Ψspin

23 〉 ⊗ |Ψ
flavour
23 〉

}
,

where Ψij denotes a wavefunction with mixed symmetry, viz. antisymmetric under i↔ j quark-

pair exchange. This way, the product wavefunction Ψflav
ij ⊗Ψspin

ij is symmetric under such quark
exchanges.
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(c) [3 points] Write down the six mixed symmetry spin-half wavefunctions |Ψspin
ij 〉 for i, j = 1, 2, 3.

Notice that the exact same structure applies to the isospin-half wavefunction.

(d) [3 points] From the above result, show that the spin-flavour wavefunction of the proton with
spin-up can be written as:

|Ψ〉sfp =
1

3
√

2

[
2 |u ↑ u ↑ d ↓〉+ 2 |u ↑ d ↓ u ↑〉+ 2 |d ↓ u ↑ u ↑〉 − |u ↑ u ↓ d ↑〉

− |u ↑ d ↑ u ↓〉 − |d ↑ u ↑ u ↓〉 − |u ↓ u ↑ d ↑〉 − |u ↓ d ↑ u ↑〉 − |d ↑ u ↓ u ↑〉
]
.

(e) [1 point] The interaction of a spin-half particle with a classical magnetic field ~B is governed by
ĤPauli = −~µ · ~B, where the magnetic moment operator is given by the 3rd component projection,
µ̂z = q

2m Ŝz. Show that the magnetic moment of the proton can be written in terms of the up and
down-quark magnetic moments as µp = 1

3(4µu − µd), where:

µu =
2

3

e

2mu
, and µd = −1

3

e

2md
.

By direct analogy, evaluate the neutron magnetic moment µn and compare the ratio of µn/µp
calculated here to the experimental measurement:

µn
µp

∣∣∣∣
exp.

= −0.68497945(58).

Hint: For the numerical estimate, recall that mu = md under the assumption of isospin invariance.
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