Einführung in Theoretische Teilchenphysik

Lecture: PD Dr. S. Gieseke - Exercises: Dr. Christoph Borschensky, Dr. Cody B Duncan

Exercise Sheet 4

Hand-in Deadline: Mo 22.11.21, 12:00.
Discussion: Di 23.11.21, Mi 24.11.21.

1. [6 points] Pion-Nucleon Scattering and Isospin Invariance

Consider pion-nucleon scattering processes of the form $\left\{\Pi+N \rightarrow \Pi^{\prime}+N^{\prime}\right\}$, with pions denoted $\Pi=\left\{\pi^{+}, \pi^{0}, \pi^{-}\right\}$and nucleons $N=\{p, n\}$, mediated by the strong interaction.
(a) [1 points] List down all of the possible processes (there are 10) and classify them according to the total isospin of the initial (final) states in the coupled basis.
(b) [1 point] If we denote the 3rd component of the isospin of each initial (and final respectively) state particles as:

$$
I_{3}^{\Pi}=\mu, \quad I_{3}^{N}=\nu \quad \text { and } I_{3}^{\Pi^{\prime}}=\mu^{\prime}, \quad I_{3}^{N^{\prime}}=\nu^{\prime},
$$

show that the S-matrix elements $\left\langle\Pi^{\prime}+N^{\prime}\right| \hat{S}|\Pi+N\rangle$ in the isospin space can be written as:

$$
\begin{aligned}
\left\langle 1, \mu^{\prime}, \frac{1}{2}, \nu^{\prime}\right| \hat{S}\left|1, \mu, \frac{1}{2}, \nu\right\rangle= & {\left[C_{1 \mu, \frac{1}{2} \nu ; \frac{1}{2}, \mu+\nu} C_{1 \mu^{\prime}, \frac{1}{2} \nu^{\prime} ; \frac{1}{2}, \mu^{\prime}+\nu^{\prime}} \mathcal{A}_{\Pi+N \rightarrow \Pi^{\prime}+N^{\prime}}^{\frac{1}{2}}\right.} \\
& \left.+C_{1 \mu, \frac{1}{2} \nu ; \frac{3}{2}, \mu+\nu} C_{1 \mu^{\prime}, \frac{1}{2} \nu^{\prime} ; \frac{3}{2}, \mu^{\prime}+\nu^{\prime}} \mathcal{A}_{\Pi+N \rightarrow \Pi^{\prime}+N^{\prime}}^{\frac{3}{2}}\right] \delta_{\mu+\nu, \mu^{\prime}+\nu^{\prime}}
\end{aligned}
$$

in terms of the elements of the S-matrix $\mathcal{A}_{\Pi+N \rightarrow \Pi^{\prime}+N^{\prime}}^{I}=\left\langle I, \mu^{\prime}+\nu^{\prime}\right| \hat{S}|I, \mu+\nu\rangle$ in the coupled isospin basis, along with the corresponding Clebsch-Gordan coefficients. How does this result reflect the Wigner-Eckart theorem?
(c) [2 points] Apply the above result to the specific channels $\pi^{-}+p \rightarrow \pi^{-}+p$ and $\pi^{-}+p \rightarrow \pi^{0}+n$ to demonstrate that:

$$
\begin{aligned}
\langle\hat{S}\rangle_{\pi^{-}+p \rightarrow \pi^{-}+p} & =\frac{1}{3}\left[\mathcal{A}_{\pi^{-}+p \rightarrow \pi^{-}+p}^{\frac{3}{2}}+2 \mathcal{A}_{\pi^{-}+p \rightarrow \pi^{-}+p}^{\frac{1}{2}}\right] \\
\langle\hat{S}\rangle_{\pi^{-}+p \rightarrow \pi^{0}+n} & =\frac{\sqrt{2}}{3}\left[\mathcal{A}_{\pi^{-}+p \rightarrow \pi^{0}+n}^{\frac{3}{2}}-\mathcal{A}_{\pi^{-}+p \rightarrow \pi^{0}+n}^{\frac{1}{2}}\right]
\end{aligned}
$$

Hint: You will need the Clebsch-Gordan coefficient table from last week.
(d) [2 points] Verify that the cross section ratio between the scattering processes with $\pi^{+}+p$ and $\pi^{-}+p$ initial states is approximately:

$$
\frac{\sigma\left(\pi^{+}+p\right)}{\sigma\left(\pi^{-}+p\right)} \approx 3
$$

when measured in collision experiments with centre-of-mass energies $\sqrt{s} \approx m_{\Delta^{0}}$ (see last sheet for details about the neutral Delta baryon).

2. [5 points] Relativistic Kinematics

We consider the fixed-target experiment $\pi^{+}+p \rightarrow \pi^{+}+p$, where the proton is initially at rest. Find an expression for the lab-frame velocity of the outgoing pion as a function of an arbitrary centre-of-mass energy \sqrt{s}.
You may find the Källén function useful:

$$
\lambda^{2}\left(a^{2}, b^{2}, c^{2}\right)=\left(a^{2}-b^{2}-c^{2}\right)^{2}-4 b^{2} c^{2}
$$

Hinweis: You may find the hints attached at the end of the sheet to be a useful guide or set of benchmarks to solving the problem.
3. [$\mathbf{9}$ points] Flavour-spin wave function of a hadron

To completely characterize the quantum state of hadrons, we need a product wavefunction which factorizes into several pieces, each of them corresponding to separate Hilbert spaces:

- a spatial part, describing the relative location and motion of the quarks,
- a spin part, representing the orientation of their spins,
- a flavour part, indicating the quark type (e.g. u, d),
- a colour part, specifying the individual quark colour charges.

$$
|\Psi\rangle_{\text {hadron }}=\left|\Psi^{\text {space }}\right\rangle \otimes\left|\Psi^{\text {spin }}\right\rangle \otimes\left|\Psi^{\text {flavour }}\right\rangle \otimes\left|\Psi^{\text {colour }}\right\rangle
$$

From Pauli's Exclusion Principle, we know that the total wavefunction of a baryon must be antisymmetric under the permutation of two quarks.
For the spatial part, we will assume that the lowest-lying hadronic states are to be bound states of (anti)quarks with no relative angular momenta, $\vec{L}=0$. The spatial wavefunction is therefore symmetric for this question. The spin state can be either completely symmetric ($j=s=3 / 2$) or of mixed symmetry $(j=s=1 / 2)$. Finally, due to colour confinement, all hadron states are colour singlets, hence the colour wavefunction is completely anti-symmetric.
(a) [0 points] With all these ingredients in mind, convince yourself, that the spin-flavour (sf) wavefunction of the state Δ^{++}from the baryon decouplet is given by (quite trivially!):

$$
\left|\Psi^{\mathrm{sf}}\right\rangle_{\Delta^{++}}=|u u u\rangle \otimes|\uparrow \uparrow \uparrow\rangle=|u \uparrow u \uparrow u \uparrow\rangle
$$

(b) [2 points] Using the same notation, write down the normalized spin-flavour wavefunction for the $\Delta^{+}(J=3 / 2$, spin-half, uud bound state $)$. If it were feasible to pull one quark out, what would the probability that it would be a d-quark with spin up?

Constructing $\left|\Psi^{\text {spin }}\right\rangle \otimes\left|\Psi^{\text {flavour }}\right\rangle$ for states of the baryon octet is a little trickier, as we must combine states of mixed symmetry to make a completely symmetric combination. The general recipe is:

$$
\left|\Psi^{\text {spin }}\right\rangle \otimes\left|\Psi^{\text {flavour }}\right\rangle=N\left\{\left|\Psi_{12}^{\text {spin }}\right\rangle \otimes\left|\Psi_{12}^{\text {flavour }}\right\rangle+\left|\Psi_{13}^{\text {spin }}\right\rangle \otimes\left|\Psi_{13}^{\text {flavour }}\right\rangle+\left|\Psi_{23}^{\text {spin }}\right\rangle \otimes\left|\Psi_{23}^{\text {flavour }}\right\rangle\right\}
$$

where $\Psi_{i j}$ denotes a wavefunction with mixed symmetry, viz. antisymmetric under $i \leftrightarrow j$ quarkpair exchange. This way, the product wavefunction $\Psi_{i j}^{\text {flav }} \otimes \Psi_{i j}^{\text {spin }}$ is symmetric under such quark exchanges.
(c) [3 points] Write down the six mixed symmetry spin-half wavefunctions $\left|\Psi_{i j}^{\text {spin }}\right\rangle$ for $i, j=1,2,3$. Notice that the exact same structure applies to the isospin-half wavefunction.
(d) [3 points] From the above result, show that the spin-flavour wavefunction of the proton with spin-up can be written as:

$$
\begin{aligned}
|\Psi\rangle_{p}^{\mathrm{sf}}=\frac{1}{3 \sqrt{2}} & {[2|u \uparrow u \uparrow d \downarrow\rangle+2|u \uparrow d \downarrow u \uparrow\rangle+2|d \downarrow u \uparrow u \uparrow\rangle-|u \uparrow u \downarrow d \uparrow\rangle} \\
& -|u \uparrow d \uparrow u \downarrow\rangle-|d \uparrow u \uparrow u \downarrow\rangle-|u \downarrow u \uparrow d \uparrow\rangle-|u \downarrow d \uparrow u \uparrow\rangle-|d \uparrow u \downarrow u \uparrow\rangle] .
\end{aligned}
$$

(e) [1 point] The interaction of a spin-half particle with a classical magnetic field \vec{B} is governed by $\hat{\mathcal{H}}_{\text {Pauli }}=-\vec{\mu} \cdot \vec{B}$, where the magnetic moment operator is given by the 3rd component projection, $\hat{\mu}_{z}=\frac{q}{2 m} \hat{S}_{z}$. Show that the magnetic moment of the proton can be written in terms of the up and down-quark magnetic moments as $\mu_{p}=\frac{1}{3}\left(4 \mu_{u}-\mu_{d}\right)$, where:

$$
\mu_{u}=\frac{2}{3} \frac{e}{2 m_{u}}, \quad \text { and } \quad \mu_{d}=-\frac{1}{3} \frac{e}{2 m_{d}} .
$$

By direct analogy, evaluate the neutron magnetic moment μ_{n} and compare the ratio of μ_{n} / μ_{p} calculated here to the experimental measurement:

$$
\left.\frac{\mu_{n}}{\mu_{p}}\right|_{\text {exp. }}=-0.68497945(58)
$$

Hint: For the numerical estimate, recall that $m_{u}=m_{d}$ under the assumption of isospin invariance.
[Hints to solve Ex. le of sheet 4
ie. Useful tricks for relativistic kinematics]
Key Idea: Use Lorentz transformations to switch between the
lab \& CoM frames.
TD centre-of momentum / mass
Lab Frame S
Before collision
$\underset{\text { bema }}{\overrightarrow{\vec{p}_{I I}^{l a b}}}$ fixed forget

$$
\left\{\frac{\text { After collision: }}{\longrightarrow P,} \hbar_{c}^{1 a b}\right.
$$

 To express $E_{\pi}^{\text {lab }}$ in terms of $s=P_{\mu}^{\text {mab }} P^{\mu} l^{\text {lab } \mu}$

Show:

$$
E_{\pi}^{1, v b}=\frac{s-m_{p}^{2}-m_{\pi}^{2}}{2 m_{p}}
$$

Centre of mass forme
(2). Use toforl 4-mom. tease after collision $P_{\mu}^{\mathrm{Cm}}=P_{\mu}^{\mathrm{Cm}_{\mu} \pi^{+}}+P_{\mu}^{\mathrm{cm}, p}$ to calculate $s=P_{\mu}^{\mathrm{cm}} p^{\mathrm{CMM}}$. (Ho ware $t_{\mathrm{n}}^{\mathrm{cm}} \& \hbar_{\mathrm{c}}^{\mathrm{cm}}$. related?)
(3). Find relative velocity between S \& S^{\prime} :

Calculate $|\vec{u}|$ by considering how $\vec{P}_{\vec{r}}^{1 \text { ab }} \& \vec{P}_{p}^{\text {lat }}$ trons form into the Com frame $\vec{P}_{T}^{c m} \& \vec{P}_{P}^{c m}$.
(4). Use the result of (3) to trons form results in (2) back to the lab frame, ie find $\vec{k}_{\pi}^{\text {lab }}$ in terms of $E_{\pi}^{\mathrm{Cm}} \& k_{\pi} \mathrm{cm}$.

Lab Frame S
(5). With $t_{\pi}^{l a b}$ backing the Eld lab fume, how are $\left|k_{\pi}^{l \mid a b}\right|$ and $V_{\pi}^{l a b}$ related?

