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1. [10 points] Poincaré Group: the Pauli-Lubanski Operator

The Pauli-Lubanski pseudovector describes the spin state of a moving particle:

Wµ =
1

2
M̃µσP

σ =
1

2
εµνρσM

νρP σ,

whereMµν = i (xµ∂ν − xν∂µ) denotes the relativistic angular momentum tensor operator, and Pµ = i∂µ

is the 4-momentum. Its commutation relation is given as:

[Wµ,Wν ] = −iεµνρσW ρP σ.

The simultaneous eigenvalues of P 2 and W 2 can be used to classify particles according to their mass
and spin as irreducible representations of the Poincaré algebra.

We define the generalized Levi-Civita symbol in four dimensions as:

εµνρσ =


1 if {µ, ν, ρ, σ} is an odd permutation of {0, 1, 2, 3}
−1 if {µ, ν, ρ, σ} is an even permutation of {0, 1, 2, 3}
0 otherwise

,

with ε0123 = gµ0gν1gρ2gσ3εµνρσ = −ε0123.

(a) [2 points] Show that the components of Wµ for a particle at rest are (0,−m~J)T , where ~J = ~x× ~P
is the total angular momentum operator in three dimensions.

(b) [3 points] Prove the following identities:

(i) [Mµν , Pρ] = i (gνρPµ − gµρPν),

(ii) WµP
µ = 0,

(iii) [Wµ, Pν ] = 0.

(c) [3 points] Show that P 2 and W 2 are the Casimir operators of the Poincaré group, i.e. that they
commute with all its generators,

[P 2, Pµ] = [P 2,Mµν ] = 0 and [W 2, Pµ] = [W 2,Mµν ] = 0

You do not need to prove the last identity, [W 2,Mµν ] = 0, as the calculation is really tedious.
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(d) [2 points] With

W 2 = −1

2
MµνM

µνP 2 +MµρM
νρPµPν ,

show that
W 2|~p = ~0,m, s〉 = −m2s(s+ 1)|~p = ~0,m, s〉,

where |~p = ~0,m, s〉 is an eigenvector for a particle of mass m, spin s, and (vanishing) 3-momentum
~p = ~0, and −m2s(s+ 1) is the corresponding eigenvalue.

2. [5 points] Dimensional Analysis of the Lagrangian

Recall from Lagrangian mechanics that the action S is defined as the integral over time of the La-
grangian function L:

S =

∫
dt L.

The Lagrangian has dimension of energy. It can be written as an integral over space, L =
∫

d3xL, of
a quantity L that is known as the Lagrangian density. This way, the action can be written as

S =

∫
d4xL.

Consider now the Klein-Gordon Lagrangian

LKG =
1

2
∂µφ(x) ∂µφ(x)− 1

2
m2φ(x)2.

Here, φ(x) is a real scalar field that depends on the space-time four vector x, m is a mass, ∂µ and ∂µ are
the derivatives with respect to the components of the four-vector x in the covariant and contravariant
forms, respectively.

Make use of natural units throughout the exercise, i.e. when we say that something is dimensionless
or of dimension x, we always refer to the dimension of energy.

(a) [2 point] Determine the dimension of the action S, of the integration element d4x and of the
Lagrangian density LKG. Derive also the dimension of φ(x). What is the dimension of the
derivative ∂µ?

(b) [3 point] Argue if the following terms in a Lagrangian density are allowed, and, if they are not,
point out all the reasons why they are not allowed:

(i) L1 = gA(x) C̄(x)C(x),

(ii) L2 = mA(x) C̄(x)C(x),

(iii) L3 = iA(x)Bµ(x)Bν(x),

(iv) L4 =
1

m
Bµ(x)Bµ(x) C̄(x)C(x),

(v) L5 =
g2

m
∂µB

µ(x)A(x)
∂A(x)

∂t
,

(vi) L6 =
1

4
g4m4.

Assume that the coupling g is dimensionless, the coupling m is of dimension 1, the scalar and
vector fields A(x) and Bµ(x) are each of dimension 1, and the spinor fields C(x) and C̄(x) are of
dimension 3

2 .

3. [3 points] Invariance of the Lagrangian Density

Consider the following transformation to the Lagrangian density L = L(φi(x), ∂µφi(x)) of scalar fields
φi(x):

L′ = L+ ∂µΛµ,
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where Λµ = Λµ(φi(x)) denotes a generic function of the set of scalar fields {φi(x)}. Show that this
transformation leaves the equations of motion for the φi unchanged.

Hint: Assume that Λµ is a smooth function that vanishes for field configurations at infinity.
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