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Exercise Sheet 9
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Please note that due to the Christmas break, you have three weeks to solve this sheet.

Exercise 1 will introduce an important ingredient for calculating scattering amplitudes with scalar particles,
and exercises 2 and 3 will focus on showing mathematical identities that will be extremely helpful when we
get around to calculating scattering processes including fermions.

1. [3 points] Real Scalar Field: Feynman Propagator

The propagator of a field describes its probability amplitude for a propagation from one place to
another and is an important ingredient in calculating scattering amplitudes. With the quantization of
the fields as discussed on the previous sheet and the field operators being expressed in terms of creation
and annihilation operators, the so-called Feynman propagator of a real scalar field φ(x) is defined as
the vacuum expectation value of the time-ordered product between the field at different space-time
points x and x′,

i∆F (x− x′) := 〈0|Tφ(x)φ(x′)|0〉,

where Tφ(x)φ(x′) := Θ(t− t′)φ(x)φ(x′) + Θ(t′− t)φ(x′)φ(x) defines the time-ordering operator. Upon
several manipulations (which we do not consider here), the above expression takes the following form
in momentum space:

∆F (x) = lim
ε→0+

∫
d4p

(2π)4
e−ip·x

p2 −m2 + iε
. (1)

Show that the Feynman propagator of Eq. (1) fulfills the inhomogeneous Klein-Gordon equation,(
� +m2

)
∆F (x) = −δ(4)(x),

where δ(4)(x) denotes the 4-dimensional δ-distribution, being “defined” as

δ(4)(x) =

∫
d4p

(2π)4
e−ip·x.

2. [6 points] Gamma Algebra (I)

The Dirac matrices, which appear in the Dirac equation and play an important role when calculating
amplitudes with fermions, e.g. scattering or decay processes involving leptons and/or quarks, are
defined by the anticommutation relation, namely the Clifford Algebra

{γµ, γν} = 2gµν · 14 (2)
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with 14 the identity matrix in four-dimensional spinor space. This means that two Dirac matrices with
different Lorentz indices anticommute:

γµγν = −γνγµ for µ 6= ν,

and that the square of γ matrices is proportional to the identity matrix multiplied by +1 or −1:

γµγµ = (γµ)2 = gµµ · 14 (no sum over µ)

with the convention g00 = −g11 = −g22 = −g33 = +1. We furthermore define

σµν :=
i

2
[γµ, γν ]

as the commutator between two γ matrices.

We will make use of the Feynman slash notation, i.e. with an arbitrary 4-vector aµ (e.g. a momentum),
we define /a := aµγ

µ. The scalar product between two 4-vectors aµ and bµ is simply given by the
contraction of the Lorentz index, a · b = aµb

µ = aµbνg
µν . Note that these 4-vectors will clearly

commute with the γ matrices.

To solve this exercise, you do not need any explicit representation of the γ matrices. It is possible to
prove the relations solely with the anticommutative property relation of Eq. (2).

Prove the following relations for any generic four-vectors aµ and bµ:

(a) /a/a = a2 · 14,

(b) /a/b = (a · b) · 14 − iσµνaµbν ,

(c) γµγ
µ = 4 · 14,

(d) γµγ
νγµ = −2γν ,

(e) γµγ
νγργµ = 4gνρ · 14,

(f) γµγ
νγργσγµ = −2γσγργν .

3. [9 points] Properties of Dirac Spinors

The momentum-space Dirac spinors us(~p) and vs(~p) (with mass m, spin s, and momentum ~p) are
defined via the ansatz for plane wave solutions of the Dirac equation:

• ψs(x) = us(~p) e
−ip·x for positive energy solutions,

• ψs(x) = vs(~p) e
ip·x for negative energy solutions.

(a) [1 point] Show that:

(i) /pus(~p) = mus(~p), ūs(~p)/p = mūs(~p),

(ii) /pvs(~p) = −mus(~p), v̄s(~p)/p = −mv̄s(~p).

The us(~p) and vs(~p) fulfill the following orthogonality constraints/conditions:

ūs(~p)us′(~p) = −v̄s(~p)vs′(~p) = 2mδss′ ,

ūs(~p)vs′(~p) = −v̄s(~p)us′(~p) = 0,

and the completeness relations: ∑
s

[
us(~p)ūs(~p)− vs(~p)v̄s(~p)

]
= 2m.
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(b) [1 point] Check the completeness relation by showing that when it is applied to the basis states
us′(~p), vs′(~p), ūs′(~p), and v̄s′(~p), you obtain the correct result.

(c) [2 points] Now we define the projection operators:

Λ±(~p) =
±/p+m

2m
,

which project the states of positive and negative energy, respectively, out of an arbitrary state:

f(~p) =
∑
s

[
αsus(~p) + βsvs(~p)

]
, α, β ∈ C.

Show that Λ±(~p) are indeed projectors, namely:(
Λ±(~p)

)2
= Λ±(~p),

Λ+(~p)f(~p) =
∑
s

αsus(~p),

Λ−(~p)f(~p) =
∑
s

βsvs(~p),

Λ+(~p) + Λ−(~p) = 1.

(d) [2 points] Finally, using the previous results, show that:∑
s

us(~p)ūs(~p) = /p+m,∑
s

vs(~p)v̄s(~p) = /p−m.

(e) [3 points] Prove the Gordon identity,

ūs(~p
′)γµus(~p) = ūs(~p

′)

[
p′µ + pµ

2m
+
iσµνqν

2m

]
us(~p),

with q = p′ − p and σµν as defined in exercise 2.

We wish you a Merry Christmas,

a relaxing time between the holidays,

and a Happy New Year 2022!
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