

Moderne Physik für Lehramtskandidaten

Vorlesung: PD Dr. S. Gieseke – Übung: Dr. B. Agarwal

Übungsblatt 11

Abgabe: 07.02.2024 Besprechung: 08.02.2024 und 09.02.2024

Aufgabe 1: Vektoren im Hilbertraum (7 P)

Die Vektoren $|v_1\rangle, |v_2\rangle$ bilden ein vollständiges Orthonormalsystem (VONS) in einem zweidimensionalen Hilbertraum \mathcal{H} , d.h. $\langle v_i|v_j\rangle=\delta_{ij}$. In Abhängigkeit dieser zwei Basisvektoren definieren wir die zwei Vektoren $|\phi\rangle, |\chi\rangle\in\mathcal{H}$ durch

$$|\phi\rangle = (3-i)|v_1\rangle + (1+2i)|v_2\rangle$$

$$|\chi\rangle = (1+i)|v_1\rangle + (1-i)|v_2\rangle$$

(a) Berechnen Sie das Skalarprodukt $\langle \chi | \phi \rangle$. Zeigen Sie dann, dass die Vektoren

$$|u_1\rangle = \frac{1}{\sqrt{2}} |v_1\rangle + \frac{i}{\sqrt{2}} |v_2\rangle$$

$$|u_2\rangle = \frac{-i}{\sqrt{2}} |v_1\rangle - \frac{1}{\sqrt{2}} |v_2\rangle$$

ebenfalls ein VONS bilden und bestimmen Sie die Komponenten von $|\phi\rangle$ und $|\chi\rangle$ bezüglich dieser neuen Basisvektoren.

Hinweis: Für einem Vektor $|A\rangle = \alpha |a\rangle$ gilt $\langle A| = (\alpha |a\rangle)^{\dagger} = \alpha^* \langle a|$.

(b) Projektoren P_i auf Unterräume \mathcal{H}_i haben die Eigenschaften $P_i^2 = P_i$ (Idempotenz) und $\sum_i P_i = 1$ (Vollständigkeit), falls die \mathcal{H}_i den gesamten Raum \mathcal{H} aufspannen. Betrachten Sie nun die Projektoren $P_{u_1} = |u_1\rangle \langle u_1|$ und $P_{v_1} = |v_1\rangle \langle v_1|$.

Welche mathematischen Objekte sind durch P_{u_1} bzw. P_{v_1} beschrieben? Bestimmen Sie die Komponenten $\langle v_j | P_{u_1} | v_k \rangle$ von P_{u_1} bezüglich der $|v_i\rangle$ und die Komponenten $\langle u_j | P_{v_1} | u_k \rangle$ von P_{v_1} bezüglich der $|u_i\rangle$. Schreiben Sie schließlich P_{u_1} in der Basis $|v_i\rangle$.

Aufgabe 2: Geladener Harmonischer Oszillator (13 P)

Betrachten Sie einen harmonischen Oszillator mit der Ladung e in einem konstanten elektrischen Feld E, der durch den Hamiltonoperator

$$\hat{H} = \frac{1}{2m}\hat{P}^2 + \frac{m\omega^2}{2}\hat{X}^2 + eE\hat{X}$$

beschrieben wird.

(a) Zeigen Sie, dass \hat{H} durch die Auf- und Absteigeoperatoren

$$\hat{b}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \hat{X} - \frac{i}{\sqrt{2\hbar m\omega}} \hat{P}$$
 und
$$\hat{b} = \sqrt{\frac{m\omega}{2\hbar}} \hat{X} + \frac{i}{\sqrt{2\hbar m\omega}} \hat{P}$$

in die Form

$$\hat{H} = \hbar\omega \big(\hat{b}^{\dagger}\hat{b} + \frac{1}{2} + \Delta\big)$$

gebracht werden kann. Der Störterm ist dabei gegeben durch

$$\Delta = \frac{eE}{\omega\sqrt{2\hbar m\omega}} (\hat{b}^{\dagger} + \hat{b})$$

(b) Bringen Sie den gestörten harmonischen Oszillator in *Diagonalform*. Nutzen Sie dabei einen Shift der Auf- und Absteigeoperatoren

$$\hat{a}^{(\dagger)} = \hat{b}^{(\dagger)} + c$$

mit $c \in \mathbb{R}$ und bestimmen Sie c so, dass der Hamiltonoperator in kanonischer Form vorliegt

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + d)$$

Wie sieht das Energiespektrum des gestörten harmonischen Oszillators aus?

(c) Berechnen Sie die Ortsunschärfe ΔX des harmonischen Oszillators. *Tipp:* Für die Eigenzustände $|n\rangle$ von \hat{H} gilt:

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$$
 und $a | n \rangle = \sqrt{n} | n-1 \rangle$

Bonus: Delta-potential (10 P)

Betrachten Sie das Potential einer Delta-Funktion der Form

$$V(x) = c \delta(x)$$
.

- (a) Bestimmen Sie die Wellenfunktionen ψ_I und ψ_{II} sowie den Reflexionskoeffizienten r und den Transmissionskoeffizienten t für den Fall c > 0.
- (b) Was passiert für c < 0? Zeigen Sie, dass in diesem Fall nur ein einziger gebundener Zustand existiert.

Hinweis: Ein gebundener Zustand ist ein Zustand mit Energie E < 0.