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Abstract

The three-form gauge eld may provide a dynamical solution of the cosmological constant
problem. In previous works, the nonkinematic three-form gauge eld was used. Motivated
by 𝑞-theory, the three-form gauge eld theory was extended by the introduction of a
kinematic term for the eld. In this thesis, a Hamiltonian analysis is used to examine both
variants of the three-form gauge eld. Following from the gauge invariance of the three-
form gauge eld, the Hamiltonian analysis includes constraints. This analysis enables the
calculation of the number of local degrees of freedom and the formulation of the path
integral formalism of the nonkinematic and kinematic three-form gauge eld. Finally,
dierent interactions of the three-form gauge eld are considered.
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Zusammenfassung

Das drei-Form Eichfeld könnte eine dynamische Lösung des Problemes der kosmologi-
schen Konstante bereitstellen. In früheren Arbeiten wurde hierzu das konstante drei-Form
Eichfeld herangezogen, das keinerlei Kinematik besitzt. Jüngst hat sich allerdings, mo-
tiviert von der 𝑞-Theorie, eine Erweiterung des drei-Form Eichfeldes ergeben, welche
einen kinematischen Term beinhaltet. In dieser Arbeit werden beide Varianten des drei-
Form Eichfeldes im Lichte der Hamiltonischen Mechanik betrachtet, welche auf Grund
der Eichinvarianz ebenjenes Feldes Zwangsbedingungen enthält. Neben der Berechnung
der Anzahl globaler und lokaler Freiheitsgrade, ermöglicht die Hamiltonische Analyse
die Formulierung des Pfadintegralformalismus des drei-Form Eichfeldes. Zuletzt werden
mögliche Interaktionen des drei-Form Eichfeldes betrachtet und deren Implikationen für
das Problem der kosmologischen Konstante diskutiert.
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Notation

Let us review some notation and conventions used in this thesis.

• We use natural units with ℏ = 𝑐 = 1.

• We use the metric signature (−+++).
• The determinant of the metric tensor is

𝑔 ≡ det
(
𝑔𝜇𝜈

)
.

• Latin indices, like 𝑖, 𝑗, 𝑘 , run over spatial coordinate labels 1, 2, 3 or 𝑥,𝑦, 𝑧.

• Greek indices, like 𝜇, 𝜈, 𝜌 , run over the four spacetime coordinate labels 0, 1, 2, 3 or
𝑡, 𝑥,𝑦, 𝑧.

• Throughout, unless specied otherwise, we use the Einstein sum convention.

• Square brackets around spacetime indices denote complete antisymmetrization.

• The covariant derivative is denoted by ∇𝜇 .

• The box operator is dened by
� ≡ ∇𝛼∇𝛼 .

• A prime on a function denes the total derivative of this function with respect to its
argument

𝑓 ′(𝑥) ≡ 𝑑 𝑓 (𝑥)
𝑑𝑥

.

• A dot over a function denotes the time derivative of this function.
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1. Introduction

In this introductory chapter, we, rst, consider the Einstein eld equation with a genuine
cosmological constant and the eects of this cosmological constant on a Friedmann-
Robertson-Walker universe. Second, we discuss contributions to vacuum energy density
by quantum eld theory and the cosmological constant problem. Last, we introduce
the three-form gauge eld and discuss connections to the aforementioned cosmological
constant problem.

1.1. The Einstein field equation and a cosmological constant

The Einstein eld equation describes the evolution of the metric tensor 𝑔𝜇𝜈 depending on
the energy-momentum tensor 𝑇 𝜇𝜈 . Including a cosmological constant 𝜆, which was rst
introduced to enable a static universe solution in reference [1], the Einstein eld equation
can be derived from the variation of the action

𝑆
[
𝜓,𝑔𝜇𝜈

]
=

∫
R4

𝑑4𝑥
√−𝑔

(
− 1

16𝜋𝐺 (𝑅 − 2𝜆) + L (
𝜙,𝑔𝜇𝜈

) )
(1.1)

with respect to the metric 𝑔𝜇𝜈 . Dening the energy-momentum tensor as the variation of
the matter action with respect to the metric tensor

𝛿

∫
𝑑4𝑥

√−𝑔 L (
𝜙,𝑔𝜇𝜈

) ≡ 1
2

∫
𝑑4𝑥

√−𝑔 𝑇 𝜇𝜈𝛿𝑔𝜇𝜈 , (1.2)

we get the Einstein eld equations

𝑅𝜇𝜈 − 1
2𝑔

𝜇𝜈𝑅 − 𝜆𝑔𝜇𝜈 = −8𝜋𝐺𝑇 𝜇𝜈 . (1.3)

To analyze the eects of the cosmological constant 𝜆, we make a simple Ansatz to solve the
Einstein eld equation (1.3). We use the metric tensor of a Friedmann-Robertson-Walker
universe, which describes a maximally symmetric, homogeneous and isometric universe,
with the line element

𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2 (𝑑𝑥2
1 + 𝑑𝑥2

2 + 𝑑𝑥2
3
)
, (1.4)

in the absence of matter, thereby setting the energy-momentum tensor to zero. This is
a de Sitter universe. The dimensionless scale factor 𝑎(𝑡) characterizes the expansion or
contraction of the universe. The Einstein eld equation gives the Friedmann equations

3𝐻 (𝑡)2 = 𝜆, (1.5a)

1



1. Introduction

3𝐻 (𝑡)2 + 2 ¤𝐻 (𝑡) = 𝜆, (1.5b)

where we dened the Hubble parameter 𝐻 (𝑡) as

𝐻 (𝑡) ≡ ¤𝑎(𝑡)
𝑎(𝑡) . (1.6)

The solution of equations (1.5) is a Hubble constant

𝐻 = ±
√︂

𝜆

3 . (1.7)

Thereby, in a universe without matter, the cosmological constant 𝜆 gives rise to an ex-
panding, or contracting, universe. In following sections, the nature of terms acting as a
cosmological constant in the Friedmann equations (1.5), are elaborated.

1.2. Contributions to the vacuum energy density

In the last section, we considered a Friedmann-Robertson-Walker universe with a cos-
mological constant but without matter. Here, we introduce contributions to the energy-
momentum tensor (1.2) that have the same eect on the evolution of the metric tensor
𝑔𝜇𝜈 as the cosmological constant 𝜆. Therefore, we consider a perfect uid with energy-
momentum tensor [2, Section 14.2]

𝑇 𝜇𝜈 = (𝜌 + 𝑃)𝑈 𝜇𝑈 𝜈 + 𝑃𝑔𝜇𝜈 , (1.8)

where 𝜌 is the energy density, 𝑃 is the pressure of the perfect uid and 𝑈 𝜇 is the velocity
four-vector with

𝑈 0 = 1, 𝑈 𝑖 = 0, (1.9)

The equation of state parameter 𝑤 of a perfect uid is dened as

𝑤 ≡ 𝑃

𝜌
. (1.10)

We are particularly interested in perfect uids with equations of state parameter −1 since
they have the energy-momentum tensor

𝑇 𝜇𝜈 = −𝜌𝑔𝜇𝜈 , (1.11)

which has, comparing to the cosmological constant term in the Einstein eld equation (1.3),
the same structure as the cosmological constant term. Note here, that the energy density
in equation (1.11) can be positive or negative. Of course, the energy-momentum tensor in
the Einstein eld equations is not restricted to a single contribution of a perfect uid with
equations of state parameter −1. Dierent contributions add to an overall vacuum energy
density.
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1.2. Contributions to the vacuum energy density

In the remainder of this section, we discuss dierent contribution to the vacuum energy
density. First, as seen in the previous section, a raw cosmological constant contributes to
the vacuum energy density by

𝜌𝜆 =
𝜆

8𝜋𝐺 . (1.12)

This contribution is of order of the Planck energy 𝐸𝑃𝑙 since it is a pure gravitational eect.
For the next points, we consider a scalar eld. It is described by the action

𝑆 [𝜙,𝑔𝜇𝜈 ] =
∫
𝑑4𝑥

√−𝑔
(
1
2∇𝜇𝜙∇𝜇𝜙 +𝑉 (𝜙)

)
, (1.13)

where 𝑉 (𝜙) is the potential of the scalar eld. The energy-momentum tensor is obtained
by the variation with respect to the metric tensor 𝑔𝜇𝜈

𝑇 𝜇𝜈 = −𝑔𝜇𝜈
(
1
2∇𝜇𝜙∇𝜈𝜙 +𝑉 (𝜙)

)
− ∇𝜇𝜙∇𝜈𝜙. (1.14)

Returning to the contributions to the vacuum energy density, the second contribution we
discuss, is the vacuum expectation value of a spontaneously broken theory. The solution
of the equation of motion of such a theory has not the same symmetry as the action of the
theory itself. In particular, we consider a scalar eld with

𝑉 (𝜙0) ≠ 0, (1.15)

where 𝜙0 is the minimum of the potential𝑉 (𝜙). Expanding the eld around this minimum

𝜙 (𝑥) = 𝜙0 + 𝜒 (𝑥) , (1.16)

gives the energy-momentum tensor

𝑇 𝜇𝜈 = −𝑔𝜇𝜈𝑉 (𝜙0) − 𝑔𝜇𝜈
(
1
2∇𝜇 𝜒∇𝜇 𝜒 + 1

2𝑉
′′(𝜙0) 𝜒2

)
− ∇𝜇 𝜒∇𝜈 𝜒 + O (

𝜒3) . (1.17)

This tensor has a contribution of 𝑉 (𝜙0) to the vacuum energy density. The energy scale
of the particular contribution is determined by the theory. A experimentally conrmed
spontaneous broken theory is the Higgs theory.

Third, the zero-point uctuation of a quantum eld theory contribute a formally innite
amount to the vacuum energy density. The zero-point uctuation of a scalar eld is
calculated by the vacuum expectation value of the energy-momentum tensor (1.14). The
resulting energy density [3, 4] is

𝜌 =
1

4𝜋2

∞∫
0

𝑑𝑝𝑝2 √︁
𝑝2 +𝑚2 = ∞, (1.18)

which is formally innite. A relativistically invariant regularization scheme [4] can be
used to show that the energy density (1.18) behaves like a perfect uid with equation of
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1. Introduction

state parameter −1 and, thereby, contributes to the vacuum energy density. It is worth
mentioning, that the contributions of fermions and bosons to vacuum energy density
are of opposite sign and thus would completely cancel in a supersymmetric universe [5].
Accordingly, the contribution of the zero-point uctuations of quantum elds would be
replaced by the energy scale of supersymmetry due to its vacuum expectation value like
above.

As seen in the last section, all these contributions behave like a cosmological constant
term in the Einstein eld equation (1.3). Accordingly, the vacuum energy density can
be measured by cosmological observations and is of order

(
10−3𝑒𝑉

)4 [6]. How to get
from above contributions to the vacuum energy density to this comparatively small value
is the so-called cosmological constant problem [7]. Another aspect of this problem is
that, assuming only constant contributions to the vacuum energy density, the vacuum
energy density was in the early universe enormous [7] since symmetries were potentially
unbroken and thereby had no contributions. This suggest a dynamical way to cancel the
vacuum energy density. An approach is presented in the next section and the next chapter.

1.3. The three-form-gauge-field approach

In this section, we consider a particular gauge eld, that was used [8–14] to solve the
cosmological constant problem from previous section. This gauge eld is the antisymmetric
three-form gauge eld 𝐴(𝑥) = 𝐴𝜇𝜈𝜌𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 ∧ 𝑑𝑥𝜌 . For a short introduction to 𝑝-form
gauge elds, cf. reference [15, Section 8.8]. In the further course of this section, we discuss
some properties of this eld.

As a consequence of gauge-invariance, physical quantities derived from the three-form
gauge eld 𝐴𝜇𝜈𝜌 do not change under the gauge transformation

𝐴𝜇𝜈𝜌 (𝑥) → �̃�𝜇𝜈𝜌 (𝑥) = 𝐴𝜇𝜈𝜌 (𝑥) + ∇[𝜇𝜆𝜈𝜌] (𝑥) . (1.19)

In particular, the eld strength tensor 𝐹𝜇𝜈𝜌𝜆 , dened by

𝐹𝜇𝜈𝜌𝜆 = ∇[𝜇𝐴𝜈𝜌𝜆], (1.20)

does not change under above gauge transformation. This four-form has only one inde-
pendent component since it is completely antisymmetric in four indices in four spacetime
dimensions. The Lagrangian density is

L = − 1
48𝐹

𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝜌𝜆, (1.21)

where we follow the notation of reference [14], because coming results are compared to
this reference. The dynamics of the three-form gauge eld 𝐴𝜇𝜈𝜌 is described by the action

𝑆
[
𝐴𝜇𝜈𝜌 , 𝑔𝛼𝛽

]
= − 1

48

∫
R4

𝑑4𝑥
√−𝑔 𝐹 𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝜌𝜆 . (1.22)
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1.3. The three-form-gauge-eld approach

Variation with respect to the three-form gauge eld 𝐴𝜇𝜈𝜌

𝛿𝑆 = − 1
24

∫
R4

𝑑4𝑥
√−𝑔 𝐹 𝜇𝜈𝜌𝜆𝛿

(∇[𝜇𝐴𝜈𝜌𝜆]
)

= −
∫
R4

𝑑4𝑥
√−𝑔 𝐹 𝜇𝜈𝜌𝜆𝛿

(∇𝜇𝐴𝜈𝜌𝜆
)

=

∫
R4

𝑑4𝑥
√−𝑔 ∇𝜇𝐹

𝜇𝜈𝜌𝜆𝛿𝐴𝜈𝜌𝜆, (1.23)

gives the eld equation of the three-form gauge eld

𝜕𝜇
(√−𝑔𝐹 𝜇𝜈𝜌𝜆

)
= 0, (1.24)

where we used the well-known formula, cf. [2, Section 4.7], to rewrite the covariant
derivative of an antisymmetric tensor in terms of the four-gradient. Field equation (1.24)
can be rewritten

𝜕𝜇

(√−𝑔 1√−𝑔𝜖
𝜇𝜈𝜌𝜆 𝑓

)
= 𝜖𝜇𝜈𝜌𝜆𝜕𝜇 𝑓 = 0 ⇒ 𝜕𝜇 𝑓 = 0, (1.25)

where we dened 𝑓 as
1√−𝑔𝜖

𝜇𝜈𝜌𝜆 𝑓 ≡ 𝐹 𝜇𝜈𝜌𝜆 . (1.26)

According to equation (1.25), the three-form gauge eld of theory (1.22) has no kinematics.
Consequently, we refer to it as nonkinematic three-form gauge eld to dierentiate it from
the kinematic three-form gauge eld we introduce later.

The striking property of the nonkinematic three-form gauge eld is the contribution to
the energy-momentum tensor. We calculate it by the variation of action (1.22), where we
used the denition (1.26), with respect to the metric tensor 𝑔𝜇𝜈

𝛿𝑆 = −1
2

∫
𝑑4𝑥 𝑓 2𝛿

√−𝑔

= −1
4

∫
𝑑4𝑥

√−𝑔 𝑓 2𝑔𝜇𝜈𝛿𝑔𝜇𝜈 . (1.27)

Accordingly, the energy-momentum tensor

𝑇 𝜇𝜈 = −1
2 𝑓

2𝑔𝜇𝜈 (1.28)

gives a term proportional to the metric tensor 𝑔𝜇𝜈 and thus contributes to the vacuum
energy density as discussed in previous sections. This is a direct consequence of the
missing kinematics of the nonkinematic three-form gauge eld, since a term proportional

5



1. Introduction

to the gradient of the eld would not exclusively give a contribution to vacuum energy
density.

In reference [14], the path integral formalism of the three-form gauge theory (1.22) is
formulated. The wick-rotated partition function is found to be

𝑍 =

∞∫
−∞

𝑑 𝑓

𝜇2
0

exp

∫
𝑉

𝑑4𝑥

(
−1

2 𝑓
2
) . (1.29)

Some authors [10–12] argue, that the most probable eld conguration of the three-form
gauge eld is, according to the path integral (1.29), the eld conguration that gives a
zero overall vacuum energy density since the vacuum energy contributions of previously
discussed sources appear in the exponent of integral (1.29) together with the energy density
of the nonkinematic three-form gauge eld (1.28) and the most probable eld conguration
is found by setting this exponent to zero. Path integral (1.29) is derived in section 4.2. The
vacuum energy cancellation by this path integral is discussed in section 5.4. The path
integral for the, later introduced, kinematic three-form gauge eld is obtained in section
4.4.

6



2. 𝑞-theory

In this chapter, we, rst, introduce 𝑞-theory as a theory of thermodynamics and Lorentz
invariance. Second, we discuss the three-form gauge eld representation of 𝑞-theory
including the so-called kinematic three-form gauge eld, which is a main concern of this
thesis. Third, we discuss the eld equations and some quantities of the three-form gauge
eld representation.

2.1. The inputs of𝑞-theory

Here, we introduce 𝑞-theory [16–21] as an eective theory of the quantum vacuum,
following from thermodynamics and Lorentz invariance.

Henceforth, we assume the vacuum to be described by a self-sustained medium, i.e. a
medium with a denite volume even in the absence of an environment. Self-sustained
media are characterized by a conserved quantity, which determines the volume of the
system. Thereby, we consider the conserved vacuum variable 𝑞𝜇𝜈

∇𝜇𝑞
𝜇𝜈 = 0. (2.1)

As a rst model, we take a portion of vacuum isolated from its environment, so that
there is no external pressure 𝑃 . The quantity 𝑄 with conservation law

𝑑𝑄

𝑑𝑡
= 0, (2.2)

determines the volume 𝑉 of the vacuum by

𝑉 =
𝑄

𝑞
, (2.3)

where we assume 𝑞 to be a genuine thermodynamic variable that is constant over space
and time. Thereby, we describe a homogeneous vacuum. The thermodynamic potential to
consider is the Gibbs free energy [22, Section 2.15]

𝑊 = 𝐸 −𝑇𝑆 + 𝑃𝑉 (2.4)

at zero temperature. According to the assumption of zero pressure, the Gibbs free energy
is given by

𝑊 =

∫
𝑑3𝑟 𝜖 (𝑞,𝜓 ) =

∫
𝑑3𝑟 𝜖 (𝑄/𝑉 ,𝜓 ) , (2.5)

7



2. 𝑞-theory

where 𝜓 is a low-energy eective matter eld. The equilibrium state of system (2.5) is
obtained by

𝛿𝑊

𝛿𝜓
= 0, 𝑑𝑊

𝑑𝑉
= 0. (2.6)

The second equation of (2.6) gives

− 𝜖 (𝑞,𝜓0) + 𝑞𝑑𝜖 (𝑞,𝜓0)
𝑑𝑞

= 0, (2.7)

where𝜓0 is the spacetime independent equilibrium value of the matter eld. The solution
of the above equation (2.7) determines the equilibrium value 𝑞0 of the thermodynamic
variable 𝑞 and, thereby, gives, since the charge 𝑄 is constant, the equilibrium value of the
volume 𝑉0 by equation (2.3).

We continue our model by allowing for a vacuum under the external pressure 𝑃 . The
thermodynamic potential is still the Gibbs free energy and equivalent to equation (2.7),
we get

𝑃 = −𝜖 (𝑞,𝜓0) + 𝑞𝑑𝜖 (𝑞,𝜓0)
𝑑𝑞

, (2.8)

an integrated version of the Gibbs-Duhem equation

𝑁𝑑𝜇 = −𝑆𝑑𝑇 +𝑉𝑑𝑃, (2.9)

which can be obtained [22, Section 2.24] by equation

𝑊 = 𝑁𝜇, (2.10)

and the dierential of the Gibbs free energy. Here, the chemical potential 𝜇 is dened as

𝜇 ≡ 𝑑𝐸

𝑑𝑉
=
𝑑𝜖 (𝑞,𝜓0)

𝑑𝑞
, (2.11)

so that we can rewrite equation (2.8) as

𝑃 = −𝜖 (𝑞,𝜓0) + 𝑞𝜇. (2.12)

In this thermodynamic discussion, the conserved quantity 𝑄 plays the same role as the
particle number 𝑁 .

According to equation (2.8), the thermodynamic relevant energy density is

𝜖 (𝑞,𝜓 )𝑣𝑎𝑐 = 𝜖 (𝑞,𝜓 ) − 𝑞
𝜖 (𝑞,𝜓 )

𝑞
. (2.13)

It is this cancellation of energy density, that allows the 𝑞-eld to be a high energy eld,
that still provides a low energy vacuum energy density.

A stable vacuum requires the equilibrium value, specied by 𝑞0 and 𝜓0, to be in a
minimum, i.e.

𝑑2𝑊

𝑑2𝑉
=

[
1
𝑉
𝑞2𝑑

2𝜖 (𝑞,𝜓 )
𝑑2𝑞

]
𝑞=𝑞0

≥ 0, (2.14)
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2.2. The three-form gauge eld representation of 𝑞-theory

which motivates the introduction of the isothermal compressibility 𝜒

𝜒−1 =

[
𝑞2𝑑

2𝜖 (𝑞,𝜓 )
𝑑2𝑞

]
𝑞=𝑞0

≥ 0. (2.15)

Up to this point, we did not use the Lorentz invariance of the vacuum variable 𝑞. The
importance of Lorentz invariance can be seen from the fact, that a potential Lorentz-
violating energy scale exceeds the Planck scale [23]. To describe the thermodynamic
energy density (2.13) as a perfect uid with equation of state parameter 𝑤 , cf. section 1.2
and [2], we assume the Lorentz invariance of the vacuum energy density, so that we get

𝑃𝑣𝑎𝑐 = −𝜖𝑣𝑎𝑐 . (2.16)

Consequently, the thermodynamic energy density 𝜖𝑣𝑎𝑐 is a perfect uid with equation of
state parameter −1.

The thermodynamic equilibrium condition (2.8) gives the energy density of the vacuum
in equilibrium. In a perfect quantum vacuum, for example, there is no external pressure
and, thereby, no vacuum energy density. If there is an external pressure, like the existence
of thermal matter, though, the vacuum state is Lorentz noninvariant, making the vacuum
variable 𝑞 shift to a new equilibrium value that compensates the external pressure and
gives a nonzero vacuum energy density.

2.2. The three-form gauge field representation of𝑞-theory

In this chapter, we discuss the three-form gauge eld representation of the previous
introduced 𝑞-theory. The three-form gauge eld was already considered in section 1.3 and
is known for introducing a constant vacuum energy density to the energy-momentum
tensor.

First, we give the denition of the 𝑞-eld in terms of the eld strength tensor

𝐹𝜇𝜈𝜌𝜆 (𝑥) = √−𝑔𝜖𝜇𝜈𝜌𝜆𝑞(𝑥) . (2.17)

The above equation was already used in the previous section 1.3 to rewrite the eld strength
tensor in terms of a single variable. Since the eld strength tensor on the left-hand side of
equation (2.17) is a fundamental quantity, we can make some remarks about the properties
of the 𝑞-eld. First, the 𝑞-eld is a composite eld of the metric and the eld strength
tensor, which has only one independent component due to its antisymmetry. Second, the
𝑞-eld changes sign under parity transformations since the completely antisymmetric
tensor density 𝜖𝜇𝜈𝜌𝜆 also changes sign. Third, the 𝑞-eld is a (pseudo-)scalar eld since the
combination of √−𝑔 and antisymmetric tensor density 𝜖 transforms like a tensor, just like
the four-form eld strength. Last, the 𝑞-eld is of mass dimension −2.

The action of the three-form representation of 𝑞-theory is, in general, given by

𝑆 [𝑞] =
∫
R4

𝑑𝑥4√−𝑔 𝑓 (𝑞) , (2.18)

9



2. 𝑞-theory

where 𝑓 is a function of the 𝑞-eld. The eld equations are obtained by the variation of
above action with respect to the three-form gauge eld 𝐴𝜇𝜈𝜌 . The variation is

𝛿𝑆 [𝑞] =
∫
R4

𝑑𝑥4√−𝑔
[
𝑓 ′(𝑞) 1

2𝑞𝛿
(
𝑞2) ]

= − 1
24

∫
R4

𝑑𝑥4√−𝑔
[
𝑓 ′(𝑞) 1

𝑞
𝐹 𝜇𝜈𝜌𝜆𝛿

(∇𝜇𝐴𝜈𝜌𝜆
) ]

=
1
24

∫
R4

𝑑𝑥4√−𝑔
[

1√−𝑔𝜖
𝜇𝜈𝜌𝜆𝜕𝜇 (𝑓 ′(𝑞)) 𝛿𝐴𝜈𝜌𝜆

]
, (2.19)

where we have used
𝑞2 = − 1

24𝐹𝜇𝜈𝜌𝜆𝐹
𝜇𝜈𝜌𝜆 . (2.20)

According to the variation (2.19), the equation of motion of the 𝑞-eld is

𝜕𝛼

(
𝑑

𝑑𝑞
𝑓 (𝑞)

)
= 0. (2.21)

In 𝑞-theory, we consider the Lagrangian density

L𝑞 =
1
2𝐶 (𝑞) ∇𝜇𝑞∇𝜇𝑞 + 𝜖 (𝑞) , (2.22)

so that the action of 𝑞-theory and gravity [24] is

𝑆
[
𝑞,𝑔𝜇𝜈

]
= −

∫
R4

𝑑𝑥4√−𝑔
(

𝑅

16𝜋𝐺 (𝑞) +
1
2𝐶 (𝑞) ∇𝜇𝑞∇𝜇𝑞 + 𝜖 (𝑞)

)
, (2.23)

where 𝑅 is the Ricci scalar,𝐺 (𝑞) is the gravitational coupling parameter,𝐶 (𝑞) is a prefactor
of mass dimension −2 and 𝜖 (𝑞) is the potential of 𝑞-theory. According to equation (2.21),
the equation of motion, following from the action (2.23), is

𝜕𝛼

(
𝑑𝜖 (𝑞)
𝑑𝑞

− 𝑑𝐺 (𝑞)
𝑑𝑞

𝑅

16𝜋𝐺 (𝑞)2 − 1
2
𝑑𝐶 (𝑞)
𝑑𝑞

∇𝜇𝑞∇𝜇𝑞 −𝐶 (𝑞) ∇𝜇∇𝜇𝑞

)
= 0, (2.24)

which is solved by

𝑑𝜖 (𝑞)
𝑑𝑞

− 𝑑𝐺 (𝑞)
𝑑𝑞

𝑅

16𝜋𝐺 (𝑞)2 − 1
2
𝑑𝐶 (𝑞)
𝑑𝑞

∇𝜇𝑞∇𝜇𝑞 −𝐶 (𝑞) ∇𝜇∇𝜇𝑞 = 𝜇, (2.25)

where 𝜇 is a constant over space and time. The identication of 𝜇 in equation (2.25) with
the chemical potential is motivated by the energy-momentum tensor. As we see in chapter
3, this quantity plays a crucial role in the dynamics of the three-form gauge eld. The
energy-momentum tensor is dened by the variation of the action with respect to the
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2.3. Kinematics of the 𝑞-eld

metric tensor 𝑔𝜇𝜈 as in equation (1.2). Therefore, it is convenient to calculate the variation
of the generic function 𝑓 (𝑞), as introduced earlier, with respect to the metric tensor 𝑔𝜇𝜈

𝛿 𝑓 (𝑞) = 𝑓 ′(𝑞) 𝛿
(

𝐹𝜇𝜈𝜌𝜆

𝜖𝜇𝜈𝜌𝜆
√−𝑔

)
= −1

2𝑞𝑓
′(𝑞) 𝑔𝜇𝜈𝛿𝑔𝜇𝜈 , (2.26)

where the middle part of the equation only holds for mutually dierent indices and we do
not use the Einstein sum convention. The energy-momentum tensor corresponding to the
action (2.23) is, thereby,

𝑇 𝜇𝜈 = −𝑔𝜇𝜈
(
𝜖 (𝑞) − 𝜇𝑞 + 1

2𝐶 (𝑞) ∇𝛼𝑞∇𝛼𝑞

)
+𝐶 (𝑞) ∇𝜇𝑞∇𝜈𝑞. (2.27)

Here, we replaced the derivative of the integrand in action (2.23) with respect to the 𝑞-eld,
as obtained in equation (2.26), by the solution of the equation of motion (2.25), which
introduces the parameter 𝜇 into the energy-momentum tensor. By comparing with the
previous result (2.13), we identify the constant 𝜇 with the chemical potential from previous
section.

In the course of this thesis, we usually consider a simpler version of equation of motion
(2.25). By removing the dependence of the gravitational coupling parameter on 𝑞 and
replacing the 𝑞 dependent prefactor 𝐶 (𝑞) by the constant 𝐶 , the simplied equation of
motion reads

𝑑𝜖 (𝑞)
𝑑𝑞

−𝐶∇𝛼∇𝛼𝑞 = 𝜇. (2.28)

This equation can also be written as a scalar-like equation
𝑑𝜌𝑣 (𝑞)
𝑑𝑞

−𝐶∇𝛼∇𝛼𝑞 = 0, (2.29)

with potential
𝜌𝑣 (𝑞) = 𝜖 (𝑞) − 𝜇𝑞, (2.30)

where 𝜌𝑣 is the vacuum energy density of the 𝑞-eld, as seen in the energy-momentum
tensor (2.27).

Finally, we make a remark about the kinematic term for the 𝑞-eld in equation of motion
(2.25). This is a higher derivative term since the 𝑞-eld is dened by the eld-strength
tensor 𝐹𝜇𝜈𝜌𝜆, which already describes the dynamics of the three-form gauge eld. We
discuss this in more detail in chapter 3. Henceforth, we refer to the three-form gauge eld
with this higher derivative term as the kinematic three-form gauge eld.

2.3. Kinematics of the𝑞-field

In this section, we examine the equation of motion of the 𝑞-eld, make an Ansatz for the
potential 𝜖 (𝑞) and show some numerical solutions of the equation of motion of 𝑞-theory.

First, we consider the 𝑞-eld close to equilibrium [25]. The chemical potential is chosen
so that the equilibrium spacetime is Minkowski spacetime. We refer to this chemical
potential as 𝜇0. It is dened by equation

𝜖 (𝑞0) − 𝜇0𝑞0 = 0, (2.31)

11



2. 𝑞-theory

where 𝑞0 is the equilibrium value of the 𝑞-eld. In equilibrium, the 𝑞-eld is constant and
satises

𝑑𝜖 (𝑞)
𝑑𝑞

����
𝑞=𝑞0

= 𝜇0. (2.32)

To describe the 𝑞-eld close to equilibrium, we substitute for the 𝑞-eld

𝑞(𝑥) = 𝑞0 + 𝜒 (𝑥) , 𝜒 � 𝑞0, (2.33)

in equation of motion (2.28) and get(
1
𝐶

𝑑2𝜖 (𝑞0)
𝑑2𝑞

����
𝑞=𝑞0

− ∇𝛼∇𝛼

)
𝜒 + O (

𝜒2) = 0, (2.34)

where we have used the denition of the equilibrium value (2.32).
The equation of motion close to equilibrium (2.34) is, neglecting higher order term, a

scalar eld equation for the (pseudo-)scalar eld 𝜒 with mass

𝑚2
𝜒 ≡ 1

𝐶

𝑑2𝜖 (𝑞)
𝑑2𝑞

����
𝑞=𝑞0

. (2.35)

The energy-momentum tensor close to equilibrium is

𝑇 𝜇𝜈 = 𝐶

[
−𝑔𝜇𝜈

(
1
2𝑚

2
𝜒 𝜒

2 + 1
2∇𝛼 𝜒∇𝛼 𝜒

)
+ ∇𝜇 𝜒∇𝜈 𝜒

]
+ O (

𝜒3) (2.36)

and resembles, up to the prefactor𝐶 , the energy-momentum tensor of a scalar eld. These
observations lead to the assumption that the kinematic three-form gauge eld has only
one local degree of freedom, as we discuss in chapter 3 in much more detail.

Second, we consider a particular potential 𝜖 (𝑞), cf. [17]. The potential has to satisfy
two requirements. First, the equilibrium value 𝑞0 dened by equation (2.32) is nonzero.
Second, the vacuum is stable by equation (2.15). Accordingly, we choose the potential

𝜖 (𝑞) = 1
4𝛼𝑞

4 − 1
2𝛽𝑞

2. (2.37)

The positivity of the isothermal compressibility gives a condition on the parameters 𝛼 and
𝛽

𝑞0 ≥ 𝛽

3𝛼 , (2.38)

in dependence of the equilibrium value 𝑞0, which, in turn, depends on the chemical
potential 𝜇.

To solve the eld equations (2.28) with potential (2.37) numerically, we introduce dimen-
sionless quantities 𝑓 , 𝑎, 𝑏, 𝑐, 𝑟𝑣 , 𝜏,𝑚, representing the quantities 𝑞, 𝛼, 𝛽,𝐶, 𝜌𝑣 , 𝑡, 𝜇, respec-
tively, by

𝑓 ≡ 𝑞

𝐸2
𝑞
, 𝑎 ≡ 𝛼

𝐸4
𝑞
, 𝑏 ≡ 𝛽, 𝑐 ≡ 𝐶𝐸2

𝑞, 𝑟𝑣 ≡ 𝜌𝑣

𝐸4
𝑞
, 𝜏 ≡ 𝑡𝐸𝑞, 𝑚 ≡ 𝜇

𝐸2
𝑞
, (2.39)
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Figure 2.1.: On the top, numerical solutions of equation (2.40) are shown. The initial con-
ditions are {𝑓 (𝜏) , 𝑓 ′(𝜏)} = {𝑓0, 0.1} and {𝑓 (𝜏) , 𝑓 ′(𝜏)} = {𝑓0, 1}, respectively.
Here, 𝑓0 is the equilibrium value of the 𝑓 -eld. The left-hand side panel shows
the, in this section discussed, 𝑓 -eld close to equilibrium. On the bottom
panel, the potential (2.41) is shown. The parameters for all of the plots are
{𝑎, 𝑏, 𝑐,𝑚} = {1, 1, 1, 1}.

where 𝐸𝑞 is the energy scale of 𝑞-theory and 𝑡 is the time. The equation of motion for the
dimensionless eld 𝑓 is, assuming spatial homogeneity,

𝑑𝑟𝑣 (𝑓 )
𝑑 𝑓

+ 𝑐𝑑
2𝑓

𝑑2𝜏
= 0, (2.40)

with dimensionless potential

𝑟𝑣 (𝑓 ) = 1
4𝑎𝑓

4 − 1
2𝑏𝑓

2 −𝑚𝑓 . (2.41)

In gure 2.1 the numerical solutions of equation (2.40) with two dierent initial condi-
tions and the potential (2.41) are shown.
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3. Theory of Hamiltonianmechanics

In this chapter, we obtain the Hamiltonian formulation of the nonkinematic and kinematic
three-form gauge eld theory. This enables the calculation of the equation of motion and,
more importantly, of the number of local degrees of freedom and the transition to the
path integral formulation of 𝑞-theory in the next chapter. Henceforth, unless specied
dierently, we only use Minkowski spacetime.

The chapter is structured in the following way. First, we give an introduction to the
terminology and basics of constrained Hamiltonian mechanics. Second, we apply this
analysis, after a short example of the Standard Maxwell gauge theory, to the nonkinematic
three-form gauge eld. Last, we examine the constrained Hamiltonian mechanics of a
higher-order Lagrangian and thereby nd a way to analyze the kinematic three-form
gauge eld theory.

3.1. Lagrangianmechanics

Since most theories are expressed by a Lagrangian density L, we start by a short introduc-
tion to Lagrangian mechanics, cf. [26, 27]. For simplicity, we restrict the following to a
system with a nite number of degrees of freedom. Then, the dynamics is described by
the action

𝑆 =

𝑡2∫
𝑡1

𝑑𝑡 𝐿(𝑞𝑖, ¤𝑞𝑖) , (3.1)

where 𝐿(𝑞𝑖, ¤𝑞𝑖), the Lagrangian, is a function of the generalized coordinates 𝑞𝑖 (𝑡) , 𝑖 =

1, ..., 𝑁 , describing 𝑁 degrees of freedom, and the generalized velocities ¤𝑞𝑖 (𝑡) are dened
by

¤𝑞𝑖 (𝑡) ≡ 𝑑𝑞𝑖 (𝑡)
𝑑𝑡

. (3.2)

According to the principle of stationary action, we obtain the equations of motion of
system (3.1) by varying the action with respect to the generalized coordinates 𝑞𝑖

𝛿𝑆 =

𝑡2∫
𝑡1

𝑑𝑡

[
𝛿𝑞𝑖

𝜕𝐿

𝜕𝑞𝑖
+ 𝛿 ¤𝑞𝑖 𝜕𝐿

𝜕 ¤𝑞𝑖

]
=

𝜕𝐿

𝜕𝑞𝑖
𝛿𝑞𝑖

����𝑡2
𝑡1

+
𝑡2∫

𝑡1

𝑑𝑡

[
𝜕𝐿

𝜕𝑞𝑖
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑞𝑖

]
𝛿𝑞𝑖, (3.3)
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where we have used partial integration in the last line of the above computation. Assuming
the variation of the start point 𝛿𝑞𝑖 (𝑡1) and end point 𝛿𝑞𝑖 (𝑡2) to be zero, we obtain the
well-known Euler-Lagrange equation

𝜕𝐿

𝜕𝑞𝑖
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑞𝑖 = 0. (3.4)

This equation allows for a complete determination of the time evolution of the generalized
coordinates 𝑞𝑖 .

3.2. Construction of Hamiltonianmechanics from the
Lagrangian

In the last section, we concluded how to determine the time evolution of a generalized
coordinate 𝑞𝑖 by varying the action containing the Lagrangian 𝐿. But, there is an equivalent
way to obtain the equations of motion for 𝑞𝑖 . This goes by the name of Hamiltonian
dynamics, whose formulation of classical mechanics is closer to quantum theory since it
allows quantization by replacing Poisson brackets by commutators and is later also useful
for the path integral formulation.

To construct the Hamiltonian dynamics of a system, cf. [27, 28], we start with a La-
grangian 𝐿 and dene the canonical momenta 𝑝𝑖 (𝑡) by

𝑝𝑖 ≡ 𝜕𝐿

𝜕 ¤𝑞𝑖 . (3.5)

Henceforth, we consider the quantity

𝐻 (𝑞𝑖, 𝑝𝑖) ≡ 𝑝𝑖 ¤𝑞𝑖 − 𝐿(𝑞𝑖, ¤𝑞𝑖) , (3.6)

called Hamiltonian. The variational principle of the Hamiltonian (3.6) is

0 = 𝛿𝐻 = ¤𝑞𝑖𝛿𝑝𝑖 + 𝑝𝑖𝛿 ¤𝑞𝑖 − 𝛿𝐿 = ¤𝑞𝑖𝛿𝑝𝑖 − 𝜕𝐿

𝜕𝑞𝑖
𝛿𝑞𝑖 . (3.7)

Assuming the canonical momenta (3.5) to be independent functions of the velocities ¤𝑞𝑖 ,
we write the Hamiltonian as function of the canonical coordinates 𝑞𝑖 and the canonical
momenta 𝑝𝑖 since the variation of the Hamiltonian (3.7) only contains variations of 𝑞𝑖 and
𝑝𝑖 , but not of the velocities ¤𝑞𝑖 . Due to the variations of 𝑞𝑖 and 𝑝𝑖 being independent of each
other, we are able to write equation (3.7) as[

𝜕𝐻

𝜕𝑞𝑖
+ 𝜕𝐿

𝜕𝑞𝑖

]
𝛿𝑞𝑖 +

[
𝜕𝐻

𝜕𝑝𝑖
− ¤𝑞𝑖

]
𝛿𝑝𝑖 = 0. (3.8)

Consequently, the canonical equations of motion are

¤𝑞𝑖 = 𝜕𝐻

𝜕𝑝𝑖
, (3.9a)
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¤𝑝𝑖 = − 𝜕𝐻

𝜕𝑞𝑖
, (3.9b)

where we have used the denition of the canonical momenta (3.5) in the Euler-Lagrange
equation (3.4) to obtain equation (3.9b). According to equations (3.9), we calculate the time
evolution of a generic variable 𝑔(𝑞𝑖, 𝑝𝑖) to be

¤𝑔 =
𝜕𝑔

𝜕𝑞𝑖
¤𝑞𝑖 + 𝜕𝑔

𝜕𝑝𝑖
¤𝑝𝑖 = 𝜕𝑔

𝜕𝑞𝑖

𝜕𝐻

𝜕𝑝𝑖
− 𝜕𝑔

𝜕𝑝𝑖

𝜕𝐻

𝜕𝑞𝑖
, (3.10)

which motivates the denition of the Poisson brackets

[𝑔, 𝑓 ] = 𝜕𝑔

𝜕𝑞𝑖

𝜕𝑓

𝜕𝑝𝑖
− 𝜕𝑔

𝜕𝑝𝑖

𝜕𝑓

𝜕𝑞𝑖
, (3.11)

so that the time evolution of a variable can be expressed as

¤𝑔 = [𝑔, 𝐻] . (3.12)

3.3. Construction of constrained Hamiltonianmechanics

In the last section, we have obtained the Hamiltonian mechanics from a given Lagrangian.
In this section, we want to extend our analysis to a certain class of Lagrangians, called
singular Lagrangians. This analysis originated from Dirac [29]. Calling these Lagrangians
singular goes back to Bergmann [30] and is motivated by rewriting the Euler-Lagrange
equation (3.4) to

¥𝑞 𝑗
𝜕2𝐿

𝜕 ¤𝑞𝑖𝜕 ¤𝑞 𝑗
=

𝜕𝐿

𝜕𝑞𝑖
− ¤𝑞 𝑗

𝜕2𝐿

𝜕𝑞 𝑗 𝜕 ¤𝑞𝑖 . (3.13)

To solve above equation for the accelerations ¥𝑞𝑖 , we have to invert the matrix

Λ𝑖 𝑗 =
𝜕2𝐿

𝜕 ¤𝑞𝑖𝜕 ¤𝑞 𝑗
. (3.14)

Consequently, we can only solve uniquely for the accelerations if the matrix Λ𝑖 𝑗 is nonsin-
gular. Accordingly, from the Lagrangian point of view, a singular Lagrangian does not
give a unique solution of the Euler-Lagrange equation for the accelerations ¥𝑞𝑖 .

Returning to Hamiltonian mechanics, singular Lagrangians lead to so-called constraints.
The analysis of a constrained Hamiltonian system requires more care since one of our
previous assumptions does not hold. We follow in this section the textbooks [26, 31], but
there are also [32, 33] for reference.

In Hamiltonian mechanics constraints are realized by equations

𝜙𝑚 (𝑞𝑖, 𝑝𝑖) = 0, 𝑚 = 1, ..., 𝑀. (3.15)

These constraints follow directly from the denition of the canonical momenta (3.5) and
are thus called primary constraints. We still dene the Hamiltonian as in the last section.
But, due to the constraints (3.15), we can not assume the variations of 𝑞𝑖 and 𝑝𝑖 to be
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3. Theory of Hamiltonian mechanics

independent of each other. As we show in Appendix A.2, the Hamiltonian equations of
motion involve, as a consequence of constraints, arbitrary functions 𝑢𝑚

¤𝑞𝑖 = 𝜕𝐻

𝜕𝑝𝑖
+ 𝑢𝑚 𝜕𝜙𝑚

𝜕𝑝𝑖
, (3.16a)

¤𝑝𝑖 = − 𝜕𝐻

𝜕𝑞𝑖
+ 𝑢𝑚 𝜕𝜙𝑚

𝜕𝑞𝑖
. (3.16b)

For simplicity, the time evolution of the variables (3.16) can also be obtained by the
introduction of the extended Hamiltonian

𝐻𝐸 ≡ 𝐻 + 𝑢𝑚𝜙𝑚, (3.17)

and dening
[𝑢𝑚, 𝐻 ] ≡ 0. (3.18)

The time evolution of a generic variable 𝑔(𝑞𝑖, 𝑝𝑖) is

¤𝑔 = [𝑔, 𝐻] + 𝑢𝑚 [𝑔, 𝜙𝑚] . (3.19)

Although, up to this point, the functions 𝑢𝑚 seem to be completely arbitrary there is a
basic consistency requirement, concretely

¤𝜙𝑚 = [𝜙𝑚, 𝐻] + 𝑢𝑛 [𝜙𝑚, 𝜙𝑛] = 0, (3.20)

which ensures the description of the dynamics to be valid at all times. Constraints, which
are obtained by these consistency conditions, are called secondary constraints. Equations
(3.20) are a system of inhomogeneous linear equations in the unknowns 𝑢𝑛 . Assuming we
nd a special solution

𝑢𝑚 = 𝑈𝑚, (3.21)

we can construct the general solution of system (3.20) by adding to (3.21) solutions of the
homogeneous equation

𝑉𝑚 [𝜙𝑛, 𝜙𝑚] = 0. (3.22)

We nd, thereby, the most general solution of (3.20) as

𝑢𝑚 = 𝑈𝑚 + 𝑣𝑎𝑉𝑎𝑚, (3.23)

where 𝑣𝑎 are completely arbitrary functions, which can not be determined by the consis-
tency conditions (3.20). The total Hamiltonian is, consequently, dened as

𝐻𝑇 = 𝐻 +𝑈𝑚𝜙𝑚 + 𝑣𝑚𝜙𝑚 . (3.24)

It gives the time evolution of the canonical variables in the most determined way possible.
Except of denoting the constraints as primary or secondary there is another dierence

between constraints. If the Poisson brackets of a constraint with all other constraints are
zero, the constraint is called rst-class, while constraints where this is not the case are
called second-class constraints. These second-class constraints lead to the introduction of
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3.4. Example: Standard Maxwell gauge theory

the Dirac bracket, which replaces the Poisson bracket. In this thesis however, we do not
have to deal with second-class constraints, so that we do not extend this topic further.

But how is this formalism connected to the three-form gauge eld that is the main issue
of this thesis? The dening feature of a gauge theory is the invariance of physical (i.e.
measurable) quantities, derived from the gauge eld, under certain gauge transformations
acting on the eld, which is in our case the three-form gauge eld. Since the eld, and
thereby the canonical variables representing the eld in a Hamiltonian analysis, does
change under a gauge transformation, there is a direction in phase space not representing
any change in physical quantities, but still changing the canonical variables. This arbitrari-
ness is represented by the arbitrary functions 𝑣𝑚 in constrained Hamiltonian mechanics. It
means that not all degrees of freedom of the theory represent physical degrees of freedom.
This is the main focus in section 4.3.

The connection of gauge theory and constrained Hamiltonian mechanics is also repre-
sented by the fact that rst-class constraints are generating gauge transformations of the
canonical variables. Accordingly, the Poisson brackets of a gauge-invariant quantity with
all rst-class constraints are zero.

After the analysis of the constraints, there is a possibility to calculate the local degrees
of freedom of the system. This was developed in [31] and is given [28] as

#dof = 1
2

[
#
(
canonical
variables

)
− 2 · #

(
rst-class

constraints

)
− #

(
second-class
constraints

)]
, (3.25)

where the # symbol means "number of". In the above equation the counting of the rst-class
constraints is doubled, which is connected to the fact that these constraints are generating
gauge transformations as mentioned before.

3.4. Example: Standard Maxwell gauge theory

Connecting last section’s analysis with a well-known gauge theory, we give the example
of the Standard Maxwell gauge theory in Minkowski spacetime. This analysis can also be
found in textbooks [26, 28, 32]. As another example, the constrained Hamiltonian analysis
of the two-form gauge eld can be found in reference [34].

The Standard Maxwell theory is described by the one-form gauge eld 𝐴 = 𝐴𝜇𝑑𝑥
𝜇 . The

theory is invariant under gauge transformations

𝐴𝜇 (𝑥) → 𝐴𝜇 (𝑥) + ∇𝜇Λ(𝑥) . (3.26)

The Lagrangian density is
L𝐸𝑀 = −1

4𝐹𝜇𝜈𝐹
𝜇𝜈 , (3.27)

where 𝐹 is the exterior derivative

𝐹𝜇𝜈 ≡ ∇[𝜇𝐴𝜈] = ∇𝜇𝐴𝜈 − ∇𝜈𝐴𝜇 (3.28)

of the one-form eld 𝐴. In terms of the generalized coordinates 𝐴0, 𝐴1, 𝐴2, 𝐴3 the La-
grangian density is

L𝐸𝑀 =
1
2
¤𝐴𝑖 ¤𝐴𝑖 + 1

2∇𝑖𝐴0∇𝑖𝐴0 − ¤𝐴𝑖∇𝑖𝐴0 − 1
2∇𝑖𝐴 𝑗

(∇𝑖𝐴 𝑗 − ∇ 𝑗𝐴𝑖
)
. (3.29)
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3. Theory of Hamiltonian mechanics

The canonical momenta 𝜋0 and 𝜋𝑖 corresponding to 𝐴0 and 𝐴𝑖 , respectively, are

𝜋0 =
𝜕L

𝜕(∇0𝐴0) = 0, 𝜋𝑖 =
𝜕L

𝜕(∇0𝐴𝑖) = ∇0𝐴𝑖 − ∇𝑖𝐴0, (3.30)

where we see that momentum 𝜋0 represents the primary constraint

𝜙1 ≡ 𝜋0. (3.31)

The extended Hamiltonian density is

H𝐸 =
1
2𝜋𝑖𝜋𝑖 − 𝜋𝑖∇𝑖𝐴0 + 1

2∇𝑖𝐴 𝑗
(∇𝑖𝐴 𝑗 − ∇ 𝑗𝐴𝑖

) + 𝜋0
( ¤𝐴0 + 𝑢1) , (3.32)

where𝑢1 is an arbitrary function. For consistency, we check the time evolution of constraint
𝜙1 to be zero

¤𝜙1 = [𝜋0,H𝐸] = −∇𝑖𝜋𝑖 ≡ 𝜙2, (3.33)

which is actually Gauß’s law. This does not x the function 𝑢1 and is thereby a new
constraint. For consistency, we check the time evolution of the new constraint 𝜙2, which
is in fact zero

¤𝜙2 = [∇𝑖𝜋𝑖,H𝐸] = ∇𝑖∇ 𝑗∇ 𝑗𝐴𝑖 − ∇𝑖∇𝑖∇ 𝑗𝐴 𝑗 = 0. (3.34)

After checking the consistency of all constraints, we obtain the total Hamiltonian density
as

H𝑇 =
1
2𝜋𝑖𝜋𝑖 − 𝜋𝑖∇𝑖𝐴0 + 1

2∇𝑖𝐴 𝑗
(∇𝑖𝐴 𝑗 − ∇ 𝑗𝐴𝑖

) + 𝜋0
( ¤𝐴0 + 𝑢1) + 𝑢2∇𝑖𝜋𝑖 . (3.35)

Since the Poisson brackets of constraints 𝜙1 and 𝜙2 are zero, they are rst-class constraints.
The time evolution of the canonical variables is given by the Poisson brackets with the
total Hamiltonian (3.35).

𝐴0 = ¤𝐴0 + 𝑢1, ¤𝜋0 = 0, (3.36a)
¤𝐴𝑖 = 𝜋𝑖 + ∇𝑖𝐴0 − ∇𝑖𝑢2, ¤𝜋𝑖 = ∇ 𝑗∇ 𝑗𝐴𝑖 − ∇𝑖∇ 𝑗𝐴 𝑗 . (3.36b)

In equations of motion (3.36), the arbitrary functions𝑢1 and𝑢2 represent the gauge freedom
of electromagnetism. According to equation (3.25), we can give the number of local degrees
of freedoms as

#dof = 1
2 (8 − 2 · 2) = 2, (3.37)

which is of course a well-known result and represented by the two polarizations of the
photon.

We note here, that equations of motion (3.36) do not allow to connect these two local
degrees of freedom to pairs of canonical variables, since all pairs of canonical variables
involve some arbitrary function. We come back to this point later, when discussing the
same point for the kinematic three-form gauge eld. There is also a nice discussion about
this topic in reference [35, Appendix E.2], where the author describes equivalence classes
�̃�𝜇 in terms of only one conguration for every physical equivalent conguration of the
standard vector potential 𝐴𝜇 .
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3.5. The nonkinematic three-form gauge eld

3.5. The nonkinematic three-form gauge field

After familiarizing with constrained Hamiltonian mechanics, we analyze the nonkinematic
three-form gauge eld of section 1.3. This theory was already reported to have no local
degrees of freedom, cf. [9] and [14]. In reference [15] it is also stated that in four dimensions
the three-form eld "describes no degrees of freedom at all". As potential we use a more
general form as in (1.21)

𝜖
(
𝐹 𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝜌𝜆

)
= 𝜖

( ¤𝑋0 + ∇𝑖𝑋𝑖
)
, (3.38)

which is assumed to be a polynomial of 𝐹 𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝜌𝜆 to maintain parity invariance and where
we have dened the variables 𝑋0 and 𝑋𝑖 in terms of the three-form gauge eld 𝐴𝜇𝜈𝜌 as

𝑋0 ≡ −6𝐴123, 𝑋1 ≡ 6𝐴023, 𝑋2 ≡ −6𝐴013, 𝑋3 ≡ 6𝐴012. (3.39)

In terms of these variables the 𝑞-eld is given by

𝑞2 =
( ¤𝑋0 + ∇𝑖𝑋𝑖

)2
. (3.40)

Considering Lagrangian density

L(𝑋0, 𝑋𝑖) = −𝜖 ( ¤𝑋0 + ∇𝑖𝑋𝑖
)
, (3.41)

we immediately expect constraints since there is only a time derivative of one coordinate.
The canonical momenta 𝑃0 and 𝑃𝑖 to 𝑋0 and 𝑋𝑖 are, respectively,

𝑃0 = −𝜕𝜖
( ¤𝑋0 + ∇𝑖𝑋𝑖

)
𝜕 ¤𝑋0

, 𝑃𝑖 = 0. (3.42)

Therefore, we have three constraints

𝜙1
𝑖 ≡ 𝑃𝑖 . (3.43)

Assuming we can solve ¤𝑋0 in terms of the momentum 𝑃0 and ∇𝑖𝑋𝑖 , the extended Hamilto-
nian density (3.17) is

H𝐸 = ¤𝑋0(𝑃0,∇𝑖𝑋𝑖) 𝑃0 + ¤𝑋𝑖𝑃𝑖 + 𝜖
( ¤𝑋0(𝑃0,∇𝑖𝑋𝑖) ,∇𝑖𝑋𝑖

) + 𝑢1
𝑖 𝑃𝑖 . (3.44)

According to consistency condition (3.20), the time evolution of the constraints 𝜙1
𝑖 is set to

zero
¤𝜙1
𝑖 = [𝑃𝑖,H𝐸] = ∇𝑖

𝜕𝜖
( ¤𝑋0(𝑃0,∇𝑖𝑋𝑖) ,∇𝑖𝑋𝑖

)
𝜕(∇𝑖𝑋𝑖) = ∇𝑖𝑃0 ≡ 𝜙2

𝑖 , (3.45)

where we have used the denition of 𝑃0 in equation (3.42). Not xing an arbitrary function,
there is a new constraint 𝜙2

𝑖 . Since there is no 𝑋0 in Hamiltonian density (3.44), the time
evolution of this constraint is zero. After obtaining all constraints and xing a maximal
amount of arbitrary functions, we can give the total Hamiltonian density

H𝑇 = ¤𝑋0(𝑃0,∇𝑖𝑋𝑖) 𝑃0 + ¤𝑋𝑖𝑃𝑖 + 𝜖
( ¤𝑋0(𝑃0,∇𝑖𝑋𝑖) ,∇𝑖𝑋𝑖

) + 𝑢1
𝑖 𝑃𝑖 + 𝑢2

𝑖 ∇𝑖𝑃0. (3.46)
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3. Theory of Hamiltonian mechanics

The constraints are
𝜙1
𝑖 = 𝑃𝑖, 𝜙2

𝑖 = ∇𝑖𝑃0. (3.47)

The equations of motion are obtained by the Poisson brackets of the variables with the
total Hamiltonian density (3.46)

¤𝑋0 = ¤𝑋0(𝑃0,∇𝑖𝑋𝑖) +
𝑑𝜖

( ¤𝑋0(𝑃0,∇𝑖𝑋𝑖) ,∇𝑖𝑋𝑖
)

𝑑𝑃0
− ∇𝑖𝑢

2
𝑖 , ¤𝑃0 = 0, (3.48a)

¤𝑋𝑖 = ¤𝑋𝑖 + 𝑢1
𝑖 , ¤𝑃𝑖 = 0. (3.48b)

From equations (3.48a), (3.45) and (3.40) follow the Lagrangian equations of motion (2.24)

∇𝜈

(
𝑑𝜖 (𝑞)
𝑑𝑞

)
= 0. (3.49)

From here, the local degrees of freedom can be calculated by the introduced manner. But,
let us rst discuss the equations of motion (3.48) to gain some insight about the dynamic
variables of this theory. The time evolution of the variables𝑋0 and𝑋𝑖 is completely arbitrary
since their equations of motion (3.48a) and (3.48b) involve the arbitrary functions 𝑢1

𝑖 and
𝑢2
𝑖 . Their respective canonical momenta, 𝑃0 and 𝑃𝑖 are also subject to the constraints (3.47).

The pairs of canonical variables 𝑋0, 𝑃0 and 𝑋𝑖, 𝑃𝑖 describe, consequently, no propagating
degrees of freedom, rendering the theory nonkinematic.

Since there are eight canonical variables and four constraints, the local degrees of
freedom are, according to equation (3.25),

#dof = 1
2 (8 − 2 · 4) = 0, (3.50)

which we expect given above discussion.
But there is a subtlety arising from the form of the constraints (3.47). The momentum

𝑃0 is only constrained to a constant value in space and, by consistency, thereby also
constrained to a constant value in time. In contrast to the other momenta 𝑃𝑖 though, the
momentum 𝑃0 is not constrained strictly to zero. Accordingly, there is a global degree
of freedom in the nonkinematic three-form gauge eld theory. In a later section, we use
exactly this global degree of freedom to obtain the path integral formalism of this theory
like in the introduction 1.3.

3.6. Higher-order Lagrangians

Since the Lagrangian density of the kinematic three-form gauge eld (2.22) contains
time derivatives of higher than rst-order, we have to extend the previous analysis of
constrained Hamiltonian mechanics to these kinds of Lagrangians, called higher-order
Lagrangians. This was done directly for singular Lagrangians in reference [36]. Here, we
adopt a simpler way [37] by transforming the higher-order Lagrangian into a rst-order
Lagrangian at the cost of additional constraints. An example in literature of this procedure
applied to a relativistic particle is given in reference [38]. After obtaining the rst-order
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3.6. Higher-order Lagrangians

Lagrangian, we can use the familiar formalism of section 3.2. Later, we, additionally,
introduce the Ostrogradsky instability [39], which is also apparent in singular Lagrangians
[40].

First, we follow reference [37] by transforming a higher-order singular Lagrangian to
a rst-order singular Lagrangian with additional constraints. A𝑚-order Lagrangian is a
Lagrangian of form

𝐿
(
𝑥, 𝑥(1), 𝑥(2), ..., 𝑥(𝑚)

)
, (3.51)

where we only use one variable 𝑥 for simplicity. We want to show that the constrained
rst-order Lagrangian

𝐿′(𝑞1, ..., 𝑞𝑚; ¤𝑞1, ..., ¤𝑞𝑚; 𝜆1, ..., 𝜆𝑚−1) = 𝐿(𝑞1, ..., 𝑞𝑚; ¤𝑞𝑚) + 𝜆 𝑗
( ¤𝑞 𝑗 − 𝑞 𝑗+1

)
, (3.52)

where 𝑞𝑖 is dened by
𝑞𝑖 ≡ 𝑥(𝑖−1), 𝑖 = 1, ...,𝑚, (3.53)

and the 𝜆 𝑗 , 𝑗 = 1, ...,𝑚 − 1 are Lagrange multipliers enforcing equations (3.53), gives the
same dynamics as Lagrangian (3.51). The variation of the action with respect to the
generalized position 𝑥 gives

𝛿𝑆 =

∫
𝑑𝑡

𝑚∑︁
𝑖=0

(−1)𝑖 𝑑
𝑖

𝑑𝑡 𝑖
𝜕𝐿

𝜕𝑥(𝑖)
𝛿𝑥, (3.54)

so that the equations of motion of Lagrangian (3.51) are
𝑚∑︁
𝑖=0

(−1)𝑖 𝑑
𝑖

𝑑𝑡 𝑖
𝜕𝐿

𝜕𝑥(𝑖)
= 0. (3.55)

The equations of motion of system (3.52) are obtained by the Euler-Lagrange equation (3.4)
since it is only of rst order. The equations of motion of the Lagrange multipliers 𝜆 𝑗 are

¤𝑞 𝑗 − 𝑞 𝑗+1 = 0. (3.56)

For the coordinates 𝑞𝑖 we get
𝜕𝐿

𝜕𝑞𝑖
− 𝜆𝑖−1 − ¤𝜆𝑖 = 0. (3.57)

By solving equations (3.57) for 𝜆𝑖−1, we can eliminate all 𝜆𝑖 and use equation (3.56) to
obtain equation of motion (3.55). Thereby, we have shown that both Lagrangian (3.51) and
(3.52) give the same dynamics. Up to this point constraints have not placed a role, since
we stayed with Lagrangian mechanics. In the next chapter, this changes.

Another feature of higher-order Lagrangians is the Ostrogradsky instability [39, 41]. To
discuss this, we limit the examined system to a second-order Lagrangian with only one
variable 𝑥 and thereby two momenta 𝑝1 and 𝑝2. The Hamiltonian of such a system is

𝐻 = 𝑝1𝑥 + 𝑝2 ¤𝑥 − 𝐿. (3.58)

The Ostrogradsky instability lies in the appearance of the term linear in 𝑝1. It allows for
runaway solutions since parts of the Hamiltonian can grow indenitely in time while the
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3. Theory of Hamiltonian mechanics

Hamiltonian stays constant. We note here that even the minimal example of one variable 𝑥 ,
leads to a situation of two degrees of freedom, as discussed in more detail in reference [41].
The kinematic three-form gauge eld does not suer from the Ostrogradsky instability, as
was already analyzed in reference [42]. In the next section, we obtain the same result as a
byproduct of the Hamiltonian analysis.

3.7. The kinematic three-form gauge field

After discussing constrained Hamiltonian mechanics and higher-order Lagrangians, we
are nally ready to combine both methods to analyze the kinematic three-form gauge eld.
After obtaining the total Hamiltonian density, we calculate the number of local degrees of
freedom and obtain the equations of motion for the canonical variables.

The Lagrangian density to consider is

L = − 1
48∇

𝛼𝐹 𝜇𝜈𝜌𝜆∇𝛼𝐹𝜇𝜈𝜌𝜆 − 𝜖
(
𝐹 𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝜌𝜆

)
=

1
2𝐶

( ¥𝑋0 + ∇𝑖 ¤𝑋𝑖
) − 1

2 𝑓
( ¤𝑋0 + ∇𝑖𝑋𝑖

)
, (3.59)

where 𝑓 (𝑥0 + ∇𝑖𝑋𝑖) is dened as

𝑓
( ¤𝑋0 + ∇𝑖𝑋𝑖

) ≡ 1
2𝐶∇ 𝑗

( ¤𝑋0 + ∇𝑖𝑋𝑖
) ∇ 𝑗

( ¤𝑋0 + ∇𝑖𝑋𝑖
) + 𝜖

( ¤𝑋0 + ∇𝑖𝑋𝑖
)

(3.60)

with the potential 𝜖 like in the nonkinematic theory. By section 3.6, we can rewrite this
second-order Lagrangian density into a rst-order Lagrangian density

L̃ =
1
2𝐶 ( ¤𝑥0 + ∇𝑖𝑥𝑖)2 − 1

2 𝑓 (𝑥0 + ∇𝑖𝑋𝑖) + 𝜆0
(
𝑥0 − ¤𝑋0

) + 𝜆𝑖
(
𝑥𝑖 − ¤𝑋𝑖

)
, (3.61)

where we introduced the new canonical variables

𝑥0 ≡ ¤𝑋0, 𝑥𝑖 ≡ ¤𝑋𝑖, (3.62)

and the canonical variables 𝑋0, 𝑋𝑖 are the same as in section 3.5

𝑋0 ≡ −6𝐴123, 𝑋1 ≡ 6𝐴023, 𝑋2 ≡ −6𝐴013, 𝑋3 ≡ 6𝐴012. (3.63)

By using Lagrangian density (3.61), the momenta associated with the variables𝑥0, 𝑥𝑖, 𝑋0, 𝑋𝑖, 𝜆0
and 𝜆𝑖 are, respectively,

𝑝0 = 𝐶 ( ¤𝑥0 + ∇𝑖𝑥𝑖) , 𝑝𝑖 = 0, 𝑃0 = 𝜆0, 𝑃𝑖 = 𝜆𝑖, Γ0 = 0, Γ𝑖 = 0, (3.64)

where we conclude eleven constrains

𝜙1
𝑖 ≡ 𝑝𝑖, 𝜙2 ≡ 𝑃0 − 𝜆0, 𝜙3

𝑖 ≡ 𝑃𝑖 − 𝜆𝑖, 𝜙4 ≡ Γ0, 𝜙5
𝑖 ≡ Γ𝑖 . (3.65)
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3.7. The kinematic three-form gauge eld

The extended Hamiltonian density is

H𝐸 =
𝑝2

0
2𝐶

+ 𝑥𝑖∇𝑖𝑝0 + 𝑝𝑖 ¤𝑥𝑖 + 𝑃0 ¤𝑋0 + 𝑃𝑖 ¤𝑋𝑖 + 𝑓 (𝑥0 + ∇𝑖𝑋𝑖)
+ Γ0 ¤𝜆0 + Γ𝑖 ¤𝜆𝑖 + 𝜆0

(
𝑥0 − ¤𝑋0

) + 𝜆𝑖
(
𝑥𝑖 − ¤𝑋𝑖

) +
𝑢1
𝑖 𝑝𝑖 + 𝑢2(𝑃0 − 𝜆0) + 𝑢3

𝑖 (𝑃𝑖 − 𝜆𝑖) + 𝑢4Γ0 + 𝑢5
𝑖 Γ𝑖, (3.66)

where the 𝑢𝑖, 𝑖 = 1, ..., 5 are arbitrary functions. For consistency, we set the time evolution,
obtained by the Poisson bracket with the extended Hamiltonian density, of the constraints
to zero

¤𝜙1
𝑖 = ∇𝑖𝑝0 + 𝜆𝑖 ⇒ 𝜙6

𝑖 ≡ −∇𝑖𝑝0 + 𝜆𝑖, (3.67a)
¤𝜙2 = 𝑢4 + ¤𝜆0 ⇒ 𝑢4 = − ¤𝜆0, (3.67b)

¤𝜙3
𝑖 = −𝜕𝑓 (𝑥0 + ∇𝑘𝑋𝑘)

𝜕𝑋𝑖
+ ¤𝜆𝑖 + 𝑢5

𝑖 ⇒ 𝑢5
𝑖 = −∇𝑖 𝑓

′(𝑥0 + ∇𝑘𝑋𝑘) − ¤𝜆𝑖, (3.67c)

¤𝜙4 = 𝑥0 − ¤𝑋0 − 𝑢2 ⇒ 𝑢2 = 𝑥0 − ¤𝑋0, (3.67d)
¤𝜙5
𝑖 = 𝑥𝑖 − ¤𝑋𝑖 − 𝑢3

𝑖 ⇒ 𝑢3
𝑖 = 𝑥𝑖 − ¤𝑋𝑖 . (3.67e)

By (3.67), we have determined eight functions 𝑢𝑖 and got three new constraints 𝜙6
𝑖 by

equation (3.67a). Using equations (3.67b–e), we get the extended Hamiltonian density

H𝐸 =
𝑝2

0
2𝐶

+ 𝑃0𝑥0 + 𝑃𝑖𝑥𝑖 + 𝑓 (𝑥0 + ∇𝑖𝑋𝑖) +(∇𝑖𝑝0) 𝑥𝑖
+ 𝑝𝑖

( ¤𝑥𝑖 + 𝑢1
𝑖

) + ∇ 𝑗 𝑓
′(𝑥0 + ∇𝑖𝑋𝑖) Γ𝑗 + 𝑢6

𝑖 (𝜆𝑖 − ∇𝑖𝑝0) . (3.68)

Since we have obtained new constraints, we check for consistency again:

¤𝜙1
𝑖 = ∇𝑖𝑝0 + 𝑃𝑖 ⇒ 𝜙7

𝑖 ≡ ∇𝑖𝑝0 + 𝑃𝑖, (3.69a)
¤𝜙2 = 0, (3.69b)
¤𝜙3
𝑖 = ∇𝑖

(∇ 𝑗 𝑓
′′(𝑥0 + ∇𝑘𝑋𝑘) Γ𝑗

)
, (3.69c)

¤𝜙4 = 0, (3.69d)
¤𝜙5
𝑖 = −𝑢6

𝑖 ⇒ 𝑢6
𝑖 = 0, (3.69e)

¤𝜙6
𝑖 = ∇𝑖𝑃0 + ∇𝑖

(∇ 𝑗 𝑓
′′(𝑥0 + ∇𝑘𝑋𝑘) Γ𝑗

) ⇒ 𝜙8
𝑖 ≡ ∇𝑖𝑃0 − ∇𝑖

(∇ 𝑗 𝑓
′′(𝑥0 + ∇𝑘𝑋𝑘) Γ𝑗

)
.

(3.69f)

Equation (3.69e) xed the arbitrary function 𝑢6
𝑖 to zero and renders the extended Hamil-

tonian thereby independent of 𝜆0 and 𝜆𝑖 . Accordingly, the equations of motion for the
variables 𝑥0, 𝑥𝑖, 𝑋0 and 𝑋𝑖 do not include these variables and we can immediately impose
the constraints 𝜙4 and 𝜙5

𝑖 . This procedure corresponds to the introduction of the Dirac
brackets [37]. Since we have imposed the constraints 𝜙4

𝑖 and 𝜙5, constraints 𝜙2 and 𝜙3
𝑖

are rendered unnecessary and we get from (3.69) six new constraints 𝜙7
𝑖 and 𝜙8

𝑖 . For
bookkeeping, our remaining constraints are

𝜙1
𝑖 = 𝑝𝑖, 𝜙7

𝑖 = ∇𝑖𝑝0 + 𝑃𝑖, 𝜙8
𝑖 = ∇𝑖𝑃0. (3.70)
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3. Theory of Hamiltonian mechanics

The time evolution of the new constraint 𝜙7
𝑖 is the other new constraint 𝜙8

𝑖 . The time
evolution of 𝜙8

𝑖 is zero since the extended Hamiltonian is independent of 𝑋0. Thereby, we
have completely analyzed the constrained Hamiltonian mechanics and obtain the total
Hamiltonian density

H𝑇 =
𝑝2

0
2𝐶

+ 𝑓 (𝑥0 + ∇𝑖𝑋𝑖) + 𝑃0𝑥0 +(𝑃𝑖 + ∇𝑖𝑝0)
(
𝑥𝑖 + 𝑢7

𝑖

) + 𝑝𝑖
( ¤𝑥𝑖 + 𝑢1

𝑖

) +(∇𝑖𝑃0) 𝑢8
𝑖 . (3.71)

Just like in the nonkinematic theory, we nd the momentum 𝑃0 to be constant by constraints
and thereby resulting in one global degree of freedom. Thereby, the appearance of a global
degree of freedom is a general feature of a three-form gauge eld. It is exactly this constant
momentum, that stabilizes the theory in respect to the Ostrogradsky, as discussed in the
last section. We already know from section 2.2 that the chemical potential 𝜇 is also a
constant of the theory. We nd a connection to the constant momentum 𝑃0 below. Before,
let us calculated the local degrees of freedom. Constraints (3.70) are seven rst-class
constraints and we have sixteen canonical variables. Thereby, we calculate the number of
local degrees of freedom

#dof = 1
2 (16 − 2 · 7) = 1. (3.72)

This result was already suspected in reference [42] and is hereby conrmed. It makes
the kinematic three-form gauge eld eectively a (pseudo-)scalar eld. We conclude this
section by giving the equation of motion and nding the connection between the constant
canonical variable 𝑃0 and the chemical potential 𝜇.

The equations of motion are obtained by the Poisson bracket of the variable with the
total Hamiltonian. We get

¤𝑋0 = 𝑥0, ¤𝑃0 = 0, (3.73a)
¤𝑋𝑖 = 𝑥𝑖 + 𝑢7

𝑖 , ¤𝑃𝑖 = ∇𝑖 𝑓
′(𝑥0 + ∇𝑖𝑋𝑖) , (3.73b)

¤𝑥0 =
𝑝0

𝐶
− ∇𝑖𝑥𝑖 − ∇𝑖𝑢

7
𝑖 , ¤𝑝0 = −𝑓 ′(𝑥0 + ∇𝑖𝑋𝑖) − 𝑃0, (3.73c)

¤𝑥𝑖 = ¤𝑥𝑖 + 𝑢1
𝑖 , ¤𝑝𝑖 = −𝑃𝑖 − ∇𝑖𝑝0. (3.73d)

To recover the original equations of motion from section 2.2, we use the time evolution
of the canonical momentum 𝑝0 (3.73c), the denition of the momentum 𝑝0 (3.64) and the
denition of 𝑓 (𝑥0 + ∇𝑖𝑋𝑖) (3.60)

−𝑃0 = ¤𝑝0 + 𝑓 ′ = 𝐶 [( ¥𝑥0 + ∇𝑖 ¤𝑥𝑖) + ∇𝑖∇𝑖 (𝑥0 + ∇𝑖𝑋𝑖)] + 𝑑𝜖 (𝑥0 + ∇𝑖𝑋𝑖)
𝑑 (𝑥0 + ∇𝑖𝑋𝑖)

⇒ 𝜇 =
𝑑𝜖 (𝑞)
𝑑𝑞

−𝐶∇𝜈∇𝜈𝑞, (3.74)

where we have used (3.40) to identify the 𝑞-eld. In equation (3.74), we have identied the
constant canonical variable 𝑃0 with the chemical potential 𝜇 by the relation

𝜇 ≡ −𝑃0. (3.75)
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3.7. The kinematic three-form gauge eld

Above identication is one of the main results of this thesis. The connection of a canonical
variable with the chemical potential allows for dynamical vacuum energy in the path
integral formalism of the kinematic three-form gauge eld, as we see in section 5.4.

Our last remark concerns the gauge-invariant local degree of freedom we expect by
result (3.72). There is no particular variable in the equation of motion (3.73) not involving
arbitrary functions. So, similar to the Standard Maxwell gauge theory 3.4, we can not
identify immediately a pair of canonical variables that correspond to the physical local
degree of freedom. This is resolved in section 4.3, where a canonical transformation is
used to nd the physical direction in phase space.

27





4. Path integral for a three-form gauge
field

This chapter is dedicated to obtain the path integral formalism for the nonkinematic and
kinematic three-form gauge eld. We heavily use the results of the previous chapter.

The chapter is structured in the following way. First, we give an introduction to the path
integral formalism incorporating rst-class constraints. Second, we formulate the path
integral for the nonkinematic three-form gauge eld and compare our result to the results
in literature. Third, we use a canonical transformation to identify the gauge-invariant
degrees of freedom of the kinematic three-form gauge eld. Last, we give the path integral
formulation of the kinematic three-form gauge eld.

4.1. The path integral of a constrained system

In this rst section of the chapter, we introduce the path integral formalism and examine
the consequences of constraints. The path integral formalism goes back to Feynman [43].
The inuence of rst-class constraints was rst analyzed by Faddeev [44] from where we
draw a lot. The inuence of second-class constraints was later considered by Senjanovic
[45].

We follow the notation of reference [44]. The path integral of an unconstrained system
is given by [15, 46, 47]

〈𝑜𝑢𝑡 | 𝑆 |𝑖𝑛〉 =
∫

asymp

exp
𝑖

∞∫
−∞

𝑑𝑡 (𝑝𝑖 ¤𝑞𝑖 − 𝐻 )


∏
𝑖

𝑑𝑝𝑖𝑑𝑞𝑖
(2𝜋)𝑛 , (4.1)

where 𝐻 is the Hamiltonian of the system, 𝑞𝑖 and 𝑝𝑖 are the canonical variables and 𝑛
is the number of degrees of freedom. Here, the states 〈𝑜𝑢𝑡 | and |𝑖𝑛〉 are dened by the
solutions of the equations of motion in the asymptotic regime 𝑡 → ±∞, these conditions
are indicated by the subscript "asymp".

Note here that we are not using the action in the path integral directly. The process
to identify the term in the path integral with the Lagrangian and calculating the integral
over the momenta is described in [15, Section 9.2].

The measure of integral (4.1) describes an integration over the complete phase space.
Thereby, it is clear that a gauge theory leads to diculties since not all of phase space
represents dierent physical congurations. This leads to an innite overcounting of
every physical eld conguration since there are innitely many equivalent conguration
in phase space for the same physical conguration. This overcounting is addressed by
Faddeev’s method.
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4. Path integral for a three-form gauge eld

The main point of this method is to prove the following equality∫
asymp

exp
{
𝑖

∞∫
−∞

𝑑𝑡 (𝑝𝑖 ¤𝑞𝑖 − 𝐻 − 𝜆𝑎𝜑𝑎)
} ∏

𝑎

𝛿 (𝜒𝑎) det‖{𝜒𝑎, 𝜑𝑏}‖
∏
𝑖

𝑑𝑝𝑖𝑑𝑞𝑖
(2𝜋)𝑛

∏
𝑏

𝑑𝜆𝑏 (4.2a)

=

∫
asymp

∏
𝑖

𝑑𝑝∗𝑖 (𝑡) 𝑑𝑞∗𝑖 (𝑡)
(2𝜋)𝑛−𝑚 exp

𝑖
∞∫

−∞
𝑑𝑡 𝑝∗𝑖 ¤𝑞∗𝑖 − 𝐻 ∗

 , (4.2b)

where in the rst line of the equation 𝑎 runs from 1 to𝑚, 𝜆𝑎 are the Lagrange multipliers
enforcing the constraints 𝜑𝑎 and 𝜒𝑎, 𝑎 = 1, ...,𝑚 are the gauge conditions. In the second
line, the variables denoted with an asterisk are obtained by a canonical transformation,
where the canonical momenta of the new system of variables 𝑝𝑎 are the gauge conditions

𝜒𝑎 = 𝑝𝑎 . (4.3)

These momenta 𝑝𝑎 and their corresponding variables 𝑞𝑎 are dropping out of the formalism,
so that only the pairs 𝑞∗𝑖 and 𝑝∗𝑖 remain. This method reduces the phase space of the
original problem and thereby describes the path integral with fewer canonical variables.
More information on that calculation is in reference [44] and in textbook [28, Section 16].

In practice, it can be hard to nd a tting canonical transformation and one rather
starts from the rst line of equation (4.2) since it gives an analytic expression for the path
integral of a constrained system. The vector potential 𝐴𝜇 of Standard Maxwell theory
from section 3.4, for example, can not be easily reexpressed in a purely physical direction
in phase space, so that the second line of equation (4.2) may not give a description of the
path integral of Standard Maxwell gauge theory. The formulation of equivalence classes
discussed earlier and in [35, Appendix 2.E] would of course solve this problem, but lacks a
precise description in variables. The nonkinematic and kinematic three-form gauge eld
theories are in this aspect, as we see, dierent from the Standard Maxwell gauge theory
since they have a description in terms of gauge invariant variables.

The nonkinematic three-form gauge eld has, as seen in section 3.5, only one global
degree of freedom expressed in the variable 𝑃0, so that there is already a reduced phasespace
description. The kinematic three-form gauge eld, on the other hand, has no denite
variables associated with the single propagating degree of freedom, so that we use a
canonical transformation in section 4.3 to get to a reduced phasespace description.

4.2. The path integral of the nonkinematic three-form gauge
field

In this section, we give the path integral formulation of the nonkinematic three-form
gauge eld and compare it to literature. As reminder, the path integral formulation of this
theory was already found [14] and the wick-rotated partition functional 𝑍 (𝑉 ) is

𝑍 (𝑉 ; 𝑓 ) =
∞∫

−∞

𝑑 𝑓

𝜇2
0

exp
−

1
2

∫
𝑉

𝑑4𝑥 𝑓 2
 , (4.4)
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4.2. The path integral of the nonkinematic three-form gauge eld

where 𝜇0 is a xed constant and 𝑓 is dened by

𝐹𝜇𝜈𝜌𝜆 = 𝑓 𝜖𝜇𝜈𝜌𝜆 . (4.5)

To compare our result to (4.4), we use the same potential, that we left unspecied in the
previous section 3.5, as in reference [14]. The potential is

𝜖
(
𝐹 𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝜌𝜆

)
= − 1

48𝐹
𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝜌𝜆, (4.6)

which leads to the Lagrangian density

L =
1
2
( ¤𝑋0 + ∇𝑖𝑋𝑖

)2
, (4.7)

in the variables of section 3.5. The momentum corresponding to 𝑋0 is obtained from the
Lagrangian density (4.7) as

𝑃0 = ¤𝑋0 + ∇𝑖𝑋𝑖 . (4.8)

According to section’s 3.5 results, the total Hamiltonian density is

H𝑇 =
1
2𝑃

2
0 + ∇𝑖𝑃0

(
𝑋𝑖 + 𝑢2

𝑖

) + 𝑃𝑖
( ¤𝑋𝑖 + 𝑢1

𝑖

)
, (4.9)

the constraints are
𝜙1
𝑖 = 𝑃𝑖, 𝜙2

𝑖 = ∇𝑖𝑃0, (4.10)

and the equations of motion are

¤𝑋0 = 𝑃0 − ∇𝑖𝑢
2
𝑖 , ¤𝑃0 = 0, (4.11a)

¤𝑋𝑖 = ¤𝑋𝑖 + 𝑢1
𝑖 , ¤𝑃𝑖 = 0. (4.11b)

According to the discussion at the end of section 3.5, the nonkinematic three-form gauge
eld has no local degrees of freedom, but has one global degree of freedom, since the
canonical momentum 𝑃0 is constrained to be any constant, in contrast to the other momenta
𝑃𝑖 that are strictly zero. Thereby, we identify 𝑃0 to be the only variable we integrate over
in the path integral. The Poisson brackets of the momentum 𝑃0 with the constraints are
zero, consequently it is gauge-invariant. The Hamiltonian density of this reduced phase
space is

H ∗ =
1
2𝑃

2
0 , (4.12)

where the bar above 𝑃0 indicates that it is constant.
At this point an important remark is due. The eld congurations we integrate over

within the path integral formalism do not, in general, satisfy the equation of motion of the
eld. Accordingly, one might expect, that the momentum 𝑃0 is not constant in time, since
this condition is listed as equation of motion in (4.11). But, the constant time evolution of
𝑃0 is also required as constraint since this is the consistency condition for the constraint
𝜙2 in equation (4.10). We do not include this constraint in the formalism, since the time
variable 𝑡 is singled out in Hamiltonian mechanics, which is of course in contrast to special
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4. Path integral for a three-form gauge eld

relativity. A covariant formulation of constraint Hamiltonian mechanics can be achieved
by parameterizing the theory by including the time 𝑡 as a canonical variable [28, Chapter
4]. Thereby, 𝑃0 is constant for every eld conguration we integrate over.

Since 𝑃0 is constant in space and time, the sum over all eld congurations reduces to
the ordinary integral ∫

D𝑃0 =

∞∫
−∞

𝑑𝑃0 . (4.13)

Above equation resolves the last constraint of the formalism. Consequently, we can give
the path integral (4.2) as∫

D𝑃0 exp
𝑖

∫
𝑑4𝑥

(
𝑃0 ¤𝑋0 −H ∗) =

∞∫
−∞

𝑑𝑃0 exp
𝑖

∫
𝑑4𝑥

(
−1

2𝑃
2
0

) , (4.14)

where we have used that 𝑃0 is constant in time due to constraints, so that the term 𝑃0 ¤𝑋0
in the exponent vanishes at the boundary. Otherwise, we would need a gauge condition
for 𝑋0. This result is exactly the wick-rotated integral (4.4) up to a constant. In the next
sections, we apply the formalism to the kinematic three-form gauge eld. Since there is
also a constant canonical momentum in the kinematic three-form gauge eld, we may
expect a similar result.

4.3. Separation of gauge-invariant degrees of freedom

In this section, we apply a canonical transformation to the kinematic three-form gauge
eld from section 3.7 to separate the pure gauge degrees of freedom from the pure physical
degrees of freedom. Previous discussion has shown that the kinematic three-form gauge
eld has one global and one local degree of freedom. The global degree of freedom is
connected to the canonical momentum 𝑃0, just like in the nonkinematic theory, as we
recall from section 3.5 and discussion in section 4.2. The local degree of freedom, on the
other hand, is not directly connected to a single pair of canonical variables. This, we want
to address in the following.

To clarify the procedure, let us give a little analogy. Consider a two-dimensional plane
where the distance of a point to the origin is considered the physical quantity. If we describe
this point by Cartesian coordinates, we need two coordinates to obtain the distance. These
coordinates, of course, include more information than the distance, namely the angle,
but this is considered gauge. We can not divide between the physical degree of freedom
and gauge degree of freedom in Cartesian coordinates. Now, we consider a coordinate
transformation into polar coordinates. Accordingly, one coordinate (the radius) gives
directly the physical quantity, that is the distance of the point to the origin. The other
coordinate (the angle) represents a gauge degree of freedom. Thereby, we separated gauge
degrees of freedom and physical degrees of freedom from each other. In the remainder of
this section we do a similar procedure to obtain this separation.

At this point, we can also make a short remark on the usage of the term "canonical". In
textbooks [27, 28] the term is used like in this thesis, i.e. calling the momentum variable of
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Hamiltonian theory or the equations of motion derived from the Hamiltonian "canonical".
But there is also found another denition in literature. In reference [48], for example, the
authors write (about a Hamiltonian formulation of gravity): "A precise determination of
the independent dynamical modes of the gravitational eld is arrived at when the theory
has been cast into canonical form and consequently involves the minimal number of
variables specifying the state of the system." In the sense of this reference, we are therefore
casting the three-form gauge theory into its canonical form in this chapter.

Returning to the task of nding a canonical transformation, separating the gauge degrees
of freedom from the physical ones, we already know a minimal variable representation of
the kinematic three-form gauge eld from section 2.2, namely the 𝑞-eld, dened in terms
of the canonical variables by equation (3.40). Therefore, we use a canonical transformation
to get the 𝑞-eld as one of the canonical variables. For the rest of the variables, we draw
from reference [44] and choose the momenta so that they represent the constraints 𝜙1 and
𝜙7 of equation 3.70. Considering the above, we use the generating function [27, Section
9.1]

𝐹3
(
𝑝0, 𝑝𝑖, 𝑃0, 𝑃𝑖 ;𝑥∗0, 𝑥∗𝑖 , 𝑋 ∗

0 , 𝑋
∗
𝑖 ; 𝑡

)
= −𝑝0𝑥

∗
0−𝑝𝑖𝑥∗𝑖 −𝑋 ∗

0𝑃0−(∇𝑖𝑝0 + 𝑃𝑖)𝑋 ∗
𝑖 +𝑃0

(∇𝑖𝑋
∗
𝑖

)
𝑡, (4.15)

where the variables with the asterisk denote the new canonical variables. The relations
between the new and old canonical variables are

𝑥𝑙 = −𝜕𝐹3
𝜕𝑘𝑙

, 𝑘∗𝑙 = − 𝜕𝐹3
𝜕𝑥∗

𝑙

, 𝐻 ∗ = 𝐻 + 𝜕𝐹3
𝜕𝑡

, (4.16)

where 𝑥𝑙 and 𝑘𝑙 are, respectively, the canonical positions and momenta. Using transforma-
tion (4.15) and (4.16), we nd the new variables to be

𝑥∗0 = 𝑥0 + ∇𝑖𝑋𝑖, 𝑝∗0 = 𝑝0, (4.17a)
𝑥∗𝑖 = 𝑥𝑖, 𝑝∗𝑖 = 𝑝𝑖, (4.17b)
𝑋 ∗

0 = 𝑋0, 𝑃∗
0 = 𝑃0, (4.17c)

𝑋 ∗
𝑖 = 𝑋𝑖, 𝑃∗

𝑖 = ∇𝑖𝑝0 + 𝑃𝑖 . (4.17d)

The new total Hamiltonian density is given by

H ∗
𝑇 =

(
𝑝∗0

)2

2𝐶
+ 𝑓

(
𝑥∗0

) + 𝑃0𝑥
∗
0 +

(
𝑢6
𝑖 + 𝑥∗𝑖

)
𝑃∗
𝑖 +

(
𝑢1
𝑖 + ¤𝑥∗𝑖

)
𝑝∗𝑖 +(∇𝑖𝑃0) 𝑢8

𝑖 , (4.18)

where the original total Hamiltonian density (3.71) was used. The constraints are

𝑝∗𝑖 = 0, 𝑃∗
𝑖 = 0, ∇𝑖𝑃

∗
0 = 0. (4.19)

At this point, we still use eight canonical variables to describe one local degree of freedom.
The canonical equations of motion for the variables 𝑥∗𝑖 , 𝑋 ∗

𝑖 , 𝑝
∗
𝑖 and 𝑃∗

𝑖 are

¤𝑥∗0 =
𝑝∗0
𝐶
, ¤𝑝∗0 = −𝑑 𝑓

(
𝑥∗0

)
𝑑𝑥∗0

− 𝑃∗
0 , (4.20a)

¤𝑋 ∗
0 = 𝑥∗0 − ∇𝑖𝑢

8
𝑖 , ¤𝑃∗

0 = 0, (4.20b)
¤𝑥∗𝑖 = 𝑢1

𝑖 + ¤𝑥∗𝑖 , ¤𝑝∗𝑖 = 0, (4.20c)
¤𝑋 ∗
𝑖 = 𝑥∗𝑖 + 𝑢6

𝑖 , ¤𝑃∗
𝑖 = 0. (4.20d)
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4. Path integral for a three-form gauge eld

With equation (4.20a), we nally found a gauge-invariant pair of canonical variables
representing the one local degree of freedom of the kinematic three-form gauge eld
theory. The variables 𝑥∗𝑖 and 𝑋 ∗

𝑖 represent gauge degrees of freedom since they are
completely arbitrary. Additionally, they do not inuence the equations of motion of the
variables 𝑥∗0 and 𝑋 ∗

0 and thereby can be completely removed from the formalism. Finally,
the canonical variable 𝑋 ∗

0 and, more importantly, the conjugated momentum 𝑃∗
0 have the

same structure as in the nonkinematic three-form gauge eld theory and represent a global
degree of freedom. Since the total Hamiltonian density (4.18) does not include the variable
𝑋 ∗

0 , which is arbitrary since equation (4.20b) includes the arbitrary function 𝑢8, we nd
a completely gauge-invariant formulation of the three-form gauge eld in terms of the
three variables 𝑥∗0 , 𝑝∗0 and 𝑃∗

0 . In the next section, we use this formulation to obtain the
path integral of the kinematic three-form eld.

4.4. The path integral of the kinematic three-form gauge field

In the last section, we performed a canonical transformation to identify the relevant
canonical variables with physical degrees of freedom of the kinematic three-form gauge
eld. This enables us, similar to the nonkinematic three-form gauge eld, to obtain the
path integral formalism of the kinematic three-form gauge eld. To start with a familiar
notation, we dene

𝑞 ≡ 𝑥∗0, 𝑝𝑞 ≡ 𝑝∗0, 𝑃∗
0 ≡ −𝜇, (4.21)

so that the new total Hamiltonian density is

H𝑞 =
𝑝2
𝑞

2𝐶
+ 1

2𝐶 (∇𝑖𝑞)2 + 𝜖 (𝑞) − 𝜇𝑞, (4.22)

where we reinstated the function 𝑓 according to equation (3.60). The canonical equation
of motion is

¤𝑝𝑞 = 𝐶∇𝑖∇𝑖𝑞 − 𝑑𝜖 (𝑞)
𝑑𝑞

+ 𝜇, ¤𝑞 =
𝑝𝑞

𝐶
(4.23a)

⇒ 𝜇 =
𝑑𝜖 (𝑞)
𝑑𝑞

−𝐶�𝑞, (4.23b)

which is in Minkowski spacetime equivalent to (2.28). According to section 4.1, the path
integral is

𝑍0 =

∫
D𝜇D𝑞D𝑝𝑞 exp

𝑖
∫
𝑑4𝑥

(
𝜇 ¤𝑋 ∗

0 + ¤𝑞𝑝𝑞 −H𝑞
) (4.24a)

=

∞∫
−∞

𝑑𝜇

∫
D𝑞D𝑝𝑞 exp

𝑖
∞∫

−∞
𝑑4𝑥

(
1

2𝐶
𝑝2
𝑞 −H𝑞

) (4.24b)

= N
∞∫

−∞
𝑑𝜇

∫
D𝑞 exp

𝑖
∞∫

−∞
𝑑4𝑥

(
1
2𝐶∇𝜈𝑞∇𝜈𝑞 + 𝜖 (𝑞) − 𝜇𝑞

) , (4.24c)
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4.4. The path integral of the kinematic three-form gauge eld

where we have used that the term 𝜇 ¤𝑋 ∗
0 vanishes on the boundary since 𝜇 is constant and

equation (4.13) to get from the rst line (4.24a) to the second line (4.24b) and we integrate
over the only quadratically appearing canonical momentum 𝑝𝑞 , cf. [46, Chapter 5], to get
from (4.24b) to (4.24c), where we included the normalization factor N .

We note here that the path integral involves, just like in the nonkinematic theory,
an integration over a constant quantity, here the chemical potential 𝜇, and thereby also
provides the dynamical cancellation process of the nonkinematic three-form gauge theory
as discussed in references [10–12] and in section 5.4.

Returning to the kinematic three-form gauge eld, we can calculate the propagator
of this theory since it has one propagating degree of freedom according to our previous
calculations. Therefore, we introduce a current to the exponent of the path integral. More
examination of this current is done in section 5.2. We follow in this calculation directly
textbook [46, Section 6.1]. Before introducing the current, we shift the 𝑞-eld to the
minimum 𝑞0 of its potential

𝑑

𝑑𝑞
(𝜖 (𝑞) − 𝜇𝑞)

����
𝑞=𝑞0

= 0, (4.25)

so that
𝑞 → 𝑞0(𝜇) + 𝑞, (4.26)

where we keep in mind that the equilibrium value 𝑞0 depends on the chemical potential 𝜇,
which is also a variable integrate over. We obtain the path integral

𝑍 [ 𝑗] =N
∞∫

−∞
𝑑𝜇 exp

𝑖
∫
R4

𝑑4𝑥 (𝜖 (𝑞0) − 𝜇𝑞0)
 ×

∫
D𝑞 exp

−𝑖
∫
R4

𝑑4𝑥

(
1
2𝐶𝑞

(
� −𝑚2

𝑞

)
𝑞 − 𝑗𝑞

) , (4.27)

where we neglected the interaction terms of the 𝑞-eld and we used the mass term𝑚2
𝑞

𝑚2
𝑞 ≡

1
𝐶

𝑑2𝜖 (𝑞)
𝑑2𝑞

����
𝑞=𝑞0

. (4.28)

We introduce the Feynman propagator by shifting the eld 𝑞 by

𝑞 → 𝑞 + 𝑞, (4.29)

where 𝑞 solves the equation of motion(
� −𝑚2

𝑞

)
𝑞 = 𝑗 ⇒ 𝑞(𝑥) =

∫
R4

𝑑4𝑦 𝐺 (𝑥 − 𝑦, 𝜇) 𝑗 (𝑦) , (4.30)

and the Feynman propagator 𝐺 (𝑥 − 𝑦, 𝜇) is dened by(
𝑚2

𝑞 − �
)
𝐺 (𝑥 − 𝑦, 𝜇) = −𝛿 (𝑥) . (4.31)
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4. Path integral for a three-form gauge eld

Accordingly, the path integral is

𝑍 [ 𝑗] =N
∞∫

−∞
𝑑𝜇 exp

𝑖
∫
R4

𝑑4𝑥 (𝜖 (𝑞0) − 𝜇𝑞0)

∫

D𝑞 exp
−𝑖

∫
R4

𝑑4𝑥

(
1
2𝐶𝑞

(
� −𝑚2

𝑞

)
𝑞

) ×

exp
−

1
2𝑖

∫
R4

𝑑4𝑥 𝑗 (𝑥)𝐺 (𝑥 − 𝑦, 𝜇) 𝑗 (𝑦)
 . (4.32)

In the usual calculation for a fundamental scalar eld we would conclude that the inte-
gration over the eld 𝑞 only contributes a normalization factor, so that we can get the
propagator by functional dierentiation with respect to the current. Here, this is not
possible, since we additionally integrate over the chemical potential and the lowest energy
state of the 𝑞-eld, namely the mass term, depends on this chemical potential.

Let us rewrite this path integral before continuing the discussion. We dene the quanti-
ties

𝜌𝑣 (𝜇) ≡ 𝜖 (𝑞0(𝜇)) − 𝜇𝑞0(𝜇) , 𝐴(𝜇) ≡
∫

D𝑞 exp
−𝑖

∫
R4

𝑑4𝑥

(
1
2𝐶𝑞

(
� −𝑚2

𝑞

)
𝑞

) , (4.33)

where 𝜌𝑣 (𝜇) is the vacuum energy density from 𝑞-theory. We write the partition function
as

𝑍 [ 𝑗] = N
∞∫

−∞
𝑑𝜇 𝐴(𝜇) exp

𝑖
∫
R4

𝑑4𝑥 𝜌𝑣 (𝜇)
 exp

−
1
2𝑖

∫
R4

𝑑4𝑥 𝑗 (𝑥)𝐺 (𝑥 − 𝑦, 𝜇) 𝑗 (𝑦)
 . (4.34)

From here, we would have to examine the inuence of the integration over the chemical
potential 𝜇 to carry on the calculation. However, we can note that, if the chemical poten-
tial is xed, the propagator of the kinematic three-form gauge eld corresponds to the
propagator of a scalar eld. More discussion about the inuence of the integration over
the chemical potential 𝜇 is in section 5.4.

In this section, we found the path integral formulation of the kinematic three-form
gauge eld. It features the same integration over a constant eld that led to the idea that
the most probable eld conguration of the three-form gauge eld cancels the vacuum
energy density, cf. [10–12]. Although the kinematic three-form gauge eld has only
one propagating degree of freedom, the integration over the global degree of freedom,
represented by the chemical potential 𝜇, makes the evaluation of the path integral more
intricate, so that further analysis is needed.
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5. Interactions of a three-form gauge field

In this chapter, we examine some possible interactions of the kinematic three-form gauge
eld. First, we use an analogy of the 𝑞-eld with the neutral pion to motivate an interaction
term with Standard model components. Second, we introduce a gauge-invariant current to
our previous model. Third, we discuss the vacuum energy density cancellation induced by
a gauge-invariant current. Last, we discuss possible vacuum energy density cancellation
by the path integral formalism.

5.1. Decay of the𝑞-field into photons

In this section, we draw from the Standard Model of particle physics an interaction term
of the 𝑞-eld with Standard Model matter and thereby obtain a decay rate in Minkowski
spacetime. We use this decay rate to calculate the evolution of a universe with two perfect
uid components.

According to previous chapters the 𝑞-eld is, in Minkowski spacetime, a pseudoscalar
eld with a mass dependent on the chemical potential 𝜇 of 𝑞-theory. Since we use the
Standard Model to motivate an interaction term, we immediately arrive at the neutral pion
𝜋0, which is a pseudoscalar nonfundamental particle [49]. We are interested in its decay
into photons, which can be described by the eective interaction Lagrangian density [50,
Section 22.1]

L𝜋𝛾𝛾 = 𝑔𝜋0𝜖𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝐹𝜌𝜆, (5.1)

where 𝑔 is a constant of mass dimension −1, 𝜋0 is the pion eld and 𝐹𝜇𝜈 is the eld strength
tensor of the vector potential 𝐴𝜇 of Standard Maxwell gauge theory. The interaction
Lagrangian density (5.1) leads to the decay rate

Γ𝜋0𝛾𝛾 =
𝑚3

𝜋𝑔
2

𝜋
, (5.2)

where𝑚𝜋 is the mass of the neutral pion 𝜋0.
According to above equations, we introduce the interaction term of the 𝑞-eld decaying

into photons as [49]
L𝑞𝛾𝛾 = 𝑓 𝑞𝜖𝜇𝜈𝜌𝜆𝐹𝜇𝜈𝐹𝜌𝜆, (5.3)

where the constant 𝑓 is of mass dimension −2, because of the dimensionality of the 𝑞-eld.
Before giving the decay rate of the 𝑞-eld into photons, we make a remark about an

appealing feature of interaction Lagrangian density (5.3). For that, we need the equation
of motion of the vector potential 𝐴𝜇 of the combined system of 𝑞-eld and photons. The
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5. Interactions of a three-form gauge eld

system is described by action

𝑆 =

∫
𝑑4𝑥

√−𝑔 (L𝑞 + L𝐸𝑀 + L𝑞𝛾𝛾
)
, (5.4)

where L𝑞 is given by equation (2.22) with a constant𝐶 (𝑞) = 𝐶 and the Maxwell Lagrangian
density has the standard form (3.27). The equation of motion of the vector potential 𝐴𝜇 is
obtained by the variation of the action (5.4) with respect to the vector potential 𝐴𝜇 and is

∇𝜈𝐹
𝛼𝜈 + 𝑓

𝜖𝛼𝜇𝜈𝜆√−𝑔 𝐹𝜇𝜈∇𝜆𝑞 = 0. (5.5)

This equation shows that the 𝑞-eld does not eect the Standard Maxwell dynamics, if it is
in the equilibrium state, where the four-gradient of it is zero. Thereby, Standard Maxwell
theory is unaected in Minkowski spacetime.
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Figure 5.1.: In the upper left the solution to equation (A.4) is plotted with parameter 𝛾𝑞𝛾𝛾 =

1 and initial condition ℎ(1) = 5 · 10−2 and ℎ′(1) = 0. 𝑟𝑣 is the dimensionless
vacuum energy density and 𝑟𝑟 the dimensionless radiation energy density
obtained by equations (A.5a) and (A.5b).

Returning to the decay of the 𝑞-eld, we nd the decay rate in analogy to (5.2) to be

Γ𝑞𝛾𝛾 =
𝑚3

𝑞 𝑓
2

𝜋𝐶
, (5.6)
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5.2. Introduction of a gauge-invariant current

where the additional 𝐶 in the denominator is caused by the dierent mass dimensions
of the scalar eld and the 𝑞-eld. In Appendix A.1, the evolution of a universe with two
interacting perfect uids is examined. Here, we only show the results of this calculation
in gure 5.1. We can calculate the age of the universe 𝑡𝑛𝑜𝑤 to be approximately

𝑡now ∼
(
1020 eV
𝐸𝑞

)5
· 1 s, (5.7)

where we used a starting vacuum energy density of Planck scale and the current vacuum
energy density of 𝜌now ∼ (

10−3 eV
)4.

5.2. Introduction of a gauge-invariant current

In this section, we introduce a gauge-invariant current to the Lagrangian density of the
kinematic three-form gauge eld to examine the inuence of interactions in this theory.
Therefore, we use the Lagrangian density

L = L𝑀 + L𝑞, (5.8)

where L𝑀 is a generic matter Lagrangian density not further specied. Requiring gauge-
invariance under the transformation

𝐴𝜇𝜈𝜌 (𝑥) → �̃�𝜇𝜈𝜌 (𝑥) = 𝐴𝜇𝜈𝜌 (𝑥) + ∇[𝜇𝜆𝜈𝜌] (𝑥) , (5.9)

introduces a conserved current to the Lagrangian density (5.8)

L = L𝑀 + L𝑞 +𝐴𝜇𝜈𝜌 𝐽
𝜇𝜈𝜌 , (5.10)

where the conserved current 𝐽 𝜇𝜈𝜌 satises the conservation equation

∇𝜇 𝐽
𝜇𝜈𝜌 = 0. (5.11)

This conservation condition gives strong constraints on the form of the current, as we see
in the following analysis.

First, let us rewrite the interaction term in Lagrangian density (5.8) in a way that is
more tting for the Hamiltonian approach

𝐴𝜇𝜈𝜌 𝐽
𝜇𝜈𝜌 = 𝑋0𝐽0 − 𝑋𝑖 𝐽𝑖, (5.12)

where we have introduced the current variables

𝐽0 = −4𝐽123, 𝐽1 = 4𝐽023, 𝐽2 = −4𝐽013, 𝐽3 = 4𝐽012. (5.13)

Consequently, the Hamiltonian density gets modied by

H̃ = H − 𝑋0𝐽0 + 𝑋𝑖 𝐽𝑖, (5.14)

where the tilde indicates quantities that are changed because of the conserved current.
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5. Interactions of a three-form gauge eld

The introduction of this conserved current changes the analysis of the Hamiltonian
constraints from section 3.7. We do not repeat the complete analysis, but give an overview
of the changes. Repeating the analysis gives the constraints

𝜙1
𝑖 = 𝑝𝑖, 𝜙7

𝑖 = ∇𝑖𝑝0 + 𝑃𝑖, 𝜙8
𝑖 = ∇𝑖𝑃0 + 𝐽𝑖, (5.15)

with the new total Hamiltonian density

H𝑇 =
𝑝2

0
2𝐶

+ 𝑓 (𝑥0 + ∇𝑖𝑋𝑖) + 𝑃0𝑥0 − 𝑋0𝐽0 + 𝑋𝑖 𝐽𝑖

(𝑃𝑖 + ∇𝑖𝑝0)
(
𝑥𝑖 + 𝑢7

𝑖

) + 𝑝𝑖
( ¤𝑥𝑖 + 𝑢1

𝑖

) +(∇𝑖𝑃0) 𝑢8
𝑖 . (5.16)

The consistency condition of constraint 𝜙8 gives the equation

∇𝑖 𝐽0 + ¤𝐽𝑖 = 0, (5.17)

which is only composed of the current variables 𝐽0 and 𝐽𝑖 and thereby no additional
constraint, since these variables are external and not canonical variables. The above
equation (5.17) is exactly conservation equation (5.11) with the variables (5.13). Accordingly,
we could, instead of introducing a conserved current, consider a general addition to the
theory and then conclude by consistency of the constraint 𝜙8 that this addition has to
fulll the conservation equation (5.11). In principle, the equation of motion has the same
form as in section 3.7

�̃� =
𝑑𝜖 (𝑞)
𝑑𝑞

−𝐶∇𝜈∇𝜈𝑞, (5.18)

but, as a consequence of the conserved current, the chemical potential �̃� is no longer
constant. Specically, the constraint 𝜙8 in (5.15) and the conservation equation (5.17) gives
the change of the chemical potential in time and space as

¤̃𝜇 = −𝐽0, (5.19a)

∇𝑖 �̃� = 𝐽𝑖 . (5.19b)
Equations (5.19) seem to contradict what we found earlier, namely, that the constancy of
canonical variable 𝑃0, which the chemical potential represents, stabilizes the system so
that the Ostrogradsky instability is circumvented. If we choose, for example, a constant
value for the current variables 𝐽0 and 𝐽𝑖 , they satisfy the conservation equation (5.17), but
lead to an innite chemical potential on the spacetime boundary

(
𝑥𝜇 → ±∞)

of Minkowski
spacetime. A solution to this problem is, of course, the introduction of physical boundary
conditions for the current variables. Consequently, the chemical potential �̃� does only
change by a constant amount. This is actually connected to the conserved quantities of
the Noether theorem, as we see by integrating the conservation equation (5.17)∫

𝑑𝑥𝑖 ∇𝑖 𝐽0 = 𝐽0
��
𝜕𝑀

= 𝜕𝑡

∫
𝑑𝑥𝑖 𝐽𝑖 = 0, (5.20)

where 𝜕𝑀 is the boundary. Integrating equation (5.19b) in the same fashion, we nd the
chemical potential to change by these conserved quantities. A constant change of the
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5.3. Vacuum energy density cancellation by a conserved current

chemical potential changes the 𝑞-eld by a constant amount. The constant change of the
eld by the introduction of an antisymmetric current was also found in reference [14].

There is another way to introduce a conserved current to the kinematic theory. Instead
of coupling the current to the three-form gauge eld𝐴𝜇𝜈𝜌 , we can couple a scalar current to
the variable representing the local degree of freedom, namely the 𝑞-eld. The Lagrangian
density (5.10) becomes

L = L𝑀 + L𝑞 + 𝑗𝑞, (5.21)

where 𝑗 is the scalar current. By the same argument as above, we nd this current to be
constant. The introduction of this current is equivalent by shifting the chemical potential

𝜇 → 𝜇 + 𝑗 . (5.22)

Concluding, the introduction of an antisymmetric current 𝐽 𝜇𝜈𝜌 leads to an eective
change of the chemical potential, which in turn leads to a constant change in the 𝑞-eld.
This is true for all gauge-invariant interactions of the three-form gauge eld, which
leads to the following three remarks. First, the analysis of the three-form gauge eld
including interactions boils down to the analysis of the free three-form gauge eld since
all interaction can be absorbed in the chemical potential 𝜇. Second, the path integral is
not aected by a shift in the chemical potential 𝜇, because the integration over 𝜇 has
boundaries from −∞ to ∞. Third, the inclusion of a gauge-invariant interaction is another
contribution to the vacuum energy density. In the next section, we examine the eects of
this contribution.

5.3. Vacuum energy density cancellation by a conserved
current

In this section, we examine the cancellation of vacuum energy density by a conserved
current, as introduced in the last section. This is not the cancellation mechanism according
to the path integral of the nonkinematic three-form gauge eld, like in section 1.3, but a
cancellation process by interactions with other elds. We articially introduce a current
𝑗𝜌 , that leads to the cancellation of the energy density 𝜌 of scale 𝐸4.

In the last section, we concluded that the current 𝑗𝜌 shifts the eective chemical potential.
Accordingly, the change in the vacuum energy density 𝜌𝑣 of the 𝑞-eld due to the current
𝑗𝜌 is

Δ𝜌𝑣 = 𝜖 (𝑞) − (
𝜇 + 𝑗𝜌

)
𝑞 = − 𝑗𝜌𝑞, (5.23)

where we assumed, that the vacuum energy density 𝜌𝑣 = 𝜖 (𝑞) − 𝜇𝑞 before the interaction
was zero. To cancel the contribution 𝜌 to the vacuum energy density, it has to hold

𝜌 + 𝑗𝜌𝑞 = 0, (5.24)

which makes the the current 𝑗𝜌 of scale 𝐸4/𝐸2
𝑞 , where 𝐸𝑞 is the energy scale of 𝑞-theory.

After the interaction, the equilibrium value 𝑞0 is shifted due to the shift in the chemical
potential. Assuming the energy scale of the contribution 𝜌 to be much smaller than of
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5. Interactions of a three-form gauge eld

𝑞-theory 𝐸 � 𝐸𝑞 , the shift in the equilibrium value 𝛿𝑞0 is

𝜖′(𝑞0 + 𝛿𝑞0) = 𝜇 + 𝑗 ⇒ 𝛿𝑞 =
𝑗

𝜖′′(𝑞0) (5.25)

The change in the mass term𝑚𝑞 is

𝛿𝑚𝑞 =𝑚𝑞 (𝜇) −𝑚𝑞
(
𝜇 + 𝑗𝜌

)
= − 1

2
√
𝐶

𝜖′′′(𝑞0)
𝜖′′(𝑞0)3/2 𝑗𝜌 + O (

𝑗2
) ∼ 𝐸4

𝐸3
𝑞

. (5.26)

Thereby, every gauge-invariant interaction changes the eective potential of the 𝑞-eld
and, in that way, every gauge-invariant interaction changes the mode solutions of the
𝑞-eld.

In this section, we have examined how the 𝑞-eld changes by the introduction of a
gauge-invariant current that cancels a generic distribution to the vacuum energy density.
This cancellation process, however, requires the current to be of a particular form and is
no dynamical process of vacuum energy cancellation. Such a dynamical process we want
to examine in the next section.

5.4. Vacuum energy cancellation by the path integral

In this section, we discuss the vacuum energy cancellation, which may occur due to the
integration over the chemical potential 𝜇 in the path integral formulation of the kinematic
three-form gauge eld. This cancellation process involves the calculation of the most
probable eld conguration of the path integral and is, thereby, a full quantum calculation.
In section 4.4, we already obtained the path integral of the kinematic three-form gauge
eld. But, rst, let us discuss the main idea of references [10–12]. The path integral of the
nonkinematic three-form gauge eld with a cosmological constant term is

𝑍 =

∞∫
−∞

𝑑 𝑓 exp

∫
R4

𝑑4𝑥𝐸

(
𝑉 (𝑓 ) + 𝜆

8𝜋𝐺

) =

∞∫
−∞

𝑑 𝑓 exp

∫
R4

𝑑4𝑥𝐸 𝜌𝑣𝑎𝑐 (𝑓 )
 , (5.27)

where we wick-rotated the integral into euclidean spacetime, indicated by 𝑥𝐸 , and 𝜌𝑣𝑎𝑐 is
the overall vacuum energy density. The most probable conguration of the eld 𝑓 , which
is 𝑃0 in the Hamiltonian formulation of the nonkinematic three-form gauge eld, occurs,
according to equation (5.27), when the exponent is zero and, thereby, provides Minkowski
spacetime.

Returning to the kinematic three-form gauge eld, it also features the integration over
the constant chemical potential 𝜇, but, in contrast, it additionally features a propagating
mode, which is inuenced by the value of the chemical potential 𝜇.

The path integral for the kinematic theory with a cosmological constant term is, accord-
ing to section 4.4,

𝑍0 = N
∞∫

−∞
𝑑𝜇 𝐴(𝜇) exp

𝑖
∫
R4

𝑑4𝑥 𝜌𝑣𝑎𝑐 (𝜇)
 . (5.28)
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5.4. Vacuum energy cancellation by the path integral

Here, the integration over the constant chemical potential 𝜇 provides the same vacuum
energy cancellation process as in the nonkinematic theory, neglecting the inuence of the
dynamical part of the path integral 𝐴(𝜇). Including 𝐴(𝜇), the nal vacuum energy density,
provided by 𝜇, might be shifted due to the dynamics of the three-form gauge eld and,
thereby, might give a small vacuum energy density.

An interesting feature of this cancellation process is that the chemical potential, and
thereby the mass term of the 𝑞-eld, saves the contributions to the vacuum energy density
it cancels. In that way, the kinematics of the three-form gauge eld includes a history of
the contributions to vacuum energy density.

Concluding, the kinematic three-form gauge eld includes, in principle, the same can-
cellation process as the nonkinematic three-form gauge eld like suggested in literature
[10–12]. The propagating mode of the kinematic three-form gauge eld although, makes
the analysis more complicated and needs further analysis.
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6. Conclusion

In this master’s thesis, some aspects of the three-form gauge eld are claried and some
new results are obtained. The rst concern was to calculate the number of local degrees
of freedom of the kinematic three-form gauge eld. It was already suspected that the
kinematic three-form gauge eld only has one propagating degree of freedom, which
was conrmed in this work. The extensive analysis of the Hamiltonian systems of the
nonkinematic and kinematic three-form gauge elds, necessary for the calculation of the
number of local degrees of freedom, showed a subtle feature of both three-form gauge
elds. There is a global degree of freedom in the form of a constant canonical variable. It is
exactly this constant canonical variable, which makes the three-form gauge eld provide
a possible solution to the cosmological constant problem.

After the Hamiltonian analysis, we obtained the path integral formulations of the
kinematic and nonkinematic three-form gauge elds. We were able to reproduce the result
for the nonkinematic three-form gauge eld as found in literature. It was found that the
path integral formulation of the kinematic three-form gauge eld has also a constant
canonical variable and, thereby, may provide a solution to the cosmological constant
problem. We identied the chemical potential 𝜇 of 𝑞-theory with the constant canonical
variable. Thereby, the chemical potential 𝜇 is included in the quantum theory of the
three-form gauge eld representation of 𝑞-theory and allows for a dynamical description
of vacuum energy density.

The introduction of a gauge-invariant current was used to discuss the eects of inter-
action of the three-form gauge eld. We have found that the current shifts the chemical
potential at most by a constant amount. This gives the opportunity to describe a vacuum
energy density cancellation process by this current.

Concluding, we have found a quantum theory for the kinematic three-form gauge eld.
The interpretation of this theory is more dicult than one might expect, although the
kinematic three-form gauge eld only has one propagating degree of freedom since there is
a global degree of freedom included in this quantum theory. The path integral formulation
allows, in principle, for full quantum calculations of the kinematic three-form gauge eld.
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A. Appendix

A.1. The evolution of the universe due to interacting perfect
fluids

A simple model [51] to describe the exchange of energy between the 𝑞-eld and the
photon eld is obtained by modifying the energy-momentum conservation in a Friedmann-
Robertson-Walker universe, so that the combined energy density of two perfect uids
𝜌 (𝑡) = 𝜌1(𝑡) + 𝜌2(𝑡) is conserved and the perfect uids can decay into each other with
rates 𝛼 and 𝛽 . The expansion of the universe, described by the Hubble parameter 𝐻 (𝑡), is,
in this case, determined by the equations

3𝐻 2 = 8𝜋𝐺𝑁 (𝜌1 + 𝜌2) , (A.1a)

¤𝜌1 + 3𝐻Γ𝜌1 = −𝛽𝐻𝜌1 + 𝛼𝐻𝜌2, (A.1b)
¤𝜌2 + 3𝐻𝛾𝜌2 = −𝛼𝐻𝜌2 + 𝛽𝐻𝜌1, (A.1c)

where the perfect uids 𝜌1 and 𝜌2 have the equation of state parameter 𝑤1 = 1 − Γ and
𝑤2 = 1 − 𝛾 respectively.
Combining equations (A.1a), (A.1b) and (A.1c), the Hubble parameter 𝐻 is determined by
a single equation

¥𝐻 + 𝐻 ¤𝐻 (3𝛾 + 3Γ + 𝛼 + 𝛽) + 3
2𝐻

3(3Γ𝛾 + 𝛽𝛾 + 𝛼Γ) = 0. (A.2)

In our case, we want to describe the decay of vacuum energy density into photons, so that
equation (A.2) is with 𝜌1 = 𝜌𝑉 , 𝜌2 = 𝜌𝑅 , 𝛾 = 4/3, Γ = 0, 𝛼 = 0 and 𝛽 = Γ𝑞𝛾𝛾/𝐻

¥𝐻 + 4𝐻 ¤𝐻 + ¤𝐻Γ𝑞𝛾𝛾 + 2𝐻 2Γ𝑞𝛾𝛾 = 0. (A.3)

By construction the resulting spacetime of equation (A.2) is Minkowski spacetime since
vacuum energy ≠ 0 is radiating. To obtain numerical solutions to equation (A.3), we rescale
the parameters of the theory with respect to the energy scale of 𝑞-theory 𝐸𝑞 . Parameters ℎ,
𝛾𝑞𝛾𝛾 and 𝜏 are dimensionless equivalents of 𝐻 , Γ𝑞𝛾𝛾 and 𝑡 , rescaled by appropriate powers of
𝐸𝑞 . The prime stands for dierentiation with respect to 𝜏 . The equation to solve numerically
is

ℎ′′(𝜏) + 4ℎ(𝜏) ℎ′(𝜏) + ℎ′(𝜏) 𝛾𝑞𝛾𝛾 + 2ℎ(𝜏)2 𝛾𝑞𝛾𝛾 = 0. (A.4)
To obtain the energy densities, the Friedmann equations are used. They are rescaled with
respect to Planck energy 𝐸Pl. The dimensionless densities 𝑟𝑣 and 𝑟𝑟 are given by

𝑟𝑣 =

(
𝐸𝑞

𝐸Pl

)2 (3ℎ2

8𝜋 + 2ℎ′
8𝜋𝛾

)
, (A.5a)

47



A. Appendix

𝑟𝑟 = −
(
𝐸𝑞

𝐸Pl

)2 2ℎ′
8𝜋𝛾 . (A.5b)

The solution of equation (A.4) can be seen in gure 5.1.

A.2. Variations on a constrained phasespace

Here, we want to show that the Hamiltonian equations of motion in constrained phasespace
are given by

¤𝑞𝑖 = 𝜕𝐻

𝜕𝑝𝑖
+ 𝑢𝑚 𝜕𝜙𝑚

𝜕𝑝𝑖
, (A.6a)

¤𝑝𝑖 = − 𝜕𝐻

𝜕𝑞𝑖
+ 𝑢𝑚 𝜕𝜙𝑚

𝜕𝑞𝑖
. (A.6b)

We follow in this calculation textbook [28]. As in the unconstrained case in section 3.2,
we dene the Hamiltonian by

𝐻 ≡ 𝑝𝑖 ¤𝑞𝑖 − 𝐿(𝑞𝑖, ¤𝑞𝑖) . (A.7)

Setting the variation of the Hamiltonian to zero we get[
𝜕𝐻

𝜕𝑞𝑖
+ 𝜕𝐿

𝜕𝑞𝑖

]
𝛿𝑞𝑖 +

[
𝜕𝐻

𝜕𝑝𝑖
− ¤𝑞𝑖

]
𝛿𝑝𝑖 = 0. (A.8)

In the unconstrained case, the variations 𝛿𝑝𝑖 and 𝛿𝑞𝑖 are independent of each other and
thereby we nd the familiar Hamiltonian equations of motion (3.9). In the constrained
case, there are the constraints

𝜙𝑚 (𝑞𝑖, 𝑝𝑖) = 0, 𝑚 = 1, ..., 𝑀, (A.9)

which dene a constrained surface Γ of dimension 2𝑁 −𝑀 on the phasespace, where 𝑁 is
the number of generalized coordinates. On this surface, we consider the equation

𝜆𝑛𝛿𝑞𝑛 + 𝜇𝑛𝑝𝑛 = 0. (A.10)

The solution of the above equation is given by

𝜆𝑛 = 𝑢𝑚
𝜕𝜙𝑚
𝜕𝑞𝑛

, (A.11a)

𝜇𝑛 = 𝑢𝑚
𝜕𝜙𝑚
𝜕𝑝𝑛

, (A.11b)

if the gradients of the constraints are linearly independent. The linear independence
of the gradients of the constraints is a regularity condition, which stems from the fact
that the surface Γ, dened by the constraints, can be dened in dierent ways. For more
information, see reference [28, Section 1.1.2.].

From equations (A.11) and equation (A.8), the Hamiltonian equations of motion (A.6)
are obtained. Equations (A.6) can also be seen as the most general equations of motion in
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A.2. Variations on a constrained phasespace

a constrained phasespace [32] since the Hamiltonian on the surface Γ is invariant under
adding constraints 𝜙𝑚

𝐻
Γ
= 𝐻 + 𝑢𝑚𝜙𝑚, (A.12)

where the equality only holds on the surface Γ dened by the constraints. From this more
general Hamiltonian the equations of motion (A.6) are obtained.
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