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Abstract

After 10 years of data taking at the Large Hadron Collider and the discovery of a Higgs

boson in 2012, vector-boson scattering is more than ever a promising class of processes

for the search of e�ects from physics beyond the Standard Model. It is very common to

parametrize the e�ects of new physics in a model independent way using an e�ective �eld

theory approach.

In this thesis, we construct a complete e�ective �eld theory basis including operators

up to energy dimension 8 after imposing some simplifying assumptions of the underlying

model in order to limit the discussion to the relevant features. We propose a toy-model that

includes new fermion and scalar multiplets that transform under a representation of SU (2)L
in the SU (2)L limit of the Standard Model and derive its e�ective �eld theory description

by calculating its Wilson coe�cients in a low-energy approximation of the one-loop

corrections. The one-loop calculation of the toy-model, its e�ective �eld theory and several

subsets of e�ective �eld theory operators are compared in on-shell vector-boson scattering,

and the e�ects are investigated at di�erent levels of the calculation, i.e. at the level of the

matrix element, di�erential and �ducial cross sections. With an approximation of using a

�nite partial-wave expansion of the new-physics contribution in the dominant helicity

amplitudes, the contributions are implemented in VBFNLO. After performing necessary

cross checks, VBFNLO is used to predict W ±Z and ZZ production processes at a proton-

proton collider in the toy-model and its e�ective �eld theory realization and a comparison

of the results with experimental analysis is carried out. Implications for future studies,

both theoretical and experimental, are formulated.
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Zusammenfassung

Nachdem über 10 Jahre lang Messungen am Large Hadron Collider durchgeführt wurden

und ein Higgs Boson 2012 entdeckt wurde, entwickelt sich Vektor-Boson-Streuung mehr

denn je zu einer vielversprechenden Klasse von Prozessen für die Suche nach Physik

jenseits des Standard Modells. Üblicherweise wird der E�ekt von neuer Physik in einer

modelunabhängigen Weise mit der Methode der e�ektiven Feldtheorie parametrisiert.

In dieser Thesis wird eine komplette Basis der e�ektiven Feldtheorie einschließlich

der Operatoren mit Energiedimension 8 konstruiert, nachdem im Voraus einige vereinfa-

chende Annahmen über das zugrundeliegende Modell getro�en werden. Damit soll die

Diskussion auf die relevanten Eigenschaften reduziert werden. Wir beschränken uns wei-

terhin auf den SU (2)L Limes des Standard Modells bei unseren Berechnungen. Wir führen

ein Toy-Modell ein, welches neue fermionische und skalare Multipletts beinhaltet, die

sich unter einer Repräsentation der SU (2)L transformieren. Die e�ektive feldtheoretische

Beschreibung des Toy-Modells wird aus der Berechnung der Wilson Koe�zienten durch

eine Niedrigenergie-Näherung der Einschleifen-Korrekturen bestimmt. Die Einschleifen-

Rechnung des Toy-Modells, die davon abgeleitete e�ektive Feldtheorie und verschiedene

Teilmengen der Operatoren der e�ektiven Feldtheorie werden in Vektor-Boson-Streuung

für Bosonen auf der Massenschale verglichen. Die E�ekte werden dabei in verschiedenen

Ebenen der Rechnung untersucht, z.B. auf der Ebene des Matrix Elements, des di�erenziel-

len und des inklusiven Wirkungsquerschnitts. Mit der Näherung des Anteils der neuen

Physik in den dominanten Helizitätsamplituden durch eine begrenzte Partialwellenzerle-

gung werden die Beiträge in VBFNLO implementiert. Nachdem notwendige Überprüfungen

durchgeführt werden, wird die Implementation des vollen Toy-Models und der e�ektiven

feldtheoretischen Beschreibung in VBFNLO genutzt, um Vorhersagen für die W ±Z und

ZZ Produktion in einem Proton-Proton Collider zu tre�en. Ein Vergleich der Resultate

mit experimentellen Untersuchungen wird vollzogen. Die Auswirkungen auf zukünftige

Studien, sowohl theoretische als auch experimentelle, werden formuliert.
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1. Introduction

In the last 60 years particle physicists developed a consistent quantum-�eld theory (QFT)

which describes a plethora of experimental phenomena from low to very high energies.

With the discovery of a Higgs boson [1, 2] at the Large Hadron Collider (LHC) the last

fundamental constituent of the Standard Model of particle physics (SM) likely has been

observed by experimental collaborations. Thus, the time has come to engage in precision

measurements of various observables and to search for discrepancies to predictions in the

SM which emerge from new physics (NP) beyond the SM.

With the current available data of the Large Hadron Collider and the upcoming high-

luminosity phase [3], precision experiments of proton-proton collisions reach the next level.

This gives us the unique opportunity to gain deeper insight in processes that could not be

studied in great detail in the past. Vector-boson scattering (VBS) forms such a promising

class of processes and attracts rising interest among particle physicists. It is expected that

corrections to the weak-boson couplings, arising from NP contributions, cause sizable

deviations from the SM cross section in VBS, even if the underlying models enter at a

high energy scale [4, 5]. The common practice is to parametrize those NP contributions

with an e�ective �eld theory (EFT) approach, which in general introduces a large number

of parameters. Hence, current experimental analysis on anomalous couplings described

by EFT operators [6, 7] often provide their results based on one single EFT operator at a

time. Since any underlying model does not only introduce one single EFT operator, this

procedure often does not �t to the expectation of NP models. In addition, any EFT, by

de�nition, is only applicable in a �nite region of validity, which is typically unknown

if the underlying model is not further speci�ed. Therefore, the aim of the thesis is to

compare the impact on VBS of a concrete NP model with its EFT realization. We also study

subsets of the derived EFT operators in order to determine the relevant contributions of

our underlying model. Finally, we compare with experimental analyses and formulate

implications for future investigations.

In Chapter 2 this thesis begins with a review on some necessary principles and techniques

of QFT and we give a brief introduction of the SM and its SU (2)L limit to which we restrict

our calculations. In Chapter 3 we discuss the general topic of EFT, and construct a complete

basis up to energy dimension 8 which will be used in the e�ective description of VBS.

Additionally, we derive the unitarity bounds which any theory has to ful�ll. We introduce

our concrete NP model in Chapter 4 and calculate the vertex corrections and associated

renormalization in the minimal subtraction (MS) scheme. The low-energy approximation

of the vertex corrections leads to the matching of the Wilson coe�cients of the EFT.

In Chapter 5 we investigate the phenomenology of our NP model and its derived EFT

realization in on-shell VBS. After discussing the adequate perturbative counting of the EFT

calculation, we compare the cross section predictions and examine angular dependencies

of the dominant helicity amplitudes. We determine the �rst coe�cients of the partial-wave

1



1. Introduction

(PW) expansion of the dominant helicity amplitudes, which we verify as an accurate

approximation of on-shell VBS. Furthermore, we probe our concrete model for unitarity

with the derivation of the dominant eigenvalue of the PW coe�cients. In Chapter 6 we

use VBFNLO[8–10] for predictions of VBS occurring in proton-proton collisions with the

implementation of an approximate version of our model. We perform necessary cross

checks for consistency, and investigate the predictions forW ±Z and ZZ production with

our NP model. Thereafter, we compare our predictions with current experimental analysis

and propose implications for future studies. We conclude in Chapter 7.
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2. Quantum field theory and the Standard
Model

In this chapter we recapitulate the basic concepts and de�nitions relevant for a quantum

�eld theory (QFT) and in particular for the Standard Model of particle physics (SM). As it

is common in theoretical particle physics, all formulas will be presented in natural units

throughout this thesis. That means we set the fundamental constants of nature equal to

one:

~ = 1 , c = 1 , ϵ0 = 1 . (2.1)

In this way all quantities which stay dimensionfull will be expressed in terms of energy, e.g.

time and length are measured in inverse units of energy. When comparing predicted ob-

servables with actual measurement we only have to multiply by powers of the fundamental

constants in SI units which are needed to get the right unit dimension.

2.1. Quantum field theory basics

In QFT, a speci�c model living in d dimensions with all its properties and symmetries gets

formulated in the language of a local Lagrangian density L
(
ϕ(x), ∂µϕ(x)

)
which enters

the action action in the form

S[ϕ] =

∫
ddxL

(
ϕ(x), ∂µϕ(x)

)
. (2.2)

As intended with the notation of Eq. (2.2), S acts as a functional of the quantum �elds

ϕ which describe the degrees of freedom of the underlying theory. In order to allow a

propagation of the �elds we include kinetic terms with partial derivatives acting on the

�elds. Those kinetic terms look di�erent for scalar �elds φ and fermion �eldsψ in order to

take care of their di�erent spin statistics. We therefore write the kinetic terms as follows:(
Dµφ

)†
Dµφ , (2.3a)

¯ψγ µDµψ . (2.3b)

Here the covariant derivative Dµ di�ers from the usual partial derivative ∂µ in order to

allow for a local gauge transformation. A short explanation will be given in the following:

Assume we have a �eld ϕ that transforms locally under a representation r of the unitary

group U (n), meaning

ϕ′ = Uϕ , (2.4a)

ϕ′† = ϕ†U † , (2.4b)

3



2. Quantum �eld theory and the Standard Model

with U := U (x) ∈ U (n). So at each point in space time, ϕ transforms covariantly by the

unitary matrix U . Thus if we want to construct a theory that is symmetric under U (n),
terms in powers of ϕ†ϕ can be added to the Lagrangian, as

ϕ′†ϕ′ = ϕ†U †Uϕ = ϕ†ϕ (2.5)

forms an invariant. But the partial derivative acting on the �eld will not transform

covariantly, since it yields

∂µϕ
′ = U ∂µϕ +

(
∂µU

)
ϕ . (2.6)

In order to cure the transformation properties of the derivative the covariant Dµ derivative

comes into place, that by de�nition transforms as

D′µ = UDµU
†

, (2.7)

leading again to a covariant transformation of the derivative term

D′µϕ
′ = UDµU

†Uϕ = UDµϕ . (2.8)

In this way we ensure to build a symmetric Lagrangian also using derivative terms, which

can now form kinetic terms of the �elds. There is still one further point to discuss, as we

introduced new degrees of freedom to our theory by demanding the covariant derivativeDµ

to have the local transformation properties shown in Eq. (2.7). This will become more clear

when we write down Dµ explicitly and describe its space time dependence by introducing

the gauge �elds Aa
µ := Aa

µ(x). We obtain

Dµ = ∂µ − iдA
a
µt

a
r , (2.9)

with the gauge coupling parameter д and the traceless group generators tar ∈ u(n). Those

generators follow the commutation relation

[tar , t
b
r ] = i f

abc
t
c
r , (2.10)

with the usual commutator [•, •] and structure constants f abc of the Lie algebra of U (n).
Therefore this relation is to be satis�ed for all representations.

In principle we can now evaluate the transformation behavior of Aa
µ , such that Eq. (2.7)

gets ful�lled. But for our purpose it is enough that Aa
µ can be chosen to satisfy this

condition.

We need to add kinetic terms of the gauge �elds. For this purpose we de�ne the

�eld-strength tensor
1

F̂ µν :=
1

−iд
[D̂µ , D̂ν ] = ta

(
∂µAaν − ∂νAaµ + д f abcAbµAcν

)
=: t

aFaµν (2.11)

1
In this thesis, D̂µ will refer to the covariant derivative in the de�ning (also called fundamental) represen-

tation in contrast to Dµ which will be used for a general representation.

4



2.1. Quantum �eld theory basics

where ta are now the generators in the n dimensional de�ning representation of U (n).
Although the de�nition of the �eld-strength tensor holds for the commutator of covariant

derivatives in a general representation, we choose the de�ning representation such that

the kinetic terms get the usual canonical normalization. F̂ µν is now an object including

derivative terms of the gauge bosons, but no derivatives acting on following �elds. The

transformation properties are known from the covariant derivative and read

F̂ ′µν =
1

−iд
[D̂′µ , D̂′ν ] = U

1

−iд
[D̂µ , D̂ν ]U † = U F̂ µνU † . (2.12)

Thus by taking the trace of a product of �eld-strength tensors we automatically ensure

gauge invariance in the Lagrangian. Therefore

−
1

2

Tr

(
F̂ µν F̂µν

)
= −

1

2

∂µA
a
ν (∂

µAaν − ∂νAaµ) − · · · (2.13)

will be the gauge kinetic term in the Lagrangian. This concludes the basic principles of

local gauge theory that are relevant for the purpose of this thesis.

At this point we are ready to do some dimensional analysis. In the chosen natural units

convention S is dimensionless, as [S] = [~] = 0.
2

As ddx has dimension −d and each

derivative carries a dimension of 1, the dimension of the �elds are �xed by their kinetic

term. Hence, we get for the �elds

[ψ ] =
d − 1

2

, (2.14a)

[ϕ] =
d − 2

2

, (2.14b)

[A] =
d − 2

2

. (2.14c)

As we usually work in d = 4 space-time dimensions, the dimensions are [ψ ] = 3

2
, [ϕ] =

1 = [A]. With this information, we can determine the energy dimension of each operator

constructed of �elds and derivatives that may appear in the Lagrangian. If the operator

dimension di�ers from 4, it needs a parameter with an energy scale in order to form

a proper term in the Lagrangian. As it turns out when analyzing the renormalization

behavior of the terms in the Lagrangian
3
, we can only construct a consistent theory

containing �nite terms in the Lagrangian if we limit the maximum operator dimension to

4. This is a desired feature, as all the parameters of such a theory can be accessed by a

�nite number of experiments. However, there are also reasons for doing phenomenology

with theories including higher-dimensional operators, as will be descussed in Chapter 3.

We now want to give the basic principles on calculations of predictions of observables

using perturbative QFT. We start with the least-action principle, already known from

classical mechanics. We demand a vanishing variation of the action with respect to the

con�guration of ϕ, namely

0 = δS =

∫
dxd

(
∂L

∂ϕ
− ∂µ

∂L

∂
(
∂µϕ

) ) δϕ , (2.15)

2
[. . . ] meaning the power in dimension of energy, i.e. [M] = 1.

3
This topic is discussed in all the standard textbooks on QFT, e.g. in Refs.[11, 12].

5



2. Quantum �eld theory and the Standard Model

in order to �nd the equation of motion (EoM)

∂L

∂ϕ
− ∂µ

∂L

∂
(
∂µϕ

) = 0 . (2.16)

Terms in the Lagrangian that only involve products of two �elds can be solved exactly by

free �eld solutions. Therefore, we may separate the Lagrangian into

L = L f ree + LI , (2.17)

where L f ree denotes the free �eld part and LI the interaction part of the Lagrangian

involving products of more than two �elds. The free theory gets solved in terms of a

second quantization procedure.

In particle physics we most commonly perform scattering experiments to probe the

interaction Lagrangian LI . From the theoretical point of view the scattering process can be

understood as a transition from an initial state in the distant past |i, t → −∞〉 to a far future

�nal state | f , t →∞〉 =: | f 〉 and the states at times t → ±∞ are seen as asymptotically

free. We de�ne the S-matrix which denotes the transition from initial state to �nal state

including the time evolution with respect to the interaction part

Sf i = 〈f | S |i〉 = 〈f , t →∞| |i, t → −∞〉 . (2.18)

The elements of the non-trivial part of the S-matrix iTf i = Sf i − δ f i can be brought to a

more useful form

Tf i = (2π )
4δ (4)(q f − pi)M f i , (2.19)

where we extracted the energy-momentum conservation. M f i is commonly known as

the Feynman amplitude of the process i → f . If the interaction part of the Lagrangian

has a suppression due to a small coupling, we can apply the framework of perturbation

theory. In that sense, the S-matrix can be expanded in an in�nite series of powers of the

coupling constant, whilst the quantum �elds used in the expressions are taken as free

�elds. Likewise, this allows to use Feynman rules in order to calculate the amplitudeM f i

up to the desired order in perturbation theory.

In order to have a measure of the scattering probability, we introduce the cross section

σ for a process p1p2 → q1, . . .qn. The di�erential cross section is de�ned as

dσ =
1

(2E1)(2E2)| ®v1 − ®v2 |
|M f i |

2dΦn (p1,p2;q1 . . .qn) , (2.20)

where

dΦn (p1,p2;q1 . . .qn) =
d3q1

2Eq1
(2π )3

. . .
d3qn

2Eqn (2π )
3
(2π )4δ (4) (q1 + . . .qn − p1 − p2) (2.21)

is the n-particle Lorentz-invariant phase space. In the center of mass (COM) frame of a

2→ 2 scattering of particles with the same mass, the di�erential cross section formula

above reduces to [13]

dσ =
1

64π 2s
|M f i |

2dΩ . (2.22)

This is the form we will use in Section 5.4 for the cross section calculation.

6



2.2. The Standard Model and its SU (2)L limit

2.2. The Standard Model and its SU (2)L limit

The Standard Model of particle physics (SM) is the by now well-established theory describ-

ing a broad spectrum of particle physics phenomenology. It is constructed as a local gauge

theory that includes three of the four fundamental interactions of nature, only missing

gravity. The other three interactions form the gauge group of the SM

SU (3)QCD × SU (2)L ×U (1)Y , (2.23)

where the SU (3)QCD is the gauge group of Quantum Chromodynamics (QCD) which is

the underlying theory of the strong interaction, and SU (2)L ×U (1)Y the gauge group of

electroweak (EW) interactions. The index L represents the maximally parity-violating

coupling of the weak bosonsW a
to the SM fermions and the U (1)Y is the hypercharge

gauge group of the B-boson. The coupling parameters are denoted with дs for SU (3)QCD , д
for the SU (2)L and д′ for U (1)Y , leading to the covariant derivative

Dµ = ∂µ − iдsT
asGas

µ − iд
τ a

2

W a
µ − iд

′YBµ , (2.24)

where T as
are the generators of the SU (3)QCD ,

τ a

2
are half the Pauli matrices that form the

generators of SU (2)L in the de�ning representation and Y is the hypercharge operator.

The full Lagrangian of the SM can be decomposed as

LSM = LGauдe + LMatter + LHiддs + LYukawa . (2.25)

The gauge part of the Lagrangian LGauдe involves the gauge-kinetic terms for the three

gauge groups, as already discussed in the previous section. LMatter consists of the kinetic

terms for the SM fermion species, which can be aligned in three families of quarks, i.e.

strongly interacting fermions, and leptons. Only the left-chiral fermions form doublets

transforming under SU (2)L, whereas the right-chiral fermions are singlets, and each �eld

has its individual hypercharge eigenvalue Y assigned. LHiддs contains the kinetic term

for the scalar SM Higgs doublet and its potential, and LYukawa describes the Yukawa

interaction between the Higgs �eld and the fermions. As the naive insertion of mass terms

of the SM �elds would not allow for a gauge interaction, a dynamical process involving the

Higgs boson comes into place. For a detailed description we refer to common textbooks,

like Refs. [11, 12].

The parameters in the Higgs potential are con�gured in a way, that the Higgs doublet

acquires a non-vanishing vacuum expectation value (VEV) after so-called electroweak

symmetry breaking, i.e. when the universe has cooled down to temperatures below TeV. As

the Higgs �eld forms a SU (2)L doublet and also has a hypercharge, this VEV spontaneously

breaks the SU (2)L and U (1)Y simultaneously, leaving only the residual electromagnetic

U (1)em as an exact symmetry. The Goldstone theorem now states that the theory has

three massless bosonic degrees of freedom in the Higgs doublet, which can be absorbed as

longitudinal degrees of freedom of the weak bosons. A practical implementation of this

absorption is the unitary gauge. The remaining Higgs �eld is identi�ed as the massive

physical Higgs boson. At the same time the Higgs VEV can now serve in the Lagrangian

as a parameter of energy dimension, giving a mass-term to the weak bosons through the

7



2. Quantum �eld theory and the Standard Model

Higgs kinetic term and to fermion �elds through Yukawa interaction. The physical gauge

bosonsW ±, Z and the photon (A) are then obtained fromW a
and B by

W ± =
1

√
2

(
W 1 ∓ iW 2

)
, (2.26a)

Z =
д√

д2 + д′2
W 3 −

д′√
д2 + д′2

B , (2.26b)

A =
д′√

д2 + д′2
W 3 +

д√
д2 + д′2

B . (2.26c)

In the subsequent work of the thesis, we restrict the discussion to the electroweak sector

in the SU (2)L limit of the SM. This e�ectively means to set д′→ 0. As there is no U (1)Y ,

we will not �nd a residual electromagnetic symmetry after symmetry breaking. Therefore,

there will be no appearance of the photon A and the physical Z -boson is identi�ed as

theW 3
of the SU (2)L gauge boson triplet, having the mass mZ = mW after electroweak

symmetry breaking.

The reason for working in the SU (2)L limit is that it drastically simpli�es the subsequent

discussions and still allows for enough freedom to analyze some of the the basic properties

in vector-boson scattering.
4

Including the photon in the calculation of vector-boson

scattering would complicate all calculations substantially without gaining a deeper insight.

In the on-shell scattering of charged vector bosons we would have a pole in the t-channel

exchange of photons for small angles. This is the well-known Rutherford pole, that appears

due to the long-range interaction of quantum electrodynamics (QED). Having a long-range

interaction spoils the convergence of the partial wave expansion and the projection on its

coe�cients which is introduced in Section 3.2. In addition, in the SU (2)L limit we do not

have to consider processes with external photons in the SU (2)L limit. Also having equal

masses for theW ± and Z bosons further simpli�es the kinematics in the calculation of

vector-boson scattering.

2.3. One-loop corrections

It is part of any introductory course on QFT, that a naive calculation of one-loop integrals

does not work and leads to in�nities that originate from integrating over loop momenta up

to in�nity. But during the last century clever theoretical physicist developed prescriptions

that help us to deal with such ultraviolet (UV) in�nities. One common prescription is

dimensional regularization (DimReg) which is particularly of interest, as it conserves gauge

symmetries. In this prescription the theory is analytically continued from 4 to d space-time

dimension for all the calculations and in the end the limit d → 4 − 2ϵ for in�nitesimal ϵ is

performed which allows to make ultraviolet divergences explicit in the form of inverse

4
Including new particles that transform under a representation of the SU (2)L su�ces for loop-induced

corrections to the vector-boson scattering processes. Hence, we are also able to parametrize vector-boson

scattering in the e�ective �eld theory approach by deriving the low-energy limit of the vertex corrections.

All that is carried out in the subsequent chapters.
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2.3. One-loop corrections

pn−1
k + rn−1

k

k + r1
k + r2k + r3

pn

p1

p2

p3

p4

Figure 2.1.: De�nition of an example one-loop diagram.

powers in ϵ . Therefore, we can absorb those terms in a proper renormalization procedure

such that resulting physical quantities are UV �nite.

In a general DimReg one-loop calculation we have to deal with loop Feynman diagrams

of the form of Fig. 2.1.
5

The corresponding analytic expressions will result in tensor

integrals that take the form
6

T µ1...µp =
µ4−d

(2π )d

∫
ddk

kµ1 . . .kµp

D0D1...Dn−1

, (2.27)

where µ is the renormalization scale which appears in order to keep the energy dimension

of the coupling parameters in the Lagrangian �xed as the integral measure of the action and

the energy dimension of the �elds change, as is shown in Eqs. (2.2) and (2.14), respectively.

The denominators Di are of the form Di = (k + ri)
2 − M2

i . The momenta ri are de�ned

as the sum of incoming momenta ri =
∑i

j=0
pj and the special case r0 = rn vanishes from

energy-momentum conservation r0 = rn =
∑n

j=0
pj = 0.

In Appendix A.1 we will highlight how such one-loop integrals are calculated. There is

a generic approach based on a few master integrals which will be part of Appendix A.1.1.

This is only in some occasions a practical way to calculate, e.g. for the �eld renormalization,

and, in this thesis, it was used in the matching procedure of the Wilson coe�cients for

the e�ective description of the new physics contribution which is discussed in Section 4.3.

But as calculations tend to get very lengthy in a full loop calculation t’Hooft, Veltman and

Passarino developed an algorithm [15, 16] to decompose complicated tensor integrals in a

basis of scalar integrals (PV loop functions) which can be systematically reconstructed and

easily numerically calculated. The basic idea will be presented in Appendix A.1.2. Built

on this procedure there are programs for a numerical calculation available like LoopTools

[17], which was used in this thesis to obtain expressions for the one-loop amplitude of the

full model.

5
All Feynman diagrams in this thesis were created with TikZ-Feynman [14].

6
Notice that scalar integrals are meant to be included as a speci�c type of tensor.
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3. E�ective field theory

Even though the SM shows perfect agreement with often high accuracy for almost all

of the current experiments in high energy physics, we do not expect it to be the �nal

answer, since it fails to describe a number of phenomena that appear in astrophysics,

cosmology and low-energy physics. Some prominent features are baryon asymmetry or

the abundance of invisible matter in the universe, so-called dark matter, which is indicated

by the rotation of galaxies or by gravitational lensing. So theoretical particle physicists

continue to develop extensions of the SM in order to give a more complete description of

nature. At colliders the common search strategies are either a direct search for new degrees

of freedom, i.e. particles, or an indirect search through precision observables. The �rst

strategy in form of “bump” events is experimentally simple, but limited by collider energy.

The second strategy needs precise predictions of observables in many kinematic regions.

With (almost) in�nite possibilities of SM extensions at hand this poses the problem in

which direction of model building to go.

Therefore a description of new physics (NP) by introducing e�ective couplings of the SM

�elds can be a powerful tool, because possible signals of NP can be modeled without being

restricted to a speci�c SM extension. This type of e�ective �eld theory (EFT) framework

is usually called a bottom-up approach, because we parameterize still unknown NP of

high energies with the methods and �elds present at the lower energy regime. The EFT

Lagrangian can be represented as a series of higher dimensional operatorsO (n+4)

i expanded

in powers of a suppression parameter characteristic for the (energy) regime of NP. Note

that the O (n+4)

i are constructed from the �elds of the low-energy regime only and are

restricted to satisfy the symmetries expected by NP models.

From the perspective of a known high-energy physics model, it is often more useful to

express e�ects on low-energy processes by using the EFT description. For that top-down
point of view the low-energy EFT operators and Wilson coe�cients are understood to

follow from integrating out the heavy degrees of freedom of the underlying theory. This

can also be used to extract bounds from experiment on the parameter space of the EFT

parameters in order to disfavor speci�c SM extensions. But such statements have to be

done with care, which will be pointed out in the following discussions of the thesis.

Combining both perspectives, we can study the basic principles of an EFT in a speci�c

application. In the case of VBS that is the aim of our work.

We write down the EFT series explicitly in the form

LEFT = L0 +

∞∑
n=1

∑
i

fi
(n)

Λn
Oi
(n+4)

, (3.1)

11



3. E�ective �eld theory

where the expansion parameter Λ denotes the characteristic energy scale of the underlying

NP and fi
(n)

are the resulting dimensionless Wilson coe�cients describing the coupling

strength. L0 is the ultraviolet (UV) complete part of the Lagrangian which contains

the SM alone. Here we can clearly see the suppression of higher-order terms for low

energies

√
s � Λ. The energy dependence comes from external kinematics or momentum

dependence of the operators themselves. Hence, for probing at low energies a �nite sum

of all operators up to a given order of
1

Λ should give a reasonable description of residual

e�ects of NP. Up to which order in
1

Λ the EFT is taken into account is a matter of desired

precision, pursuit of a most general description and a�ordable computation power.

3.1. Constructing the e�ective field theory basis

First we have to specify our assumptions on the NP which we want to parameterize using

an EFT, in order to get a reasonable, but not too blown up basis of our EFT Lagrangian.

Thus we want to make sure to work with a model that is complete enough to get a deeper

insight into the validity regions of EFTs in VBS without being dragged away into all the

possibilities we could think of.

In our work we want to describe VBS for the SU (2)L limit of the SM. We restrict the

underlying NP to couple to the SU (2)L gauge bosons only and, therefore, it only modi�es

the gauge boson couplings in the low energy regime. Also we do not want to introduce

any new symmetry breaking. So our operators have to be manifestly invariant under

SU (2)L and it makes sense to construct them out of �eld-strength tensors and covariant

derivatives only, thus, we only have to take into account operators with even dimension, as

otherwise Lorentz invariance would be broken. And, as already mentioned in Section 2.1,

all terms will then arise with a trace in SU (2)L space. For describing VBS with an EFT

using only gauge �elds, we have to describe vacuum polarization e�ects, anomalous triple-

gauge couplings (aTGC) and anomalous quartic-gauge couplings (aQGC). As was pointed

out in Ref. [18], it is reasonable to include operators up to dimension 8, as dimension

6 operators are rather measured in aTGCs obtained from other processes, like vector

boson pair production (qq′ → V1V2). In a real physical environment like the LHC, VBS

usually occurs with a comparably small cross section. On top of that the aQGCs induced

by dimension 6 operators does not give enough freedom to parametrize all possible VBS

processes. We will later point out, that the dimension 6 operators of our basis are lacking

a tree level induced ZZ → ZZ process. Those tree level processes will be only introduced

by the T-Operators mentioned in Eqs. (3.8).

So, as we formulated our goals, we continue with a strategy on how to construct a

complete basis.

3.1.1. Techniques and strategy

Our strategy is to �ll all linearly independent operators for each energy dimension starting

from the lowest energy dimension. Following the de�nition of Ref. [19], linear dependence

in this context means that there exists a set of constants ki , 0 for the operators {Oi},

12



3.1. Constructing the e�ective �eld theory basis

such that ∑
i

kiOi = 0 , (3.2)

where the equation means, that all contributions vanish for perturbative calculations. This

allows us to neglect the surface terms coming from integration by parts (IBP). We will use

the following relations
1

in order to check for linear dependence:

• IBP for the covariant derivative

Tr

(
[D̂µ , Φ̂1]Φ̂2 . . . Φ̂n

)
= ∂µ Tr

(
Φ̂1Φ̂2 . . . Φ̂n

)
− Tr

(
Φ̂1[D̂µ , Φ̂2 . . . Φ̂n]

)
, (3.3)

• Jacobi identity (JI) for covariant derivatives

[D̂µ ,Ŵνρ] + [D̂ν ,Ŵρµ] + [D̂ρ,Ŵµν ] = 0 , (3.4)

• Commutator of covariant derivatives in adjoint representation (CA)

[D̂[µ , [D̂ν ], Φ̂] = дϵ
abctaW b

µνΦ
c

. (3.5)

For each dimension we start with adding all combinations composed of �eld-strength

tensors solely, and then subsequently construct the linear independent combinations

with rising amount of covariant derivatives. We ensure in this way, that all relevant

combinations are going to be taken into account.

3.1.2. Dimension 4 operators

For the sake of completeness, we will also consider here the dimension 4 operator

OWW = Tr

(
Ŵ µνŴµν

)
, (3.6)

which is already part of the SM Lagrangian L0. It also receives contributions in the

matching of our NP model, but through renormalization this contribution can be set to

zero.

3.1.3. Dimension 6 operators

In the class of dimension 6 operators we can construct one operator of three �eld-strength

tensors, but there is also one independent possibility for two �eld-strength tensors com-

bined with two covariant derivatives. Here the following combination is chosen:

OWWW = Tr

(
Ŵ

µ
ν Ŵ

ν
ρ Ŵ

ρ
µ

)
, (3.7a)

ODW = Tr

(
[D̂α ,Ŵ

µν ][D̂α ,Ŵµν ]

)
. (3.7b)

Those operators are commonly used in the literature, e.g. in Ref. [20].

1
The derivations are shown in Appendix A.3.
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3. E�ective �eld theory

3.1.4. Dimension 8 operators

Constructing a full basis with dimension 8 operators for all SM �elds poses a big obstacle,

because the number of possible operators is huge. But fortunately, for the analysis of a lot

of phenomenological processes we need not to consider all operators, as their contribution

would enter only at higher loop order. For our case the operators used in VBS are even

further reduced, as we only include theW �eld in our discussion. Following the notation

of Refs. [4, 18, 21, 22] the operators involving four �eld-strength tensors are given by

OT0
= Tr

(
Ŵ µνŴµν

)
Tr

(
Ŵ αβŴαβ

)
, (3.8a)

OT1
= Tr

(
Ŵ µνŴαβ

)
Tr

(
Ŵ αβŴµν

)
, (3.8b)

OT2
= Tr

(
Ŵ µνŴνα

)
Tr

(
Ŵ αβŴβµ

)
, (3.8c)

OT3
= Tr

(
Ŵ µνŴ αβ

)
Tr

(
ŴναŴβµ

)
, (3.8d)

where OT3
is a non-vanishing linear independent operator which was missing in previous

discussions in the theory literature[4, 18, 21, 22], and therefore is also not experimentally

constrained [23].
2

We will refer to operators of the set in Eq. (3.8) as T-operators throughout

the thesis.

For three �eld-strength tensors combined with covariant derivatives acting on them we

can construct the following dimension 8 operators

O0 = Tr

(
[D̂α ,Ŵ

µ
ν ][D̂

α ,Ŵ ν
ρ ]Ŵ

ρ
µ

)
, (3.10a)

O1,0 = Tr

(
[D̂α ,Ŵ

µν ][D̂β ,Ŵµν ]Ŵ
αβ

)
, (3.10b)

O1,1 = Tr

(
[D̂α ,Ŵ

µν ]Ŵµν [D̂β ,Ŵ
αβ ]

)
, (3.10c)

O2,1 = Tr

(
[D̂α ,Ŵ

µν ][D̂β ,Ŵ
α
µ ]Ŵ

β
ν

)
, (3.10d)

O2,2 = Tr

(
[D̂β ,Ŵ

µν ][D̂α ,Ŵ
α
µ ]Ŵ

β
ν

)
, (3.10e)

O2,3 = Tr

(
[D̂β ,Ŵ

α
µ ][D̂α ,Ŵ

β
ν ]Ŵ

µν
)

, (3.10f)

O2,4 = Tr

(
[D̂α ,Ŵ

α
µ ][D̂β ,Ŵ

β
ν ]Ŵ

µν
)

. (3.10g)

We do not need to include operators with both derivatives acting on one tensor, as they

are connected via IBP to a linear combination of the above mentioned operators.

2
In the same way, the operators called OT5

, OT6
and OT7

in Ref. [21] do not take into account all possible

Lorentz index contractions, therefore the operator

OTX = Tr

(
Ŵ µνŴ α β

)
B̂να B̂β µ (3.9)

should be added to future EFT bases which include the hypercharge boson.
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3.1. Constructing the e�ective �eld theory basis

In the following, we are looking for relations between those operators using JI and IBP.

Starting with O1,1 we have

O1,1
IBP

= −Tr

(
[D̂α ,Ŵ

µν ][D̂β ,Ŵµν ]Ŵ
αβ

)
− Tr

(
[D̂β , [D̂α ,Ŵ

µν ]]Ŵµν Ŵ
αβ

)
= −O1,0 +OT , (3.11)

where in the last line we used the fact that contracting the Lorentz indices from the

covariant derivatives with Ŵ αβ
forces antisymmetrization which results in an additional

�eld-strength tensor. Hence, the notation OT was used for any combination of the already

considered T-operators.

Rewriting the operators O1,0, O2,1 and O2,2 leads to

O1,0
JI

= −Tr

(
[D̂µ ,Ŵ

να ][D̂β ,Ŵ
µ
ν ]Ŵ

β
α

)
− Tr

(
[D̂ν ,Ŵ

αµ][D̂β ,Ŵ
ν

µ ]Ŵ
β

α

)
= 2 Tr

(
[D̂α ,Ŵ

µν ][D̂β ,Ŵ
α
µ ]Ŵ

β
ν

)
= 2O2,1 , (3.12)

O2,1
JI.

= −Tr

(
[D̂α ,W

µν ][D̂α ,Wµβ ]W
β
ν

)
− Tr

(
[D̂α ,W

µν ][D̂µ ,W
α

β ]W
β
ν

)
= O0 + Tr

(
[D̂α ,W

β
ν ][D̂β ,W

α
µ ]W

µν
)
= O0 −O2,3 , (3.13)

O2,2
JI

= −Tr

(
[D̂µ ,W

νβ ][D̂α ,W
αµ]Wβν

)
− Tr

(
[D̂ν ,W

βµ][D̂α ,W
α
µ ]W

ν
β

)
= −Tr

(
[D̂α ,W

νµ][D̂β ,W
βα ]Wµν

)
− Tr

(
[D̂β ,W

νµ][D̂α ,W
α
µ ]W

β
ν

)
= O1,1 −O2,2 =

1

2

O1,1 , (3.14)

where we renamed contracted indices after using JI to identify them with operators of the

set presented in Eq. (3.10).

For the last relation we start with rewriting operators of two derivatives acting on one

�eld-strength tensor, such that

Tr

(
W µν [D̂α , [D̂β ,W

α
µ ]]W

β
ν

)
IBP

= − Tr

(
[D̂α ,W

µν ][D̂β ,W
α
µ ]W

β
ν

)
− Tr

(
W µν [D̂β ,W

α
µ ][D̂α ,W

β
ν ]

)
= −O2,1 −O2,3 , (3.15)

Tr

(
W µν [D̂β , [D̂α ,W

α
µ ]]W

β
ν

)
IBP

= − Tr

(
[D̂β ,W

µν ][D̂α ,W
α
µ ]W

β
ν

)
− Tr

(
W µν [D̂α ,W

α
µ ][D̂β ,W

β
ν ]

)
= −O2,2 −O2,4 . (3.16)

And as the combination of both operators on the left-hand side of Eqs. (3.15) and (3.16)

equals

Tr

(
W µν [D̂α , [D̂β ,W

α
µ ]]W

β
ν

)
− Tr

(
W µν [D̂β , [D̂α ,W

α
µ ]]W

β
ν

)
CA

= OT , (3.17)
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3. E�ective �eld theory

we found the following 5 relations between our 7 operators shown in Eq. (3.10)

O1,1 = −O1,0 +OT , (3.18a)

O1,0 = 2O2,1 , (3.18b)

O2,1 = O0 −O2,3 , (3.18c)

O2,2 =
1

2

O1,1 , (3.18d)

O2,1 +O2,3 = O2,2 +O2,4 +OT . (3.18e)

Hence, there are only two linearly independent operators in the set shown in eq. 3.10,

which we are free to choose. One legitimate choice are the operators O0 and O1,0, which

will be used in the following thesis under the naming ODWWW0
and DDWWW1

, respectively.

For the case of two �eld-strength tensors we may pick

OD2W = Tr

(
[D̂α , [D̂

α ,Ŵ µν ]][D̂β , [D̂
β ,Ŵµν ]]

)
, (3.19)

as any other combination would not be independent. For example

Tr

(
[D̂α , [D̂β ,Ŵ

µν ]][D̂α , [D̂β ,Ŵµν ]]

)
CA

= Tr

(
[D̂β , [D̂α ,Ŵ

µν ]][D̂α , [D̂β ,Ŵµν ]]

)
+O3W

IBP

= −Tr

(
[D̂α , [D̂β , [D̂α ,Ŵ

µν ]]][D̂β ,Ŵµν ]

)
+O3W

CA

= −Tr

(
[D̂β , [D̂

α , [D̂α ,Ŵ
µν ]]][D̂β ,Ŵµν ]

)
+O3W

IBP

= OD2W +O3W (3.20)

will not give a linear independent contribution.
3

Now our complete set of e�ective operators up to dimension 8 results in the following

Lagrangian

LEFT = fWW Tr

(
Ŵ µνŴµν

)
+

fDW
Λ2

Tr

(
[D̂α ,Ŵ

µν ][D̂α ,Ŵµν ]

)
+

fWWW

Λ2
Tr

(
Ŵ

µ
ν Ŵ

ν
ρ Ŵ

ρ
µ

)
+
fD2W

Λ4
Tr

(
[D̂α , [D̂

α ,Ŵ µν ]][D̂β , [D̂
β ,Ŵµν ]]

)
+

fDWWW0

Λ4
Tr

(
[D̂α ,Ŵ

µ
ν ][D̂

α ,Ŵ ν
ρ ]Ŵ

ρ
µ

)
+
fDWWW1

Λ4
Tr

(
[D̂α ,Ŵ

µν ][D̂β ,Ŵ
µν ]Ŵ αβ

)
+

fT0

Λ4
Tr

(
Ŵ µνŴµν

)
Tr

(
Ŵ αβŴαβ

)
+
fT1

Λ4
Tr

(
Ŵ µνŴαβ

)
Tr

(
Ŵ αβŴµν

)
+

fT2

Λ4
Tr

(
Ŵ

µ
ν Ŵ

ν
α

)
Tr

(
Ŵ α

β Ŵ
β
µ

)
+
fT3

Λ4
Tr

(
Ŵ µνŴ αβ

)
Tr

(
Ŵνα Ŵβµ

)
. (3.21)

With the complete basis at hand we can now determine the Feynman rules for the e�ective

propagator correction

µ, a ν, b =: iδab
(
p2дµν − pµpν

)
ΠEFT (p, fWW , fDW , fD2W ,Λ) , (3.22)

3O3W is a short-hand notation for a combination of already considered operators involving at least three

�eld-strength tensors.
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3.2. Partial waves and unitarity

the three boson vertex

p1

p2

p3

µ, aν, b

ρ, c

=: ϵabcΓ
µνρ
3,EFT (p1,p2,p3, fWW , fDW , fWWW , fD2W ,

fDWWW 1, fDWWW 2,Λ) ,

(3.23)

and the four boson vertex

µ, a

ν, bρ, c

σ, d

=: Γ
µναβ,abcd
4,EFT (p1,p2,p3,p4, fWW , fDW , fWWW , fD2W ,

fDWWW 1, fDWWW 2, fT0
, fT1
, fT2
, fT3
,Λ) .

(3.24)

The analytic expressions are obtained with the use of FeynCalc [24–26] in Mathematica,

and implemented in the VeBoS code which is described in Appendix A.5. The result for the

e�ective propagator correction, for example, is given by

ΠEFT (p, fWW , fDW , fD2W ,Λ) = 2

(
fWW +

fDW
Λ2

p2 +
fD2W

Λ4
p4

)
. (3.25)

We expect, that the accuracy of this description will break down when we reach higher

energies than the order of the energy scale Λ or beyond. At this point subsequent terms in

the full series presented in Eq. (3.1) will become relevant, as the rough estimation of the

�nite expansion will not be enough to describe the complexity of the process anymore. At

such high energies we left the validity region of the EFT. A formal way using the unitarity

requirement for the de�nition of the validity region will be given in the following section.

3.2. Partial waves and unitarity

We will �rst start with basic unitarity considerations and follow hereby closely the deriva-

tion from Refs. [12, 18]. In order to ensure probability conservation, the scattering matrix

S, which describes the transition from an initial to a �nal state, has to be unitary, i.e.

S†S = 1 , (3.26)

where 1 represents the identity operator. By separating the non-trivial part of the S-matrix

in the common way

S = 1 + iT , (3.27)
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3. E�ective �eld theory

we can rewrite the unitarity condition as

2ImT = −i
(
T − T †

)
= T †T = TT † . (3.28)

For a VBS process it will be su�cient to restrict the discussion to the subspace of two

scattering bosons. To get a useful relation, we express the elements of the T -matrix with

the matrix elementsM f i

〈f | T |i〉 = (2π )4δ (4)(p1 + p2 − q1 − q2)M f i , (3.29)

by using energy-momentum conservation. Inserting a sum over all intermediate two

boson states

1 =
∑
n

∫
d3kn,1d

3kn,2

(2π )32k0

n,1(2π )
3
2k0

n,2

��kn,1,kn,2〉 〈
kn,1,kn,2

��
(3.30)

on the right hand side of Eq. (3.28), the resulting equation reads

2ImM f i =
∑
n

λ
1

2 (s,k2

n,1,k
2

n,2)

8πs
Sn

∫
dΩ

4π
M∗nfMni , (3.31)

where the Källén function

λ(x ,y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (3.32)

appeared from the phase-space integration of Eq. (3.30) and Sn is the statistical factor of

the process, being Sn =
1

2
if identical bosons in the state |n〉 are involved. If the initial and

the �nal state are chosen to be identical, Eq. (3.31) is commonly called the optical theorem.

With the argument of angular momentum conservation and applying the Wigner-

Eckart-Theorem, as demonstrated in Ref. [27], the amplitude in terms of helicity eigenstates

M f i =Mλ1λ2λ3λ4
can be expanded in partial waves (PW) [18]

Mλ1λ2λ3λ4
(s,θ ,ϕ) = 8πNf i

∞∑
j=max(|λ12 |,|λ34 |)

(2j + 1)A
j
λ1λ2λ3λ4

(s)d j
λ12λ34

(θ )eiλ34ϕ
. (3.33)

Therein we de�ne λkl = λk − λl and d j
λ12λ34

describes the Wigner d-matrix and the normal-

ization factor Nf i is given by

Nf i =
s

λ
1

4 (s,p2

1
,p2

2
)λ

1

4 (s,q2

1
,q2

2
)

1√
S f Si

. (3.34)

This normalization factor reduces in the on-shell scattering of particles with same masses

in the center of mass frame (COM) to

Nf i =
1

β

1√
S f Si

, (3.35)
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3.2. Partial waves and unitarity

where the relativistic beta-factor β =
√

1 − 4m2

s was introduced. Exploiting the orthogo-

nality relation of the Wigner d-function∫
1

−1

d cosθd j
λκ
(θ )d j

′

λκ
(θ ) =

2

2j + 1

δ jj
′

, (3.36)

we can project out the PW coe�cients by integrating over θ in the form

A
j
λ1λ2λ3λ4

(s) =
β
√
S f Si

16π

∫
1

−1

d cosθMλ1λ2λ3λ4
(s,θ )d j

λ12λ34

(θ ) . (3.37)

Inserting Eq. (3.33) into Eq. (3.31), this orthogonality relation also results in

2Im

(
A

j
λ1λ2λ3λ4

)
=

∑
n

∑
λ′

1
,λ′

2

A
j∗
λ3λ4λ

′
1
λ′

2

A
j
λ1λ2λ

′
1
λ′

2

, (3.38)

where we directly used the full form of the normalization factorNf i .
4

To extract the unitar-

ity bound, the matricesA j
have to be diagonalized in the (2s1 + 1)(2s2 + 1) × (2s1 + 1)(2s2 + 1)

helicity space and also, in the case of VBS, in the isospin base of the product space of two

isospin J = 1 vector bosons
5
. The number of helicities is given by the particles’ spin si , so

we have to consider three helicities for each boson. For the eigenvalues aj Eq. (3.38) then

reads

2Im

(
aj

)
= |aj |2 , (3.39)

which represents an equation for the Argand circle of unit radius centered around (0, 1) in

the complex plane, as is depicted in Fig. 3.1.

Up to now, we are talking about unitarity conditions a full theory has to obey. But, as

we perturbatively calculate our matrix elements and, therefore, also the PW coe�cients,

the eigenvalues will not precisely lie on the Argand circle. This is especially true if we

discuss tree level contributions, e.g. in EFT calculations, which will lie solely on the real

axis. Hence, the unitarity bound gets rather expressed as

|Re

(
aj

)
| ≤ 1 , |aj | ≤ 2 , 0 ≤ Im

(
aj

)
≤ 2 . (3.40)

On the one hand those inequalities give us a measure, if we stay in a region of perturbative

unitarity, meaning unitarity is su�ciently respected for the perturbative calculation. In

this region we can well trust predictions based on a perturbative expansion. On the other

hand, if one of those conditions is clearly exceeded, we potentially violate unitarity within

our calculation and we should not trust the �nite perturbative expansion anymore.

If the latter case arises at a certain high energy scale in a tree level calculation, there

are two ways to �x this problem.

4
Actually, the normalization is just chosen to exactly cancel the kinematic factor in Eq. (3.31), as was

demonstrated in Ref. [18].

5
We will perform this procedure in the analysis of Section 5.6.
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3. E�ective �eld theory

- 2 - 1 0 1 2
- 1

0

1

2

3

Im
(a

j
)

Re(aj)

Figure 3.1.: This diagram shows the Argand circle on the complex plane for an eigenvalue

aj of the PW amplitude.

• First, we can think of a ultraviolet (UV) completion of the model that will give a

more accurate description at the high energy scale or incorporates interactions that

compensate the unphysical behavior. One historical example of this application is

the prediction of the mass of the Higgs boson, that compensates the rising matrix

element in longitudinal vector boson scattering. This example is discussed in many

textbooks, e.g. see Ref. [12] for the case of longitudinal WZ scattering.
6

• Another technique, especially used for EFT predictions, is to implement an unitariza-

tion procedure. The idea is to project the perturbatively calculated eigenvalues of

the PW coe�cients back on the Argand circle, if the unitarity bound in Eq. (3.40) is

not satis�ed. Using the projected PWs for the calculation we can at least ensure not

to predict anything that clearly violates basic scattering principles like probability

conservation. We do not want to go into more detail on this topic and instead refer

the interested reader to the literature, e.g. see Ref. [29] for a nice review or Ref. [18]

for a current application.

If we go back to our chosen EFT, we expect the dominant helicity amplitudes to rise with

s2

Λ4
, since we include operators of dimension 8. Using only the operator OT0

, for example,

the helicity amplitudeM11-1-1 forWZ scattering can be decomposed into contributions in

the j = 0, j = 1 and j = 2 PW, which leads to

M11-1-1;T0
(WZ →WZ ) =

fT0

8

(cosθ − 1)2
(
β2 + 1

)
2 s2

Λ4

= 8π
1

β

(
d0

00

4

3

fT0

64π
β

(
β2 + 1

)
2 s2

Λ4
+ . . .

)
. (3.41)

6
Lee, Quigg and Thacker used the partial wave analysis to give a maximal bound on the mass of the

physical Higgs boson, as they pointed out in their renowned paper Ref. [28].
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3.2. Partial waves and unitarity

Since the quadratic rise in
s2

Λ4
will not be cured after a diagonalization with respect to

the helicity space and isospin channel, this naive EFT description will not reproduce the

correct high energy physical behavior of order

√
s & Λ using the unitarity argument in

Eq. (3.40). This bound on the validity region is the expected result for our EFT, as we

outlined at the end of the last section.

In order to analyze the transition from the validity region of the EFT to the regime

where a more complete model gets necessary, we will in the next chapter introduce our

UV complete model, which we will use for comparison in di�erent energy regimes.
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4. Ultraviolet complete toy-model

In this chapter we will introduce our ultraviolet (UV) complete model which we use to

calculate the Wilson coe�cients in a top-down matching of vertex corrections to theW
boson vertices. The idea is to parametrize the Wilson coe�cients by only a few underlying

model parameters in a manner that automatically respect the necessary correlations arising

from integrating out the �elds. Also we are interested in the comparison of the EFT of the

underlying model with the explicit one-loop vertex corrections due to new physics (NP)

in the physical processes of VBS.

Historic examples, like the Euler-Heisenberg Lagrangian [30], describing e�ective

light-by-light scattering, and the EFT description of the Hдд vertex [31], show that EFT

operators involving multiple �eld-strength tensors are naturally obtained by integrating

out corrections due to charged loop particles. This motivates us to use a model which

includes new heavy particles that couple to the weak bosons through gauge interactions.

Neglecting extensions of the gauge group, we propose a generic NP extension of the SM

in the SU (2)L limit which serves as the underlying model of our EFT in the following.

We consider additional fermion �elds Ψ with mass MF and complex scalar �elds Φ with

mass MS that transform only under a (generic) SU (2)L representation F or S respectively.

We do not include any additional interaction or mixing with SM �elds in order to keep

our description of the relevant aspects in VBS as straight forward as possible. Therefore

it is su�cient to restrict ourselves to the SU (2)L limit of the electroweak (EW) sector of

the SM. As a consequence, the covariant derivative reduces to Dµ = ∂
µ − iдtaRW

a
µ and

the subscript R relates to the SU (2)L representation of the �eld on which the covariant

derivative is acting. The representation R is speci�ed by the isospin JR , hence the multiplet

comprises 2JR + 1 components. In principle the partial derivative ∂µ comes along with a

unit matrix in the 2JR + 1-dimensional SU (2)L isospin space. We will also use the unitary

limit ξ →∞ of the more general Rξ gauge, which is valid since we are only interested in

the new physics contribution at one-loop level. Thus our Lagrangian can be written as

follows

L =
1

2

(
∂µH

)
2

−
m2

H

2

H 2 −
1

2

Tr

(
Ŵ µνŴµν

)
+
m2

W

2

(
3∑

a=1

W a
µW

aµ

) (
1 +

H

v

)
2

+ Ψ̄
(
iγµD

µ −MF
)
Ψ + (DµΦ)†DµΦ −MS

2Φ†Φ . (4.1)

The �rst line of Eq. (4.1) shows the relevant SM part for the physical Higgs �eld H and the

weak boson �eldW . The mass term for theW and the coupling to the Higgs �eld follow

from the Higgs mechanism. The second line involves the new fermion and scalar �elds of

our NP model.

Notice that we do not consider a chiral fermion coupling, but only vector coupling, so

the mass term of the fermion does not break the SU (2)L symmetry and, therefore, can be
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4. Ultraviolet complete toy-model

added to the Lagrangian without a dynamic process involved. Also the model can easily

be generalized to multiple fermion and scalar multiplets without mass mixing.

Expanding the Lagrangian and neglecting surface terms we get

L = −
1

2

H
(
∂2 +m2

H

)
H +

1

2

W a
µ
(
дµν∂2 − ∂µ∂ν +m2

W

)
W a

ν

−
1

2

дϵabc(∂µW
a
ν − ∂νW

a
µ)W

bµW cν −
1

4

д2ϵabnϵcdnW a
µW

b
νW

c µW dν

+
m2

W

v
H

(
3∑

a=1

W a
µW

aµ

)
+
m2

W

2v
H 2

(
3∑

a=1

W a
µW

aµ

)
+ Ψ̄

(
iγµ∂

µ −MF
)
Ψ + дΨ̄γµt

a
FΨW

aµ

− Φ†
(
∂2 +M2

S

)
Φ − iд

(
Φ†taS ∂µΦ − (∂µΦ

†)taSΦ
)
W aµ +

д2

2

Φ†{taS , t
b
S }ΦW

aµW b
µ . (4.2)

Written in this way, the Feynman rules in momentum space can be directly read of and are

shown in Appendix A.2. Having the Feynman rules at hand, we are prepared to calculate

one-loop corrections using the NP �elds.

We note that both the fermionic and the scalar degrees of freedom are fully speci�ed by

the masses MF and MS and the isospin JF and JS , respectively.

4.1. One-loop vertex corrections

As we aim to analyse the VBS process only at the one-loop level, it is su�cient to calculate

the correction for theW propagator and vertices only. In the following the fermion and

scalar contributions are treated separately and their contribution to the vertex function

are distinguished with a subscript F and S respectively, because we want to consider also

cases where one species, fermion or scalar, is added. In the fermionic case we only have a

three-particle vertex and, therefore, we only have one diagram type for each correction,

whereas the scalars also have a four-particle vertex. As a consequence, there are more

diagrams to consider in the scalar case. The vertex functions are regularized and calculated

with the techniques discussed in Section 2.3 and Appendix A.1 and are expressed with the

help of Passarino-Veltman (PV) loop functions. All the results are obtained by using the

FeynCalc [24–26] tensor integral decomposition in Mathematica. We also need to consider

representation factors arising from a closed loop of the fermion or scalar multiplet. As

is discussed in Appendix A.2, we have to take the trace of the generators that appear in

the vertices of the closed loop. The product of the generators inside the trace has to be

ordered in the opposite direction of the isospin charge transport indicated by the arrows.

The full analytic expressions of the vertex corrections are implemented in our VeBoS code

which is described in Appendix A.5.

We start with the vacuum polarization. For the fermion case we only have one diagram,

in the scalar case there is also a second diagram for the four-particle vertex. Thus we
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4.1. One-loop vertex corrections

de�ne the propagator corrections to be

=:Π̃
µν ,ab
F (p,M2

F , JF ) , (4.3a)

+ =:Π̃
µν ,ab
S (p,M2

S , JS ) . (4.3b)

First we have a look at the isospin factors. Each three-particle vertex comes with a

SU (2)L generator in the given representation and for the four-particle vertex we have the

anticommutator of two generators. As we have closed loops, the trace in the isospin space

is to be taken, leading to Tr

(
taRt

b
R

)
= TRδ

ab
for the diagrams with three-particle vertices

and Tr

(
{taR, t

b
R}

)
= 2TRδ

ab
for the scalar diagram involving a four-particle vertex. Here TR

is the index of the representation, normalized to be TR =
JR (JR+1)(2JR+1)

3
for the case of an

isospin JR representation. As the vacuum polarization will turn out to be transverse only

we can therefore write

Π̃
µν ,ab
F (p,M2

F , JF ) = iδ
ab (

p2дµν − pµpν
)
TFΠF (p

2,M2

F ) , (4.4a)

Π̃
µν ,ab
S (p,M2

S , JS ) = iδ
ab (

p2дµν − pµpν
)
TSΠS (p

2,M2

S ) . (4.4b)

The next step is the calculation of the three-boson vertex. For the scalar case we again

have two di�erent types of diagrams. So we de�ne the three-boson vertex corrections

©«
+ perm.

ª®®®®¬
=:Γ̃

µνρ,abc
3,F (p1,p2,p3,M

2

F , JF ) , (4.5a)

©«
+ perm.

ª®®®®¬
+

©« + perm.

ª®¬ =:Γ̃
µνρ,abc
3,S (p1,p2,p3,M

2

S , JS ) , (4.5b)

where in the triangle diagrams we add together the permutations of two external bosons,

and in the bubble-type diagrams relevant for the scalar multiplets only we, in principle,

have to respect all three possible positions for the four-boson vertex. But it turns out, that

these diagrams individually vanish as their combination of PV functions is identically

zero. Also we would have a trace in isospin space of the form Tr

(
taR{t

b
R, t

c
R}

)
which is

zero for generators of the SU (2)L. The sum of both triangle-diagram permutations gives a

representation factor from a trace of three generators with a commutator inside
1
, namely

Tr

(
taR[t

b
R, t

c
R]

)
= iTRϵ

abc
. So we may rewrite

Γ̃
µνρ,abc
3,F (p1,p2,p3,M

2

F , JF ) = iϵ
abcTF Γ

µνρ
3,F (p1,p2,p3,M

2

F ) , (4.6a)

Γ̃
µνρ,abc
3,S (p1,p2,p3,M

2

S , JS ) = iϵ
abcTSΓ

µνρ
3,S (p1,p2,p3,M

2

S ) . (4.6b)

1
The permuted diagram can be seen as the charge conjugated diagram, hence having inverted loop particle

propagation. The resulting expression is given by the original diagram result just with a negative sign

and two SU (2)L generators interchanged.
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4. Ultraviolet complete toy-model

For the fourW vertex correction, there are four di�erent types of scalar loop diagrams.

There is the box-type diagram, two triangle-type diagrams and a bubble-type diagram.

Therefore the total vertex correction is

©«
+ perm.

ª®®®®®¬
= Γ̃

µναβ ,abcd
4,F (p1,p2,p3,p4,M

2

F , JF ) , (4.7a)

©«
+ + + perm.

ª®®®®®¬
+

©« + t&u-type

ª®®¬ = Γ̃
µναβ,abcd
4,S (p1,p2,p3,p4,M

2

S , JS ) . (4.7b)

The triangle-type diagrams can be distinguished by focusing on one particle, e.g. the

upper incoming one, where the diagrams are grouped due to the particle’s participation

in the four-particle vertex. For each of those diagrams and also for the box there are six

permutations to consider, which are obtained by �xing one external particle and permuting

the position of the other three. The bubble diagrams come as an s-, t- and u-type diagram.

For each diagram we will get a trace over four generators which results in

Tr

(
taRt

b
Rt

c
Rt

d
R

)
=

1

15

TR(3C2,R − 1)

(
δabδcd + δacδbd + δadδbc

)
+

1

6

TR
(
δabδcd − 2δacδbd + δadδbc

)
, (4.8)

as is shown in Eq. (A.38). Therein the quadratic casimir of a representation of the SU (2)L
is introduced, which is de�ned by C2,R = JR(JR + 1). We could now in principle separate

between an anomalous isospin symmetric part
2

proportional to
TR
15
(3C2,R − 1) and terms

2
This will be the only contribution for a pure ZZ → ZZ scattering, as every other contribution is coming

along with epsilon tensors and will vanish for all SU (2)L adjoint isospin indices being the same. This

representation factor is quite small for doublet �elds with
Td
15
(3C2,d − 1) = 1

24
in comparison to an 11-plet

(JR = 5) with
T11

15
(3C2,11 − 1) = 652 + 2

3
which will be used in Section 5 and after.
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4.2. Renormalization

coming from products of ϵ tensors, such that

Γ̃
µναβ,abcd
4,F (p1,p2,p3,p4,M

2

F , JF ) =:

1

15

TF (3C2,F − 1)

(
δabδcd + δacδbd + δadδbc

)
Γ
µναβ
4,F ,symm(p1,p2,p3,p4,M

2

F )

+
1

6

TF Γ
µναβ,abcd
4,F ,ϵ (p1,p2,p3,p4,M

2

F ) , (4.9a)

Γ̃
µναβ,abcd
4,S (p1,p2,p3,p4,M

2

S , JS ) =:

1

15

TS (3C2,S − 1)

(
δabδcd + δacδbd + δadδbc

)
Γ
µναβ
4,S,symm(p1,p2,p3,p4,M

2

S )

+
1

6

TSΓ
µναβ,abcd
4,S,ϵ (p1,p2,p3,p4,M

2

S ) . (4.9b)

However, since this will also not result in a very simple expression, we write

Γ̃
µναβ,abcd
4,F (p1,p2,p3,p4,M

2

F , JF ) =: TF
(
δabδcdΓ

µναβ
4,F ,1 (p1,p2,p3,p4,M

2

F ,C2,F )

+δacδbdΓ
µναβ
4,F ,2 (p1,p2,p3,p4,M

2

F ,C2,F ) + δ
adδbcΓ

µναβ
4,F ,3 (p1,p2,p3,p4,M

2

F ,C2,F )

)
,

(4.10a)

Γ̃
µναβ ,abcd
4,S (p1,p2,p3,p4,M

2

S , JS ) =: TS
(
δabδcdΓ

µναβ
4,S,1 (p1,p2,p3,p4,M

2

S ,C2,S )

+δacδbdΓ
µναβ
4,S,2 (p1,p2,p3,p4,M

2

S ,C2,S ) + δ
adδbcΓ

µναβ
4,S,3 (p1,p2,p3,p4,M

2

S ,C2,S )

)
,

(4.10b)

which resembles the form in the VeBoS code.
3

It should be obvious, as all the representation factors come in front of the vertex

corrections, that the calculation can be separately performed for the terms coming withTR
only and those withC2,RTR . This way we can numerically calculate those contributions for

�xed masses and e�ciently reconstruct various representations, i.e. di�erent isospins, to

simplify the numerics in phenomenological analysis. We implemented this option in VeBoS

as described in Appendix A.5. We exploited this possibility in our analysis in Chapter 5

and subsequent implementation in VBFNLO which is explained in Section 6.1.

4.2. Renormalization

Because the propagator and vertex corrections contain UV divergences, we still need to

renormalize our theory. As we include only corrections to theW vertices, the necessary

renormalization with respect to the NP contribution only a�ects the �eld-strength tensor

and coupling renormalization.

3
Nevertheless, the previous form can be recovered by subtracting the four-boson ver-

tex correction with C2,R = 0 from the full calculation. The result is given by

1

15
TR3C2,R

(
δabδcd + δacδbd + δadδbc

)
Γ4,R,symm (. . . ). Setting C2,R → C2,R −

1

3
gives the isospin-

symmetric part of the vertex correction.
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4. Ultraviolet complete toy-model

Starting with the bare quantities in the Lagrangian
4
, denoted by the subscript 0, we

have

L′ = −
1

4

W a
0 µνW

a
0

µν

= −
1

2

W a
0 µ(∂

2дµν − ∂µ∂ν )W a
0 ν −

1

2

д0ϵ
abc(∂µW

a
0 ν − ∂νW

a
0 µ)W

b
0

µW c
0

ν

−
1

4

д2ϵabnϵcdnW a
0 µW

b
0 νW

c
0

µW d
0

ν

= − Z3

1

2

W a
µ(∂

2дµν − ∂µ∂ν )W a
ν − Zд(Z3)

3

2

1

2

дϵabc(∂µW
a
ν − ∂νW

a
µ)W

bµW cν

− Z 2

д (Z3)
2
1

4

д2ϵabnϵcdnW a
µW

b
νW

c µW dν
. (4.11)

In the second step, we de�ned the renormalization to beW a
0

µ =
√
Z3W

aµ
and д0 = Zдд

where the symbols without subscript represent the physical quantities. Likewise each

vertex can be understood to be renormalized, such that

L′ = − Z3

1

2

W a
µ(∂

2дµν − ∂µ∂ν )W a
ν − Z3W

1

2

дϵabc(∂µW
a
ν − ∂νW

a
µ)W

bµW cν

− Z4W
1

4

д2ϵabnϵcdnW a
µW

b
νW

c µW dν

= −
1

2

W a
µ(∂

2дµν − ∂µ∂ν )W a
ν −

1

2

дϵabc(∂µW
a
ν − ∂νW

a
µ)W

bµW cν

−
1

4

д2ϵabnϵcdnW a
µW

b
νW

c µW dν

− (Z3 − 1)
1

2

W a
µ(∂

2дµν − ∂µ∂ν )W a
ν − (Z3W − 1)

1

2

дϵabc(∂µW
a
ν − ∂νW

a
µ)W

bµW cν

− (Z4W − 1)
1

4

д2ϵabnϵcdnW a
µW

b
νW

c µW dν
. (4.12)

To make sure that gauge independence is not broken, we have to check the relations

Zд = Z3WZ
− 3

2

3
=
√
Z4WZ−1

3
. We expand Zi in �rst order of perturbation theory in the form

Z3 = 1 + δ3 , (4.13a)

Zд = 1 + δд , (4.13b)

such that we obtain

Z3W = 1 + δд +
3

2

δ3 , (4.14a)

Z4W = 1 + 2δд + 2δ3 , (4.14b)

and we get for the counter-term vertices

µ, a ν, b = i δ3

(
p2дµν − pµpν

)
δab (4.15)

4
As we limit this discussion to theW vertices only, we use the prime superscript for the reduced Lagrangian.
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4.2. Renormalization

p1

p2

p3

µ, a

ν, b

ρ, c =

(
δд +

3

2

δ3

)


p1

p2

p3

µ, a

ν, b

ρ, c

SM
(4.16)

µ, a

ν, bρ, c

σ, d

= 2

(
δд + δ3

)


µ, a

ν, bρ, c

σ, d SM
(4.17)

Using the modi�ed minimal subtraction (MS) scheme, the strategy is to calculate δ3

from the divergent part of the vacuum polarization and subsequently determine δд from

the divergent part of the triangle which is not absorbed within the
3

2
δ3 contribution.

Afterwards we have to check whether the estimated counter-term values in the four vertex

also cancel the divergent part of the box calculation. The divergent parts of the loop

integrals are obtained by Table A.1.

We will directly evaluate the counter terms for an unspeci�ed number of NP multiplets,

such that we are free to restrict the result to our chosen analysis afterwards. From the

vacuum polarization we have to ful�ll[
+ +

]
Div

+ = 0 . (4.18)

This leads to

δ3 = −д
2∆ϵ

(∑
F

nF
TF

12π 2
+

∑
S

nS
TS

48π 2

)
, (4.19)

where ∆ϵ =
1

ϵ − γE + log(4π ) contains the pole from setting d → 4 − 2ϵ . In the next step

we look for the cancellation of UV divergences in the three-boson vertex


+ + perm.


Div

+ = 0 . (4.20)
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We obtain (
δд +

3

2

δ3

)
= −д2∆ϵ

(∑
F

nF
TF

12π 2
+

∑
S

nS
TS

48π 2

)
⇔ δд = −

1

2

δ3 =
д2

2

∆ϵ

(∑
F

nF
TF

12π 2
+

∑
S

nS
TS

48π 2

)
. (4.21)

Finally we check for the cancellation of UV divergences four-boson vertex
©«

+ + + + perm.

ª®®®®®¬
+

©« + t&u-type

ª®®¬
Div

+ = 0 . (4.22)

This results in

2

(
δд + δ3

)
= δ3 = −д

2∆ϵ

(∑
F

nF
TF

12π 2
+

∑
S

nS
TS

48π 2

)
, (4.23)

which is already satis�ed through Eqs. (4.19) and (4.21). This is the expected result, since

the only way to have a gauge invariant Lagrangian only containing �eld-strength tensors

is that all terms are proportional to Tr

(
Ŵ µνŴµν

)
, which implies that

L′ = −
1

4

W a
0 µνW

a
0

µν = −
1

2

Tr

(
Ŵ

µν
0
Ŵ0µν

)
= −

1

2

Tr

(
Ŵ µνŴµν

)
−
Z3 − 1

2

Tr

(
Ŵ µνŴµν

)
.

(4.24)

4.3. Matching of Wilson coe�icients

At this point, as the discussion for the full one-loop calculation is completed, we can turn

our attention to the top-down matching of the EFT Wilson coe�cients using our NP model.

We assume our fermions and scalars to be heavy in comparison to the energy scale of the

physics we want to describe. As a consequence we can e�ectively interpret the NP particle

masses as our expansion parameter Λ of the EFT for energies of

√
s � MF/S ∼ Λ. In any

on-shell 2→ 2 process, the same hierarchy also holds for all products of external momenta

involved, say pi · pj � M2

F/S
. Analogously to the expansion of the EFT Lagrangian, we can

now expand our results for propagator and vertex corrections in powers of
1

MF /S
what will

give us an approximation of the full one-loop vertex for low energies. Comparing terms
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4.3. Matching of Wilson coe�cients

arising at the order of O( 1

Λn ) in the e�ective vertices with the terms of the same order of

O( 1

Mn
F /S
) in the one-loop vertices, the Wilson coe�cients can be determined.

As the expansion of the vertex corrections in terms of PV functions is not straight

forward, we used the approach presented in Appendix A.1.1 to expand to the overall

order of O( 1

M4

F /S
). After performing the Feynman parameter integration and summing all

contributing diagrams, the �nal expansion is obtained by taking the limit d → 4− 2ϵ . This

procedure is performed with the use of FeynCalc [24–26] and Mathematica.

We identify the coe�cients of the operators from ΠEFT =
[
ΠF/S

]
pi ·pj
M2
�1

, which results

in

fWW =
[
−д2

] (∑
F

nF
TF

24π 2

(
∆ϵ − log

(
M2

F

µ2

))
+

∑
S

nS
TS

96π 2

(
∆ϵ − log

(
M2

S

µ2

)))
, (4.25)

fDW
Λ2
=

[
−д2

] (∑
F

nF
TF

120π 2M2

F

+
∑
S

nS
TS

960π 2M2

S

)
, (4.26)

fD2W

Λ4
=

[
−д2

] (∑
F

nF
TF

1120π 2M4

F

+
∑
S

nS
TS

13440π 2M4

S

)
, (4.27)

where we again present the results for the general case of several multiplets, i.e. we sum

over F and S .
5

At this point we can observe, that in the case of µ = MF = MS , fWW

corresponds precisely to the divergent part of the vertex corrections which is absorbed in

the counterterm δ3 in the MS scheme, as

[−2fWW ]µ=MF=MS
= д2∆ϵ

(∑
F

nF
TF

12π 2
+

∑
S

nS
TS

48π 2

)
= −δ3 . (4.28)

As a consequence, for µ = MF = MS we have no �nite correction to fWW , which is

practically an on-shell scheme for the momentum independent part of theWW vertex.

In the next step we insert those Wilson coe�cients into the three-boson e�ective

coupling and identify Γ
µνρ
3,EFT =

[
TF/SΓ

µνρ
3,F/S

]
pi ·pj
M2
�1

. This leads to

fWWW

Λ2
=

[
i д3

] (∑
F

nF
13TF

360π 2M2

F

+
∑
S

nS
TS

360π 2M2

S

)
, (4.29)

fDWWW0

Λ4
=

[
i д3

] (∑
F

nF
2TF

105π 2M4

F

+
∑
S

nS
TS

1120π 2M4

S

)
, (4.30)

fDWWW1

Λ4
=

[
i д3

] (∑
F

nF
TF

630π 2M4

F

+
∑
S

nS
TS

4032π 2M4

S

)
. (4.31)

5
The coe�cients of powers in (iд)n in the square brackets, follow from the �eld-strength tensor convention

Ŵ µν = 1

−iд

[
D̂µ , D̂ν

]
and sign convention of the coupling constant д. For the easier translation into

other conventions, i.e. when using no
1

−iд normalization, those factors are taken out in front.
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4. Ultraviolet complete toy-model

Parameters limit

fWWW
iΛ2

[−0.45, 0.44] TeV
−2

fT
0

Λ4
[−0.75, 0.81] TeV

−4

fT
1

Λ4
[−0.49, 0.55] TeV

−4

fT
2

Λ4
[−1.49, 1.85] TeV

−4

Table 4.1.: Experimental bounds on aTGCs and aQGCs. The values for aTGCs are taken

from Ref. [32] and for aQGCs from Ref. [6].

Proceeding the same way with the four-boson vertex Γ
µνρσ ,abcd
4,EFT =

[
Γ̃
µναβ ,abcd
4,F/S

]
pi ·pj
M2
�1

, we

obtain

fT0

Λ4
=

[
д4

] (∑
F

nF

(
−14C2,F + 1

)
TF

10080π 2M4

F

+
∑
S

nS

(
7C2,S − 2

)
TS

40320π 2M4

S

)
, (4.32)

fT1

Λ4
=

[
д4

] (∑
F

nF

(
−28C2,F + 13

)
TF

10080π 2M4

F

+
∑
S

nS

(
14C2,S − 5

)
TS

40320π 2M4

S

)
, (4.33)

fT2

Λ4
=

[
д4

] (∑
F

nF

(
196C2,F − 397

)
TF

25200π 2M4

F

+
∑
S

nS

(
14C2,S − 23

)
TS

50400π 2M4

S

)
, (4.34)

fT3

Λ4
=

[
д4

] (∑
F

nF

(
98C2,F + 299

)
TF

25200π 2M4

F

+
∑
S

nS

(
7C2,S + 16

)
TS

50400π 2M4

S

)
. (4.35)

We determined all the Wilson coe�cients for our full EFT representation of our NP model.

One interesting di�erence we can already see between the scalar and fermion multiplets, is

that their signs of the T-operators do not always coincide, e.g.

fT
0

Λ4
and

fT
1

Λ4
will be negative

for one single fermion multiplet whereas they are always positive values for a scalar

multiplet. But we can see a sign �ip from negative to positive for both cases in

fT
2

Λ4
at

JR ∼ 1. There is also a stronger numerical suppression in the scalar case for every Wilson

coe�cient.

At this point we may look for restrictions in the (JR,M) parameter space for one single

multiplet, given by experimental bounds on values for the Wilson coe�cients. The values

for anomalous triple-gauge couplings (aTGC) and anomalous quartic-gauge couplings

(aQGC) for the comparison are listed in Table 4.1. The diagrams showing the corre-

sponding exclusion limit are given in Fig. 4.1, where we used for the coupling parameter

д = 0.66. We depict the minimum value of the multiplet mass for the case of a given

representation of JR . Therefore, all value pairs of (JR,M) lying below the curve in the

parameter space would be disfavored from the experimental bounds. In the scalar case a

much larger JS would be possible for a given mass MS or, equivalently, MS can be lower

for a given JS . This is the feature of the stronger suppression of the Wilson coe�cients of

the scalar model. Furthermore, in both cases the bounds on aQGCs are stricter than the

bounds on aTGCs and the most stringent bound emerges from the Wilson coe�cient of
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Figure 4.1.: Demonstration of the experimental bounds on the (JR,M) parameter space.

We depict (a) the case of a fermion multiplet and (b) the case of a scalar multiplet. Value

pairs below the curves would be disfavored by experimental analysis.

the OT1
operator (solid, blue). For our purpose we will analyze the model with parameters

in the vicinity of the bounds in the following discussions.
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W b

VBS

W a W c

W d

Figure 5.1.: VBS in the SU (2)L limit.

5. On-shell vector-boson scattering

After the extensive introduction of our model, its Feynman rules and the corresponding

EFT representation, we proceed with the impact of our model realization on vector-boson

scattering (VBS). In the �rst subsections we want to describe the calculation of the full

on-shell process at one-loop order and de�ne the kinematics. Then we will show results

and discuss di�erent aspects of VBS, comparing the EFT and the ultraviolet (UV) complete

model. In Section 5.4 we will consider the full cross section for di�erent VBS processes.

We continue in Section 5.5 with the evaluation of several helicity amplitudes. Section 5.6

demonstrates the analysis of the partial-wave (PW) decomposition and the examination

of unitarity considerations of the UV-complete model. The chapter will be closed in

Section 5.7 with an accuracy estimation of the approximation of the new-physics (NP)

contribution in VBS by only considering a small set of PW coe�cients.

5.1. Process definition

Working in the SU (2)L limit, the on-shell process of VBS can be generally depicted as

shown in the Feynman diagram of Fig. 5.1. The two incoming vector bosonsW a
andW b

come from asymptotic free states and enter the interaction region depicted as the VBS
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5. On-shell vector-boson scattering

labeled blob. Two outgoing vector bosonsW c
andW d

leave the interaction region into

asymptotic free states. As we allow for inelastic scattering, the bosonsW c
andW d

may

di�er from theW a
andW b

ones.

If we take a closer look into the interaction region, we can decompose the process into

leading-order terms and various e�ects of higher-order due to additional fermions and

scalars
1
, as is presented in

b

VBS

a c

d

= +
©« +

H
+ t&u diag

ª®®¬
+

©«
Π

+
Γ3

+
Γ3

+ t&u diag

ª®®¬
+

Γ4

=i
(
M1δ

abδcd +M2δ
acδbd +M3δ

adδbc
)

. (5.1)

The diagrams in the �rst line on the right-hand side represent the tree-level SM contri-

butions. In the second line we depicted corrections to the internal propagator and the

three-boson vertex and in the last line the four-boson vertex correction. All diagrams

involving an internal propagator come as an s-, t- and u-type diagram. In our discussions,

the corrections are seen to follow from NP contributions only, thus coming from one-loop

contributions of the new fermion or scalar multiplets or their derived EFT vertices, respec-

tively.
2

The last equation follows from isospin symmetry, as the isospin combinations for

four indices ai can only be expressed in Kronecker deltas in the adjoint space, meaning

that we can independently calculate the amplitudes for di�erent isospin combinations.

If we want to associate those basic amplitudes with processes of physical particlesW ±

and Z , we can multiply the full expression in Eq. (5.1) with the corresponding isospin

combinations for each external particle. So, for each Z we multiply by δ 3ai
, for incoming

W ± with
1√
2

(
δ 1ai ± iδ 2ai

)
and for outgoingW ± with a factor

1√
2

(
δ 1ai ∓ iδ 2ai

)
, where ai is

the isospin of theW ai
that should be replaced by the physical particle. After summing

over all internal ai we get the amplitude combination for the physical process.

1
We do not perform an one-loop calculation within the SM!

2
We will not include multiple insertions of EFT operators, since their contributions are negligible. This

will be deduced in Section 5.3.
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This procedure is demonstrated for the example of ZZ →W +W − scattering. In this

case, the amplitude will be constructed with

M
(
ZZ →W +W −

)
=

3∑
a,b,c,d=1

(
δ 3aδ 3b

(
M1δ

abδcd +M2δ
acδbd +M3δ

adδbc
)

1

√
2

(
δ 1c − iδ 2c ) 1

√
2

(
δ 1d + iδ 2d

))
=M1 . (5.2)

Likewise, we can reproduce the other physical processes by the basic amplitudes, leading

to

M
(
W ±W ∓ → ZZ

)
=M1 , (5.3a)

M
(
W ±Z →W ±Z

)
=M2 , (5.3b)

M
(
W ±Z → ZW ±

)
=M3 =

[
M

(
W ±Z →W ±Z

) ]
t↔u

, (5.3c)

M
(
W ±W ∓ →W ±W ∓

)
=M1 +M2 , (5.3d)

M
(
W ±W ∓ →W ∓W ±

)
=M1 +M3 =

[
M

(
W ±W ∓ →W ±W ∓

) ]
t↔u

, (5.3e)

M
(
W ±W ± →W ±W ±

)
=M2 +M3 , (5.3f)

M (ZZ → ZZ ) =M1 +M2 +M3 , (5.3g)

where we also show the redundant combinations, which are just recovered via interchange

of the kinematic variables t and u.

We can already make some predictions for the ZZ → ZZ process at this point. All

the three gauge-boson vertices, even the corrected ones, carry a factor of the structure

constant ϵabc . Thus, they will vanish for all external particles having ai = 3. This is also

true for the SM four-boson vertex. Therefore, the SM contribution will reduce to the sum

of Higgs s , t and u diagrams, which is rather suppressed. All EFT vertices, except for the

four-vertex part originating from T-operators, will also come with structure constants and

vanish likewise. So the only relevant contribution will follow from the symmetric part

of the four-boson vertex correction in Eq. (4.9), or its low energy approximation which is

matched with the Wilson coe�cients of the T-operators demonstrated as in Section 4.3.

5.2. Kinematics

The next step is to set up the kinematics for the calculation. In the on-shell case it is

reasonable to work in the center of mass frame (COM), where the incoming and outgoing

particle momenta add up to zero. As the 2→ 2 process happens in a plane, we are free

to choose the xz-plane and take the incoming beam axis as our z axis. Therefore, the

momenta of the particles are given by

p1 =

√
s

2

(1, 0, 0, β) ,

p2 =

√
s

2

(1, 0, 0,−β) ,

q1 =

√
s

2

(1, β sinθ , 0, β cosθ ) ,

q2 =

√
s

2

(1,−β sinθ , 0,−β cosθ ) ,

(5.4)
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5. On-shell vector-boson scattering

where p1 and p2 are the incoming momenta and q1 and q2 outgoing and θ is the scattering

angle between the three momenta ®p1 and ®q1, cosθ =
®p1·®q1

| ®p1 | | ®q1 |
, and β =

√
1 −

4m2

W
s . In this

frame the Mandelstam variables s, t ,u can be expressed in terms of s ,mW and cosθ

s = (p1 + p2)
2

, (5.5a)

t = (p1 − q1)
2 = −

sβ2

2

(1 − cosθ ) , (5.5b)

u = (p1 − q2)
2 = −

sβ2

2

(1 + cosθ ) . (5.5c)

As discussed in the Appendix A.4 we get a set for the �nal helicity eigenvectors

ϵ± (p1) = −
1

√
2

(0, 1,±i, 0) ,

ϵ± (p2) = −
1

√
2

(0, 1,∓i, 0) ,

ϵ∗± (q1) = −
1

√
2

(0, cosθ ,− sinθ ∓ i, 0) ,

ϵ∗± (q2) = −
1

√
2

(0, cosθ ,− sinθ ± i, 0) ,

ϵ0 (p1) =

√
s

2mW
(β, 0, 0, 1) ,

ϵ0 (p2) =

√
s

2mW
(β, 0, 0,−1) ,

ϵ∗
0
(q1) =

√
s

2mW
(β, sinθ , 0, sinθ ) ,

ϵ∗
0
(q2) =

√
s

2mW
(β,− sinθ , 0,− cosθ ) ,

(5.6)

which we will use for the calculation of processes between helicity eigenstates.

We developed the Fortran77 program VeBoS which we used in the analysis of di�erent

aspects of on-shell VBS. Further information on the program is presented in Appendix A.5.

In the following sections we will discuss several results that were obtained with VeBoS.

5.3. Perturbative counting in the EFT cross-section
calculation

The EFT calculation involves di�erent couplings and scales, in which a perturbative

expansion can be performed. Thus, we dedicate this section to justify our choice of

contributions which we include in the cross-section calculation.

The perturbative counting of the EFT calculation can be separated as follows: On

the one hand, we have the energy scale Λ that serves as the EFT expansion parameter,

determining the relevance of the contribution depending on the energy regime. Its e�ect

can be estimated by a factor of
s
Λ2

for each insertion of a dimension 6 operator vertex and

a factor of
s2

Λ4
for each insertion of a dimension 8 operator vertex. On the other hand, as

we have determined the Wilson coe�cients of our EFT operators explicitly via one-loop

matching of our NP �elds, each insertion of an e�ective coupling is suppressed by a loop

factor of
д2

16π 2
, but also enhanced by the representation factors TR ∼ J 3

R and TRC2,R ∼ J 5

R .

Moreover we include a discussion of the expected impact due to electroweak (EW) next-to

leading order (NLO) corrections with a rough estimation given by a suppression of the loop

factor
д2

16π 2
. As an example, we consider di�erent expected contributions to the amplitudes

based on one insertion of OWWW , one insertion of a T-operator OTi , two insertions of
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5.3. Perturbative counting in the EFT cross-section calculation

OWWW , the pure SM EW NLO correction, the EW NLO correction with one insertion

of OWWW and the EW NLO correction with one insertion of OTi . To further clarify the

notation used in this section, we show example Feynman diagrams and the approximated

contribution factors associated with each Feynman diagram due to the above mentioned

arguments in the following:

∈ MSM ∼ д
2

, (5.7a)

∈ M fWWW ∼ д
2
д2

16π 2

s

Λ2
J 3

R , (5.7b)

∈ M fTi
∼ д2

д2

16π 2

s2

Λ4
J 5

R , (5.7c)

∈ M f 2

WWW
∼ д2

(
д2

16π 2

)
2

s2

Λ4
J 6

R , (5.7d)

∈ MNLO
SM ∼ д2

д2

16π 2
, (5.7e)

∈ MNLO
fWWW

∼ д2

(
д2

16π 2

)
2

s

Λ2
J 3

R , (5.7f)

∈ MNLO
fTi
∼ д2

(
д2

16π 2

)
2

s2

Λ4
J 5

R . (5.7g)

In the presented Feynman diagrams, the vertex denoted by a �lled square corresponds

to the insertion of the EFT vertex. If we want to estimate the impact of each anomalous

amplitude in the cross section, we consider the contribution at the level of the interference

term with the SM, which is given by 2Re (MSMMi), and at the level of the anomalous

squared piece |Mi |
2
. The resulting additional factors

3
for each contribution in the cross

section are given in Table 5.1, where we also highlight explicit values using parameters of

an underlying fermion multiplet model with (JF = 5, MF = 750 GeV) and inserting explicit

COM energies

√
s for the lower and upper bound of the expected validity region of the

EFT.

3
The overall factor of д4

is omitted, since it is propotrional to the SM cross section and enters in each

contribution. Therefore, we will only look at the additional factors for a better distinction.
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5. On-shell vector-boson scattering

Mi 2Re (MSMMi)
s
Λ2
→ [

(2mW )
2

M2

F
, 1] |Mi |

2 s
Λ2
→ [

(2mW )
2

M2

F
, 1]

M fWWW
д2

16π 2

s
Λ2
J 3

R [0.01616, 0.34481]

(
д2

16π 2

)
2

s2

Λ4
J 6

R [0.00026, 0.11889]

M fTi

д2

16π 2

s2

Λ4
J 5

R [0.01893, 8.62022]

(
д2

16π 2

)
2

s4

Λ8
J 10

R [0.00036, 74.3081]

M f 2

WWW

(
д2

16π 2

)
2

s2

Λ4
J 6

R [0.00026, 0.11889]

(
д2

16π 2

)
4

s4

Λ8
J 12

R [6.8 · 10
−8, 0.01414]

MNLO
SM

д2

16π 2
[0.00276, 0.00276]

(
д2

16π 2

)
2

[7.6 · 10
−6, 7.6 · 10

−6]

MNLO
fWWW

(
д2

16π 2

)
2

s
Λ2
J 3

R [0.00004, 0.00095]

(
д2

16π 2

)
4

s2

Λ4
J 6

R [2.0 · 10
−9, 9.0 · 10

−7]

MNLO
fTi

(
д2

16π 2

)
2

s2

Λ4
J 5

R [0.00005, 0.02378]

(
д2

16π 2

)
4

s4

Λ8
J 10

R [2.7 · 10
−9, 0.00057]

Table 5.1.: Counting of additional factors in EFT perturbative expansion of the cross section

arising from one-loop calculation/matching (factor
д2

16π 2
) and EFT expansion (factor

s
Λ2

).

The powers of isospin JR follow from the representation factor of the NP �elds, leading

to an enhanced coupling and, therefore, enhanced contribution to the cross section. The

explicit values are estimated for д = 0.66, JR = JF = 5, Λ = MF = 750 GeV and the

estimated limits of the EFT validity region given by the kinematic threshold s = (2mW )
2

as lower bound and the NP energy scale Λ as higher bound.

It is obvious, when we calculate a cross section in the low-energy regime, i.e. 2mW ≤√
s � Λ, the dominant anomalous contribution will follow from the interference term with

single insertion of the EFT vertices, i.e. 2Re

(
MSMM fWWW

)
and 2Re

(
MSMM fTi

)
. The next

relevant term would be the interference term of the pure SM EW NLO correction which is

about an order of magnitude suppressed, as it does not involve a representation enhance-

ment. Therefore, it will not be considered in our calculation. All other contributions are

not of relevance at low energies, since they are further suppressed. In the high-energy

regime of the expected validity region of the EFT, the dominant contribution follow from

the anomalous squared piece of the T-operators, i.e. |MTi |
2
, followed by the interference

term of the T-operators, i.e. 2Re

(
MSMM fTi

)
. Other contributions are negligible.

Considering these observations, we decide to include in the subsequent sections only

single insertions of the EFT vertices and analyze the cross section at the level of adding

only the interference term as anomalous contribution in comparison with adding the full

anomalous amplitude squared as well. We evaluate in which energy region the dimension

6 operators dominate and in which regime the T-operators give an accurate approximation

of the full EFT calculation. One could argue, that when we include the anomalous squared

piece of |M fWWW |
2
, we could as well include the interference term of the double inserted

EFT vertex, i.e. 2Re

(
MSMM f 2

WWW

)
. But, using the reasoning above, both contributions

are not of relevance throughout the whole energy range.

To summarize, we only include single insertions of the EFT operators in the tree-level

amplitude, but then consider not only the interference with the SM, but also the square of

the anomalous amplitude itself. This corresponds to the contributions given in the �rst

two lines in Table 5.1. Thus, the EFT calculation will follow the full one-loop calculation of
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Figure 5.2.: Cross section summed and averaged over polarizations as a function of the

COM energy

√
s forWW → ZZ scattering in the case of (a) one new fermion multiplet

(JF = 5,MF = 750 GeV) or (b) one new scalar multiplet (JS = 8,MS = 750 GeV). Dashed

lines correspond to cross sections, where only the interference term of SM and anomalous

part is included as the NP contribution (i.e. |MSM |
2 + 2Re

(
MSMM

∗
anom

)
), whereas solid

lines represent the cross section, where the full absolute squared of the amplitude (i.e.

|MSM +Manom |
2
) is considered.

the NP �elds approximating each loop correction as a single EFT vertex in the low-energy

limit.

5.4. On-shell cross section

In this section we examine the result for the total cross section σ . But �rst, we have to

specify the model parameter we used in the calculation. Following the idea mentioned

in Section 4.3 we used parameters such that the Wilson coe�cients of the EFT fall in

the vicinity of the bound given by experimental collaborations. Thus, a natural model

choice is one single fermion or scalar multiplet with a value pair (JR,MR) according to the

boundary in Fig. 4.1. In the subsequent analysis we will focus on a multiplet with mass

M = 750 GeV and, hence, a fermion multiplet with isospin JF = 5 or a scalar multiplet

JS = 8, respectively. The relevant SM parameters throughout this section are v = 246 GeV

and д = 0.66, which results inmW = 81.18 GeV.

Additionally, we impose a cut on the scattering angle, so we include for the angular

integration σ =
∫
d cosθ dσ

d cosθ only scattering angles of 5° < θ < 175°. This cut while

drastically reducing the SM contribution from small angles in the t- andu-channel diagrams

highlights the NP contribution.

In Fig. 5.2 we present the result for σ as a function of the COM energy

√
s = mZZ for

the processes WW → ZZ . Our �gures start at

√
s = 200 GeV as this is well above the
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5. On-shell vector-boson scattering
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Figure 5.3.: Cross section summed and averaged over polarizations as a function of the

COM energy

√
s forWZ →WZ scattering in the case of (a) one new fermion multiplet

(JF = 5,MF = 750 GeV) or (b) one new scalar multiplet (JS = 8,MS = 750 GeV). Dashed

lines correspond to cross sections, where only the interference term of SM and anomalous

part is included as the NP contribution (i.e. |MSM |
2 + 2Re

(
MSMM

∗
anom

)
), whereas solid

lines represent the cross section, where the full absolute squared of the amplitude (i.e.

|MSM +Manom |
2
) is considered.

kinematic threshold

√
s = 2mW . On the left side we depict the fermion and on the right

side the scalar contribution.

First, we want to point out that we have good accordance between loop calculation

(blue) and EFT (red) for COM energies until slightly above the loop particle mass. This

can be understood as an indirect check of the correctness of our EFT matching.

For energies centered around 2M = 1500 GeV we see a clear peak structure for the loop

calculation in the full model. This was expected, as it is the energy region where the

particles in the loop could be pair-produced. As a consequence the loop integrals develop

an imaginary part. Of course, the naive tree level EFT calculation cannot reproduce such a

peak structure, so there is a huge discrepancy between the full model and the EFT cross

section starting from COM energies

√
s ∼ 1000 GeV, in particular in the vicinity of the

peak. For energies well above the peak we see a �attening of the cross section in the

full model loop calculation resulting in a decline almost parallel to the SM (black, solid),

whereas the EFT cross section continuously rises, which would clearly violate probability

conservation at one point. Another observation is that we see a relevant discrepancy

between only adding the interference term between the SM and the anomalous contribution

(dashed), i.e. |MSM |
2 + 2Re

(
MSMM

∗
anom

)
, and the full absolute squared of the amplitude

|MSM +Manom |
2

(solid) for energies above 2M = 1500 GeV, indicating that we might work

with a model that does not converge appropriately fast in a perturbative calculation. As

explained in Section 5.3 the interference with the SM corresponds to a calculation at O(д6),
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Figure 5.4.: Cross section summed and averaged over polarizations as a function of the

COM energy

√
s for ZZ → ZZ scattering in the case of (a) one new fermion multiplet

(JF = 5,MF = 750 GeV) or (b) one new scalar multiplet (JS = 8,MS = 750 GeV). Dashed

lines correspond to cross sections, where only the interference term of SM and anomalous

part is included as the NP contribution (i.e. |MSM |
2 + 2Re

(
MSMM

∗
anom

)
), whereas solid

lines represent the cross section, where the full absolute squared of the amplitude (i.e.

|MSM +Manom |
2
) is considered.

whereas squaring the anomalous part yields O(д8). A large di�erence between the two

options is especially pronounced in the scalar case, which arises due to the much higher

representation JS = 8 compared to JF = 5. We also want to highlight that we observe a

constructive interference in this process.

We consider the process ofWZ -scattering in Fig. 5.3. A clear distinction to the previous

case of WW → ZZ is a destructive interference between the anomalous contribution

and the SM. The interference term gives a negative contribution to the cross section for

energies below ∼ 2400 GeV in the fermion and ∼ 2000 GeV in the scalar case, leading to a

negative peak around 2M = 1500 GeV. Since the EFT calculation extrapolates the full model

low energy behavior up to arbitrary energies, we get even negative cross section values

for the O(д6) calculation above 3000 GeV. Nevertheless, this is an acceptable behavior,

since it is well above the expected validity region of the EFT.

The process of ZZ -scattering presented in Fig. 5.4 again shows a di�erent behavior.

As was explained earlier, the SM contributions to this process are highly suppressed,

leading to an almost vanishing cross section for the SM alone, i.e. |MSM |
2
, and also for

the interference contribution, i.e. 2 Re

(
MSMM

∗
anom

)
. Only the squared pure anomalous

part gives a large cross section starting at energies in the vicinity of the peak, resulting

in the highest cross section of all analyzed processes. It was shown in Section 4.1, that

the dominant representation factor ∼ TRC2,R ∼ J
5

R is part of the isospin symmetric term

in the box calculation. In constructing the ZZ → ZZ Feynman amplitude, as described
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5. On-shell vector-boson scattering
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Figure 5.5.: Ratio plot for the cross section summed and averaged over helicities where the

anomalous contribution of the Feynman amplitude follows from the isospin symmetric

part of the four-vertex correction alone, as de�ned in Eq. (4.9), normalized for the case of

the full one-loop correction over COM energy

√
s for all VBS channels. We depict (a) the

ratio for the full cross sections and (b) the ratio for the cross sections following from the

anomalous squared part of the amplitude.

in Eq. (5.3), we get this dominant term three times by summing up the basic amplitudes.

Thus, ZZ → ZZ represents the strongest VBS channel for a fermionic representation as

high as JF = 5.

Since the scalar calculation behaves qualitatively similar to the fermionic case, we will

restrict the following discussion to the fermion multiplet case only and present the scalar

results just when qualitative di�erences occur. We will also use the full amplitude squared

|MSM +Manom |
2

in the subsequent cross-section calculations for a better comparison

with the VBFNLO [8–10] results in Chapter 6, since the anomalous contributions for VBS in

VBFNLO also enter at this order.

Subsequently, we estimate which vertex corrections depicted in Eq. (5.1) gives the

dominant contribution to the anomalous part of the amplitude. We therefore present in

Fig. 5.5 the comparison of the cross section summed over helicities as it arises from adding

the isospin symmetric part of the box calculation, de�ned in Eq. (4.9), as the only anomalous

contribution to the amplitude with the full one-loop corrected calculation. The isospin

symmetric part of the box calculation is chosen, as it gathers the strongest enhancement

due to representation factors TRC2,R ∼ J
5

R for a representation of JF = 5. Fig. 5.5 (a) clearly

shows, that adding only the anomalous part purely arising from the isospin symmetric

part of the box calculation to the amplitude is in good accordance with the full result for

all VBS channels, as the deviation is < 5 % over the whole energy range. In the case of ZZ
scattering it even reproduces the exact result, as was explained in Section 5.1. However, in

the other VBS channels the low energy regime below the peak, namely

√
s < 1500 GeV, is
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Figure 5.6.: Cross section summed and averaged over helicities normalized to the SM

cross section depicted as a function of the COM energy

√
s up to 2M = 1500 GeV for (a)

WW → ZZ scattering and (b) WZ → WZ scattering in the case of one new fermion

multiplet (JF = 5,MF = 750 GeV).

dominated by the pure SM contribution to the cross section, as was seen in the examples

of Figs. 5.2 and 5.3. Thus, we see in Fig. 5.5 (b) that the relative di�erence of the cross

section contribution of the anomalous squared piece only from the isospin symmetric

part is large in the low-energy regime. But, for energies above

√
s = 1100 GeV the pure

anomalous contribution to the cross section can be approximated within 10 % deviation

with the isospin symmetric part alone. We can conclude, that the isospin symmetric part

of the four-vertex correction dominates the other vertex corrections in the energy region

where the anomalous part is of relevance. The same reasoning could be applied to the

T-operators in comparison with the full EFT contribution, as they inherit the low-energy

behavior of the isospin symmetric part of the four-boson vertex correction.

After we exempli�ed global features of the cross section over the whole energy range, it

is worthwhile to focus on the behavior for energies below the peak and analyze the validity

of the EFT. In �gure 5.6 we present the cross section up to

√
s = 1500 GeV normalized to

the SM values for theWW → ZZ andWZ →WZ scattering for one fermion multiplet

and compare the full model and di�erent classes of the EFT approximation. The full EFT

approximation (dotted, red) is in good accordance with the full model calculation (solid,

blue) up to energies of 1000 GeV with a deviation of less than 1 %. Where the di�erence

between the EFT and the full model amounts to 1 %, both deviate approximately by 5 %

from the SM. If we look at the dimension 6 EFT approximation (dot-dashed, green), we see a

continuous relative o�set to the SM of about 1 % which dominates the low energy behavior

of the full EFT (dotted, red) until 600 GeV. This o�set is not present in the T-operator only

approximation (dashed, orange) which coincides with the SM prediction for 200 GeV. The

low energy o�set, can be explained when considering the expected energy dependence
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5. On-shell vector-boson scattering
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Figure 5.7.: Helicity amplitudeM2;1111 for energies

√
s = 1001, 1501, 2001, 2501 GeV as a

function of the COM scattering angle values for cosθ ∈ [−1, 1]. We depict (a) the real part

and (b) the imaginary part separately.

of the observed EFT operators. For each insertion of an EFT dimension 6 vertex, we

expect an energy dependence of ∼ s
Λ2
∼ s

M2
, whereas in the case of the T-operators,

which have energy dimension 8, we expect a ∼ s2

Λ4
∼ s2

M4
behavior. For low energies at

the kinematic threshold, this still amounts for a non-vanishing anomalous contribution

with a suppression of ∼
m2

W
M2

for the dimension 6 operators and ∼
m4

W
M4

for the T-operators,

respectively. Hence, an explicit evaluation in the case of WW → ZZ scattering at the

kinematic threshold of

√
s = 2mW results in a 0.9 % deviation for the dimension 6 operators,

whereas the T-operators amount for only 0.004 %. Besides the missing o�set, however,

the shape of the T-operator approximation behaves qualitatively like the full EFT, as the

T-operators are dominant at high energies.

5.5. Angular dependence of the amplitudes

In this section we discuss the angular behavior of the non-vanishing helicity amplitudes.

Hereby, we consider only the anomalous part following from the NP contribution, as the

SM contribution is well understood.

All amplitudes are formed out of the basic amplitudes following from Eq. (5.3). Also

considering the redundancyM3 = [M2]t↔u , it is su�cient to analyze the basic amplitudes

M1 andM2 in order to discuss the angular dependence of the helicity amplitudes.

As it turns out, we only �nd non-negligible values for the helicity amplitudesMi;1111,

Mi;11-1-1,Mi;1-11-1,Mi;1-1-11,Mi;-1-1-1-1,Mi;-1-111,Mi;-11-11 andMi;-111-1. SinceMi;-1-1-1-1,

Mi;-1-111,Mi;-11-11 andMi;-111-1 follow from helicity inversion ofMi;1111,Mi;11-1-1,Mi;1-11-1

andMi;1-1-11, respectively, they are exactly the same and, therefore, the discussion of one
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5.5. Angular dependence of the amplitudes
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Figure 5.8.: Helicity amplitudeM2;11-1-1 for energies

√
s = 1001, 1501, 2001, 2501 GeV as a

function of the COM scattering angle values for cosθ ∈ [−1, 1]. We depict (a) the real part

and (b) the imaginary part separately.
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Figure 5.9.: Helicity amplitudeM2;1-11-1 for energies

√
s = 1001, 1501, 2001, 2501 GeV as a

function of the COM scattering angle values for cosθ ∈ [−1, 1]. We depict (a) the real part

and (b) the imaginary part separately.

set is su�cient. The qualitative di�erence in the angular dependence betweenM1 andM2

is only marginal.M2;1111 andM2;11-1-1 are slightly asymmetric in the exchange θ → π −θ
for extreme values of cosθ very close to ±1, whereas the helicity amplitudes ofM1 are

completely symmetric. Also it yieldsM1;1-11-1 =
[
M1;1-1-11

]
θ→π−θ

, which is not perfectly

satis�ed forM2 for angles close to the beam axis cosθ = ±1. Nevertheless, the contribution
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5. On-shell vector-boson scattering

of this asymmetry gets irrelevant when predicting observables or calculating partial-wave

(PW) coe�cients, as will be discussed in the subsequent section.

In Fig. 5.7 we depict the real and imaginary part ofM2;1111 for di�erent energy values as

a function of cosθ . The helicity amplitude remains almost constant throughout the whole

range of angles. Only for higher energies, we see a parabola-like form which starts when
√
s ∼ 2500 GeV (dotted, red) in the imaginary part. Also, there is almost no asymmetry

for interchanging cosθ ↔ − cosθ . Due to the almost symmetric dependence a PW

decomposition is expected to be dominated by even coe�cients. We expect a dominating

j = 0 PW and corrections for higher energies coming from the j = 2 PW. Another

important feature of the helicity amplitude is given by the sign of real and imaginary

part. The real part has positive values for lower energies, reaching its maximum for the

peak at

√
s = 1500 GeV. For higher energies, the real part decreases, leading to negative

values. Due to the �atness of the amplitude, we will further investigate this behavior by

analyzing the j = 0 PW in the next section. The imaginary part will only be non-vanishing

for energies above

√
s = 1500 GeV resulting in positive values.

The corresponding values for the helicity amplitudeM2;11-1-1 are presented in Fig. 5.8.

Most features are analogous to theM2;1111 helicity amplitude. The absolute values of the

amplitude are rather small and the angular distribution exhibits an even milder dependence

on cosθ . The main di�erence to the previous helicities is due to opposite signs in the

amplitude. The real part changes the sign from negative to positive for rising energies and

the imaginary part is negative above the peak at

√
s = 1500 GeV. This result is not true in

the model for one scalar multiplet, where the signs are the same as theM2;1111 helicity

amplitude and even the magnitude of the imaginary part is exactly the same.

Fig. 5.9 shows the helicity amplitudeM2;1-11-1 over cosθ seperated in real and imaginary

part. The amplitude vanishes for cosθ → −1 and rises with increasing cosθ . The shape �ts

well to a parabola with minimum at cosθ = −1, what resembles the behavior of the j = 2

partial wave accompanied by the Wigner d function d2

2,2 =
1

4
(1 + cosθ )2. The amplitude

gets more pronounced for higher energies.

We can close this section with the conclusion, that all the features of the non-negligible

helicity amplitudesMi;1111,Mi;11-1-1,Mi;1-11-1 andMi;1-1-11 can be well covered by the

j = 0 and j = 2 PW, respectively. A thorough discussion of the PW decomposition follows

in the next section. We can use the previous observations to explain the positive and

negative interference between the SM and the anomalous contribution seen in Figs. 5.2 and

5.3. The dominant anomalous contribution to the helicity averaged cross section follows

from the helicity amplitudeMi;1111. On the one hand, the corresponding tree-level helicity

amplitude in the SM is positive for all values of

√
s and all scattering angles in the case of

WW → ZZ scattering, whereas it is negative in the case ofWZ →WZ scattering. On the

other hand, the anomalous part of the helicity amplitudeMi;1111 starts with positive real

values that fall into negative values at some point after the peak energy

√
s = 1500 GeV.

Thus, the interference term 2Re

(
MSMM

∗
anom

)
gives a positive or a negative contribution

to the cross section depending on the combination of the helicity amplitudes at a speci�c

energy. For WZ → WZ scattering we therefore have a destructive interference for

energies below the sign change in the anomalous amplitude. This even leads to a damping

of the cross section |MSM +Manom |
2

below the threshold for pair production, since the
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Figure 5.10.: PW coe�cients (a) A
j
1111
(WZ →WZ ) and (b) A

j
1-11-1

(WZ →WZ ) as a

function of

√
s for j = 0, 2. The full model and the EFT coe�cient are shown.

interference term dominates the pure anomalous squared contributions in this energy

range due to small anomalous amplitude values.

5.6. Partial wave analysis

In this section we want to analyze the partial-wave (PW) coe�cients up to j = 2 in the sum

of Eq. (3.33) and validate the accuracy of this approximation of the amplitude. Afterwards

we explicitly check, whether our one-loop calculation with the chosen model parameters

still satis�es the unitarity considerations discussed in Section 3.2. For this purpose we

diagonalize the PW coe�cients A
j
λ1λ2λ3λ4

, which are de�ned in Eq. (3.33), with respect to

the helicity space and isospin channel and present the largest eigenvalue together with

the already mentioned Argand circle.

We depict the dominant PW coe�cients for the helicity amplitudesM1111 (WZ →WZ )
andM1-11-1 (WZ →WZ ) in Fig. 5.10. As it turns out, all the j = 1 PW coe�cients remain

of order O(10
−2) and below even in the shown case of WZ -scattering, where there is

no symmetry forcing it to vanish. Hence, we neglect depicting it, since it would not be

distinguishable from zero in the employed scaling of the plot.

We clearly notice, that the largest values follow from the j = 0 PW of the helicity

amplitudeM1111. This j = 0 PW coe�cient in Fig. 5.10 (a) already describes most of the

features of the amplitude displayed in Fig. 5.7, since the j = 0 PW describes a shift in

the amplitude which has no angular dependence. We recognize the rise in the real part

(solid, blue) until reaching its peak maximum at

√
s = 1500 GeV followed by a decrease for

energies above, resulting in a sign-�ip slightly after 2000 GeV. The imaginary part (dashed,

blue) contributes for

√
s ≥ 1500 GeV and rises until

√
s = 2500 GeV. For higher energies

its value declines, indicating that it will approach 0 again in the large-energy limit. We
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5. On-shell vector-boson scattering

see small values for the A2

1111
partial wave (red) for energies above 2000 Gev, that will

explain the parabola shape seen in Fig. 5.7 for large energies. Another observation shows

that the PW coe�cient for the EFT (dotted, green) coincides with the real value of the

full model in the low-energy regime, therefore giving a valid approximation. For energies

above

√
s ≥ 1100 GeV, however, the deviation starts increasing, as the EFT cannot capture

the peak structure. After the peak the EFT approximated PW coe�cient continues with

an unphysical rise. Additionally, the EFT does not follow the full model for the j = 2 PW

for theM1111 amplitude. So, we can conclude that the EFT just extends the low-energy

behavior of the model when leaving its region of validity, e.g. at high energies

√
s .

The real part of the PW coe�cient shown in Fig. 5.10 (b) (solid, red) also rises for

lower energies, but it reaches its maximum value around 1900 GeV after the imaginary

part (dashed, red) enters. The imaginary part continuously increases for rising energies,

however with decreasing gradient. The EFT PW coe�cient (dotted, purple) again follows

the behavior of the real part in the beginning, but exhibits a divergent behavior for high

energies.

In the following part we demonstrate, how the eigenvalues of the PW coe�cients

are analytically constructed after we approximate negligible contributions with zero.

Subsequently, we will present the Argand diagramm showing the behavior of the dominant

eigenvalues.

In order to �nd the highest coe�cient eigenvalues, we �rst deduce which helicities

will give a non-negligible contribution to the process. We de�ne three basic partial wave

coe�cient matrices in helicity space Aj
1
, Aj

2
, Aj

3
analogously to Eq. (5.3), as we then do

not have to check for each channel separately. This is possible, because the partial wave

coe�cients were projected out on the level of amplitudes (not cross sections) which was

shown in Eq. (3.37). Therefore, the de�nition reads

Aj
i; λ1λ2λ3λ4

:=
β

16π

∫
1

−1

d cosθMi; λ1λ2λ3λ4
(θ )d j

λ12λ34

(θ ) for i = 1, 2, 3 . (5.8)

Using those basic PW coe�cients, we recover the PW coe�cients of the physical channels

from linear combination and proper normalization due to symmetry factors, thus leading

to the identi�cation table

A j (W ±W ∓ → ZZ
)
=

1

√
2

Aj
1

A j (W ±Z →W ±Z
)
= Aj

2

A j (W ±Z → ZW ±
)
= Aj

3

A j (W ±W ∓ →W ±W ∓
)
= Aj

1
+Aj

2

A j (W ±W ∓ →W ∓W ±
)
= Aj

1
+Aj

3

A j (W ±W ± →W ±W ±
)
=

1

2

(
Aj

2
+Aj

3

)
A j (ZZ → ZZ ) =

1

2

(
Aj

1
+Aj

2
+Aj

3

)
. (5.9)

So, we are able to identify negligible helicities by considering the above basic amplitude

contribution or, equivalently, the basic PW coe�cients.
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5.6. Partial wave analysis

As discussed in the previous section, we see only relevant amplitude values for the helic-

ity amplitudesMi;1111,Mi;11-1-1,Mi;1-11-1 andMi;1-1-11 and the amplitudes with inverted

helicity, that will give the same PW coe�cient. Thus, we only have to evaluate contribu-

tions for those coe�cients. Our observation showed, that all the basic PW coe�cients

behave similarly, hence the conclusions made forWZ -scattering with Fig. 5.10 hold in a

general VBS process.

Since all j = 1 PW coe�cients are very close to 0 and the j = 2 contributions turn out

to be less relevant than the j = 0 contribution, the dominant eigenvalue is to be found in

the j = 0 PW coe�cient matrix. Thus, we have to work with the helicity matrix(
A0

1111
A0

11-1-1

A0

-1-111
A0

-1-1-1-1

)
=

(
A0

1111
A0

11-1-1

A0

11-1-1
A0

1111

)
, (5.10)

where each element is to be understood as a matrix in the di�erent vector boson channels.

This helicity matrix can be easily brought to a diagonal form with(
1√
2

1√
2

1√
2

− 1√
2

)
·

(
A0

1111
A0

11-1-1

A0

-1-111
A0

-1-1-1-1

)
·

(
1√
2

1√
2

1√
2

− 1√
2

)
=

(
A0

1111
+A0

11-1-1
0

0 A0

1111
− A0

11-1-1

)
=:

(
A0

+ 0

0 A0

−

)
. (5.11)

Here we can interpret the A0

± as the eigenvalues of the helicity space, given as matrix in

the vector boson channels.

As we already �nished the diagonalization with respect to the helicitiy combinations

in our approximation, only the vector-boson channels are left to be diagonalized. To

accomplish this, we include the redundancy of identical channels W ±Z and ZW ± as

well asW ±W ∓ andW ∓W ±, in order to get a symmetric result in terms of the basic PW

coe�cients A0

1
, A0

2
and A0

3
. As we want to avoid double counting, we have to include a

normalization of
1√
2

for each redundancy in the initial and/or �nal state. The full matrix

reads
4

A0

± =©«
A0

±

(
W ±W ± →W ±W ±

)
0 0 0 0 0

0
1

2
A0

±

(
W ±Z →W ±Z

)
1

2
A0

±

(
W ±Z → ZW ±

)
0 0 0

0
1

2
A0

±

(
ZW ± →W ±Z

)
1

2
A0

±

(
ZW ± → ZW ±

)
0 0 0

0 0 0
1

2
A0

±

(
W +W − →W +W −

)
1√
2

A0

±

(
W +W − → ZZ

)
1

2
A0

±

(
W +W − →W −W +

)
0 0 0

1√
2

A0

±

(
ZZ →W +W −

)
A0

± (ZZ → ZZ ) 1√
2

A0

±

(
ZZ →W −W +

)
0 0 0

1

2
A0

±

(
W −W + →W +W −

)
1√
2

A0

±

(
W −W + → ZZ

)
1

2
A0

±

(
W −W + →W −W +

)
ª®®®¬ .

(5.12)

The channels are already aligned in a block diagonal form. This can be explained due to

conservation of isospin. The vector bosonsW ± andZ form an isospin triplet representation

4
The index ± refers to the elements of the diagonal matrix for the helicity combinations, see Eq. (5.11).

Hence, A0

± (. . . ) are scalar quantities.
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5. On-shell vector-boson scattering

and they can be seen as one particle eigenstates of isospin Ji = 1 and isospin z-component

Ji,z = {0,±1} [33], e.g. ��W ±〉 = ��Ji = 1, Ji,z = ±1

〉
, (5.13a)

|Z 〉 =
��Ji = 1, Ji,z = 0

〉
. (5.13b)

The incoming and outgoing two-particle states form the product space in SU (2)L of two

triplets. The resulting irreducible representations of SU (2)L are given by 3 ⊗ 3 = 5 ⊕ 3 ⊕ 1.

Hence, the elements of the product space can be decomposed into a quintet, a triplet and a

singlet in the space of total isospin that form the orthonormal states. Using the rules for

angular momentum addition known from quantum mechanics the product of two triplet

states

��J1 = 1, J1,z
〉
,

��J2 = 1, J2,z
〉

decompose as��J1 = 1, J1,z
〉
⊗

��J2 = 1, J2,z
〉
=

2∑
J=|J1,z+J2,z |

c J
��J , Jz = J1,z + J2,z〉 . (5.14)

The states of total isospin |J , Jz〉 form an orthonormal set that remains unchanged in our

VBS process, as we did not include additional SU (2)L symmetry breaking. Thus, they

represent the basis in which the matrix of Eq. (5.12) has diagonal form. The blocks in the

matrix of Eq. (5.12) are given by the z-component of the total isospin, namely Jz , since it

directly follows from the addition of the z-component of the one-particle isospin states,

e.g. ��W ±W ∓〉 ∼ ��J1 = 1, J1,z = ±1

〉
⊗

��J2 = 1, J2,z = ∓1

〉
=

2∑
J=0

c J |J , Jz = 0〉 . (5.15)

Hence, we can treat each block of isospin z-component Jz separately.

Starting with the isospin z-component Jz = ±2, there is nothing to be diagonalized,

since |W ±W ±〉 forms the only possible Jz = ±2 two particle state. So the �rst eigenvalues

are

a0

±(J = 2, Jz = ±2) =
1

2

(
A0

2; ± +A
0

3; ±

)
, (5.16)

where J = 2 means, that the two particle state is an element of the SU (2)L quintett. We

continue with Jz = 1, where we consider the matrix(
1

2
A0

± (W
±Z →W ±Z ) 1

2
A0

± (W
±Z → ZW ±)

1

2
A0

± (ZW
± →W ±Z ) 1

2
A0

± (ZW
± → ZW ±)

)
=

1

2

(
A0

± (W
±Z →W ±Z ) A0

± (W
±Z → ZW ±)

A0

± (W
±Z → ZW ±) A0

± (W
±Z →W ±Z )

)
. (5.17)

Due to the symmetric nature of the submatrix, the eigenvalues can be directly read o�,

resulting in

a0

±(J = 2, Jz = ±1) =
1

2

(
A0

2; ± +A
0

3; ±

)
,

a0

±(J = 1, Jz = ±1) =
1

2

(
A0

2; ± −A
0

3; ±

)
, (5.18)
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5.6. Partial wave analysis

All the Jz = 0 processes align in the submatrix

©«
1

2
A0

± (W
+W − →W +W −) 1√

2

A0

± (W
+W − → ZZ ) 1

2
A0

± (W
+W − →W −W +)

1√
2

A0

± (ZZ →W +W −) A0

± (ZZ → ZZ ) 1√
2

A0

± (ZZ →W −W +)
1

2
A0

± (W
−W + →W +W −) 1√

2

A0

± (W
−W + → ZZ ) 1

2
A0

± (W
−W + →W −W +)

ª®®¬ , (5.19)

whose eigenvalues in terms of the basic PW coe�cients are given by

a0

±(J = 2, Jz = 0) =
1

2

(
A0

2; ± +A
0

3; ±

)
,

a0

±(J = 1, Jz = 0) =
1

2

(
A0

2; ± −A
0

3; ±

)
,

a0

±(J = 0, Jz = 0) =
1

2

(
3A0

1; ± +A
0

2; ± +A
0

3; ±

)
. (5.20)

We observe, that there is only a distinction between two particle states of di�erent total

isospin J = {2, 1, 0} in the SU (2)L limit, which form the quintet, triplet and singlet repre-

sentation, respectively. Therefore, including the eigenvalues due to helicity combinations

we have six PW coe�cient eigenvalues to check for unitarity.
5

In Figs. 5.11 and 5.13 we show the PW coe�cient eigenvalues of the isospin singlet and

the isospin quintet, respectively. The isospin triplet does not have a relevant contribution,

since the combination
1

2

(
Aj

2
−Aj

3

)
is nonzero only for odd j for the analyzed helicities.

We see, that the singlet combination exhibits the dominant eigenvalues. On the one

hand, the a0

+ (J = 0) (red) still behaves reasonably and stays within the required bounds of

perturbative unitarity of Eq. (3.40) up to an energy of 3000 GeV when the real part acquires

a too large absolute value. The a0

− (J = 0) eigenvalue (blue), on the other hand, already

exceeds the bound on the real part at the peak energy and at an energy of 2000 GeV all

three bounds are slightly violated. For higher energy values the imaginary part falls below

its bound, but the real part alone continues exceeding the other bounds. So, we state

that our model prediction slightly deviates from being within the unitarity bounds in

a one-loop calculation. This is due to the chosen representation JF = 5 of the fermion

multiplet which couples quite strongly to the vector bosons. Hence, we have to be careful

using perturbation theory on our model, as there might be large corrections from higher

5
For a precise estimation at which COM energy the unitarity bound would be violated, we would also need

to include the SM contribution. In general, we get also contributions for other helicity combinations

than the discussed ones including longitudinal polarization, therefore needing a much more complicated

diagonalization procedure than the one shown in Eq. (5.11). Fortunately, the SM contributions also

approximately aligns in a maximal 2 × 2 block-diagonal manner, when depicted in matrices. The full

j = 0 PW coe�cients thus take the form

©«
A0

1111
A0

11-1-1
0

A0

11-1-1
A0

1111
0

0 0 A0

0000

ª®¬ (5.21)

in helicity space. It is therefore ensured, that our construction of the dominant contribution remains

valid, such that the analogous SM eigenvalue only has to be added. Since we include only the tree-level

SM contribution, the SM eigenvalue will result in an energy dependent shift of the real part of the

eigenvalue.
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Figure 5.11.: Analysis of the isospin singlet PW coe�cient eigenvalues a0

± (J = 0). We

show (a) the Argand diagram for both eigenvalues and the diagram showing the real part,

imaginary part and the EFT eigenvalue (b) of a0

− (J = 0) and (c) of a0

+ (J = 0) as a function

of

√
s .

order calculations. Nevertheless, we continue using our model with the given parameters

perturbatively in the comparison with the EFT results, as only such high values of JF give

Wilson coe�cients of the T-operators that are in the ballpark of the existing bounds.
6

The EFT eigenvalues (dotted) of the singlet in Fig. 5.11 (a) approximate nicely the real

part of the one-loop eigenvalues in the low energy regime, but start di�ering in the

vicinity of the peak. For energies above the peak, both EFT eigenvalues start diverging

6
The situation is much worse in the scalar case, as the dominant eigenvalue clearly exceeds the unitarity

bound presented in Eq. (3.40). The behavior of the dominant eigenvalue is demonstrated in Appendix A.6.
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Figure 5.12.: Ratio plot

a0

−; EFT (J=0)

Rea0

−(J=0)
for energies below the peak of the one-loop calculation.

to positive values, whereas the one-loop real value decreases. The unitarity bounds are

violated starting from energies above 2000 GeV for a0

− (J = 0) and 2500 GeV for a0

+ (J = 0).

Fig. 5.12 shows a close-up in the low energy regime for the dominant eigenvalue of the PW

amplitude of the pure EFT calculation (dotted, green) normalized to the eigenvalue in the

one-loop calculation. The accuracy of the EFT is perfect at low energies, but quickly shows

a > 5% deviation from the full model calculation already at an COM energy

√
s = 750 GeV,

which corresponds to the loop-particle mass. A 10 % deviation is already reached for

800 GeV.

For the isospin quintet of Fig. 5.13 both helicity eigenvalues stay within the required

bounds of perturbative unitarity of Eq. (3.40) for a great range of the observed energy.

Only for high energies above 3500 GeV, the absolute value of the real part of a0

− (J = 2)

gets larger than the bound of 1. Still, such behavior is well compatible with unitarity. For

the EFT eigenvalues, we have again a low energy agreement with the one-loop real value

which does not hold for energies above the peak, however. In this region we observe a

divergence to positive values even though these are sub-dominant eigenvalues.

We conclude, that our concrete fermion model should be taken with care, as it is not

perfectly compatible with unitarity. Still, it is in the vicinity of the bounds given in Eq. (3.40)

and, hence, it is still acceptable for our purpose of comparing with EFT predictions. We

again see a good accordance of the EFT with the one-loop calculation in the low-energy

regime, but there is a large deviation for higher energies leading to obvious unitarity

violation.

5.7. Validity of the j ≤ 2 partial wave approximation

In this section, we want to estimate the accuracy of the approximation of VBS in our

model using a �nite partial-wave (PW) expansion up to j = 2. We perform this exercise

as we want to implement a �nite PW expansion in the code VBFNLO [9] which is used to
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Figure 5.13.: Analysis of the isospin quintet PW coe�cient eigenvalues a0

± (J = 2). We

show (a) the Argand diagram for both eigenvalues and the diagram showing the real part,

imaginary part and the EFT eigenvalue (b) of a0

− (J = 2) and (c) of a0

+ (J = 2) as a function

of

√
s .

obtain results of our concrete model realization and its EFT setup for actual experimentally

measured processes. We �rst discuss the reconstruction of the anomalous amplitude and

comparison to the full calculated amplitude. Afterwards, we investigate the error on the

total cross section summed over helicities when including the anomalous part with the up

to j = 2 PW expansion only in the dominant helicity amplitudesM1111,M11-1-1,M1-11-1,

M1-1-11 and in the amplitudes with inverted helicity.

In Fig. 5.14 we show the comparison of the anomalous helicity amplitudeM2; λ1λ2λ3λ4

and anomalous helicity amplitudeMPW
2; λ1λ2λ3λ4

based on the full calculation based on PWs
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Figure 5.14.: Reconstructed real and imaginary part of the helicity amplitude MPW
2;1111

andMPW
2;1-11-1

normalized to the corresponding exact amplitudeM2;1111 andM2;1-11-1 for

energies

√
s = 1001, 1501, 2001, 2501 GeV plotted over the COM scattering angle values for

cosθ ∈ [−1, 1]. We depict separately in (a) the case ReMPW
2;1111

, in (b) the case ImMPW
2;1111

,

in (c) the case ReMPW
2;1-11-1

and in (d) the case ImMPW
2;1-11-1

.

up to j ≤ 2 for the example of helicities (λ1λ2λ3λ4) = {(1111), (1-11-1)}. For the helicity

amplitudeM2;1111 we see perfect agreement of the imaginary part. Also the reconstructed

real part is in good accordance with the exact result, since we only have a relative deviation

of around 5% for the energies 1001 GeV (solid, blue) and 2001 GeV (dashed, orange). The

region of cosθ close to −1 with large relative deviation gives an irrelevant contribution

when calculating cross sections. For the helicity amplitudeM2;1-11-1 we see quite large

relative deviations from the exact result presented in Fig. 5.9. But again, this relative
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Figure 5.15.: Ratio plots for reconstructed polarization sum cross section normalized to

the exact cross section
σ PW

σ over COM energy

√
s for all VBS channels. We present (a) the

total cross section and (b) only the anomalous squared part of the cross section.

deviation occurs in an angular region of negligible contribution compare to Fig. 5.9. Hence,

we only have a ≤ 5% relative deviation in the relevant region.

Our PW approximation only enters in the anomalous part of the amplitude, whereas

we stick to the exact SM amplitude (as it is also part of VBFNLO). Additionally, with the

arguments of the previous section, we only include the anomalous part for the dominant

helicity amplitudesM1111,M11-1-1,M1-11-1,M1-1-11 and for the inverted helicities, meaning

MPW
tot ; λ1λ2λ3λ4

=

{
MSM ; λ1λ2λ3λ4

+MPW
λ1λ2λ3λ4

ifMλ1λ2λ3λ4
dominant

MSM ; λ1λ2λ3λ4
else

. (5.22)

The PW approximated cross sectionσPW
is then constructed by performing the polarization

sum on |MPW
tot ; λ1λ2λ3λ4

|2. The result of this approximation for all VBS processes is shown in

Fig. 5.15 as a ratio over the exact cross section summed over polarizations σ as a function

of the energy

√
s . We notice, that the agreement of the PW reconstruction with the exact

cross section only exhibits minor relative di�erences of < 5% in the observed energy

range. This accuracy also holds for the pure anomalous part of the reconstructed cross

section, since it stays within 3% deviation at high energies, where the squared anomalous

contribution is dominant.

We therefore conclude, that the approximation with the small set of j ≤ 2 PW coe�cients

for four independent helicity amplitudesM1111,M11-1-1,M1-11-1 andM1-1-11 gives a valid

description of the physics of our underlying model. Thus, once those PW coe�cients

are known for a given energy, we are able to calculate an accurate estimation for the

various aspects of the on-shell VBS process without evaluating any complicated loop

integral and/or vertex structure. We can even further increase the e�ciency of our

phenomenological analysis, when we use the fact, that the PW coe�cients can be calculated
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5.7. Validity of the j ≤ 2 partial wave approximation

without specifying the multiplet representation, as was indicated at the end of Section 4.1.

This feature is implemented in our VeBoS program and the application is explained in

Appendix A.5. Hence, we calculated the projection of our PW coe�cients with only

specifying the loop particle mass, such that we are able to adjust the representation

according to the physics case we want to analyze.
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We �nally discuss the impact of our previous �ndings in on-shell VBS for actual experi-

mental analysis as they are performed by the multipurpose experiments ATLAS and CMS at

the Large Hadron Collider (LHC). For this purpose we make use of the program VBFNLO

[8–10] that takes into account various aspects needed for the simulation of hadronic

collisions. Our modi�cation will only take place in the electroweak calculation for the

matrix elements of VBS. A minimal introduction to VBFNLO and our implementation of

the new-physics (NP) model will be described in the next section. After introducing the

implementation and outlining performed cross checks, we will present results for VBS

in the ZZ and W ±Z �nal states decaying further to leptons and neutrinos.
1

We �nally

highlight the impact on experimental analysis that set bounds on anomalous quartic-gauge

couplings (aQGCs) by investigating the results of Refs. [6, 7].

6.1. VBFNLO and the implementation of the new-physics
model

VBFNLO is a Monte Carlo program that simulates events that are induced by hadronic

collisions between protons and/or antiprotons. The hadronic cross section is obtained by a

convolution of the partonic cross sections, that start with gluons and quarks in the initial

state, with parton distribution functions. The cross section can generically be written in

the form

σ =

∫
dx1dx2

∑
subprocesses

fa1
(x1)fa2

(x2)

1

2ŝ

∫
dΦn(x1P1 + x2P2;p1 . . .pn)Θ(cuts)

∑
|M(a1a2 → b1 . . .bn)|

2
. (6.1)

Here fai (xi) are the parton distribution functions, that describe the probability to �nd a

parton ai inside the hadron i carrying the fraction xi of the hadron total momentum Pi .
√
ŝ

is the COM energy of the two parton system and dΦn(x1P1 + x2P2;p1 . . .pn) is the Lorentz

invariant phase space of the �nal state of the subprocess. Θ(cuts) symbolically represents

the cuts that exclude phase space points which do not ful�ll the requirements set by the

user andM(a1a2 → b1 . . .bn) is the Feynman amplitude representing the hard process,

which absolute squared gets summed and averaged over polarizations and colors of the

external partons.

1
I want to express my thank to Stefan Liebler, for his help in the implementation of the necessary cuts and

for providing the numerical results which are presented throughout this chapter.
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6. Vector-boson scattering at the LHC

In the case of VBS with a leptonic decay in the �nal state vector bosons this matrix

elementMp1p2→4l jj is separated into the leptonic tensorMV1V2→4l µν containing theV1V2 →

V3V4 process and quark currents J
µi
pi→jVi

for the vector boson emitting partons. The leptonic

tensor involves the virtual vector-boson propagation from the emitting quark lines, the

Lorentz tensor for the VBS process, the propagation of outgoing bosons and currents

J
Vi→l

′
l

for the decay into the �nal leptons.

Assuming all the participating currents are conserved, i.e. the quarks and leptons

are approximated being massless, the tensor structure of the propagators can be further

decomposed into a helicity sum over well de�ned o�-shell polarization vectors. We refer

to Ref. [18] for a careful derivation. This leads to the decomposition of the leptonic tensor

in the form[18]

MV1V2→4l µν =

4∏
i=1

1

q2

i −m
2

Vi
+ imVi ΓVi

∑
λ1,λ2,λ3,λ4

ϵ∗J ,µ(q1, λ1)ϵ
∗
J ,ν (q2, λ2)M

VBS
λ1λ2λ3λ4

ϵJ (q3, λ3) · JV3→l1l2
ϵJ (q4, λ4) · JV4→l3l4

. (6.2)

Hereby,
1

q2

i −m
2

Vi
+imVi ΓVi

are the propagator denominators for the vector bosonVi with a �nite

decay width ΓVi . ϵ
(∗)

J ,µi
(qi , λi) are the polarization vectors contracted with the conserved

currents, that follow from the propagator decomposition. Finally,MVBS
λ1λ2λ3λ4

is the helicity

amplitude for VBS in the o�-shell case.

The anomalous part of the matrix elementsMVBS
λ1λ2λ3λ4

following from any NP contribu-

tion are generically calculated from the partial-wave (PW) decomposition of the o�-shell

helicity amplitudes up to the j = 2 partial wave. For the case of anomalous couplings given

by dimension 8 EFT operators this reproduces the exact result, as pointed out in Ref. [18].

Within the framework of VBFNLO there are also implemented unitarization models, that

manipulate the PW coe�cients before re-constructing the matrix elements, in order to

restore the unitarity requirements of Eq. (3.40). In our subsequent analysis we will make

use of the so-called Tu-model, which is illustrated in Ref. [18] and shall not be described in

more detail here.

For our approximate estimation we feed the on-shell calculated PW coe�cients for the

COM energy given by the invariant mass of the �nal state into the VBFNLO PW decomposi-

tion of the helicity amplitude and include only the dominant helicity contributions. We

implemented the possibility to choose the isospin JR of the multiplets of the underlying

model for each run of VBFNLO, since we calculated the PW coe�cients by separating in

di�erent representation factors, as was discussed in Section 4.1. Of course, we neglected

several aspects and expect noticeable di�erences arising from:

• We insert on-shell values into an o�-shell matrix element. Hence, we do not treat

virtual incoming vector bosons correctly. On the other hand, outgoing vector bosons

are close to be on-shell, due to the employed experimental cuts.

• Our calculation is performed in the SU (2)L limit, in which photons are absent and

theW and Z boson have identical mass, which for this study we set tomW =
дv
2
=

81.18 GeV for our chosen values of д = 0.66 and v = 246 GeV. Though we split all
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6.2. VBFNLO settings

contributions involving an external Z boson with the weak mixing angle on a Z
boson and a photonic contribution, we expect di�erences at low invariant masses ,
√
s , of the gauge boson pair, where virtualities q2

i cannot be neglected compared to s .

• We only modify VBS as a 4-point interaction and do not include all contributions to

the full pp → 4l jj process. Referring to the discussion of Fig. 5.5 we assume, that

the dominant behavior should still be well covered, as neglected contributions do

not exhibit the representation enhancement of TRC2,R ∼ J
5

R .

• We do not include all helicity contributions. However, this di�erence should be at

the percent level using previous arguments as presented in Section 5.7.

Therefore, our calculation needs to be understood as an approximation. We want to justify

this approximation with some cross checks presented in Section 6.3.

6.2. VBFNLO settings

In this section we summarize all input parameters, that are speci�ed in the VBFNLO input

�les. All predictions are made for a proton-proton collider with a COM energy of 13 TeV.

We continue with some general settings, before we discuss the implemented cuts for the

speci�c case of the analyzed processes.

For our cross section calculations, we used parton distribution functions at leading order,

namely MMHT2014 [34], that are linked through LHAPDF [35]. The SM parameters have been

set to the following values:
2

• Higgs-boson mass: mH = 125.09 GeV,

• W boson mass: mW = 80.398 GeV,

• Z boson mass: mZ = 91.1876 GeV,

• Weak mixing angle: sin
2 θW = 0.222646.

Predictions of the number of events are obtained for an integrated luminosity of 35 fb
−1

,

chosen for compatibility with the experimental analysis which we investigate further in

Section 6.5.

We use VBFNLO to investigate the VBS subprocesses ofW ±Z and ZZ production. For the

�rst case we consider the full electroweak (EW) processes

pp →W ±Zjj → l′±νl ′l
±l∓jj ,

with l , l′ ∈ {e, µ}. Since we want to compare our results qualitatively in Section 6.5 with

the estimation of bounds on aQGCs in Ref. [6], we followed the implementation of cuts in

2
The values only enter the VBFNLO internal routines. The PW coe�cients calculated in the on-shell

scattering are generated with the parameters speci�ed in Chapter 5.
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6. Vector-boson scattering at the LHC

their analysis as close as possible. Therefore, our cut�ow includes:

pl
′

T ,p
l
T > 20 GeV , |ηe | < 2.5 , |ηµ | < 2.4 ,

|mll −mZ | < 15 GeV , m3l > 100 GeV , pmiss

T > 30 GeV ,

|ηj | < 4.7 , p jT > 50 GeV , |∆R(j, l)| > 0.4

mjj > 500 GeV , |∆ηjj | > 2.5 , |η3l −
ηj1 + ηj2

2

| < 2.5 . (6.3)

We denote with “3l” the three-lepton system, i.e. the sum of the three lepton momenta,

and its invariant mass m3l and its rapidity η3l
. We simplify our calculation in comparison

to the CMS analysis, as we only take into account the �avour combination l′ = e, l = µ and

multiply our results by a factor of 4 in order to approximate for all �avour combinations.

As a consequence we have just one cut on the transverse momentum plT ,p
l ′

T , which is

chosen equal for all leptons. The cuts depicted in the last two lines of Eq. (6.3) are typical

VBS cuts, which enhance the contribution of EW VBS over QCD-induced VBS and other

SM background.

For the case of ZZ production, we calculate the cross section with VBFNLO of the full

EW processes

pp → ZZjj → l′±l′∓l±l∓jj ,

with l , l′ ∈ {e, µ}. The experimental analysis which uses those processes to bound anoma-

lous operators is given in Ref. [7]. We again mainly follow their cut�ow for a qualitatively

comparison, namely

pl
′

T ,p
l
T > 20 GeV , |ηe | < 2.5 , |ηµ | < 2.4 ,

40 GeV < mll ,ml ′l ′ < 120 GeV , |ηj | < 4.7 , p jT > 30 GeV ,

|∆R(j, l)| > 0.3 , mjj > 400 GeV , |∆ηjj | > 2.4 . (6.4)

As in the previous case, we restrict our calculation to the �avour combination l′ = e, l = µ
and multiply our result with a factor of 2. With our choice of the �nal state we avoid

the problem of correctly assigning the leptons to the two Z boson candidates. Note that

the actual experimental analysis is using a boosted decision tree, which also takes into

account the Zeppenfeld variable to enhance the fraction of vector-boson scattering events

over QCD background events.

6.3. Monte Carlo cross checks

This section is dedicated to the cross checks, we performed in order to validate the

implementation and to roughly estimate the di�erences that appear due to the on-shell

approximation and the SU (2)L limit of our model. We make use of the EFT T-operators

that are part of our set and are also implemented in the set of aQGC EFT operators in

the VBFNLO code, as presented in Ref. [9], with the addition of the OT3
operator. For the

cross check, we analyze a comparison of the predicted number of events, as given by
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Figure 6.1.: Ratio plots for the predicted event number for theW +Z production VBS process

including aQGCs following from the set of T-operators calculated for PW coe�cients

extracted from the on-shell scattering events normalized to the respective events using

the VBFNLO internally calculated PW coe�cients as a function of the invariant mass of the

two-boson �nal statem(W +Z ). The underlying model determining the Wilson coe�cients

is given by a fermion multiplet with (JF = 5, MF = 750 GeV). The contribution for internal

T-operators are evaluated for the case of same and opposite sign of the Wilson coe�cients

in order to see the impact on the interference with the SM. We also depict the SM cross

section for comparison. We show the cross check plots for the case (a) without restricting

the virtuality of the incoming vector bosons and (b) with an arti�cial cut on the incoming

momenta of q2 < (110 GeV)2.

feeding in the externally calculated PW coe�cients using only the set of T-operators

in the EFT calculation, with the VBFNLO internally calculated contribution. Since the

internally calculated contribution respects the correct o�-shell behavior and also uses the

full SU (2)L ×U (1)Y gauge group, we will use it as the reference prediction. In addition, we

want to examine the interference behavior between the SM and anomalous contribution.

Therefore, we also show the pure SM prediction and the result of the internal calculation

with inverted sign of the Wilson coe�cients for additional comparison. Furthermore, in

order to identify the deviation that arises due to the missing virtuality of the incoming

bosons in the on-shell approximation, we performed the same analysis with an unphysical

cut on the incoming virtuality of q2 < (110 GeV)2. The drastically reduced statistics due to

the cut was partly compensated using a previously calculated grid from a high statistics

run, therefore selecting events in the relevant region of phase-space.

The results of the cross check are given in Fig. 6.1 for the case ofW +Z �nal state. We �rst

note in Fig. 6.1 (a), that the pure SM contribution (black) exceeds slightly the normalization

value for the VBFNLO internally predicted number of events (red) including aQGCs from

the T-operators in the low-energy regime below m(W +Z ) ∼ 1600 GeV. This is expected,
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6. Vector-boson scattering at the LHC

since we also predicted destructive interference below the peak in the on-shell process

as shown in Fig. 5.3, which was due to a di�erent sign in the SM and the anomalous

amplitude as discussed in Section 5.5. The predicted number of events including aQGCs

following from the external PW coe�cients (orange) shows a similar overall behavior as the

internal calculated reference prediction. However, in the region of 1200 GeV< m(W +Z ) <
3500 GeV we have less predicted events for the on-shell calculated PW coe�cients, reaching

a deviation of ∼ 10 %. In the high-energy regime, the predictions of the number of

events based on the internal calculation and external PW coe�cients coincide well. The

calculation using inverted sign for the Wilson coe�cients of the T-operators (blue) shows

a constructive interference with the SM contribution, which contradicts the on-shell

prediction and con�rms that we inserted the external PW amplitude with the correct sign

into VBFNLO. We see a doubling of the amount of predicted events for invariant masses

aroundm(W +Z ) ∼ 1800 GeV in comparison to the prediction using the correct sign. For the

high-energy regime, both predictions match each other, since the anomalous contribution

clearly dominates the pure SM prediction.

If we compare with the result after employing an arti�cial cut on the virtuality of the

incoming vector bosons as shown in Fig. 6.1 (b), we see that the PW coe�cients from

on-shell approximation (orange) predict slightly more events than the VBFNLO internal

calculation (red) form(W +Z ) > 1900 GeV with a deviation of ∼ 10 %. In the low-energy

regime, both calculations coincide. Thus, we deduce, that the ∼ 10 % deviation seen in

Fig. 6.1 (a) might be due to the virtuality of the incoming vector bosons, that is not taken

into account in the on-shell approximation.

In the case of the ZZ �nal state of Fig. 6.2, we see a constructive interference between

the SM and the aQGC contributions of the internal calculated reference prediction. The

calculation with inverted sign in the Wilson coe�cients (blue) exhibits a destructive

interference, hence it does not resemble the expected interference behavior given by

comparison with the on-shell WW → ZZ and ZZ → ZZ scattering of Figs. 5.2 and

5.4. The behavior of the on-shell and SU (2)L approximation (orange) in comparison

with the reference prediction is qualitatively similar to the previous discussion of the

W +Z �nal state calculation. We again have an underestimation for invariant masses of

1000 GeV< m(ZZ ) < 3000 GeV in the approximated prediction of Fig. 6.2 (a) whith a higher

deviation to the reference prediction of about ∼ 20 %. This can be removed by the arti�cial

cut on the incoming virtuality as seen in Fig. 6.2 (b), but we again have a 10 % deviation in

the other direction.

The conclusion of this section is as follows: The on-shell and SU (2)L approximation in

the calculation of the PW coe�cients is well justi�ed in the case of T-operators for the

W +Z �nal state using the model parameters, as an accuracy of ∼ 10 % is su�cient for the

analysis of the general model features that we discuss in the subsequent sections. The

∼ 20 % deviation appearing in the approximation for the ZZ �nal state calculation is more

worrysome, nevertheless we should be able to perform a qualitative evaluation, since we

are working with SU (2)L representations as high as JF = 5 and JS = 8 that should lead to

strong e�ects in the cross section.

After this consideration, we may expect that calculations using the on-shell and SU (2)L
approximation for the full set of EFT operators and the concrete model also lead to

predictions within the desired accuracy. In the subsequent sections we display both the full
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Figure 6.2.: Ratio plots for the predicted event number for the ZZ production VBS process

including aQGCs following from the set of T-operators calculated for PW coe�cients

extracted from the on-shell scattering events normalized to the respective events using

the VBFNLO internally calculated PW coe�cients as a function of the invariant mass of the

two-boson �nal statem(ZZ ). The underlying model determining the Wilson coe�cients

is given by a fermion multiplet with (JF = 5, MF = 750 GeV). The contribution for internal

T-operators are evaluated for the case of same and opposite sign of the Wilson coe�cients

in order to see the impact on the interference with the SM. We also depict the SM cross

section for comparison. We show the cross check plots for the case (a) without restricting

the virtuality of the incoming vector bosons and (b) with an arti�cial cut on the incoming

momenta of q2 < (110 GeV)2.

model, the EFT and the T-operator contributions to the cross section based on the external

amplitude. This ensures that their relative behavior is not a�ected from di�erences due to

the on-shell/o�-shell behavior or the SU (2)L limit.

6.4. Results forW ±Z andZZ production

After we have justi�ed our implementation with necessary cross checks, we continue

to discuss the analysis of theW ±Z and ZZ production processes. We will describe and

compare the predicted events generated by aQGCs induced by our model. We take into

account the calculation using the full model, the complete EFT basis, the complete set of

generated T-operators, the OT2
operator alone and the Tu-model unitarized complete EFT

basis. All calculations use the partial-wave (PW) coe�cients calculated in the on-shell

and SU (2)L approximation, except for the OT2
operator, which uses the VBFNLO internal

routines. We will also present the pure SM contribution as a reference.

The predictions forWZ production are shown in Fig. 6.3 for the model with an additional

fermion multiplet with JF = 5 and MF = 750 GeV. Note that the invariant mass of the
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Figure 6.3.: Predicted event number per bin (100 GeV) for VBS withWZ �nal state in the

full pp → lνl′l′jj process as a function of the invariant mass of the �nal state two boson

system m(W ±Z ) where the aQGCs are induced by an additional fermion multiplet (JF = 5,

MF = 750 GeV). We present (a) the distribution of predicted events over the whole energy

range from 200 GeV< m(W ±Z ) < 6000 GeV and (b) the predicted events normalized to the

SM prediction for the low-energy regime 200 GeV< m(W ±Z ) < 1500 GeV.

gauge-boson system is not experimentally accessible for theW decaying into a lepton and

a neutrino. To understand the phenomenology we however depict it on the x-axis in this

section and turn to the transverse mass in the next section.

The SM prediction (solid, black) starts with 10 events per 100 GeV bin at m(W ±Z ) ∼
200 GeV and then declines quickly due to the suppression of the partonic form factor

convolution, diminishing by a bit more than an order of magnitude per 1000 GeV step on

average. The aQGC contribution is negligible for the low energy regime up tom(W ±Z ) ∼
1000 GeV. Slightly below the model peak atm(W ±Z ) ≤ 1500 GeV a noticeable deviation

from the SM starts to develop as it is shown in Fig. 6.3 (a). The full model (solid, blue)

forms its typical peak structure with a maximum at m(W ±Z ) = 1500 GeV, the fermion

pair production threshold, which has about a factor 3 di�erence to the SM. Afterwards,

the predicted event number starts declining slower than the SM prediction, but having a

trend seemingly parallel to the SM for high energies when the di�erence reaches about an

order of magnitude. The complete EFT basis prediction (dotted, red) coincides with the

full model (solid, blue) only in the low energy region form(W ±Z ) < 1200 GeV, where no

relevant deviation from the SM prediction occurs. When the full model starts rising to the

peak, the EFT already lost its validity, as it continues declining up to m(W ±Z ) ∼ 1800 GeV.

Then the EFT rises slowly, hence dominating the form factor suppression, and declines

slowly for invariant masses above m(W ±Z ) = 3000 GeV. At about m(W ±Z ) ∼ 2200 GeV

the full model prediction gets outperformed by the EFT estimation. This EFT high energy

prediction clearly cannot be physical and violates unitarity at some point, as was previously
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discussed in Section 5.6. If we compare the predictions of the T-Operator set (dashed,

orange) and the complete EFT basis we see good accordance for all energies, as their overall

shape is identical. The calculation using the OT2
operator alone (solid, green) yields more

predicted events than the calculation with the full EFT basis or the full set of T-operators.

The deviation already starts atm(W ±Z ) ∼ 1200 GeV and dominates the complete model

prediction abovem(W ±Z ) ∼ 2000 GeV. Hence, this demonstrates a cancellation between

individual T-operator contributions. The Tu-model unitarized EFT prediction (dotted, dark

red) coincides with the naive EFT prediction up tom(W ±Z ) ∼ 2000 GeV, which is in the

ballpark of the energy where the on-shell EFT prediction violates the unitarity bound,

as discussed in Section 5.6. Above this invariant mass, the unitarization procedure sets

in, e�ectively leading to a damping of the naive EFT prediction. In the regime of high

invariant mass, the unitarized EFT exhibits a trend parallel to the complete model and to

the SM prediction.

If we look closer in the low-energy region, as shown in Fig. 6.3 (b), we see the destructive

interference predicted from on-shell scattering depicted in Fig. 5.3. The negative deviation

from the SM (black) starts at an invariant mass around 500 GeV, but only leading to a

maximal di�erence of 1 % for all contributions. For invariant masses above 1100 GeV

the predictions including aQGCs all exceed the pure SM prediction. As was noticed

beforehand, the predictions for the set of T-operators (dashed, orange) and the full EFT

basis (dotted, red) lie on top of each other within statistics. For small invariant masses

m(W ±Z ) ≤ 1200 GeV we see a negligible di�erence between the complete model and

the EFT calculation. Therefore, the EFT serves as a reasonable approximation up to an

invariant mass m(W ±Z ) ∼ 1200 GeV. However, the di�erence to the pure SM prediction of

< 5 % is less than our estimated accuracy and also is only hardly accessible in experimental

analysis.

In the following, we turn our attention to the prediction for W ±Z production with

the underlying model of an additional scalar multiplet as depicted in Fig. 6.4. Due to the

higher suppression of EFT operators in the scalar case, this example chooses JS = 8 and

MS = 750 GeV to generate operators in the ballpark of current bounds. Most features shown

in Fig. 6.4 (a) behave qualitatively comparable, but more pronounced, to the fermion case of

Fig. 6.3 (a). The complete model calculation (solid, blue) already reaches a deviation of more

than an order of magnitude at the threshold energy and having a trend seemingly parallel to

the SM (solid, black) for energies above. Noticeable deviations from the pure SM prediction

already start at an invariant mass ofm(W ±Z ) ∼ 1000 GeV. The unitarized EFT (dotted, dark

red) prediction falls below the naive EFT prediction (dotted, red) above invariant masses of

m(W ±Z ) = 1500 GeV and it almost coincides by chance with the complete model prediction

for invariant masses ofm(W ±Z ) ≥ 3000 GeV. The most prominent observation is, that the

calculation with aQGCs fromOT2
only (solid, green) amounts to a small contribution to the

predicted events which will be more than an order of magnitude below the contribution

of the full set of T-operators. This is clearly in contrast to the behavior in the case of an

underlying fermion model. A possible explanation of the large anomalous contribution in

the EFT calculation of the underlying scalar model is a strong constructive interference of

the individual T-operators.

Finally, we will examine the results of the ZZ production subprocess which is shown

in Fig. 6.5. The predictions of the ZZ production share most of the general features with
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Figure 6.4.: Predicted event number per bin (100 GeV) for VBS withW ±Z �nal state in the

full pp → lνl′l′jj process as a function of the invariant mass of the �nal state two boson

systemm(W ±Z ) where the aQGCs are induced by an additional scalar multiplet (JS = 8,

MS = 750 GeV). We present (a) the distribution of predicted events over the whole energy

range from 200 GeV< m(W ±Z ) < 6000 GeV and (b) the predicted events normalized to the

SM prediction for the low-energy regime 200 GeV< m(W ±Z ) < 1500 GeV.

theW ±Z production, when comparing Figs. 6.5 (a) and (b) with Figs. 6.3 (a) and 6.4 (b),

respectively. Among those are:

• The peak structure of the loop calculation (solid, blue) which is more pronounced in

the scalar case.

• Strong suppression in the high-energy region due to the parton distribution functions

in number of predicted events for the pure SM (solid, black), the loop (solid, blue)

and the unitarized EFT (dotted, dark red).

• Unphysical number of events in the non-unitarized prediction of EFT operators.

• Predictions using the set of T-operators (dashed, orange) coincides well within

statistics with the full EFT basis predictions (dotted, red).

• Cancellation between contributions of individual T-operators in the fermion case.

• Ampli�cation between contributions of individual T-operators in the scalar case.

The low-energy behavior, however, exhibits qualitative di�erence between the two VBS

subprocesses, which is due to the constructive interference of the anomalousW ±W ∓ → ZZ
and ZZ → ZZ subprocesses contribution with the SM contribution. Therefore, the full

model prediction (solid, blue) shows a > 5 % deviation from the SM (solid, black) already

at m(ZZ ) ∼ 800 GeV for the fermion case and m(ZZ ) ∼ 700 GeV for the scalar case, which
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Figure 6.5.: Predicted event number per bin (100 GeV) for VBS with ZZ �nal state in the

full pp → lll′l′jj process as a function of the invariant mass of the �nal state two boson

systemm(ZZ ) where the aQGCs are induced by an additional fermion multiplet (JF = 5,

MF = 750 GeV) or an additional scalar multiplet (JS = 8, MS = 750 GeV), respectively. We

present the distribution of predicted events over the whole energy range from 200 GeV<
m(ZZ ) < 6000 GeV (a) in the fermion case and (b) in the scalar case, and the predicted events

normalized to the SM prediction for the low-energy regime 200 GeV< m(ZZ ) < 1500 GeV

(c) in the fermion case and (d) in the scalar case, respectively.

is di�erent to the values ofW ±Z �nal state, where the deviation remains below 5 % up

to m(W ±Z ) ≥ 1000 GeV. In addition, the di�erence between the full model and the EFT

prediction (dotted, red) rises above 5 % for invariant masses m(ZZ ) ≥ 1000 GeV for the

fermion case andm(ZZ ) ∼ 800 GeV for the scalar case. Hence, the EFT is valid for a larger
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6. Vector-boson scattering at the LHC

energy range in the case of a process with destructive interference likeW ±Z production, in

comparison with a case of constructive interference likeZZ production. This resembles the

same behavior as observed in the on-shell processes ofW ±W ∓ → ZZ andW ±Z →W ±Z
scattering depicted in Fig. 5.6. The rise of the cross section for lower invariant masses due

to the constructive interference also leads to a violation of the unitarity bound of the naive

EFT calculation at lower invariant masses. This can be observed by the deviation of the

predicted number of events from the naive and the unitarized EFT calculation that sets in

at m(ZZ ) ∼ 1500 GeV for the fermion case and m(ZZ ) ∼ 1200 GeV for the scalar case of

the ZZ production.

We close this section with a summary of our observations. The full model exhibits a

distinct peak structure around the threshold for pair production, which is clearly visible

above the pure SM prediction. The EFT only has a small low-energy validity region, as it

cannot reproduce the rise to the peak of the full model. In the case of theW ±Z production

the validity of the EFT has a wider range than in the case of ZZ production due to the

di�erent interference behavior. The T-operators dominate the full EFT contribution and,

hence, give an accurate approximation of the full EFT calculation. Therefore, the low-

energy behavior of our speci�c full model is well covered by dimension 8 operators. The

prediction using the unitarised EFT leads to a high-energy behavior that would be allowed

by a general unitarity principle. However, the unitarised EFT may only exhibit the same

high-energy behavior as the full model coincidentally, as can be seen in theW ±Z production

with the underlying scalar model. In all other cases, this was not satis�ed. The fermion and

the scalar model share most qualitative features, which are more pronounced in the scalar

case. The main di�erence occurs in the contributions of the T-operators. In the fermion

case we observe a cancellation among contributions of individual T-operators whereas

they lead to ampli�cation in the scalar case. This can be concluded from comparing the

predicted number of events using OT2
alone as anomalous contribution with the predicted

number of events following from the full set of T-operators. An explanation is given by

the di�erent signs of the Wilson coe�cients

fT
0

Λ4
and

fT
1

Λ4
for the fermion and scalar model,

as it was discussed in Section 4.3. Thus, correlations of the Wilson coe�cients of EFT

operators arising from the underlying model are of relevance.

6.5. Implications for experimental analysis

Having discussed features of our toy model and its derived EFT approximation in detail,

we �nally compare our �ndings with experimental analyses which set bounds on EFT

operators. We will refer to the analysis forW ±Z production of Ref. [6] and to the analysis

for ZZ production of Ref. [7]. First, we review the explicit bounds on Wilson coe�cients

that are determined by both analysis and compare to the Wilson coe�cients which are

given by our model parameters.

Table 6.1 shows the bounds on Wilson coe�cients of the T-operators as determined in

Refs. [6, 7]. The limits are obtained in individual �ts, i.e. using the contribution from one

operator alone. In addition, we list the corresponding Wilson coe�cients that emerge from

an underlying fermion multiplet or scalar multiplet of our toy-model for the previously

discussed cases with JF = 5, MF = 750 GeV and JS = 8, MS = 750 GeV, respectively. We
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Wilson coe�cient W ±Z bounds ZZ bounds fermion case scalar case

fT
0

Λ4
[−0.75, 0.81] [−0.46, 0.44] −0.278 0.308

fT
1

Λ4
[−0.49, 0.55] [−0.61, 0.61] −0.548 0.617

fT
2

Λ4
[−1.49, 1.85] [−1.2, 1.2] 1.454 0.484

fT
3

Λ4
− − 0.859 0.256

Table 6.1.: Experimental bounds on the Wilson coe�cients of the T-operators in units

of TeV
−4

as given by theW ±Z production analysis of Ref. [6] and by the ZZ production

analysis of Ref. [7], respectively. We compare with the corresponding Wilson coe�cients

for our toy model with one underlying fermion multiplet with JF = 5 and MF = 750 GeV

or one underlying scalar multiplet with JS = 8 and MS = 750 GeV.

see that the stronger bounds on

fT
0

Λ4
and

fT
2

Λ4
arise from the ZZ analysis of Ref. [7]. In the

latter publication, also an estimation at which invariant mass the operators with Wilson

coe�cients of the estimated bounds violate unitarity. The unitarity violation emerges at

m(ZZ ) ∼ 2.3 − 2.5 TeV depending on the analyzed operator. Ref. [6] poses the stronger

bound on

fT
1

Λ4
. We demonstrate that our model parameters were chosen such that one

Wilson coe�cient matches with the most stringent bound, which is given by

fT
1

Λ4
. Hence,

both multiplets would be disfavored due to the bound on

fT
1

Λ4
from theW ±Z analysis, and

the scalar multiplet amounts even for a higher value of

fT
1

Λ4
than given by the bound from

the ZZ analysis. Whilst all other Wilson coe�cients in the scalar case have values below

the bound, the value of

fT
2

Λ4
of the fermion multiplet is above its estimated bound from the

ZZ analysis and below the bound from theW ±Z analysis. Table 6.1 also highlights the

di�erent signs of the Wilson coe�cients in the fermion case, whereas in the scalar case

all Wilson coe�cients appear with the same sign. This indicates the cancellation among

individual contributions of the T-operators in the fermion case, leading to cancellations

between the contributions of

fT
1

Λ4
and

fT
2

Λ4
, whereas in the scalar case all contributions add

up leading to a much higher number of predicted events as discussed in Section 6.4.

We record, that the

fT
2

Λ4
contribution calculated in the fermion case should give a reason-

able measure of the estimated bound given by experimental analysis in the comparison

with the results from Refs. [6, 7].

Subsequently, we compare the predictions of our model with the experimental analysis

and formulate implications for estimations of future bounds on aQGCs. We recap, the

examination of theW ±Z production incorporates the full EW processes

pp →W ±Zjj → l′±νl ′l
±l∓jj ,

with l , l′ ∈ {e, µ}. In their analysis [6], CMS used the transverse mass parameter of the

W ±Z systemmT (W
±Z ), which they de�ne as[6]

mT (W
±Z ) =

√
[ET (W ) + ET (Z )]2 − [®pT (W ±) + ®PT (Z )]2 , (6.5)
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6. Vector-boson scattering at the LHC

with ET =
√
m2 + p2

T andm2
denotes the invariant mass of theW ± or Z candidate. TheW ±

candidate is constructed from ®pmiss
T and the associated lepton. Fig. 6.6 (a) demonstrates the

CMS measurement for theW ±Z production together with the expected contributions from

di�erent production processes which they use to determine the bounds on aQGCs. We

want to stress out, that the last bin in the histogram contains all events withmT (W
±Z ) >

1500 GeV, including the region where the T-operators violate the unitarity limit. Fig. 6.6 (b)

and (c) shows our prediction using an underlying fermion or scalar multiplet, respectively.

The employed transverse mass and binning follows the CMS de�nition.

We need to validate the compatibility of our predictions with the work of CMS. Therefore,

we consider our SM prediction (solid, black) in Fig. 6.6 (b) and (c) which should coincide

with the SM EW-WZjj distribution of the CMS results (�lled, purple) in Fig. 6.6 (a). We see

a slight overestimation of our SM prediction for several bins, however, the overall behavior

is well comparable. The predicted events in the range 200 GeV< mT (W
±Z ) < 400 GeV give

the largest contribution and the contribution quickly declines for values of the transverse

above. For mT (W
±Z ) > 400 GeV, the regime where the anomalous contributions start

to deviate from the SM predicition, the SM contribution from all di�erent production

processes gives a prediction close to zero. Hence, a comparison of our estimation with the

CMSW ±Z analysis can be performed directly.

The CMS data points in Fig. 6.6 (a) show accordance within uncertainty with their

theoretically predicted number of events without aQGCs. However, in the last three bins

no events are measured given an uncertainty of approximate two events per bin. Following

their prediction with aQGCs from the OT2
operator alone (dashed, green) with a Wilson

coe�cient well above the estimated bound, we only observe discrepancy with the data

for transverse masses in the last bin. Hence, the exclusion of Wilson coe�cients is solely

determined from the transverse mass region mT (W
±Z ) > 1500 GeV in which the EFT

operators violate unitarity at some point.

Comparing with our predictions in the fermion case of Fig. 6.6 (b) there is no reason to

rule out our full model (solid, blue) by the given measurement uncertainty, even though its

derived Wilson coe�cient of the OT1
operator is above the determined bound. Moreover,

the prediction of the complete set of T-operators (dashed, orange) is also compatible with

the measurement. Only the prediction for the single OT2
operator (solid, green) is slightly

above the allowed region. For the scalar case in Fig. 6.6 (c) the picture is di�erent. The full

model (solid, blue) is ruled out by the measurement, as the predictions for the last two

bins obviously exceed the data. This is caused by the high rise of the cross section in the

vicinity of the peak, as was seen in Fig. 6.4. The prediction of the full set of T-operators

(dashed, orange) is also ruled out due to the number of events in the last bin. The predicted

events for the single OT2
operator (solid, green), however, are well within the allowed

region for all bins. The unitarized EFT prediction (dotted, dark red) for the fermion and

scalar both are in agreement with the data.

In the ZZ production process the full EW processes read

pp → ZZjj → l′±l′∓l±l∓jj ,

with l , l′ ∈ {e, µ}. For the presentation of their data used to set bounds on Wilson

coe�cients, CMS used the invariant mass of the ZZ system m(ZZ ) [7]. We present the
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Figure 6.6.: Comparison of events in VBS scattering withW ±Z �nal states applying the

CMS signal selection with the theoretical predicted number as a function of the transverse

mass of theW ±Z system. We show (a) the CMS analysis result, as presented in Ref. [6],

and our predicted results for aQGCs (b) for an additional fermion multiplet and (c) for an

additional scalar multiplet. The de�nition of mT (W
±Z ) and the binning in (b) and (c) is

chosen to match the CMS analysis.
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Figure 6.7.: Comparison of events VBS scattering with ZZ �nal states applying the CMS

signal selection with the theoretical predicted number as a function of the invariant mass

of the ZZ system. We show (a) the CMS analysis result, as presented in Ref.[7], and our

estimated results for aQGCs (b) for an additional fermion multiplet and (c) for an additional

scalar multiplet. The binning in (b) and (c) is chosen to match the CMS analysis.

results of Ref. [7] together with our predicition for ZZ production using our model with an

underlying fermion or scalar multiplet in Fig. 6.7. The last bin involves all invariant masses

withm(ZZ ) > 1200 GeV. As in the previous case of the comparison inW ±Z production,

we �rst focus on the SM prediction in order to cross check for comparability. The reference

prediction is given by the ZZjj EW distribution of the CMS analysis (�lled, magenta)
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which is presented on top of the other contributions in their prediction of Fig. 6.7 (a).

Our estimation of the SM contribution (solid, black) in Figs. 6.7 (b) and (c) is in perfect

agreement with the CMS values, as both yield a small and decreasing number of predicted

events for 200 GeV< m(ZZ ) < 400 GeV leading to less than one event per bin for invariant

masses above for the 400 GeV. For invariant masses above 1000 GeV, the pure SM prediction

including all production processes remains below one event per bin.

After the successful cross check of the SM prediction the subsequent discussion proceeds

similarly as in the case of the comparison inW ±Z production. In the results of the CMS

analysis [7] there are no events found for the last two bins in the data, for which they

determine an uncertainty of approximate two events per bin. The bounds on Wilson

coe�cients for single operators is again determined by the excess of predicted number of

events above the data uncertainty for invariant masses ofm(ZZ ) > 1200 GeV.

Turning our attention to the predictions of our model with an underlying fermion

multiplet in Figs. 6.7 (b) we �nd no events beyond the uncertainty for the full model

calculation (solid, blue). Also the set of T-operators (dashed, orange) is well compatible

with the data. Only the predicted events in the last bin for the calculation using aQGCs of

the single OT2
are in the vicinity of the uncertainty maximum. This was expected, since

the corresponding Wilson coe�cient is slightly above the estimated bound from the ZZ
production analysis of CMS in Table 6.1. In the scalar case, the full model (solid, blue) and

the set of T-operators (dashed, orange) are obviously ruled out by the data, whereas the

OT2
prediction (solid, green) is acceptable in this case. Both unitarized EFT calculations

(dotted, dark red) result in predictions well compatible with the data.

We brie�y summarize the observations of this section in the following: On the one hand,

in the case of the scalar model the exclusion due to the dominant T-operator is rather

reasonable, since we have an ampli�cation between the individual T-operator contributions

which already resemble the behavior of the full EFT approximation, as seen in Section 6.4.

Thus, if the contribution of one operator alone exceeds its experimental bound we can rule

out the model. However, if we include all relevant operators, the bounds can be pushed

to lower values for the individual dominant Wilson coe�cients and, therefore, we could

exclude scalar multiplets with lower representations than JS = 8.
3

On the other hand, we should not use the bound given by one single Wilson coe�cient

in order to disregard our model with a fermion multiplet, as we have obvious cancellations

among the contributions of individual T-operators. Hence, the resulting number of events

of the combination of operators is lower than the yield of some individual operators.

The unitarized EFT should also be taken with care, since it damps all contributions

below the exclusion limit. This therefore allows for much higher values of the Wilson

coe�cients. The underlying models leading to such high coe�cients, however, would be

far from being reasonable in the case of one fermion or scalar SU (2)L multiplet, as they

are not perturbative as well. Furthermore, referring to the discussion of Section 6.4, we

see that the unitarized EFT does not resemble the high-energy behavior of the full model,

what is assumed to be a feature of the loop-induced nature of the EFT operators.

We conclude, that setting limits on single Wilson coe�cients of operators by their

contribution in the regime where unitarity is violated does not result in an appropriate

3
Also the discussion of unitarity violation in Appendix A.6 would lead to this result.

77



6. Vector-boson scattering at the LHC

measure in order to disregard speci�c models, in general. We found out, that considering

correlations for the underlying model can improve the discussion for some cases. Never-

theless, this does not cure the unitarity violation of the EFT prediction in the high-energy

regime. The unitarity violation can be cured by an unitarization procedure. However, in

the case of our model with a loop-induced EFT approximation, the unitarized EFT cannot

describe the behavior of the underlying model beyond the validity region of the original

EFT and, hence, is not suitable for determining bounds on our toy-model parameters.
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7. Summary and conclusion

Any EFT, by construction, is only meant to be valid in a limited kinematic regime. Using

an EFT as a tool in the search of high-energy physics beyond the SM, its validity region

is bounded by the energy scale at which the use of the complete underlying model is

inevitable. The aim of the present thesis is to analyze the validity region of an EFT

application in the case of VBS, and to observe the discrepancy to the underlying model in

the transition to the high-energy regime. In addition, we investigate how contributions

from EFT operators interfere and determine the dominant subset of EFT operators. All

calculations are carried out in the SU (2)L limit of the SM.

For this purpose, a short introduction into the idea of EFTs is given. After formulating

our assumptions for the underlying model, a complete EFT basis up to energy dimension

8 is constructed. We review the implications of unitarity on 2→ 2 scattering processes

and derive the unitarity bounds in their common formulation. We propose an underlying

toy-model, which includes new fermion and scalar multiplets that transform under a

representation of the SU (2)L. For its impact on VBS, we calculate the one-loop correction

of the vector-boson vertices and perform the associated renormalization in the MS scheme.

Setting the isospin of the representation of a multiplet JR enables a tuning of the coupling,

as the vertex corrections appear with representation factors TR ∼ J
3

R and TRC2,R ∼ J
5

R . The

identi�cation of the low-energy approximation of the vertex corrections with the EFT

vertices of our complete basis leads to the determination of the Wilson coe�cients.

For a phenomenological analysis of the VBS processes we choose a single underlying

fermion or scalar multiplet with mass M = 750 GeV and isospin such that at least one

Wilson coe�cient is in the ballpark of current experimental bounds on aQGCs from Ref. [6].

We therefore make sure, that our new-physics (NP) model has a maximal impact on VBS.

Comparison of the cross section in di�erent energy regions show a good accordance

between the EFT and full loop calculation in the low-energy regime. However, the validity

region is fairly limited due to strong discrepancy in the vicinity of the peak when the

COM energy approaches the threshold for pair production of the loop particles. The

investigation of the NP contribution from the full model to the helicity amplitudes in

the on-shell scattering indicates that only a small subset of helicity amplitudes give a

non-negligible contribution to the cross section. The �rst partial-wave (PW) coe�cients

up to the j = 2 PW are calculated for the non-negligible helicity amplitudes and we

veri�ed, that this �nite PW expansion is an adequate approximation of the contribution

of our model to on-shell VBS. The dominant eigenvalues are constructed for a check of

unitarity. It turns out, that the case of a fermion multiplet contribution is compatible with

the unitarity bound. The scalar case, on the other hand, does not ful�ll this condition,

indicating that the model is not perturbative.

With the use of the on-shell calculated PW coe�cients, we included an approximation

of our model in VBFNLO as a contribution to anomalous couplings of VBS. This enables us
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7. Summary and conclusion

to investigate our model prediction of VBS at a proton-proton collider. After the necessary

consistency check of the implementation, we demonstrate the prediction forW ±Z and ZZ
production events and our results are compared with the experimental analyses of Refs. [6,

7]. Our �ndings lead to the following conclusions:

With the choice of our underlying model parameters, we clearly see that the dominant

contribution to the EFT calculation follows from the complete set of T-operators for

VBS topologies. Whereas we �nd in the case of on-shell scattering a deviation in the

very low-energy regime to the full EFT calculation due to the relevance of dimension 6

operators, we cannot distinguish the contribution for the complete set of T-operators from

the full EFT in the prediction of VBS events at proton-proton colliders. This behavior

was already expected from the observation of current bounds on the parameter space of

one multiplet in Section 4.3. Thus, we demonstrated that models do exist for which an

analysis of the aQGCs from dimension 8 EFT operators alone su�ces to parameterize the

relevant low-energy physics in VBS. However, since the T-operators are only obtainable

from integrating out loop contributions of heavy, charged particles, the EFT is limited

in energy range, since it fails reproduce the peak structure of the full model. In the case

of destructive interference, like forW ±Z production, the EFT validity region is slightly

extended in comparison to the case of constructive interference, like for ZZ production.

A sizable deviation from the pure SM prediction emerges only at higher energies in the

case of destructive interference. So, the validity of the EFT is bounded to energies, where

the contributions from our still perturbative model are almost indistinguishable from

the SM prediction. Hence, it would be very di�cult to observe e�ects in experiments.

This limitation also cannot be extended with the application of a unitarization procedure,

because the high-energy behavior of the underlying model does not get restored. An

agreement in the high-energy region only appears coincidentally.

The comparison of single T-operator contribution with the full set of T-operators shows

a clear distinction between the fermion and the scalar case which is apparent in the sign

di�erences of the individual Wilson coe�cients in the two cases, as seen in Section 4.3 and

in Table 6.1. Depending on the type of underlying model, we therefore expect an occurrence

of di�erent correlations between individual Wilson coe�cients. In the comparison with the

experimental analyses of Refs. [6, 7], we noticed that including the full set of T-operators

could improve the evaluation of compatibility with the data in the case of our model with

one fermion or scalar multiplet. However, the problem of unitarity violation of the naive

EFT prediction would still be unsolved in that case.

We therefore infer that future analyses of EFT in VBS should not only work with single

operators, but also include subsets of operators which are motivated by the underlying

model type that is probed. For those subsets, a global analysis of the Wilson coe�cients

or imposing correlations estimated by theoretical considerations should be performed. A

further investigation of di�erent particle combinations of our generic model, or including

extensions to add an interaction with the Higgs �eld or the hypercharge �eld, could

deepen the understanding about correlations of Wilson coe�cients and its e�ect on the

EFT investigation. However, as the limited validity region of the EFT and the unitarity

violation of the prediction needs to be considered, it might be inevitable to work with

UV-complete models, or at least to apply a unitarization procedure to the EFT operators, if

the high-energy region is probed.
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A.1. One-loop calculations

In this chapter we want to follow on the short introduction given in Section 2.3. We �rst

recap the de�ned tensor integral from Eq. (2.27)

T µ1...µp =
µ4−d

(2π )d

∫
ddk

kµ1 . . .kµp

D0D1...Dn−1

. (A.1)

In section A.1.1 we will describe general procedures in manipulating tensor integrals result-

ing in a full decomposition into a small set of master integrals. We will also demonstrate,

how those master integrals can be expanded at low energies or, likewise, small momenta,

such that we will be able to provide an analytic approximation for the tensor integrals.

Subsequently we present the basic idea behind the Passarino-Veltman (PV) decomposition

in Appendix A.1.2.

A.1.1. Master integral prescription

In the discussion of this section we will restrict us to the case of an one-loop integration

with all propagators having the same mass, e.g. Di = (k + ri)
2 −M2

. The �rst step in the

manipulation of tensor integrals of the form in Eqs. (2.27) and (A.1) will make use of the

Feynman parametrization, which is de�ned as follows:

1

A0 . . .An−1

= (n − 1)!

∫
1

0

dx0 . . .dxn−1

δ (1 − x0 − · · · − xn−1)

[x0A0 + . . . xn−1An−1]
n . (A.2)

Hence, we can rewrite

T µ1...µp = (n − 1)!

∫
1

0

dx0 . . .dxn−1δ (1 − x0 − · · · − xn−1)
µ4−d

(2π )d

∫
ddk

kµ1 . . .kµp

[x0D0 + ...xn−1Dn−1]
n

= (n − 1)!

∫
1

0

dx0 . . .dxn−1δ (1 − x0 − · · · − xn−1)
µ4−d

(2π )d

∫
ddk

kµ1 . . .kµp[
(k + P)2 −C2

]n
=: (n − 1)!

∫
1

0

dx0 . . .dxn−1δ (1 − x0 − · · · − xn−1)I
µ1...µp
n , (A.3)

where we simpli�ed the denominator in the second line and introduced the d-dimensional

momentum integrals I
µ1...µp
n containing the tensor structure kµ1 . . .kµp . The momentum P

is de�ned as

P = x1r1 + . . . xn−1rn−1 , (A.4)

81



A. Appendix

and the mass quantity C is de�ned through

C2 = M2 + P2 − x1r
2

1
− . . . xn−1r

2

n−1
. (A.5)

In the case of a 2→ 2 scattering of vector bosons, we only have to consider tensors up to

four Lorentz indices. Therefore we need to evaluate the set

In = µ
4−d

∫
ddk

(2π )d
1

[(k + P)2 −C2]
n , (A.6a)

I
µ
n = µ

4−d

∫
ddk

(2π )d
kµ

[(k + P)2 −C2]
n , (A.6b)

I
µν
n = µ

4−d

∫
ddk

(2π )d
kµkν

[(k + P)2 −C2]
n , (A.6c)

I
µνα
n = µ4−d

∫
ddk

(2π )d
kµkνkα

[(k + P)2 −C2]
n , (A.6d)

I
µναβ
n = µ4−d

∫
ddk

(2π )d
kµkνkαkβ

[(k + P)2 −C2]
n , (A.6e)

for which we de�ne our master integrals

In,m := µ4−d

∫
ddk

(2π )d
(k2)m

[k2 −C2]
n . (A.7)

If we shift the integration momentum with k → k − P in the integrals of Eq. (A.6) we can

decompose all the tensorial dependence on products of the momentum P µi and/or the

(d-dimensional!) metric дµi µ j . The result reads as follows:

In = In,0 , (A.8a)

I
µ
n = −P

µIn,0 , (A.8b)

I
µν
n = P µPν In,0 +

дµν

d
In,1 , (A.8c)

I
µνα
n = −P µPνPα In,0 −

1

d
(P µдνα + Pνдαµ + Pαдµν )In,1 , (A.8d)

I
µναβ
n = P µPνPαPβ In,0 +

1

d
(P µPνдαβ + P µPαдνβ + P µPβдνα + PνPαдµβ

+ PνPβдµα + PαPβдµν )In,1 +
1

d(d + 2)
(дµνдαβ + дµαдνβ + дµβдνα )In,2 . (A.8e)

We motivate this result for the example of I
µν
n . Shifting the momentum k → k − P in I

µν
n

leads to

I
µν
n = P µPνµ4−d

∫
ddk

(2π )d
1

[k2 −C2]
n + µ

4−d

∫
ddk

(2π )d
kµkν

[k2 −C2]
n

= P µPν In + N
′дµν In,1 , (A.9)

where we used the fact, that the second integral on the right hand side of the �rst line

vanishes for µ , ν due to symmetry reasons, such that its tensor structure can only be
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proportional to the metric. We still have to determine the normalization factor N ′ using

the identity

In,1 =
[
дµνI

µν
n

]
P=0
= N ′дµνд

µν In,1 = N ′dIn,1 . (A.10)

Proceeding analogously with the other integrals in Eq. (A.6) will result in the relations of

Eq. (A.8).

We chose the decomposition into the master integrals In,m as the integration can be

performed analytically. After Wick rotating the integration contour from the real axis

to the imaginary axis, the resulting integral is evaluated using d-dimensional spherical

coordinates. After rescaling the radial part, the �nal radial integration can be expressed in

terms of the Euler β-function. A detailed derivation can be found in many textbooks on

QFT, e.g. in Ref. [12]. The expression of the master integral reads

In,m = (−1)m−n
i

16π 2
(4πµ2)

4−d
2

Γ(m + d
2
)

Γ(d
2
)

Γ(n −m − d
2
)

Γ(n)
(C2)m−n+

d
2 , (A.11)

where Γ(z) is the Euler Γ-function, which serves as analytical continuation of the factorial

and is de�ned by

Γ(z) =

∫ ∞

0

tz−1e−tdt . (A.12)

The main property of the Γ-function is therefore Γ(z + 1) = zΓ(z) and it has simple poles

at z = 0,−1,−2, . . . , which may lead to factors of
1

ϵ when evaluated at d → 4 − 2ϵ , e.g.

Γ(
4 − d

2

) → Γ(ϵ) =
1

ϵ
− γE + O(ϵ) , (A.13)

with the Euler-Mascheroni constant γE . The factors
1

ϵ appearing in the limit to the physical

four space-time dimensions resemble the possible ultraviolet (UV) divergences of loop

diagrams, but they are now parametrized such that we are able to renormalize the theory,

as presented in Section 4.2.

In principal, inserting Eqs. (A.11) and (A.8) into Eq. (A.3) provides an analytic expression,

but the Feynman parameter integration still needs to be performed, what usuallyis di�cult

analytically. Fortunately, we are only interested in the approximate expression for the low

energy phase-space region of the external momenta. Thus, recalling Eq. (A.5)

C2 = M2 + P2 − x1r
2

1
− . . . xn−1r

2

n−1
=: M2

(
1 +

P ′2

M2

)
, (A.14)

where P ′2 is just a linear combination of products of external momenta, we can expand

Eq. (A.11) in powers of
P ′2

M2
, such that

In,m =(−1)m−n
i

16π 2
(4πµ2)

4−d
2

Γ(m + d
2
)

Γ(d
2
)

Γ(n −m − d
2
)

Γ(n)

(
M2

)m−n+d
2

∞∑
k=0

1

k!

Γ(m − n + d
2
+ 1)

Γ(m − n + d
2
+ 1 − k)

(
P ′2

M2

)k
. (A.15)
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In the above expression, we used the Taylor expansion

(1 + x)a =
∞∑
k=0

1

k!

Γ(a + 1)

Γ(a + 1 − k)
xk for a < N0 . (A.16)

For our one-loop matching up to EFT dimension 8 operators in Section 4.3 we only take

into account a �nite sum up to the overall order of O

(
1

M4

)
and, hence, the Feynman

parameter integration of Eq. (A.3) will be easily performed, as the approximation of In,m
together with the momenta P µi in Eq. (A.8) only amounts to a polynomial in the Feynman

parameters.

A.1.2. Passarino-Veltman decomposition

Starting with a general tensor integral
1

N µ1...µp =
(2πµ)4−d

iπ 2

∫
ddk

kµ1 . . .kµp

D0D1...Dn−1

, (A.17)

the basic idea of the PV decomposition, as mentioned in Section 2.3, is to directly project the

tensorial dependence onto products of the available external momenta and/or the metric.

Contracting the external Lorentz coe�cients with the metric and external momenta, the

remaining PV coe�cient functions can be in principal determined in terms of the basic

functions through solving a linear equation system. Those basic functions are given by
2

A0(m
2) =
(2πµ)4−d

iπ 2

∫
ddk

1

k2 −m2
, (A.18a)

B0(p
2,m2

0
,m2

1
) =
(2πµ)4−d

iπ 2

∫
ddk

1(
k2 −m2

0

) (
(k + p)2 −m2

1

) , (A.18b)

C0({r
2

ij}, {m
2

i }) =
(2πµ)4−d

iπ 2

∫
ddk

1(
k2 −m2

0

) (
(k + r1)

2 −m2

1

) (
(k + r2)

2 −m2

2

) , (A.18c)

D0({r
2

ij}, {m
2

i }) =
(2πµ)4−d

iπ 2

∫
ddk

1(
k2 −m2

0

) (
(k + r1)

2 −m2

1

) (
(k + r2)

2 −m2

2

) (
(k + r3)

2 −m2

3

) ,

(A.18d)

with rij = ri − rj for all possible combinations of external momenta, including ri0 = ri . Of

course, there is usually no need to explicitly solve the system of linear equations, as there

are more e�cient algorithms for a direct numerical calculation of each coe�cient function

on the market, e.g. LoopTools [17]. Nevertheless, we want to further demonstrate the

procedure for the speci�c case of a three-point tensor function.

1
Note, that the normalization of the tensor integral di�ers from Eq. (A.1). This way, the

i
16π 2

factor

appearing in Eq. (A.11) is already included, when substituting this integral de�nition into a one-loop

calculation.

2
It is common nomenclature, to denote tadpole functions with A, two-point functions B, three-point

functions C and four-point functions D.
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A.1. One-loop calculations

Let us de�ne the tensor function

Cµνρ =
(2πµ)4−d

iπ 2

∫
ddk

kµkνkρ(
k2 −m2

0

) (
(k + r1)

2 −m2

1

) (
(k + r2)

2 −m2

2

)
=
(2πµ)4−d

iπ 2

∫
ddk

kµkνkρ

D0D1D2

. (A.19)

We note, that it is a function of the external momenta r1 and r2, and of the masses of the

loop particlesm2

0
,m2

1
andm2

2
. We now decompose the tensor functionCµνρ

into coe�cient

functions of all possible combinations of momenta and metric tensors, resulting in

Cµνρ =

2∑
i,j,k=1

r
µ
i r

ν
j r

ρ
k
Cijk +

2∑
i=1

(
дµνr

ρ
i + д

νρr
µ
i + д

ρµrνi
)
C00i . (A.20)

In order to �nd all equations needed for the determination of Cijk and C00i we would

subsequently contract both sides of the previous equation with the metric and the momenta

r1 and r2. Using the identities in the integrand

k2 = D0 −m
2

0
(A.21a)

r1 · k =
1

2

(
D1 − D0 − (r

2

1
−m2

1
+m2

0
)
)

(A.21b)

r2 · k =
1

2

(
D2 − D1 − (r

2

2
−m2

2
− (r 2

1
−m2

1
))
)

, (A.21c)

we are able to express the full contractions of Cµνρ
on the left-hand side of Eq. (A.20) in

terms of A0, B0 and C0 and, hence, get the equations for the determination of Cijk and C00i .

We end this section with a summary of the divergent parts of the PV functions that

appear in our one-loop calculation presented in Section 4.1. Such a list is useful for the

extraction of the divergent part in vertex corrections, in order to determine the counter

terms needed for the renormalization of the theory, as is performed in Section 4.2.
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PV function UV divergent part

A0(m
2

0
) ∆ϵm

2

0

B0(p
2,m2

0
,m2

1
) ∆ϵ

B1(p
2,m2

0
,m2

1
) −1

2
∆ϵ

B00(p
2,m2

0
,m2

1
) 1

12
∆ϵ

(
3m2

0
− 3m2

1
− p2

)
B11(p

2,m2

0
,m2

1
) 1

3
∆ϵ

C00({r
2

ij}, {m
2

i })
1

4
∆ϵ

C001({r
2

ij}, {m
2

i }) − 1

12
∆ϵ

C002({r
2

ij}, {m
2

i }) − 1

12
∆ϵ

D0000({r
2

ij}, {m
2

i })
1

24
∆ϵ

Table A.1.: Divergent part of the PV coe�cient functions, as found in Ref. [36].

A.2. Feynman rules

The Feynman rules of the SM and our new-physics (NP) model are provided in this section.

The relevant Feynman propagators read:

µ, a ν, b =
−i

k2 −m2

W

(
дµν −

kµkν

m2

W

)
δba , (A.22a)

H =
i

k2 −m2

H

, (A.22b)

i j =
i
(
γ µpµ +MF

)
p2 −M2

F

δ ji , (A.22c)

i j =
i

p2 −M2

S

δ ji . (A.22d)
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Vertices involving only SM particles are given by:

p1

p2

p3

µ, a

ν, b

ρ, c = дϵabc [дµν (p1 − p2)ρ + дνρ (p2 − p3)µ + дρµ (p3 − p1)ν ] ,

(A.23a)

µ, a

ν, bρ, c

σ, d

= iд2


ϵabnϵcdn (дµρдνσ − дµσдνρ)

+ϵacnϵbdn (дµνдρσ − дµσдνρ)

+ϵadnϵbcn (дµνдρσ − дµρдνσ )

, (A.23b)

µ, a

ν, b

H =
i2m2

W

v
дµνδab , (A.23c)

ν, b

µ, a H

H

=
i2m2

W

v
дµνδab . (A.23d)
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Lastly, our model induces the following new interactions:

i

j

µ, a = iдγ µT a
F ji , (A.24a)

p1

p2

i

j

µ, a = iд (p1 − p2)µ T a
S ji , (A.24b)

i

j µ, a

ν, b

= iд2дµν {T a
S ,T

b
S }ji . (A.24c)

The NP multiplets carry SU (2)L charge and, hence, their propagators have a speci�c

direction of charge transport which is resembled by the propagator arrows. The rule

for a closed loop of those multiplets will result in a trace in the isospin space of the

representation, where the product order of generators inside the trace is given by going in

opposite direction as indicated by the arrows.

A.3. Identities for the su(2)L algebra

In this section we want to derive all the su(2)L algebra rules, we need to apply for the

construction of the EFT operators and their analysis presented in Section 3.1. Also we will

evaluate the traces of up to four SU (2)L generators explicitly.

We start with general de�nitions, which will hold throughout the thesis. We denote a

generator of the SU (2)L in a representation R with taR . Hence, we have for a Lie-product of
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two generators

[taR, t
b
R] = iϵ

abctcR , (A.25)

where the ϵabc-tensor is the structure constant of su(2)L. Each representation R of su(2)L is

classi�ed by the isospin JR ∈ {0,
1

2
, 1, 3

2
, . . . } and has the dimension 2JR + 1. The generators

in the de�ning representation are just given by
τ a

2
, where τ a stand for the usual Pauli

matrices. The covariant derivative is given by

Dµ = ∂µ − iдt
a
RW

a
µ , (A.26)

but we will highlight it with a circum�ex, if we are talking about the covariant derivative

in the de�ning representation, so

D̂µ = ∂µ − iд
τ a

2

W a
µ . (A.27)

Also we want to highlight all �elds in the adjoint representation which are contracted

with the generators in the de�ning representation with a circum�ex, e.g. the �eld-strength

tensor which is given with the commutator of two covariant derivatives

Ŵµν =
1

−iд
[D̂µ , D̂ν ] =

τ a

2

W a
µν . (A.28)

We can write the covariant derivative of a �eld Φa
in adjoint space with the use of the

de�ning representation Φ̂ = Φa τ a

2
in the form

[D̂µ , Φ̂] =
τ a

2

(
∂µδ

ac + дϵabcW b
µ

)
Φc =

τ a

2

Dac
µ Φ

c
. (A.29)

Therefore [D̂µ , Φ̂] is again a �eld in the adjoint representation contracted with one single

generator.

We are now ready to derive the relations relevant for the thesis. We begin, with the

integration by parts for a covariant derivative on �elds in the adjoint representation. Let

Φa
1
, . . .Φa

n be �elds in the adjoint representation and Φ̂i = Φa
i
τ a

2
. The integration by parts

then reads

Tr

(
[D̂α , Φ̂1]Φ̂2 . . . Φ̂n

)
= Tr

(
[D̂α , Φ̂1Φ̂2 . . . Φ̂n]

)
− Tr

(
Φ̂1[D̂α , Φ̂2 . . . Φ̂n]

)
= Tr

(
[∂α , Φ̂1 . . . Φ̂n]

)
− iдW a

α Tr

(
[
τ a

2

, Φ̂1 . . . Φ̂n]

)
− Tr

(
Φ̂1[D̂α , Φ̂2 . . . Φ̂n]

)
= ∂α Tr

(
Φ̂1 . . . Φ̂n

)
− Tr

(
Φ̂1[D̂α , Φ̂2 . . . Φ̂n]

)
, (A.30)

where we used in the third equality the fact, that the trace of the commutator of a product

of generators vanishes due to cyclicality.

The Jacobi identity for covariant derivatives on �eld-strength tensors is easily proven,

since

[D̂α ,Ŵβγ ] + [D̂β ,Ŵγα ] + [D̂γ ,Ŵαβ ]

=
1

−iд
[

(
D̂α , [D̂β , D̂γ ]] + [D̂β , [D̂γ , D̂α ]] + [D̂γ , [D̂α , D̂β ]]

)
= 0 . (A.31)
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For the relation of two antisymmetrized covariant derivatives in the adjoint representa-

tion, we start with the explicit form of two covariant derivatives acting on the �eld Φa
,

which results in

[D̂α , [D̂β , Φ̂]] =
τ a

2

D ac
α D ce

β Φe

=
τ a

2

(∂α∂βδ
ae + дϵabe(∂αW

b
β +W

b
β ∂α +W

b
α ∂β ) + д

2ϵabcϵcdeW b
αW

c
β )Φ

e
.

(A.32)

Antisymmetrizing Eq. (A.32) for α ↔ β , we obtain

[D̂[α , [D̂β], Φ̂]] =
τ a

2

д(ϵabe(∂αW
b
β − ∂βW

b
α ) + д(ϵ

abcϵcde − ϵadcϵcbe)W b
αW

d
β )Φ

e

= дϵabcT aW b
αβΦ

c
. (A.33)

In the rest of this section we deal with the explicit evaluation of traces of generators in

a representation R of the SU (2)L.

The trace of two generators is given by

Tr(taRt
b
R) = TRδ

ab
, (A.34)

which serves as the de�nition of the indexTR of a representation. For the SU (2)L generators

in the common normalization the index is given by

TR =
JR(JR + 1)(2JR + 1)

3

, (A.35)

such thatTdef =
1

2
for the de�ning representation. The trace of three generators is given by

Tr(taRt
b
Rt

c
R) =

1

2

(
Tr(taR[t

b
R, t

c
R]) + Tr(taR{t

b
R, t

c
R})

)
=

i

2

TRϵ
abc

. (A.36)

Here, we used the fact, that there are no structure constants of the su(2)L other than δab

and ϵabc . Thus, each trace of three �elds will be antisymmetric in the exchange of two

�elds, meaning

Tr

(
Φ̂1Φ̂2Φ̂3

)
= −Tr

(
Φ̂1Φ̂3Φ̂2

)
. (A.37)

The subsection A.3.1 is dedicated to the general evaluation of traces of four generators

of an arbitrary su(n) algebra, which will result in Eq. (A.47). Here, we will only state

the result for the su(2)L using the above mentioned argument on the su(2)L structure

constants, hence

Tr(taRt
b
Rt

c
Rt

d
R) =

1

15

TR(3C2,R − 1)(δabδcd + δacδbd + δadδbc) +
1

6

TR(ϵ
adnϵbcn − ϵabnϵcdn)

=
1

15

TR(3C2,R − 1)(δabδcd + δacδbd + δadδbc)

+
1

6

TR(δ
abδcd − 2δacδbd + δadδbc) , (A.38)

where we separated out the symmetric part of the adjoint indices. The quadratic casimir

C2,R of a representation R is given by C2,R = JR(JR + 1).
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A.3.1. Calculation of traces with four su(n) generators

In this subsection we follow the strategy for calculating representation factors from traces

over su(n) generators presented in Ref. [37]. We denote the generators of a representation

r of SU (n) by tar and the structure constants are given by [tar , t
b
r ] = i f abc tcr . The index of

the representation r is de�ned with Tr

(
tar t

b
r

)
= Trδ

ab
. Our aim is a general decomposition

of the trace Tr

(
tar t

b
r t

c
r t
d
r

)
. We begin with the de�nition of a fully symmetrized product of n

generators as

{ta1

r t
a2

r ...t
an
r } =

1

n!

©«
∑

σ∈Per (n)

t
aσ (1)
r t

aσ (2)
r ...t

aσ (n)
r

ª®¬ . (A.39)

Using this symmetrised product we may write a symmetric trace of generators as

da1...an
r = Tr

(
t
a1

r {t
a2

r . . . t
an
r }

)
. (A.40)

In a su(n) algebra the n−1 smallest symmetric traces form independent structure constants

in the adjoint space, e.g. in su(3) there exists an independent symmetric structure constant

dabcr . The Kronecker delta δab in the adjoint space always belongs to this structure constants,

as it follows from the (symmetric) trace of two generators. If the structure constant is not

independent, it can either be decomposed into lower dimensional constants or it vanishes.

If we want to calculate the trace of four generators we need the symmetrised product of

three generators given by

{tar t
b
r t

c
r } =

1

6

(tar t
b
r t

c
r + t

b
r t

c
r t
a
r + t

c
r t
a
r t

b
r + t

a
r t

c
r t
b
r + t

b
r t

a
r t

c
r + t

c
r t
b
r t

a
r ) . (A.41)

Now we start commuting each generator product on the right hand side of Eq. (A.41) such

that we arrive at tar t
b
r t

c
r plus combinations of structure constants times products of two

generators. Thus, we get

t
b
r t

a
r t

c
r = t

a
r t

b
r t

c
r + i f

ban
t
n
r t

c
r , (A.42a)

t
a
r t

c
r t
b
r = t

a
r t

b
r t

c
r + i f

cbn
t
a
r t

n
r , (A.42b)

t
b
r t

c
r t
a
r = t

a
r t

b
r t

c
r + i f

can
t
b
r t

n
r + i f

ban
t
n
r t

c
r , (A.42c)

t
c
r t
a
r t

b
r = t

a
r t

b
r t

c
r + i f

can
t
n
r t

b
r + i f

cbn
t
a
r t

n
r , (A.42d)

t
c
r t
b
r t

a
r = t

a
r t

b
r t

c
r + i f

ban
t
c
r t
n
r + i f

can
t
n
r t

b
r + i f

cbn
t
a
r t

n
r . (A.42e)

Inserting these relations in Eq. (A.41) results into

{tar t
b
r t

c
r } = t

a
r t

b
r t

c
r +

1

6

(
i f ban({tnr , t

c
r } + t

n
r t

c
r )i + f can({tnr , t

b
r } + t

n
r t

b
r ) + 3i f cbntar t

n
r

)
. (A.43)
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Now we can insert the relation in Eq. (A.43) into the trace we want to evaluate, namely

Tr(tar t
b
r t

c
r t
d
r ). We obtain

Tr(tar t
b
r t

c
r t
d
r ) = Tr({tar t

b
r t

c
r }t

d
r ) −

i

6

(
f ban Tr(({tnr , t

c
r } + t

n
r t

c
r )t

d
r )

+f can Tr(({tnr , t
b
r } + t

n
r t

b
r )t

d
r ) + 3i f cbn Tr(tar t

n
r t

d
r )

)
= dabcdr −

i

2

(dcdnr f ban + ddanr f cbn + dbdnr f can)

+
1

12

Tr (f
ban f cdn + 3f cbn f dan + f can f bdn) , (A.44)

where we used the short hand notation for the symmetric traces

dabcdr = Tr({tar t
b
r t

c
r }t

d
r ) , (A.45a)

dabcr =
1

2

Tr({tar , t
b
r }t

c
r ) . (A.45b)

With the use of the Jacobi identities of the structure constants

f abn f cdn + f bcn f adn + f can f bdn = 0 , (A.46a)

dabnr f cdn + dbcnr f adn + dcanr f bdn = 0 , (A.46b)

this results in the desired relation

Tr(tar t
b
r t

c
r t
d
r ) = d

abcd
r +

i

2

(dadnr f bcn − dbcnr f adn) +
1

6

Tr (f
adn f bcn − f abn f cdn) . (A.47)

A.4. Definitions for helicity eigenvectors

In this section, we provide more information about the construction of polarization vectors

representing helicity eigenstates of external vector bosons. Massive vector bosons (with

spin s = 1) have three degrees of freedom, which should also be represented in three

independent polarization vectors for external bosons. Therefore, following the de�nition

in Ref. [38], we choose for an on-shell vector boson with momentum k =
(
E,kx ,ky,kz

)
the

rectangular polarization basis

ϵ(k, 1) =
1

| ®k |
√
k2

x + k
2

y

(
0,kxkz,kykz,−k

2

x − k
2

y

)
, (A.48a)

ϵ(k, 2) =
1√

k2

x + k
2

y

(
0,−ky,kx , 0

)
, (A.48b)

ϵ(k, 3) =
E

m | ®k |

(
| ®k |2

E
,kx ,ky,kz

)
, (A.48c)

which is a valid choice for every Lorentz frame, as the conditions kµϵµ(k, λ
′) = 0 and

ϵ∗µ(k, λ′)ϵµ(k,κ
′) = −δλ′κ ′ are ensured. The third polarization vector corresponds al-

ready to the longitudinal helicity eigenstate ϵ0(k) = ϵ(k, 3), as the spacial component is
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aligned in the direction of spacial momenta. The transverse positive and negative helicity

eigenvectors are constructed with

ϵ±(k) = ∓
1

√
2

(ϵ(k, 1) ± iϵ(k, 2)) . (A.49)

In the COM frame for two antiparallel bosons with momenta in the xz-plane k
µ
1
=

√
s

2
(1, β sinθ , 0, β cosθ ) and k

µ
2
=
√
s

2
(1,−β sinθ , 0,−β cosθ ) for θ ∈ [0,π ) we thus have

ϵ(k1, 1) = (0, cosθ , 0,− sinθ ) ,

ϵ(k1, 2) = (0, 0, 1, 0) ,

ϵ(k1, 3) =

√
s

2mW
(β , sinθ , 0, cosθ ) ,

ϵ(k2, 1) = (0, cosθ , 0,− sinθ ) ,

ϵ(k2, 2) = (0, 0,−1, 0) ,

ϵ(k2, 3) =

√
s

2mW
(β,− sinθ , 0,− cosθ ) .

(A.50)

Now taking the momenta de�ned in Section 5.2, we �nd an ambiguity in the de�nition

of the polarization vectors for the incoming momenta along the z-axis. We use for our

calculation the convention

ϵ(p1, λ
′) = lim

θ→0

ϵ(k1, λ
′) , (A.51a)

ϵ(p2, λ
′) = lim

θ→0

ϵ(k2, λ
′) , (A.51b)

and �nally get the full set of helicity eigenvectors:

ϵ± (p1) = −
1

√
2

(0, 1,±i, 0) ,

ϵ± (p2) = −
1

√
2

(0, 1,∓i, 0) ,

ϵ∗± (q1) = −
1

√
2

(0, cosθ ,− sinθ ∓ i, 0) ,

ϵ∗± (q2) = −
1

√
2

(0, cosθ ,− sinθ ± i, 0) ,

ϵ0 (p1) =

√
s

2mW
(β , 0, 0, 1) ,

ϵ0 (p2) =

√
s

2mW
(β , 0, 0,−1) ,

ϵ∗
0
(q1) =

√
s

2mW
(β , sinθ , 0, sinθ ) ,

ϵ∗
0
(q2) =

√
s

2mW
(β ,− sinθ , 0,− cosθ ) .

(A.52)

Of course, as depicted here, we need to use the complex conjugate helicity eigenvectors

for outgoing particles.

A.5. VeBoS program

VeBos is a program based on Fortran77 code that provides routines for di�erent aspects of

on-shell VBS, that were partly discussed in Chapter 5. The main program in VeBoS starts

the input subroutine slharun3
, basic variable declarations, the sub program vebos_sub

that distributes the calculation and the output subroutine in writeslha. Depending on the

settings, vebos_sub opens subroutines for constructing the di�erential cross section, the

integrands for the projection of partial-wave (PW) coe�cients as described in Eq. (3.37) (but

3
The subroutines slharun and writeslha make use of the Robert Harlander’s SLHARoutines for input and

output, which is taken from Ref. [39].
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without the normalization!) or directly the amplitude. Hereby, the calculation is always

performed separately for the SM, the new-physics (NP) one-loop and/or EFT contribution.

If an integration is needed, vebos_sub forwards the integrand to integ_vebos, where

the VEGAS routine from the CUBA library [40] is used. The main work is included in

the subroutines calcampSM, calcampLoop and calcampEFT that numerically construct the

Feynman amplitudes.

The analytic one-loop vertex correction discussed in Section 4.1 are accessed in the sub-

routines Prop1FeLoop, Tr1FeLoop and Box1FeLoop for the fermion case and Prop1ScLoop,

Tr1ScLoop and Box1ScLoop for the scalar case. The PV loop functions are evaluated with

the help of LoopTools [17]. The expressions of the EFT vertices mentioned in Eqs. (3.22),

(3.23) and (3.24) appear in PropVertEff, TrVertEff and BoxVertEff, respectively.

As it became clear, VeBoS needs to be linked to two external codes, the CUBA library and

LoopTools.

A.5.1. Input settings

The input �le, the default is called vebos.in, is separated into di�erent blocks. The �rst

number of each line is the variable identi�er for the assignment and the second number is

the given value. The text after the hashtag is only a comment for the variable identi�cation

of the user. We will go through the di�erent blocks in the following and present an example

setting.

The �rst block takes integer values and sets the general modus of the program. It has

the following form:

Block INTEGER
1 1 # XS

2 0 # diff

3 1 # varrep

4 2 # eff

5 2 # process

6 0 # topology

7 0 # Lexpand

8 1 # nF

9 1 # nS

10 1 # helI1

11 1 # helI2

12 1 # helF1

13 1 # helF2

The description of the variables is as follows:

XS 0: output in form of an amplitude/PW coe�cient; 1: output in form of the (di�eren-

tial) cross section
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diff 0: no angular integration, hence di�erential cross section or amplitude in the output;

1: angular integration is performed for total cross section or the PW coe�cient

output

varrep 0: calculation for �xed model parameters; 1: output values are di�erent coe�cients

of powers of TR and TRC2,R

eff 0: only loop calculation; 1: only EFT calculation; 2: both calculations

process 0: all VBS processes; 1-7: speci�c VBS assigned following Eq. (5.3)

topology 0: all diagrams; ±1: only/no propagator corrections (SMW -propagator diagram); ±2:

only/no aTGC (SM Higgs-propagator diagram); ±3: only/no aQGC (SM 4W -vertex)

Lexpand 0: calculation of EFT expanded in д; 1: calculation of EFT expanded in energy scale

Λ (Up to now, combinations of Fe and Sc in one diagram are not accounted for!)

nF number of identical fermion multiplets (only if varrep= 0)

nS number of identical scalar multiplets (only if varrep= 0)

helI1/2 helicity of incoming vector boson 1/2

helF1/2 helicity of outgoing vector boson 1/2

Not all of the presented possible settings are compatible. The setting varrep= 1 forces

a choice of process, 0 and also there is no possibility to calculate a (di�erential) cross

section with varrep= 1 and Lexpand= 1.

The second input block takes the real values setting the NP model parameters and the

physical environment. An example setting is shown in the following:

Block REAL
1 2000.d0 # sqrt(s) [GeV]

2 5.0d0 # angle [Degree]

3 0.66d0 # g

4 246.d0 # v [GeV]

5 750.d0 # MF [GeV]

6 750.d0 # MS [GeV]

7 750.d0 # renscale

8 5.d0 # jF

9 8.d0 # jS

10 0.d0 # UVdiv

The variable UVdiv, which sets ∆ = 1

ϵ −γE + log(4π ), can be taken nonzero if the cancel-

lation of ultraviolet divergences should be checked. In that case, the EFT coe�cient fWW

needs to be activated in the EFT calculation. Likewise, renscale sets the renormalization

scale, which enters the EFT also in the fWW coe�cient, if the renscale value di�ers from

the loop particle mass. angle sets the analyzed angle for the di�erential cross section
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and the Feynman amplitude or the integration range for the cross section and the PW

coe�cient calculation.

The next block is only relevant if including an EFT calculation. Then it activates (value

1) or deactivates (value 0) speci�c Wilson coe�cients and, hence, the contribution of the

associated EFT operator.

Block WILSONCOEFF
1 0 # activates fWW

2 1 # activates fDW

3 1 # activates fD2W

4 1 # activates fWWW

5 1 # activates fDWWW0

6 1 # activates fDWWW1

7 1 # activates fT0

8 1 # activates fT1

9 1 # activates fT2

10 1 # activates fT3

In the last block, some setting for the VEGAS integration can be changed. This is helpful

for choosing the desired speed and accuracy of the integration.

Block VEGAS
1 500 # nstart

2 0 # nincrease

3 500 # mineval

4 2500 # maxeval

A.5.2. Output

The output �le is structured in blocks like the input. The calculated values are presented in

the blocks SM, LOOP and EFT. The size of the blocks varies depending on the input settings

of VeBoS, but the comments after the hashtags are chosen, such that the output should be

well understood by the user. For a crosscheck after the calculation, the output �le also

lists all input blocks.

In the subsequent lines, the beginning of an example output block will be shown:
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Block LOOP

1 1.01613460E-02 # sigma( TF ) [pb], WpmWmp->ZZ

2 1.05764619E-04 # Error( TF ) [pb], WpmWmp->ZZ

3 3.07702393E-06 # sigma( CFTF ) [pb], WpmWmp->ZZ

4 3.14066510E-08 # Error( CFTF ) [pb], WpmWmp->ZZ

5 6.77915050E-07 # sigma( TFˆ2 ) [pb], WpmWmp->ZZ

6 4.08536986E-09 # Error( TFˆ2 ) [pb], WpmWmp->ZZ

7 4.11588966E-10 # sigma( CFTFˆ2 ) [pb], WpmWmp->ZZ

8 2.53226248E-12 # Error( CFTFˆ2 ) [pb], WpmWmp->ZZ

9 6.26962997E-14 # sigma(CFˆ2TFˆ2) [pb], WpmWmp->ZZ

10 4.16989875E-16 # Error(CFˆ2TFˆ2) [pb], WpmWmp->ZZ
...

...
...

...

Here, we used the input settings for calculating the cross section for the processWW →
ZZ without specifying the model representation. Thus, in order to get the cross section,

we have to multiply each value with the representation factor shown in the bracket and

add up the contributions up to the order we want to consider (TR corresponds to O(д6),

and T 2

R to O(д8)). As we used numerical integration for the generation of those values, the

error on each value estimated by VEGAS is presented.

A.6. Partial-wave analysis of the concrete scalar model

In this section we demonstrate the partial-wave (PW) analysis of the model with one scalar

multiplet with JS = 8 and MS = 750 GeV. The construction of the eigenvalues of the PW

coe�cients follows the procedure in Section 5.6.

In Fig. A.1 we depict the dominant eigenvalue of the PW coe�cients in the scalar case.

We clearly see a large deviation from the unitarity bound of Eq. (3.40), which begins in the

vicinity of the peak at

√
s ∼ 1500 GeV. This behavior of the a0

+(J = 0) eigenvalue indicates,

that the predictions of our scalar model at the one-loop level are beyond what is acceptable

by unitarity considerations. This arises from the high representation of JS = 8, as using

a representation with JS = 6 would result in a comparable situation to the fermion case.

However, we need the large isospin to have a Wilson coe�cient of OT1
in the ballpark of

experimental bounds[6]. Therefore, we continue using the scalar model with the given

parameters in comparison with its derived EFT approximation and in contrast to the

fermion model, keeping in mind that the predictions do not resemble a physical behavior.
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Figure A.1.: Analysis of the isospin singlet PW coe�cient eigenvalues a0

± (J = 0) in the

scalar case. We show (a) the Argand diagram for both eigenvalues and the diagram showing

the real part, imaginary part and the EFT eigenvalue (b) of a0

− (J = 0) and (c) of a0

+ (J = 0)

as a function of

√
s .
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