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Abstract

In this thesis I present the amplitude for the leading order quark-initiated double Higgs
production up to the order ε2 for diagrams that involve a top quark and generate the Higgs
boson through electroweak bosons. I calculated the appearing Feynman integrals with the
method of differential equations, employing a large mass expansion to generate boundary
functions. The resulting expressions agree with pySecDec and the amplitude is free from
poles in ε. In addition, I present the first step in the calculation of the next-to-leading order
electroweak corrections for the gluon- and quark-initiated double Higgs production with
a fully symbolic dependence on master integrals by providing the amplitude for diagrams
that contain a top quark and generate the Higgs boson throughW bosons.
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0. Introduction

The discovery of the Higgs Boson in 2012 by the CMS and ATLAS collaborations at the
Large Hadron Collider (LHC) [1, 2] marks one of the greatest milestones in particle physics.
Since this groundbreaking discovery, investigating the detailed properties of the Higgs
boson has become a major focus of research at the LHC [3, 4]. While parameters like the
Higgs mass have been measured with high precision [5], the investigation of Higgs pair
production remains a key area of interest [5–10], as it provides the only direct probe of
the trilinear coupling λHHH , which is crucial for reconstructing the Higgs potential.

The Standard Model of particle physics (SM) predicts that the dominant contribution
to Higgs pair production comes from gluon-initiated processes. However, due to the
destructive interference between the box-like and triangle-like contributions, the cross
section for double Higgs production is expected to be three orders of magnitude smaller
than that of single Higgs production, making the experimental measurement challenging.
The strongest constraints on the ratio between the observed and predicted trilinear coupling
are currently given by

−1.2 <
λHHH

λSMHHH

< 7.2 , (0.1)

at a 95% confidence limit [11]. However, the High-Luminosity LHC run presents the
opportunity for more precise measurements [12–14].

To match the expected experimental precision, accurate theoretical predictions for double
Higgs production at proton-proton colliders are essential. These predictions include both
quark- and gluon-initiated processes. Although the LO calculation of the gluon-initiated
double Higgs production was performed over two decades ago, [15, 16], the next-to-leading-
order (NLO) predictions are significantly more complex, involving two loop-diagrams.
Numerical NLO quantum chromodynamic (QCD) corrections were published only a few
years ago [17–25], with numerical NLO electroweak (EW) corrections recently computed
[26–31].

In comparison to a fully numerical evaluation, an analytic approach offers two key advan-
tages. First, it is more flexible allowing for a precise and faster numerical evaluation across
a wide range of external kinematics. Second, it makes physical features of the amplitude,
such as threshold behavior, manifest - often expressed as arguments of polylogarithms.

In this thesis, I focus on Feynman diagrams that contain at least one massive and one
massless quark line and produce the Higgs boson viaW bosons. I present the analytic
results for the quark-initiated LO diagrams with full dependence over all scales. The
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0. Introduction

calculation is performed using the method of differential equations [32–35] employing
a large mass expansion to fix the integration constants. At the two-loop level, I take an
initial step toward calculating the EW corrections for both gluon- and quark-initiated
double-Higgs production by expressing the diagrams in terms of master integrals with full
symbolic dependence on all relevant scales.

The thesis is organized as following. In Chapter 1, I provide a brief overview of the SM and
the perturbative techniques relevant to the calculations. Chapter 2 introduces Feynman
integrals and discusses their properties, focussing on how to generate and exploit relations
among them. The theoretical foundation for solving Feynman integrals using differential
equations is discussed in Chapter 3. Chapters 4 and 5 are devoted to the calculations for the
quark- and gluon-initiated amplitudes, respectively. To conclude, Chapter 6 summarizes
my findings and offers an outlook for future work.
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1. The Standard Model of Particle Physics

The SM is a quantum field theory that arises from the combination of special relativity
and quantum mechanics. It describes all confirmed fundamental particles and three of the
four known fundamental forces: the weak force, strong force and electromagnetic force.
These particles and forces are embedded in a spontaneously broken gauge theory with the
gauge group

SU(3)C × SU(2)L × U(1)Y , (1.1)

which describes the symmetries of QCD and the EW sector.

1.1. The Electroweak Sector

The electroweak sector unifies the electromagnetic and weak forces under the gauge
group SU(2)L × U(1)Y , describing the electroweak interactions between fermions via the
exchange of gauge bosons: The photon for electromagnetic interactions, and theW± andZ
bosons for weak interactions. The Higgs mechanism breaks the SU(2)L×U(1)Y symmetry
down to the electromagnetic U(1)em symmetry, giving mass to the weak bosons while
leaving the photon massless. This section examines the structure of the EW Lagrangian.

1.1.1. Massless Gauge Bosons

Massless fermions are described by the Lagrangian

L = Ψ̄i/∂Ψ , (1.2)

where /∂ = γµ∂µ. This Lagrangian is invariant under global transformations of the
electroweak symmetry group SU(2)L × U(1)Y . Fermions transform under this group
according to

ΨL → eiτ
aαa

e
i
2
βYΨL and ΨR → e

i
2
βYΨR , (1.3)

where τa, a ∈ {1, 2, 3}, represent the SU(2) group generators, and Y is the hyper charge.
To extend this global symmetry to a local one, where α = α(x) and β = β(x), a gauge
field is required for each group generator. These fields, denoted asW a

µ and Bµ transform

3



1. The Standard Model of Particle Physics

under a gauge transformation as

W a
µ (x) → W a

µ (x) +
1

g
∂µα

a(x)− εabcαb(x)W c
µ

Bµ(x) → Bµ(x) +
1

g′
∂µβ(x) ,

(1.4)

The Lagrangian becomes locally invariant under the electroweak symmetry group by
minimally coupling these gauge fields to fermions through the modified Lagrangian

L = Ψ̄i /DΨ , (1.5)

where the covariant derivative is defined as

Dµ = ∂µ − ig τaW a
µ (x)PL − ig′

Y

2
Bµ(x) , (1.6)

The left-handed projection operator,

PL =
1

2
(1− γ5) , (1.7)

is used to project out the left-handed component of the fermion fields, ensuring that the
W± bosons couple only to left-handed fermions, as required by the weak interaction.

Next, the kinematic andmass terms for the gauge bosons need to be introduced to construct
the full EW Lagrangian. The kinematic terms can be formulated in a gauge-invariant man-
ner by generalizing the electromagnetic field strength tensor. However, a straightforward
mass term, such as

Lmass =
1

2
m2

WWµW
µ , (1.8)

is not invariant under local SU(2)L transformations. This issue necessitates an alternative
approach, leading to the introduction of the Higgs mechanism.

1.1.2. Electroweak Symmetry Breaking

The mass terms for the gauge fields can be generated through the introduction of the
Higgs field. The Higgs field, Φ, is a scalar field that transforms as a doublet under SU(2)L
and carries a hypercharge of Y = 1. Its Lagrangian is given by

LHiggs = (DµΦ)
†(DµΦ)− V (Φ) , (1.9)

where V (Φ) denotes the Higgs potential, which is given by

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
, (1.10)

4



1.1. The Electroweak Sector

with µ2 < 0 and λ > 0. Neglecting quantum corrections, the ground state of Φ is
determined by minimizing the Higgs potential,

Φ†Φ = −µ
2

2λ
, (1.11)

resulting in a non-zero vacuum expectation value (VEV).

This equation has infinite solutions, but a suitable gauge transformation of the Higgs field
allows to select any of these as a ground state. Conventionally, it is chosen as

〈Φ〉 = 1√
2

(
0
v

)
, (1.12)

with the real parameter v.

The choice of the VEV breaks the electroweak symmetry group, as it is not invariant
under arbitrary SU(2)L×U(1)Y transformations. Choosing the Pauli matrices σa as SU(2)
generators,

τa =
σa

2
, (1.13)

results in the following condition for the invariance of the ground state:

〈Φ〉 !
= ei

σa

2
αa

e
i
2
β 〈Φ〉 , (1.14)

which implies α1 = α2 = 0 and α3 = β.

As a consequence, the remaining gauge symmetry that leaves the ground state invariant
reads

exp
[
iβ

(
τ 3 +

Y

2

)]
, (1.15)

which corresponds to the unbroken electromagnetic U(1)em symmetry with

Q = τ 3 +
Y

2
, (1.16)

being the conserved electric charge.

1.1.3. Mass Terms for the Gauge Bosons

The gauge bosons acquire mass through the kinetic term of the Higgs Lagrangian. By
expanding the Higgs field Φ around its VEV,

Φ =
1√
2

(
ϕ1 + iϕ2

v + h+ iϕ3

)
, (1.17)

5



1. The Standard Model of Particle Physics

the resulting Lagrangian contains quadratic terms in the gauge fields,

Lmass =
1

2

v2

4


W 1

µ

W 2
µ

W 3
µ

Bµ


T

g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g2



W 1

µ

W 2
µ

W 3
µ

Bµ

 . (1.18)

Diagonalizing this mass matrix yields three massive gauge bosons,

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
with mW =

g

2
v (1.19)

Z±
µ =

g′W 3
µ − gBµ√
g2 + g′2

with mZ =

√
g2 + g′2

2
v , (1.20)

as well as one massless gauge boson,

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

, (1.21)

which is identified as the photon field.

1.1.4. Unphysical Degrees of Freedom

In addition to the physical gauge bosons, the EW sector also contains unphysical degrees
of freedom, specifically Goldstone bosons and ghost fields.

Ghosts

Ghost fields arise from the gauge freedom of gauge fields. In the path integration formalism
of quantum field theory, the quantization process involves integrating over all distinct field
configurations. However, for gauge fields Vµ, this includes integration over an infinite
number of physically equivalent states due to the gauge symmetry.

To eliminate this redundancy a gauge-fixing condition G(V ) must be imposed. The
Faddeev-Popov method provides a systematic way to incorporate gauge-fixing into the
formalism by inserting the identity

1 =

∫
Dα(x) δ(G(V α)− ω(x)) det

(
δG(V α)

δα

)
, (1.22)

where V α denotes the gauge-transformed field,

(V α)aµ = V a
µ +

1

g
∂µα

a(x)− fabcαb(x)V c
µ , (1.23)

and αa(x) is the gauge transformation parameter. The delta distribution ensures that the
integration does not include physically equivalent configurations, with ω(x) being an
arbitrary function.

6



1.1. The Electroweak Sector

To simplify calculations, integrating over ω(x) with a Gaussian weight allows the delta
function to be replaced with an additional term in the Lagrangian,∫

Dω(x)Dα(x) δ(G(V α)− ω(x)) det
(
δG(V )

δα

)
e−

ω(x)2

2

=

∫
Dα(x) det

(
δG(V α)

δα

)
e−

G(V )2

2

(1.24)

resulting in what is known as the gauge-fixing term.

The determinant can be expressed as a part of the Lagrangian by introducing Grassmann
fields, called ghost fields,

det
(
δG(V α)

δα

)
=

∫ (∏
a

Dc̄a Dca

)
exp
(
−c̄a

(
δG(V α)

δα

)
ab

cb

)
. (1.25)

These fields c and c̄ are unphyiscal because, despite being scalar, they anticommute,
violating the spin-statistics theorem. However, their presence is necessary to properly
account for the gauge-fixing procedure, and their Feynman rules must be considered when
calculating amplitudes.

Goldstone Bosons

The kinetic part of the Lagrangian not only generates mass terms for the gauge bosons
but also produces kinetic terms for the Goldstone fields ϕi, bilinear mixing terms between
the Goldstone and gauge fields, as well as trilinear and quartic interaction terms, denoted
as L3 and L4, respectively. This can be written as

(DµΦ)(D
µΦ) =

1

2
V a
µ MabV

µb +
1

2
(∂µh(x))(∂

µh(x)) +
1

2
(∂µϕi(x))(∂

µϕi(x))

+V a
µ F

a
i ∂

µϕi + L3 + L4 ,
(1.26)

where V a
µ for a ∈ {1, 2, 3, 4} denotes the four gauge fields, and F a

i represents their bilinear
couplings to the Goldstone fields.

Choosing a specific gauge-fixing condition allows to get rid of the bilinear mixing terms
between the gauge and Goldstone fields. The Rξ-gauge is defined by the gauge-fixing
condition,

Ga(x) =
1√
ξ

(
∂µV a

µ − ξF a
i ϕi

)
, (1.27)

leading to the gauge-fixing term

−1

2
G2 = − 1

2ξ
(∂µV a

µ − ξF a
i ϕi)

2 . (1.28)
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1. The Standard Model of Particle Physics

Expanding the square and partially integrating the mixing term results in

−1

2
G2 =

1

2ξ
V a
µ (∂

µ∂ν)V a
ν − 1

2
ξ (F a

i ϕi)
2 − V a

µ F
a
i ∂

µϕi . (1.29)

Themixing term between the gauge fields and the Goldstone bosons cancels the correspond-
ing term in the kinetic part. The quadratic terms in ϕi result in masses for the Goldstone
bosons. Diagonalizing the mass matrix ξ(F aF a)ij gives three massive Goldstone bosons

ϕ± with m2
ϕ± = ξm2

W (1.30)
ϕZ with mϕZ

= ξm2
Z , (1.31)

as well as one massless Goldstone boson ϕA.

The dependence of the Goldstone boson masses on the gauge parameter ξ indicates that
these fields are unphysical.

The Unitary Gauge

The gauge-fixing condition in Eq. (1.27) not only introduces mass terms for the Goldstone
bosons, but also affects the Feynman rules for ghost fields, as described by Eq. (1.25). In
fact, the masses of the ghost fields are equal to those of the corresponding Goldstone
bosons.

The unitary gauge is defined as the limit ξ → ∞, which causes the masses of the Goldstone
bosons and ghosts to become infinitely large. As a result, they decouple entirely from the
theory, meaning they no longer contribute to physical processes.

As a consequence, this gauge choice can simplify calculations by significantly reducing
the number of required Feynman diagrams.

1.2. Perturbation Theory

High energy colliders, like the Large Hadron Collider (LHC), are crucial for testing the SM.
By colliding particles at very high energies, these experiments enable precisemeasurements
of observables such at cross sections and decay widths. To compare these experimental
results with theoretical predictions, scattering amplitudes A must be calculated with high
precision.

However, exact calculations of the amplitude are generally not feasible. Instead, the
amplitude is typically expressed as an expansion in terms of the coupling constants,

A = A0 +A1 +A2 + . . . . (1.32)

The lowest non-zero order A0 is referred to as the LO of the scattering amplitude, while
A1 corresponds to the NLO, and higher terms follow accordingly.
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1.2. Perturbation Theory

The LO amplitude does not always correspond to tree-level Feynman diagrams. Consider
for instance the gluon initiated Higgs production. Being massless particles, gluons do
not couple directly to the Higgs boson. Consequently, the LO amplitude already requires
one-loop diagrams.

Observables depend on the squared magnitude of the amplitude, |A|2. Expanding the
amplitude and squaring it yields

|A|2 = (A0 +A1 +A2 + . . .)
(
Ā0 + Ā1 + Ā2 + . . .

)
= |A0|2︸ ︷︷ ︸

Leading order

+ 2Re(A0Ā1)︸ ︷︷ ︸
Next-to-leading order

+ |A1|2 + 2Re
(
A0Ā2

)︸ ︷︷ ︸
Next-to-next-to-leading order

+ . . . , (1.33)

where Āi denotes the complex conjugate of Ai. Thus, the NLO term in the squared
amplitude arises from the interference between the LO and NLO amplitudes, rather than
simply from the squared NLO amplitude.

1.2.1. Divergences

The calculation of scattering amplitudes requires summing over all possible intermedi-
ate states, which leads to intermediate particles with momenta that are not uniquely
determined by momentum conservation, referred to as loop momenta. This necessitates
integrating over these loop momenta, which can lead to divergent results. Divergences
may arise when loop momenta approach infinity or when massless propagators become
singular as their momenta approach zero, denoted as ultraviolet (UV) or infrared (IR)
divergences, respectively. Properly addressing these divergences is essential for obtaining
physically meaningful results.

Ultraviolet Divergences

Ultraviolet divergences arise from the behavior of integrals at large momenta. Consider
for example the equal mass bubble integral,

Iν1ν2 =

∫
d4k
(2π)4

1

[k2 −m2 + iδ]ν1 [(k + p)2 −m2 + iδ]ν2
, (1.34)

where ν1, ν2 ∈ Z are integers. For large momenta |k| > ΩUV, this integral scales as

Iν1ν2 ∝
∫ ∞

ΩUV

dk k3−2(ν1+ν2) , (1.35)

which diverges if ν1 + ν2 ≤ 2.

For loop-induced LO amplitudes, UV divergences cancel when adding all Feynman dia-
grams together. At higher orders, in renormalizable theories, they can be eliminated by
renormalization of the fields and parameters.
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1. The Standard Model of Particle Physics

Infrared Divergences

Infrared divergences arise when massless denominators approach zero. For example for
low momenta |k| < ΩIR andm = 0, the equal mass bubble integral scales as

Iν1,ν2 ∝
∫ ΩIR

0

dk k3−2ν1 , (1.36)

which diverges if ν1 > 2.

These divergences can be addressed by considering that every detector has a finite resolu-
tion, therefore, an n-particle final state is indistinguishable from an (n+ 1)-particle final
state when two particles are sufficiently close together or when an additional particle has
energy below the detection threshold. The phase space integrations over these regions of
the (n+1)-particle squared amplitude produces a divergence with the opposite sign, which
cancels the IR divergence of the n-particle process when summed over all degenerate final
states.

To match the powers of coupling constants in the n and (n + 1)-particle process, the
(n+1)-particle process must involve one fewer loop and one additional leg. Consequently,
any LO amplitude is protected from IR divergences.

Dimensional Regularization

Divergences must be made quantifiable to achieve their cancellation. This requires deriving
expressions that depend on a regulator and become divergent in a specific limit of such
regulator. The behavior of these expressions in that limit reveals the type of singularity
the integral produces.

Among the various ways to handle these divergences (see for example [36]), dimensional
regularization has become the standard approach. Its core idea is to promote the dimension
of the integral to a complex parameterD. After calculating the integration in a converging
regime of D, the result can be continued. The divergences in four dimensions then appear
as poles in ε = D−4

2
.

Dimensional regularization can be seen as an analytic continuation of the Lebesgue integral
in positive integer dimensions. As the integration is performed over the fullD-dimensional
space it remains translation invariant,∫

dDk f(k) =
∫

dDk f(k + p) . (1.37)

In addition, to be consistent with the Lebesgue integral properties in integer dimensions,
it must follow the scaling relation,∫

dDk f(αk) =
1

αD

∫
dDk f(k) . (1.38)

10



1.2. Perturbation Theory

The D-dimensional measure is continued such that the surface of the D-dimensional ball
reads

SD−1 =
2π

D
2

Γ
(
D
2

) . (1.39)

Thus, rotationally invariant integrals in D-dimensional Euclidean space can be computed
by changing to spherical coordinates.∫

dDk f(k2) =

∫
dD−1Ω

∫ ∞

0

dr rD−1f(r2) (1.40)

=
2π

D
2

Γ
(
D
2

) ∫ ∞

0

dr rD−1f(r2) . (1.41)

Due to the factor πD
2 it is convenient to rescale the integral measure by π−D

2 .
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2. Feynman Integrals

The evaluation of loop integrals and the handling of the associated divergences can
become the main bottleneck in calculating scattering amplitudes. This chapter explores
the properties and relations between these integrals, culminating in a method for reducing
them to a minimal independent set.

2.1. Feynman Integrals

In general, a Feynman integral is a dimensionally regularized integral over a product of
inverse propagators

Pi = p2i −m2
i + iδ , (2.1)

where pi is a linear combination of external momenta E and loop momenta L,mi is the
mass of the propagating particle and δ is an infinitesimal positive real number that shifts
the roots in p0i from the real axis to be consistent with Feynman’s causality prescription of
Green’s functions.

Consider the inverse propagators P1, . . . , Pn and the indices ν1, . . . , νn ∈ Z. A Feynman
integral is defined as as a dimensionally regularized integral of the form

µl(4−D)

∫ (∏
k∈L

dDk
iπ

D
2

)
n∏

j=1

1

P
νj
j

, (2.2)

where µ is an energy scaled which is introduced to fix the mass dimension of the integral
and l = |L| denotes the number of loops. Note, that νj can be negative, indicating that the
inverse propagator occurs in the numerator with the power |νj|.

2.1.1. Transformation Properties

Invariance under Lorentz transformations

Consider an l-loop Feynman integral depending on a set of external momenta E and a set
of internal masses M,

I(E ,M) = µl(4−D)

∫ (∏
k∈L

dDk
iπ

D
2

)
j(E ,M) . (2.3)
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2. Feynman Integrals

The integrand j(E ,M) is composed out of propagators, which consist of external momenta
pµ ∈ 〈E〉, internal momenta qµ ∈ 〈L〉, and massesm ∈ M,

P = (p+ q)2 −m2 + iδ . (2.4)

If all external momenta are transformed by a Lorentz transformation Λµ
ν this yields

P ′ = (Λµ
νp

ν + qµ)2 −m2 + iδ . (2.5)

The substitution kµ → Λµ
νk

ν for all loop momenta k ∈ L gives

P ′′ = (Λµ
νp

ν + Λµ
νq

µ)2 −m2 + iδ

= (p+ q)2 −m2 + iδ

= P .

(2.6)

Since the substitution does not change the integral measure, scalar Feynman integrals are
invariant under Lorentz transformations,

I(Λ E ,M) = I(E ,M) . (2.7)

This means that they do not depend on the components of the external momenta individu-
ally, but only through scalar products.

Scaling Behavior

Consider the Feynman integral from Eq. (2.3). Rescaling the masses and external momenta
by a factor λ affects the propagators as

P ′ = (λp+ q)2 − λ2m2 + iδ . (2.8)

Substituting k → λk for all loop momenta k ∈ L yields the original propagator scaled by
a factor λ2,

P ′′ = λ2P . (2.9)

The transformation also affects the measure by a factor of λD. Therefore, the Feynman
integral transforms as

I(λ E , λM) = λαI(E ,M) , (2.10)

where α := dimm(I) denotes the mass dimension of the integral.

Scaleless integrals

Consider a scaleless Feynman integral, i.e. an integral which does not depend on internal
masses or external scales

I = µl(4−D)

∫
dDk
iπ

D
2

j(k) . (2.11)
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2.1. Feynman Integrals

From dimensional regularization follows that this integral is zero.

To show this, assume that the mass dimension of the integral is non-zero,

α = dimm (I) 6= 0 . (2.12)

Applying Eq. (2.10) then gives I = λαI . The only finite solution for this equation is setting
the integral to zero, I = 0.

For a more intuitive reasoning, the result of the integral should depend on one or multiple
mass scales raised to the power of α. However, the integrand does neither depend on any
external momenta nor on internal masses. Therefore, there is no quantity to provide the
necessary mass dimension. As a consequence, the integral must be constant.

For a rigorous derivation of this property, also for integrals with a mass dimension of 0,
the integral must first be evaluated in a converging regime of the dimension D. The result
can then be analytically continued, as shown in Ref. [37].

2.1.2. Representations of Feynman Integrals

Feynman integrals can be expressed in various forms, each suited to different applications.
The notation introduced above is known as the momentum representation, which is the
form obtained by applying Feynman rules. Three further representations are commonly
used: The Schwinger parameter representation, which has a relatively simple dependence
on the dimensionD, the Feynman parameter representation, which can be used to directly
evaluate certain integrals and the Baikov representation, which offers a straightforward
method to calculate cuts.

Schwinger Parameter Representation

The Schwinger parameter representation shifts the integration over the D-dimensional
momentum space to an integration over Schwinger parameters αi. It is based on the
identity

1

An
=

1

Γ(ν)

∫ ∞

0

dααν−1e−αA for ν > 0 , A > 0 , (2.13)

which is known as Schwinger’s trick. Applying it to the propagators Pj of a Feynman
integral of the form,

I(S,M) = µl(4−D)

∫ (∏
k∈L

dDk
iπ

D
2

)
n∏

j=1

1

P
νj
j

, (2.14)

yields1

I(S,M) =
(−1)νµl(4−D)∏n

j=1 Γ(νj)

∫
αj≥0

(
n∏

j=1

dαj α
νj−1
j

)∫ (∏
k∈L

dDk
iπ

D
2

)
e−

∑n
j=1 αj(−Pj) , (2.15)

1The sign of the propagator depends on the external kinematics. It is convenient to choose the so-called
Euclidean kinematics, where Pj < 0, and analytically continue the result to other regions.
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2. Feynman Integrals

with ν =
∑n

j=1 νj and S denoting the set of scalar products between external momenta.
With this parametrization, the integrals over the loop momenta become gaussian integrals
which can be evaluated. This gives

I(S,M) =
(−1)νµl(4−D)∏n

j=1 Γ(νj)

∫
αj≥0

(
n∏

j=1

dαj α
νj−1
j

)
U(α)−

D
2 e−

F(α;S,M)
U(α) . (2.16)

U(α) and F(α;S,M) are homogeneous polynomials in α, denoted as graph polynomials
or as first and second Symanzik polynomial, respectively. The first designation stems from
their dependence on the trees and two-trees of the associated Feynman graph. Specifically,
the first graph polynomial U(α) is obtained by summing over all spanning trees of the
sector graph and multiplying over all αi that correspond to the edges removed to obtain
each tree,

U(α1, . . . , αN) =
∑
trees

∏
chords

αchord . (2.17)

Application: Dimensional Shift relations One advantage of the Schwinger parameter rep-
resentation is its relatively simple dependence on the space-time dimensionD. This allows
to find relations between Feynman diagrams of different dimension [38, 39]. Consider a
Feynman integral in Schwinger notation as in Eq. (2.16). The dimension of the Integral
can be reduced by two by multiplying the integrand with U(α),

I(D−2)(S,M) =
(−1)nµl(4−D)∏N

j=1 Γ(nj)

∫
αj≥0

(
N∏
j=1

dαj α
nj−1
j

)
U(α)−

D
2 U(α)e−

F(α;S,M)
U(α) . (2.18)

This integral can be expressed in terms of Feynman integrals of dimension D with propa-
gators raised to higher powers.

Following Ref. [40], I introduce the operator k+, which acts on a Feynman diagram by
increasing the power of the k-th propagator,

k+Iν1,...,νk,...,νn = νk Iν1,...,νk+1,...,νn . (2.19)

In Schwinger representation the right hand side of this equation reads

νk Iν1,...,νk+1,...,νn =
(−1)νµl(4−D)∏n

j=1 Γ(νj)

∫
αj≥0

(
n∏

j=1

dαj α
νj−1
j

)
U(α)−

D
2 αk e

−F(α;S,M)
U(α) , (2.20)

introducing an additional factor of αk in the integrand.

As a consequence, applying a suitable combination of these operators on a Feynman
integral allows to generate the polynomial U(α) within the integrand. This leads to
dimensional shift relations,

I(D−2)(S,M) = U(1+, . . . , n+) I(D)(S,M) , (2.21)

which relate Feynman integrals that differ in dimension by two.
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2.1. Feynman Integrals

Feynman Parameter Representation

The Feynman Parameter Representation is based on Feynman’s observation that

n∏
j=1

1

P
νj
j

=
Γ(ν)∏n

j=1 Γ(νj)

∫
αj≥0

(
n∏

j=1

dαj α
νj−1
j

)
δ
(
1−

∑n
j=1 αj

)
(∑n

j=1 αjPj

)ν , (2.22)

with ν =
∑n

j=1 νj . Applying this identity on a Feynman integral with inverse propagators
Pj allows to carry out the momentum integration. In Sec. 3.4.1 I will provide an example
to demonstrate how to calculate Feynman integrals using this representation.

Baikov Representation

Consider a one-loop Feynman integral with n inverse propagators and e independent
external momenta. The linear span of these external momenta forms a subspace P‖ of
dimension e. Decomposing the loop momentum into components parallel and orthogonal
to this subspace,

k = k‖ + k⊥ , (2.23)

allows to perform the angular integration over the perpendicular component k⊥, as the
integrand depends only on k2⊥. This results in the Baikov representation [41] for Feynman
integrals.

The Baikov representation for one-loop Feynman integrals is given by

I(S,M) =
µ4−D

iπ
e
2 Γ
(
D−e
2

) det(G(p1, . . . , pe))
−D+e+1

2

∫
C
dnz B(z)

D−e−2
2

n∏
j=1

1

z
νj
j

. (2.24)

The representation depends on the Baikov polynomial B(z) = G(k, p1, . . . , pe) with the
Gram determinant

G(q1, . . . , qn) =

∣∣∣∣∣∣∣
q1 · q1 . . . q1 · qm

... . . . ...
qm · q1 . . . qm · qm

∣∣∣∣∣∣∣ . (2.25)

The polynomial is written in terms of the Baikov variables z1, . . . , zn corresponding to
the inverse propagators P1, . . . , Pn. The Gram determinant and Baikov polynomial arise
from the change of variables in the integral, while the remaining prefactors come from
the angular integration over k⊥, corresponding to the surface of the (D − e)-dimensional
ball. The integration region C is determined by the condition

0 ≥ k2⊥ =
det(G(k, p1, . . . , pe))
det(G(p1, . . . , pe))

. (2.26)

Due to the complexity of this integration region, the Baikov parametrization is not typically
intended for direct evaluation of Feynman integrals. However, its explicit dependence
on the inverse propagators Pj through the Baikov variable zj simplifies the analysis of
on-shell intermediate particles.
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2. Feynman Integrals

Application: Thresholds of Feynman Diagrams Beyond IR and UV divergences, Feynman
integrals can also exhibit divergences in specific kinematic configurations. These occur at
energy thresholds where intermediate particles are produces on-shell. According to the
optical theorem, crossing these thresholds is directly linked to the imaginary part of the
amplitude becoming non-zero.

Mathematically, these thresholds manifest as arguments of (poly)logarithms in the ε-
expansion of one-loop diagrams2. The Baikov representation offers a straightforward
method to identify such thresholds.

Assume that the intermediate particle associated with the propagator Pj is produced
on-shell. Graphically, this is visualized by cutting the propagator, for example for the
bubble integral,

. (2.27)

In the Baikov representation cutting a propagator corresponds to setting the associated
Baikov variable to zero. This is achieved by the substitution3

1

zj
→ δ(zj) . (2.28)

Putting all intermediate particles on-shell is referred to as the maximal cut of a Feynman
integral, which can be calculated with the Baikov representation,

MaxCut(I(S,M)) =
µ4−D

iπ
e
2 Γ(

(
D−e
2

)
)
det(G(p1, . . . , pe))

−D+e+1
2 B(0)

D−e−2
2 . (2.29)

The divergences of the maximal cut correspond directly to the kinematic thresholds,
allowing their identification.

Example: Thresholds of an Equal Mass Bubble Integral Consider the equal mass bubble
integral,

= µ4−D

∫
dDk
iπ

D
2

1

[(k + p)2 −m2][k2 −m2]
. (2.30)

The kinematic thresholds can be determined by computing the divergences of the maximal
cut of the bubble, which is straightforward in the Baikov representation. The Baikov
2From two loops on, the thresholds may appear in more complex structures than polylogarithms such as
elliptic functions.

3This substitution to obtain the maximal cut is valid for Baikov variables zj which occur only with power
one. For higher powers, the cut is generalized by expanding the integration region by an additional
anticlockwise circle around zj = 0. In the case where the propagator appears once, the residue restores
the delta distribution.
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2.2. Relations between Feynman Integrals

polynomial is given by

B(z1, z2) = det
(
k · k k · p
p · k p · p

)
= k2p2 − (k · p)2 (2.31)

= (z1 +m2) p2 −
(
z2 − z1 − p2

2

)2

. (2.32)

Setting the Baikov variables to zero yields

B(0) =
1

4
p2 (4m2 − p2) . (2.33)

Inserting this into Eq. (2.29) results in

∝
(
p2
)− 1

2 (4m2 − p2)
D−3
2 . (2.34)

Depending on the dimension D, the integral diverges in p2 = 4m2. This corresponds to
the energy that is required to produce two on-shell intermediate particles with masses
m. Setting D = 4− 2 ε and expanding the result in terms of ε reveals that the threshold
manifests as the argument of logarithms.

Even though indicated by the maximal cut, the diagram does not diverge for p2 = 0,
since this energy is insufficient to produce two massive particles. The crucial point is that
the exponent of p2 is independent of the dimension D. As a result, this does not lead to
logarithms in the ε-expansion, and therefore does not introduce any branch cuts.

2.2. Relations between Feynman Integrals

The calculation of higher-order corrections to an amplitude involves computing Feynman
integrals. For scattering processes with three or more external legs, up to O(103) dia-
grams can contribute to the amplitude already at two loops, typically generating around
O(104) distinct Feynman integrals. Performing an analytic computation is already a time-
consuming challenge for individual integrals; for thousands of integrals, evaluating them
one by one becomes an impossible task.

Luckily, not all such integrals are linearly independent, meaning that it is possible to find
a large number of relations such that all Feynman integrals appearing in an amplitude
are linear combinations of a restricted set of master integrals. Once these integrals are
known, the others are reconstructed by applying the linear relations. This shifts the task
from evaluating O(104) integrals to solving a system of linear equations and computing
typicallyO(10) toO(102)master integrals. The advantage of this approach is that solving
systems of equations, unlike solving integrals, can be easily handled automatically.

The general idea can be well illustrated by the example from Ref. [42]. For ν ∈ N0, consider
the integral

Iν(α) =

∫ ∞

0

xν e−αx2

dx . (2.35)
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2. Feynman Integrals

ν2 3 4 50 1

Figure 2.1.: Graphical representation of the relations between the integrals Iν(α)

For the cases ν = 0 and ν = 1, the computation is straightforward. In the case ν = 0, the
formula reduces to the gaussian integral, i.e.

I0(α) =

∫ ∞

0

e−αx2

dx =

√
π

2α
. (2.36)

In the case ν = 1, the substitution y = x2 can be used which yields

I1(α) =

∫ ∞

0

x e−αx2

dx =
1

2

∫ ∞

0

e−αy dy =
1

2α
. (2.37)

To calculate Iν(α) for arbitrary ν, a recurrence relation can be constructed by differentiating
Iν with respect to α,

dIν(α)
dα

=

∫ ∞

0

xν
d
dα
e−αx =

∫ ∞

0

xν+2e−αx = Iν+2(α) . (2.38)

Reapplying this identity yields for ν = 2k

I2k(α) =
dk

dαk
I0(α) , (2.39)

and for ν = 2k + 1,

I2k+1(α) =
dk

dαk
I1(α) . (2.40)

Figure 2.1 illustrates the relations among the integrals. The arrows connect the (ν + 2)-th
integral to the ν-th integral. By following the arrows, one can trace the dependence of an
integral Iν(α), which always leads to one of the master integrals, I0 or I1, represented by
the red diamonds. Therefore the task of integration is shifted to the algorithmic task of
differentiation, insofar the master integrals I0(α) and I1(α) are known.

Indexing the integrals by the power of x in the integrand makes it easier to understand
the structure of the identities. Therefore it is helpful to introduce a similar systematic
notation for Feynman integrals. Integral families fulfill this purpose.

2.2.1. Integral Families

An integral family F is a set of inverse propagators

F = {P1, . . . , Pn} with Pi = q2i −m2
i + iδ , (2.41)
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2.2. Relations between Feynman Integrals
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Figure 2.2.: Box diagram of electroweak quark initiated double Higgs production.

where qi is a linear combination of external momenta and loop momenta. These propaga-
tors are chosen such that every scalar product involving a loop momentum is uniquely
expressible in terms of these inverse propagators, external kinematics and internal masses.

For a diagram with e external momenta and a l loop momenta, the number of independent
scalar products involving at least one loop momentum is

Nsp = el +
l(l + 1)

2
. (2.42)

The first term of this equation represents the number of scalar products between external
momenta and loop momenta. The second term indicates the number of scalar products
between two loop momenta.

Example: Quark initiated Double Higgs Production at one loop order
Consider the Feynman diagram depicted in Fig. 2.2. The incoming quarks are considered
as massless, the top quark has the massmt and theW and Higgs bosons have massesmW

andmH , respectively. The diagram consists of three independent external momenta p1, p2
and p3, and one loop momentum k. Using Eq. (2.42) this yields in

Nsp = 3 · 1 + 1 · 2
2

= 4 (2.43)

independent scalar products, explicitly given by

p1 · k , p2 · k , p3 · k and k2 . (2.44)

Constructing an integral family for this diagram must take two requirements into account:

1. All possible scalar products containing at least one loopmomentummust be uniquely
expressible using the inverse propagators of the integral family. Since four indepen-
dent scalar products can occur, the integral family consists of four propagators.

2. All propagators containing a loop momentum occurring in the Feynman integrals
must be expressible in terms of the propagators from the integral family. This can
involve a redefinition of the loop momentum.
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2. Feynman Integrals

In the case of the one-loop box diagram, the number of propagators in the diagram is
the same as the number of independent scalar products. Therefore, in this case, the two
requirements already define the integral family up to a redefinition of the loop momentum.
The integral family can be chosen as shown is Tab. 2.1. The scalar products can then be
expressed in terms of inverse propagators and kinematic invariants as shown in Tab. 2.2,
where the Mandelstam variable t = (p1 + p3)

2 is used.

Table 2.1.: Integral family of the box diagram.

F inverse propagator

P1 k2 −m2
t

P2 (k + p1)
2 −m2

W

P3 (k + p1 + p3)
2 −m2

W

P4 (k − p2)
2 −m2

W

Table 2.2.: Scalar products expressed in terms of the inverse propagators and kinematic
invariants.

scalar product expressed with inverse propagators

p1 · k 1
2
(P2 − P1 +m2

W −m2
t )

p2 · k −1
2
(P4 − P1 +m2

W −m2
t )

p3 · k 1
2
(P3 − P2 − t+m2

H)

k2 P1 +m2
t

The introduction of the integral family allows a short hand notation for all its integrals.
An integral with the propagators Pk raised to the powers νk can be written as

Iν1ν2ν3ν4 = µ4−D

∫
dDk
iπ

D
2

4∏
k=1

1

P νk
k

(2.45)

This short hand notation simplifies the discussion of integral relations.

Sectors

A sector S is defined as a subset of an integral family I . An integral Iν1,...,νn belongs to
the sector S , if all of the Sector’s inverse propagators appear in the denominator of the
integrand, meaning νk > 0 for Pk ∈ S . All further inverse propagators are only allowed
to appear in the numerator, meaning νk ≤ 0 for Pk ∈ I \ S .

S̃ is called a subsector of the sector S if it is a proper subset. Top sectors are defined as the
highest sectors that are necessary for computing a scattering amplitude.
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2.2. Relations between Feynman Integrals

Each sector of an integral family can be uniquely identified by their sector-ID, which is
defined as

ID =
n∑

k=1

Θ

(
νk −

1

2

)
2k−1 , (2.46)

where Θ denotes the Heaviside function. This allows sectors to be referenced just by their
ID and integral family without listing all of their inverse propagators.

2.2.2. Relations between Feynman Integrals

Integration-by-parts identities

The main source of linear relations among Feynman integrals are integration-by-parts
identities (IBPs) [43, 44], which relate integrals from the same integral family. They are a
consequence of the translation invariance and scaling behavior of dimensional regularized
integrals. Consider a Feynman integral with the set of loop momenta L and the set of
independent external momenta E . Let k ∈ L be a loop momentum and q ∈ 〈E ∪ L〉 a
linear combination of external momenta and loop momenta. Then, the following identities
apply, ∫

dDk
iπ

D
2

∂

∂kµ
(qµf(E ∪ L)) = 0 . (2.47)

The integral ∫
dDk
iπ

D
2

f(E ∪ L) , (2.48)

is called the seed integral for these identities.

Proof. First, let q ∈ Q := E ∪ L \ {k} be an external momentum or loop momentum
except for k. The translation invariance of dimensional regularized integrals, Eq. (1.37),
yields ∫

dDk
iπ

D
2

f(k,Q) =

∫
dDk
iπ

D
2

f(k + α q,Q) for α ∈ C . (2.49)

Since the left-hand side of Eq. (2.49) does not depend on α, this must also hold true for
the right-hand side. Therefore, the derivative with respect to α vanishes. Exchanging
integration and differentiation gives

0 =
d
dα

∫
dDk
iπ

D
2

f(k + α q,Q)
∣∣∣
α=0

=

∫
dDk
iπ

D
2

∂

∂α
f(k + α q,Q)

∣∣∣
α=0

=

∫
dDk
iπ

D
2

(
∂

∂kµ
f(q,Q)

)
qµ

=

∫
dDk
iπ

D
2

∂

∂kµ
(qµf(E ∪ L)) .

(2.50)
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Note that the last equal sign only applies as long as qµ does not depend on kµ. Now
consider a translation purely in the direction of k. Making use of the scaling behavior of
dimensional regularized integrals, introduced in Eq. (1.38), gives

d
dα

∫
dDk
iπ

D
2

f(k + α k,Q)
∣∣∣
α=0

=
d
dα

1

(α + 1)D

∫
dDk
iπ

D
2

f(E ∪ L)
∣∣∣
α=0

= −D
∫

dDk
iπ

D
2

f(E ∪ L)

= −
∫

dDk
iπ

D
2

(
∂kµ

∂kµ

)
f(E ∪ L) .

(2.51)

On the other hand, exchanging integration and differentiation yields

d
dα

∫
dDk
iπ

D
2

f(k + α k,Q)
∣∣∣
α=0

=

∫
dDk
iπ

D
2

∂

∂α
f(k + α k,Q)

∣∣∣
α=0

=

∫
dDk
iπ

D
2

(
∂

∂kµ
f(E ∪ L)

)
kµ .

(2.52)

Combining Eqs. (2.51) and (2.52) gives

0 =

∫
dDk
iπ

D
2

(
∂kµ

∂kµ

)
f(E ∪ L) +

∫
dDk
iπ

D
2

(
∂

∂kµ
f(k,Q)

)
kµ

=

∫
dDk
iπ

D
2

∂

∂kµ
(kµf(E ∪ L))

(2.53)

The full result for q ∈ 〈E ∪ L〉 follows immediately from the linearity of integration and
differentiation.

Let S be the sector of the seed integral. The integrals related by the corresponding IBPs
all belong to the same sector or subsectors of S . This can be reasoned by considering the
different possibilities the derivative in Eq. (2.47) can act on:

1. When the derivative ∂
∂kµ

acts on an inverse propagator in the numerator, it creates
scalar products that can be expressed in terms of inverse propagators, external
kinematics and internal masses. This action does not introduce any new inverse
propagators in the denominator.

2. When the derivative ∂
∂kµ

acts on an inverse propagator in the denominator, the
power of that propagator increases by one, and a scalar product is produced in the
numerator. Again, this does not lead to the introduction of new inverse propagators
in the denominator.
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2.2. Relations between Feynman Integrals

Example: Tadpole Integral with twoMasses Consider a tadpole integral consisting of a
massless propagator and a massive propagator raised to the ν-th power,

k

ν

= µ4−D

∫
dDk
iπ

D
2

1

[k2 + iδ] [k2 −m2 + iδ]ν
. (2.54)

Applying Eq. (2.47) with qµ = kµ yields

0 =

∫
dDk
iπ

D
2

∂

∂kµ
kµ

[k2 + iδ] [k2 −m2 + iδ]ν

=

∫
dDk
iπ

D
2

(
D − 2

[k2 + iδ] [k2 −m2 + iδ]ν
− ν

[k2 −m2 + iδ]ν+1

)
.

(2.55)

Dropping the linear term in δ relates the half-massive tadpole integral with the single-mass
tadpole integral,

k

ν

=
ν

D − 2

k

ν + 1

. (2.56)

Example: Massless Bubble Integral Consider the sector consisting of the inverse propa-
gators P1 = k2 + iδ and P2 = (k + p)2 + iδ with p2 6= 0. An integral of this sector has
the form

Iν1,ν2 = µ4−D

∫
dDk
iπ

D
2

1

P ν1
1 P

ν2
2

. (2.57)

Each of these integrals generates two independent IBPs,

0 = µ4−D

∫
dDk
iπ

D
2

∂

∂kµ
kµ

P ν1
1 P

ν2
2

= (D − 2ν1 − ν2)Iν1,ν2 − ν2Iν1−1,ν2+1 + p2Iν1,ν2+1 ,

(2.58)

as well as

0 = µ4−D

∫
dDk
iπ

D
2

∂

∂kµ
(k + p)µ

P ν1
1 P

ν2
2

= (D − ν1 − 2ν2)Iν1,ν2 − ν1Iν1+1,ν2−1 + p2Iν1+1,ν2 .

(2.59)

Solving both equations for Iν1,ν2+1 and Iν1+1,ν2 , respectively, leads to relations which
decrease the sum of ν1 and ν2 by one. Figure 2.3 illustrates Eq. (2.58) on the left-hand side
and Eq. (2.59) on the right-hand side. The arrows indicate the dependence of integrals
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Figure 2.3.: Illustrations of the Eqs. (2.58) (left) and (2.59) (right)

Iν1,ν2 on integrals with the same propagators but raised to lower powers. Combining these
two relations it becomes clear, that every integral Iν1,ν2 can be expressed in terms of the
master integral I1,1 of the sector, indicated by the red diamond, as well as integrals of
lower sectors, indicated by the blue triangles.

The structure of Feynman integrals related by IBPs can be imagined as vectors within a
vector field. Just as any vector in a vector field can be expressed as a linear combination of
basis vectors, any Feynman integral can be represented as a linear combination of master
integrals. The coefficients for these combinations are determined by the relations obtained
through IBPs.

Similar to the basis of a vector field, the choice of master integrals is not unique; only their
number is fixed. In the previous example, the equations could have been rearranged to
express all the integrals Iν1,ν2 (including I1,1) in terms of integrals from lower sectors and
one specific choice for the master integral. The selection of the set of master integrals, often
referred to as a basis, is typically based on criteria such as uniform weight, as explained in
Sec. 3.4.2, finiteness or numerical stability.

Lorentz-invariance identities

The idea of Lorentz-invariance (LI) identities, first mentioned in Ref. [33], is based on
the fact that Feynman integrals are Lorentz scalars. Therefore, applying a Lorentz trans-
formation onto the external momenta does not change the integral. A general Lorentz
transformation Λµ

ν can be written as an expansion,

Λµ
ν = δµν + ωµ

ν +O(ω2) , (2.60)

with the antisymmetric tensor ωµ
ν . Applying this transformation onto the external mo-

menta pα of a Feynman integral yields

I(p′α) = I(pα) +
∂I(pα)

∂pµα
ωµ

νp
ν

α + O(ω2). (2.61)
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2.2. Relations between Feynman Integrals

Due to the Lorentz invariance of Feynman integrals, the linear term in ω must vanish.
Using the antisymmetry of ω gives

0 =
∂I(pα)

∂pµα
ωµ

νp
ν =

1

2
ωµν

(
pαν

∂

∂p µ
α

− pαµ
∂

∂p ν
α

)
I(pα) . (2.62)

The term in the brackets can be contracted with an arbitrary combination of independent
external momenta pi and pj , which finally leads to LIs,(

pµi p
ν
j − pµj p

ν
i

)(
pαν

∂

∂p µ
α

− pαµ
∂

∂p ν
α

)
I(pα) = 0 . (2.63)

It was shown in [45], that LIs are actually not independent to IBPs. However, they can
still be useful to accelerate computations since multiple seed integrals might be necessary
to write one LI identity in terms of IBPs.

Equivalent Sectors

When multiple integral families are involved in one calculation, some of their inverse
propagators might be the same. As a consequence, the sectors composed out of these
propagators are identical, although they belong to different integral families.

Equivalences between sectors can also be less obvious: A substitution of the loop momenta
{ki} of the form

ki → k′i = Aijkj + bi with det(A) = 1 , (2.64)

transforms a Feynman integral belonging to a sector S as

µ4−D

∫ ( l∏
i=1

dDki
iπ

D
2

)
n∏

j=1

1

P
νj
j

= µ4−D

∫ ( l∏
i=1

dDk′i
iπ

D
2

)
n∏

j=1

1

P
′νj
j

, (2.65)

where the propagators P ′
j are obtained by substituting ki → k′i. If the transformed

propagators correspond exactly to those of a different sector S ′, then the integral can as
well be written as an element of S ′.

More general, transformations as in Eq. (2.64) can map the propagators of one sector S
to those of another sector S ′. Sectors related by such a transformation are referred to as
equivalent sectors. Relations between equivalent sectors can be used in order to remove
redundancies for practical purposes.

Sector Symmetries

A sector symmetry relation is a transformation as in Eq. (2.64) which maps a sector onto
itself. Such a symmetry occurs for example for the bubble integral,

Iν1,ν2 = µ4−D

∫
dDk
iπ

D
2

1

[k2 −m2 + iδ]ν1 [(k + p)2 −m2 + iδ]ν2
. (2.66)
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The transformation k → −k − p maps the sector on itself by changing the powers of the
propagators,

Iν1,ν2 → Iν2,ν1 . (2.67)

By applying this relation at the IBPs for massless bubble integrals, Eqs. (2.58) and (2.59),
they become equivalent. In general such relations can simplify IBPs significantly.

Trivial Sectors

It may occur that all integrals within a sector are zero. This happens when the loop
momenta can be transformed in such a way that all external kinematic quantities are
eliminated and no masses are present. Then, all integrals of the sector are scaleless and
therefore set to zero within dimensional regularization. Such a sector is referred to as a
trivial sector or zero sector.

A convenient criterion for identifying trivial sectors was presented in [45]: If the IBPs in
the corner point result in the corner integral (i.e. the integral where each propagator of
this sector occurs exactly once) being zero, then all integrals in that sector are scaleless
and therefore equal to zero. However, this criterion is not sufficient and might miss some
zero sectors.

Therefore, a second criterion was presented in Ref. [46]. Consider the function G = U +F
composed of the first and second Symanzik polynomials U and F , respectively. If the
equation ∑

j

kjαj
∂G(α)
∂αj

= G(α) (2.68)

yields an α-independent solution with respect to kj , the sector is zero.

Identifying trivial sectors as early as possible increases the efficiency of computations, as
many integrals can then be immediately set to zero.

2.2.3. Laporta’s Algorithm

With all these identities in hand, an algorithm is needed to systematically reduce the
integrals to their master integrals. One way of doing this is to combine multiple identities
to ladder operators which increase or decrease the power of propagators. This approach
allows to reduce whole sectors and therefore an infinite amount of integrals to master
integrals. However, a lot of hand work is necessary to get these operators which makes it
impractical for more complicated sectors.

Laporta proposed an alternative algorithm which uses a finite set of seed integrals to
generate IBPs [47]. Given a Feynman integral, the seed integrals are constrained by the
number of dots, which is determined by

d =
∑
νj>0

(νj − 1) . (2.69)
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2.2. Relations between Feynman Integrals

Additionally, they are restricted by the number of inverse propagators in the numerator,
given by

s =
∑
νj<0

|νj| . (2.70)

The integrals are then reduced to master integrals in a forward elimination algorithm: the
IBPs are first generated for the lowest sectors (i.e. the sectors with l different denominators,
with l being the number of loops, beginning from the seed integrals with d = s = 0).
Then, the number of dots and scalar products is increased up to a predetermined limit.
Each IBP generates a linear equation between integrals of the form∑

i

CiIi = 0 . (2.71)

If the generated identity is linear independent to previous identities, the already reduced
integrals can be inserted in the relation resulting in a new linear equation,∑

i

C ′
iI

′
i = 0 . (2.72)

This equation can be rearranged with respect to one integral I ′k, expressing it in terms of
the other integrals,

I ′k = −
∑ C ′

i

C ′
k

I ′i . (2.73)

The integral I ′k is chosen with the following order of priority: First, the highest number of
denominators, second the highest number of dots d, third the highest number of scalar
products s and fourth the lowest sector ID. Once generated all integrals with a certain
amount of denominators, their number is increased by one up to a predetermined limit.

Given a set of integrals that need to be reduced, it is not immediately clear how s and d
should be chosen to ensure that all integrals are fully reduced. However, Laporta proposed
an empirical rule for this: Consider the set of integrals

Gd0s0 = {I | d(I) < d0 ∧ s(I) < s0} . (2.74)

If all integrals in Gd0s0 are used as seed integrals for IBPs, then in most cases, the entire
set of the integrals in Gd0,s0 can be reduced to master integrals. Therefore when using
the algorithm, setting the limits for s and d to the highest values of s and d among the
occurring integrals is a good starting point.

Since its publication, numerous implementations of the Laporta algorithm have been
developed and published, such as Air[48], Fire[49–51], Reduze[52, 53] or Kira[54, 55].
In this work, Reduze and Kira are employed. They use not just IBPs but also LIs and
symmetry relations to accelerate the computation of the reductions.
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3. Differential Equations for Feynman
Integrals

I showed in the previous chapter that a scattering amplitude can be expressed as a combi-
nation of master integrals. However, the challenge of analytically solving these integrals
remains, especially when they reach a level of complexity where direct calculation methods
are no longer feasible.

The method of differential equations (DEs) offers an indirect approach: Instead of calculat-
ing the master integrals directly, a system of DEs is derived with respect to their kinematic
invariants and internal masses. These DEs can then be solved, usually as a series expansion
in ε.

3.1. Derivation

3.1.1. Differential Equations for Internal Masses

Consider a vector of master integrals I = (I1, . . . , INmaster) which depends on internal
masses M and external quantities S . Taking the derivative of one of the master integrals
Ik with respect to a squared internal massm2

α gives a sum of Feynman integrals,

∂Ik
∂m2

α

=
∑
i

CiJi , (3.1)

where Ji denote the Feynman integrals created by the derivative and Ci are integer
coefficients. The crucial point is, that the Feynman integrals Ji belong to the same sector
as I . This can be seen by considering two cases:

1. The derivative can act on an inverse propagator with the power ν in the denominator.
This decreases the power by one and gives a prefactor ν, but does not remove any
propagators. Therefore, the differentiation does not affect the sector of the integrals.

2. The derivative can act on an inverse propagator with power ν in the numerator. this
increases the power by one and gives a prefactor −ν but does neither annihilate
any inverse propagators nor create new ones.

That means, that Laporta’s algorithm can be used to express the integrals Ji as a linear
combination of the master integrals Ik with rational coefficients. The partial derivative
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with respect tom2
α can therefore be written as

∂I
∂m2

α

= Aα(ε,M,S) I , (3.2)

where Aα is a matrix depending on ε, the internal massesM and the kinematics S .

3.1.2. Differential Equations for External Kinematics

The equations for the external kinematics are obtained by applying the chain rule,

pµi
∂Ik
∂pµj

=
Next∑
α=1

(
pµi

∂sα
∂pµj

∂Ik
∂sα

)
for i, j ∈ {1, . . . , N} . (3.3)

The obtained system of equations can be solved for ∂Ik
∂sα

for all sα, yielding

∂Ik
∂sα

=
∑
i,j

Ci,j(S) pµi
∂Ik
∂pµj

. (3.4)

Analogous to the explanation for the IBP relations in Sec. 2.2.2, the integrals occurring in
the right-hand side belong to the same sector as Ik. Therefore, they can be expressed in
terms of master integrals of the same or lower sectors as the sector of Ik. This allows the
DE to be written as

∂I
∂sα

= Aα(ε,M,S) I , (3.5)

with the matrices Aα.

3.1.3. Rescaling the Equations

Having derived all the DEs in the internal masses and external kinematics {x̃1, . . . , x̃N}
one can immediately decouple one DE. Using Eq. (2.10), the variables can be rescaled by
one of them, say x̃N , yielding

Ik(x̃1, . . . , x̃N) = x̃dimk
N , Ik

(
x̃1
x̃N

, . . . ,
x̃N−1

x̃N
, 1

)
, (3.6)

with

dimk =
dimm(Ik)

dimm(x̃N)
. (3.7)

That means that the DEs with respect to the variable x̃N become decoupled, as the associ-
ated matrix becomes diagonal with the entries

Akk = dimk . (3.8)
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3.1. Derivation

TheDEs for the new variables {x1, . . . , xNkin}withNkin = N−1 can be derived by making
use of the chain rule,

∂I
∂xα

=

(
∂xα
∂x′α

)−1

Aα(ε,M,S) = 1

xN
Aα(ε,M,S) . (3.9)

This allows to immediately decrease the number of equations by one.

3.1.4. Combining all Equations

For a more compact notation, the system of partial DEs can be combined in one equation,

dI = A I , (3.10)

by introducing the usual notation for the total derivative,

dI =
∑
xi∈x

∂I
∂xi

dxi , (3.11)

and defining the one-form A as,

A =
∑
xi∈x

Axi
dxi . (3.12)

Assume that the integrals are sorted by their sector, with integrals belonging to subsectors
appearing first. Since a master integral depends only on integrals of the same or lower
sectors, the one-form A is a lower block-triangular matrix. The size of a block corresponds
to the number of master integrals of the sector. In particular,A is a triangular matrix-valued
one-form in the case that there is only one master integral per sector.

The derivation highlights a key advantage of the DEs method: The process is automatable
because it involves nothing more than taking derivatives and applying IBPs. Consequently,
the only limitation in obtaining these equations is the availability of computational re-
sources.

Example: Equal Mass Bubble Integral Consider the equal mass bubble integrals,

Iν1,ν2 :=

p ν1

ν2

= µ4−D

∫
dDk
iπ

D
2

1

P ν1
1 P

ν2
2

, (3.13)

with the inverse propagators P1 = k2−m2+iδ and P2 = (k+p)2−m2+iδ. Similar to the
massless case, all integrals Iν1,ν2 with positive integer indices ν1 and ν2 can be expressed
as a linear combination of I1,1 and I2,0.

33



3. Differential Equations for Feynman Integrals

To construct a solution for I1,1, DEs with respect to the external momentum squared p2 and
the internal massm2 can be derived. The equation with respect to the external momentum
squared is derived using the chain rule,

pµ
∂I1,1
∂pµ

= pµ
∂p2

∂pµ
∂I1,1
∂p2

. (3.14)

By applying IBPs, the left-hand side can be expressed as a linear combination of I1,1 and
I2 := I2,0,

∂I1,1
∂p2

= −4m2 − (D − 4)p2

2p2(4m2 − p2)
I1,1 +

2m2

p2(4m2 − p2)
I2 . (3.15)

Similarly, the DE for I1,1 with respect to the internal mass is given by
∂I1,1
∂m2

= − D − 3

4m2 − p2
I1,1 −

1

4m2 − p2
I2 . (3.16)

The tadpole integral I2 depends only on the mass, yielding
∂I2,0
∂m2

=
D − 4

m2
I2,0 . (3.17)

Rescaling both variables by the mass transforms the DE with respect to the mass into
diagonal form which allows for a direct integration,

I2(p
2,m2) = (m2)

D−4
2 I2(−x, 1)

I1,1(p
2,m2) = (m2)

D−4
2 I1,1(−x, 1) ,

(3.18)

where the rescaled variable x is defined as

x = − p2

m2
. (3.19)

The DEs with respect to x are then given by

∂

∂x

(
I2
I1,1

)
=

(
0 0
2

x(4+x)
− 2+ε x

x(4+x)

)(
I2
I1,1

)
, (3.20)

where D = 4− 2ε was inserted.

3.2. Transformation of Differential Equations

The system from Eq. (3.20) can be directly solved to a finite order in ε by expanding the
equation in ε. The solution up to the first order in ε is given by

I2 = C
(0)
2 + εC

(1)
2 +O(ε2)

I11 = C
(0)
2 +

C
(0)
11√
x

4+x

+ ε

(
2C

(0)
2 + C

(1)
2

+
C

(1)
11 − C

(0)
11 log(4 + x)− 2C

(0)
2 log

(√
x+

√
4 + x

)√
x

4+x

)
+O

(
ε2
)
,

(3.21)
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where the integration constants are denoted as C(k)
i .

The solution can be simplified significantly by considering the following linear combina-
tions instead of I2 and I1,1,

g1 = εI2

g2 = −
√

x

4 + x
ε (I2 − (1− 2 ε) I1,1) .

(3.22)

The DEs for these functions are homogeneous in ε,

∂

∂x

(
g1
g2

)
= ε

(
0 0

− 1√
x(4+x)

− 1
4+x

)(
g1
g2

)
. (3.23)

Their solutions up to the first order in ε are given by

g1 = C̃
(0)
2 + ε C̃

(1)
2 +O

(
ε2
)

g2 = C̃
(0)
11 + ε

(
C̃

(1)
11 − C̃

(0)
11 log(4 + x) + 2 C̃

(0)
2 log

(√
4 + x−

√
x
))

+O
(
ε2
)
,

(3.24)

where C̃(k)
i are referred to as weight-k integration constants.

This solution exhibits a notable structure. Unlike the expansion of I11, all coefficients
of logarithms and integration constants are rational numbers. Furthermore, the zeroth
order in ε consists solely of weight-0 integration constants, while the first order contains
weight-1 integration constants and products of weight-0 constants with logarithms.

To formalize such structures, the concept of transcendental weight is introduced. The
transcendental weight is defined as 1 for logarithms and n for polylogarithms Lin. π is
assigned a transcendental weight of one, as π = −i log(−1), and zeta-values ζn = Lin(1)
have weight n. The weight of ε is defined as −1 and rational numbers have weight 0. The
weight of a product is the sum of the weight of its factor. For instance, π2 has weight 2,
and π3ζ2 has weight 5. A function is said to have uniform transcendental (UT) weight if all
terms in its series expansion in ε have an equal weight.

By requiring the constants C̃(k)
i to have transcendental weight k, which is equivalent to

imposing UT boundary conditions, the expressions for g1 and g2 have UT weight zero.

3.2.1. Canonical System

A canonical system [34] is defined in a way that it yields a solution as in Eq. (3.24). This
can be achieved by requiring three properties:

1. The system of DEs is homogeneous in ε.

2. All numerical coefficients are rational numbers.

3. The boundary conditions have UT weight zero.
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These conditions allow to write the matrix A from Eq. (3.10) as

A = ε
∑
i

Ci ωi , (3.25)

where Ci are rational matrices and ωi are one-forms depending algebraically on the kine-
matic invariants. Section 3.4.2 outlines why imposing UT boundary conditions inevitably
leads to a UT solution.

To obtain a canonical system, two types of transformations are possible:

1. The master integrals I1, . . . , INmaster can be replaced by independent linear combina-
tions of the existing master integrals. This includes the replacement of the master
integrals with new independent integrals that are related to the original ones via
IBPs. Mathematically, the master integrals live in a vector bundle of rankN : For each
configuration of kinematic invariants x, they map x to a basis I1(x), . . . , INmaster(x)
of a vector space. Thus, a linear transformation of the master integrals corresponds
to a basis change on a fibre (which is in this case a N -dimensional vector space) and
is therefore called a fibre transformation.

2. The kinematic variables can be transformed, which is called a base transformation.
Mathematically, this corresponds to a reparametrization of chart in the base space.

Unfortunately, in practice, a canonical form might not be achievable. From two-loop level
on, elliptic integrals might appear, making an algebraic transformation into a homogeneous
system in ε impossible.

3.2.2. Fibre Transformation

Transformation Rule

Consider a vector of master integrals I and an invertible complex matrixU ∈ CNmaster×Nmaster

which may depend on the kinematic invariants x and ε. The DEs for I ′ = UI read

dI ′ = dU I + U dI
= dU I + UA I
= (dU U−1 + UAU−1) I ′ .

(3.26)

Consequently the system transforms as

I → I ′ := U I
A→ A′ := dU U−1 + UAU−1 .

(3.27)

This allows to change the basis of master integrals by applying an arbitrary linear and
invertible transformation.
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The Canonical Form at one-loop level

At one-loop level, a closed formula for a canonical basis exists [56]. Consider a sector with
e independent external momenta and therefore N = e+ 1 inverse propagators Pi. Define
KN = G(p1, . . . , pe) with K1 = 1 and G being the Gram determinant from Eq. (2.25). If
the number of propagators N = 2n− 1 is odd, the canonical integral is given by

gN
∣∣
N=2n−1

= εn
√
KN I

(2n−2ε)
1,...,1 , (3.28)

where I(2n−2ε)
1,...,1 denotes the corner integral of the sector in (2n−2ε) space-time dimensions.

For a sector with an even number of distinct propagators N = 2n, the canonical integrals
read

gN
∣∣
N=2n

= εn
√

B(0) I(2n−2ε)
1,...,1 , (3.29)

where B denotes the corresponding Baikov polynomial.

Example: Equal Mass Bubble Integral

Consider the DE for the Bubble integral, given by Eq. (3.20). The canonical basis from
Eq. (3.22) can be restored by the above procedure.

According to Eq. (3.28), the canonical tadpole integral is given by

g1 = ε
√
K1 I

(2−2ε)
1 , (3.30)

Using the dimensional shift relations from Eq. (2.21) and K1 = 1, this corresponds to

g1 = εU(1+)I(4−2ε)
1 . (3.31)

For a tadpole the first graph polynomial is given by U(α1) = α1. Therefore, the operator
U(1+) increases the power of the propagator by 1 resulting in the canonical integral

g1 = ε I
(4−2ε)
2 . (3.32)

The bubble integral has an even number of distinct propagators. Therefore, the associated
canonical integral is given by

g2 = ε
√

B(0) I(2−2ε)
1,1 . (3.33)

The Baikov polynomial expressed in terms of the Baikov variables is given by

B(z1, z2) = (z2 +m2) p2 −
(
z1 − z2 − p2

2

)2

. (3.34)

Setting the Baikov variables to zero gives

B(0) = p2m2 − 1

4
p4 . (3.35)
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3. Differential Equations for Feynman Integrals

Next, a dimensional shift relation is needed to express I(2−2ε)
1,1 in terms of (4 − 2ε) di-

mensional integrals. In this case, the graph polynomial corresponds to a sum over two
spanning trees, U(α1, α2) = α1 + α2, resulting in

g2 = ε

√
p2m2 − 1

4
p2
(
I
(4−2ε)
1,2 + I

(4−2ε)
2,1

)
. (3.36)

The integrals occurring on the right hand side can be expressed in terms of master integrals
using IBPs. Inserting these relations and using x = − p2

m2 gives the canonical integral for
the bubble,

g2 = −
√

x

4 + x
ε
(
I4−2ε
2 − (1− 2 ε) I

(4−2ε)
1,1

)
. (3.37)

The transformation to obtain the canonical basis can be read off from Eqs. (3.32) and (3.37),
resulting in

U =

(
ε 0

−
√

x
4+x

ε
√

x
4+x

ε (1− 2 ε)

)
. (3.38)

According to Eq. (2.64), the DE for the canonical integrals reads dI ′ = A′I ′ with

I ′ =

(
g1
g2

)
and A′ = ε

(
0 0

− 1√
x(4+x)

− 1
4+x

)
, (3.39)

which corresponds exactly to the system from Eq. (3.23).

The appearing square roots can not be removed by a fibre transformation. Instead, a
redefinition of the kinematic invariants is required.

3.2.3. Base Transformation

Square roots
√
P (x), as in the previous example, can appear as soon as massive internal

particles enter the diagrams. Physically speaking, P (x) = 0 corresponds to the kinematic
threshold at which the massive particle becomes on-shell. Consequently, square roots are
an unavoidable feature of massive loop integrals.

Transformation Rule

If the canonical system only depends on very few distinct roots, they can be removed on
the level of the DE by a change of variables. Consider such a change to new variables
x′(x) depending on the former variables x. The transformation behavior of the matrices
Ax can be derived within the 1-form notation. Using

dxi =
Nkin∑
j=1

∂xi
∂x′j

dx′j , (3.40)
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gives

dI =

Nkin∑
i=1

Axi
dxi =

Nkin∑
i=1

Axi

Nkin∑
j=1

∂xi
∂x′j

dx′j =

Nkin∑
j=1

(
Nkin∑
i=1

Axi

∂xi
∂x′j

)
dx′j . (3.41)

The transformed matrices can be read off as the coefficients of dx′j yielding

Ax′
j
=

Nkin∑
i=1

Axi

∂xi
∂x′j

. (3.42)

Example: Equal Mass Bubble Integral The canonical form for the equal mass bubble
integral derived in Eq. (3.39) contains the square root√

x

4 + x
=

x√
x (4 + x)

. (3.43)

The parametrization

x =
s2

1 + s
with

√
x (4 + x) =

s (2 + s)

1 + s
, (3.44)

allows to remove the square root. Applying this parametrization at the canonical system
from Eq. (3.39) gives

As = Ax
∂x

∂s
= ε

(
0 0

− 1
1+s

1
1+s

− 2
2+s

)
= ε

(
0 0

− d log (1 + s) d log(1 + s)− 2 d log (2 + s)

)
.

(3.45)

When multiple internal mass scales appear, such a complete rationalization at the level of
DEs might not be achievable. Instead, the roots can be rationalized during the numerical
evaluation, when not all of them occur simultaneously.

This does not prohibit writing the DEs in terms of dlogs. The square root appearing in the
canonical system from Eq. (3.39) could also have been written as a dlog,

− 1√
x(4 + x)

= 2 d log (−
√
x+

√
4 + x) if x > 0 , (3.46)

without rationalizing it before.

3.3. Iterated Integrals

3.3.1. Solution of the Differential Equation

Consider a DE of the form

dI (x) = ε d log(R(x)) I(x) , (3.47)
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3. Differential Equations for Feynman Integrals

whereR(x) is a matrix depending algebraically on a set of kinematic invariants x, but not
on ε. A solution of this equation can be constructed by expanding I in ε,

I(x) =
∞∑
k=0

εkI(k)(x) . (3.48)

Inserting this expansion in Eq. (3.47) gives,
∞∑
k=0

εk dI(k) (x) =
∞∑
k=0

εk+1 d log(R(x)) I(k)(x) . (3.49)

Since I(k) andR do not depend on ε, the coefficients of εk must agree. Setting them equal
yields the equations

dI(k) (x) = d log(R(x)) I(k−1)(x) for k > 0

dI(0)(x) = 0 .
(3.50)

Integrating both sides results in

I(k)(x) =

∫
γ[x]

d log(R(t)) I(k−1)(t) + C(k)(x0) , (3.51)

where C(k) is a vector of numerical coefficients, I(−1) = 0 and γ[x] is an arbitrary path
that parametrizes the variables from the boundary point x0 to the point of evaluation x.
The first orders in ε read

I(0)(x) = C(0)(x0)

I(1)(x) =

∫
γ[x]

d log(R(t1)) C(0)(x0) + C(1)(x0)

I(2)(x) =

∫
γ[x]

d log(R(t1))

∫
γ[t1]

d log(R(t2)) C(0)(x0)

+

∫
γ[x]

d log(R(t1)) C(1)(x0) + C(2)(x0)

...

(3.52)

where the inner integration is performed along the path γ up to the current point of the
outer integration. The vector-valued constants C(k) can be determined using the boundary
conditions at the point x0.

Multiplying out the products of matrices and the vector valued coefficients gives a sum over
iterated integrals of scalar quantities Ri. To express these more compactly, the following
notation is introduced,

I(R1, . . . , Rw;x) =

∫
γ[x]

d log(R1(t1)) . . .

∫
γ[t(w−1)]

d log(Rw(tw)) , (3.53)

where the number of integrations w is denoted as the weight or depth of the iterated
integral. Note that the path γ can be chosen arbitrary for all integrals collectively, but
generally not for each iterated integral individually. While it is possible to modify the
path for individual integrals, it is essential ensure that the correct analytic continuation is
restored by including the appropriate residues.
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t1

t2

t1

t2

t1

t2

= −

Figure 3.1.: Illustration of the integral reparametrization to obtain shuffle relations.

3.3.2. Shuffle Relations

When multiplying the matrices and boundary vectors in Eq. (3.52), each factor increases
the number of resulting terms by a factor ofO(Nmaster). Starting fromO(N2

master) integrals
at weight one, this means, that at weight w the number of scalar iterated integrals is of
the order O(Nw+1

master).

This number can be reduced bymaking use of relations between iterated integrals. Consider
for example an iterated integral of weight two, I(R1, R2;x). Parametrizing the path γ
with t ∈ [0, 1] gives

I(R1, R2;x) =

∫ 1

0

dt1
d log(R1(γ(t1)))

dt1

∫ t1

0

dt2
d log(R2(γ(t2)))

dt2
. (3.54)

By rearranging the integrals, this can be understood as a two-dimensional integration
over a triangle,

I(R1, R2;x) =

∫ 1

0

dt1
∫ t1

0

dt2
d log(R1(γ(t1)))

dt1
d log(R2(γ(t2)))

dt2
. (3.55)

As depicted in Fig. 3.1, the integral over a triangle can as well be expressed as the integral
over a square, minus the integral over the complement triangle, yielding

I(R1, R2;x) =

∫ 1

0

dt1
∫ 1

0

dt2
d log(R1(γ(t1)))

dt1
d log(R2(γ(t2)))

dt2

−
∫ 1

0

dt1
∫ 1

t1

dt2
d log(R1(γ(t1)))

dt1
d log(R2(γ(t2)))

dt2
.

(3.56)

The second iterated integral spans the region {0 ≤ t1 ≤ t2 ≤ 1}, which can alternatively
be handled by first integrating t2 over the entire interval and then integrating t1 up to t2,

I(R1, R2;x) =

∫ 1

0

dt1
∫ 1

0

dt2
d log(R1(γ(t1)))

dt1
d log(R2(γ(t2)))

dt2

−
∫ 1

0

dt2
∫ t1

0

dt1
d log(R1(γ(t1)))

dt1
d log(R2(γ(t2)))

dt2

(3.57)

The upper iterated integral can be factorized, since the integration limit of the inner
integral does no longer depend on the outer integral. This results in the relation

I(R1, R2;x) = I(R1;x) I(R2;x)− I(R2, R1;x) . (3.58)
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3. Differential Equations for Feynman Integrals

This kind of identities can be generalized to higher dimensions. Just as a square can be
decomposed into two triangles, a cube can be decomposed into six tetrahedrons, which
gives relations for iterated integrals of weight three. More generally, an n-dimensional
hypercube can be decomposed in n-simplices yielding relations between iterated integrals
of weight n.

These identities can be expressed by the shuffle product : Given two sequences
A = (a1, . . . , am) andB = (b1, . . . , bn), their shuffle product is the set of all sequences that
can be formed by taking the elements of A and B and merging them while maintaining
the relative order of A and B.

The term shuffle product can be illustrated with the analogy of a deck of cards. Splitting
the deck into two piles and riffle shuffling them together will result in a shuffled deck
where the relative order of the cards within each pile is preserved.

As en example, the shuffle product of A = (a1, a2) and B = (b1, b2) is given by the set

A ttB = {(a1, a2, b1, b2), (a1, b1, a2, b2), (a1, b1, b2, a2),
(b1, a1, a2, b2), (b1, a1, b2, a2), (b1, b2, a1, a2)} .

(3.59)

The identity from Eq. (3.58) between weight two integrals can be rewritten in terms of the
shuffle product as follows:

I(R1;x) I(R2;x) =
∑

C∈(R1)tt(R2)

I(C;x) . (3.60)

This relation can be generalized to iterated integrals of arbitrary weights,

I(A;x) I(B;x) =
∑

C∈AttB

I(C;x) , (3.61)

where A and B denote the ordered sets that contain the letters of the first and second
iterated integral, respectively.

Proof. Consider two sequences A and B with A = (a1, . . . , am) and B = (bm+1, . . . , bn)
containing at least one element. The proof proceeds by induction over the total number of
elements n. For n = 2, the relation was already proven.

Consider the case n > 2. The subsequent equations can be simplified by introducing the
notation

ãi :=
d log(ai(γ(ti)))

dti
and b̃i :=

d log(bi(γ(ti)))
dti

, (3.62)

as well as

Ĩ(C; t) := I(C, γ(t)) . (3.63)
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3.3. Iterated Integrals

Consider the left hand side from Eq. (3.61). Explicitly writing out the integrals gives

I(A;x) I(B;x) =

∫ 1

0

dt1 ã1 · · ·
∫ tm−1

0

dtm ãm
∫ 1

0

dtm+1 b̃m+1 · · ·
∫ tn−1

0

dtn b̃n . (3.64)

The integrals occurring on the right hand side of Eq. (3.61) either start with the first element
of A or B. The integrals from Eq. (3.64) can be rearranged to represent these two cases by
splitting the integration region of t1 and tm+1 in two subregions:

{0 ≤ t1, tm+1 ≤ 1} = {0 ≤ tm+1 ≤ t1 ≤ 1} ∪ {0 ≤ t1 < tm+1 ≤ 1} . (3.65)

The first region corresponds to the case where a1 is at the first position, while the second
region corresponds to the case where bm+1 is at the front. Applying this decomposition
gives

I(A;x) I(B;x) =

∫ 1

0

dt1 ã1
∫ t1

0

dtm+1 b̃m+1

(∫ t1

0

dt2 ã2 · · ·
∫ tm−1

0

dtm ãm

×
∫ tm+1

0

dtm+2 b̃m+2 · · ·
∫ tn−1

0

dtn b̃n

)

+

∫ 1

0

dtm+1 b̃m+1

∫ tm+1

0

dt1 ã1

(∫ t1

0

dt2 ã2 · · ·
∫ tm−1

0

dtm ãm

×
∫ tm+1

0

dtm+2 b̃m+2 · · ·
∫ tn−1

0

dtn b̃n

)

=

∫ 1

0

dt1 ã1 Ĩ(A \ {a1}; t1) Ĩ(B; t1)

+

∫ 1

0

dtm+1 b̃m+1 Ĩ(A; tm+1) Ĩ(B \ {bm+1}; t1) .

(3.66)

Since the product of iterated integrals in the integrands contains a total of only (n− 1)
arguments, the induction hypotheses can be applied to express them in terms of the shuffle
product,

I(A;x) I(B;x) =
∑

C∈(A\{a1})ttB

∫ 1

0

dt1 ã1 Ĩ(C, t1)

+
∑

C∈Att(B\{bm+1})

∫ 1

0

dtm+1 b̃m+1 Ĩ(C, tm+1)

=
∑

C∈AttB
a1 in front

I(C;x) +
∑

C∈AttB
bm+1 in front

I(C;x)

=
∑

C∈AttB

I(C;x) ,

(3.67)

which concludes the induction.
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3.4. Boundary Conditions

Using the method of DEs, a solution for Feynman integrals can be constructed through
iterated integrals as derived in Eq. (3.52). However, this solution still involves unknown
integration constants C(k), which correspond to the values of the Feynman integrals at the
starting point of the integration path. The starting point can be chosen to simplify the
Feynman integrals, for instance by setting a mass to zero or infinity. Nevertheless, these
simpler integrals still need to be evaluated by other means. In the following section, some
standard methods for calculating Feynman integrals are presented.

3.4.1. Direct computation

Wick rotation

For ν ∈ N+ consider the tadpole integral,

Iν(m
2) :=

k

ν

= µ4−D

∫
dDk
iπ

D
2

1

[k2 −m2 + iδ]ν
. (3.68)

The integral depends only on the loop momentum squared and does not exhibit any
additional angular dependence. It is then natural to change the coordinate system to
spherical coordinates. However, k2 still corresponds to the scalar product in Minkowski
space, therefore a transformation to Euclidean space must be applied.

As a first step, the time component k0 is separated from the spatial components k,

Iν(m
2) = µ4−D

∫
dD−1k
iπ

D
2

∫ ∞

−∞
dk0

1

[k20 − k2 −m2 + iδ]ν
. (3.69)

The integrand has two poles of order ν in k0 = ±
√
k2 +m2 ∓ iδ. Closing the integration

of k0 from−R toR by extending it to an integral over a closed path γR as shown in Fig. 3.2
gives ∫

γR

dk0
1

[k20 − k2 −m2 + iδ]ν
= 0, (3.70)

since the curve does not enclose any poles. For R → ∞ the integration over the arcs
vanishes due to Jordan’s Lemma, yielding∫ ∞

−∞
dk0

1

[k20 − k2 −m2 + iδ]ν
=

∫ i∞

−i∞
dk0

1

[k20 − k2 −m2 + iδ]ν

= (−1)ν
∫ ∞

−∞
dq0

1

[q20 + q2 −m2 + iδ]ν
,

(3.71)

where the substitution k0 = iq0 was used.
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x

y

O √
k2 +m2

√
k2 +m2

Figure 3.2.: Integration path for the Wick rotation

Inserting Eq. (3.71) into the tadpole integral gives,

Iν(m
2) = µ4−D(−1)ν

∫
dDq
iπ

D
2

1

[q2 +m2 − iδ]ν
, (3.72)

where q2 corresponds to a scalar product in Euclidean metrics, which can be evaluated in
spherical coordinates. The explicit evaluation yields

Iν(m
2) =

(−1)ν

(ν − 1)!

(
µ2

m2 − iδ

)ε

(m2)2−ν Γ(ν − 2 + ε) (3.73)

where D = 4− 2ε was used.

Feynman Parametrization

The Feynman parameter representation introduced in Sec. 2.1.2 allows a dimensional
regularized Feynman integral to be rewritten as an integral over Feynman parameters. In
certain special cases, these integrals can be computed analytically.

Example: Bubble Integral Consider the bubble integral Iν1,ν2(p2,m2
1,m

2
2) with the in-

coming momentum p and two massive propagators with the massesm1 andm2, raised to
the powers ν1 and ν2, respectively,

p m1

m2

= µ4−D

∫
dDk
iπ

D
2

1

[(k + p)2 −m2
1 + iδ]

ν1 [k2 −m2
2 + iδ]

ν2 (3.74)

The Feynman parameter representation from Eq. (2.22) gives

Iν1,ν2 = µ4−D Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

∫ 1

0

dα
∫

dDk
iπ

D
2

αν1−1(1− α)ν2−1

[(k + α p)2 − Ω2 + iδ]ν1+ν2
, (3.75)
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with Ω2 = −α(1−α)p2+αm2
1+(1−α)m2

2. Substituting k → k+α p results in a tadpole
integral with the mass Ω. Using the expression for the tadpole from Eq. (3.73) gives

Iν1ν2(p
2,m2

1,m
2
2) = (−1)ν1+ν2 µ2ε Γ(ν1 + ν2 − 2 + ε)

Γ(ν1)Γ(ν2)

×
∫ 1

0

dααν1−1(1− α)ν2−1(Ω2 − iδ)2−ν1−ν2−ε

(3.76)

The integral over α can be evaluated in some special cases:

Case 1: m1 = m2 = 0 and p2 6= 0

Iν1,ν2(p
2, 0, 0) = (−1)ν1+ν2

(
µ2

−p2 − iδ

)ε

(−p2 − iδ)2−ν1−ν2

× Γ(ν1 + ν2 − 2 + ε)

Γ(ν1)Γ(ν2)

Γ(2− ν1 − ε)Γ(2− ν2 − ε)

Γ(4− ν1 − ν2 − 2ε)
.

(3.77)

Case 2: m1 = m, m2 = 0 and p2 = 0

Iν1,ν2(0,m
2, 0) = (−1)ν1+ν2

(
µ2

m2 − iδ

)ε

(m2 − iδ)2−ν1−ν2

× Γ(ν1 + ν2 − 2 + ε)

Γ(ν1)Γ(ν2)

Γ(ν2)Γ(2− ν2 − ε)

Γ(2− ε)
.

(3.78)

Case 3: m1 = m2 = m and p2 = 0

Iν1,ν2(0,m,m) = (−1)ν1+ν2

(
µ2

m2 − iδ

)ε

(m2 − iδ)2−ν1−ν2

× Γ(ν1 + ν2 − 2 + ε)

Γ(ν1 + ν2)
.

(3.79)

Example: Massless Triangle Integral Consider the massless triangle integral Iν1,ν2,ν3 with
two massless external legs with momenta p1 and p2,

ν1
ν3

ν2

p1

p2

= µ4−D

∫
dDk
iπ

D
2

1

[k2 + iδ]ν1 [(k + p1)2 + iδ]ν2 [(k − p2)2 + iδ]ν3
. (3.80)

The only non-zero scalar product which can be constructed from the external momenta is
(p1 · p2) = s

2
. Since no internal masses are present, the integral depends solely on s. Using

the Feynman parametrization for the first two propagators yields

Iν1,ν2,ν3(s) = µ4−D Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

×
∫ 1

0

dα
∫

dDk
iπ

D
2

αν1−1(1− α)ν2−1

[(k + (1− α)p1)2 + iδ]ν1+ν2 [(k − p2)2 + iδ]ν3
.

(3.81)
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The resulting integral over k equals a massless bubble integral with incoming momentum
(1− α)p1 + p2. Using the result for the massless bubble integral from Eq. (3.77) gives

Iν1,ν2,ν3(s) =
Γ(ν2 + ν2 + ν3 − 2 + ε)Γ(2− ν1 − ν2 − ε)Γ(2− ν3 − ε)

Γ(ν1)Γ(ν2)Γ(ν3)Γ(4− ν1 − ν2 − ν3 − 2ε)

×
(

µ2

−s− iδ

)ε

(−s− iδ)2−ν1−ν2−ν3

∫
dααν1−1(1− α)1−ν1−ν3−ε .

(3.82)

The resulting integral over the Feynman parameter α can be solved for certain values of
ν1, ν2 and ν3. For example the case ν1 = ν2 = ν3 = 1 gives

I1,1,1(s) =

(
µ2

−s− iδ

)ε
1

−s− iδ

1

ε

Γ(1− ε)Γ(1 + ε)Γ(−ε)
Γ(1− 2ε)

. (3.83)

Iterative calculation

Consider the vacuum sunset integral I(m2) with one massive line,

k1

k2

=
(
µ4−D

)2 ∫ dDk1
iπ

D
2

∫
dDk2
iπ

D
2

1

[k21 + iδ] [(k1 − k2)2 + iδ] [k22 −m2 + iδ]
. (3.84)

The integration about k1 corresponds to a massless bubble integral with the incoming
momentum k2. Using the result for the massive bubble from Eq. (3.77) gives

I(m2) = (−1)−εµ4ε Γ(1− ε)2Γ(ε)

Γ(2− 2ε)

∫
dDk2
iπ

D
2

1

[k22 + iδ]
ε
[k22 −m2 + iδ]

. (3.85)

Graphically, this corresponds to combining the two massless lines into a single massless
propagator with momentum k2, raised to the power ε:

= ∝
ε

. (3.86)

The resulting integral is a bubble integral with one massive line, which can be evaluated
using Eq. (3.78), yielding

I(m2) = (−1)−ε

(
µ2

m2

)2ε

m2 Γ(1− ε)2Γ(−1 + 2ε)Γ(ε)Γ(1 + ε)

Γ(2− ε)
. (3.87)

47



3. Differential Equations for Feynman Integrals

Algebraic Identities

For ν1, ν2 ∈ N0 consider the tadpole integral with two masses,

Iν1,ν2 =

ν1

ν2

= µ4−D

∫
dDk
iπ

D
2

1

P ν1
1 P ν2

2

, (3.88)

with the inverse propagators

P1 = k2 −m2
1 + iδ and P2 = k2 −m2

2 + iδ . (3.89)

Expanding the integrand with P2 and using the relation P1 = P2 +m2
2 −m2

1 results in

Iν1,ν2 = µ4−D

∫
dDk
iπ

D
2

1

P ν1
1 P ν2

2

P2

P2

= µ4−D

∫
dDk
iπ

D
2

1

P ν1
1 P ν2

2

P1

P2

+
(
m2

2 −m2
1

)
µ4−D

∫
dDk
iπ

D
2

1

P ν1
1 P ν2

2

1

P2

= Iν1−1,ν2+1 + (m2
2 −m2

1)Iν1,ν2+1 .

(3.90)

Rearranging this with respect to Iν1,ν2+1 results in a recursive relation,

Iν1,ν2+1 =
1

m2
2 −m2

1

(Iν1,ν2 − Iν1−1,ν2+1) , (3.91)

which terminates in single mass tadpole integrals.

3.4.2. Uniform Transcendental Boundary Conditions

By imposing UT boundary conditions, a UT solution is ensured. This can be demonstrated
by examining the solution of a canonical system in terms of iterated integrals over dlogs.

At zeroth order in ε, the solution is determined entirely by the boundary conditions
C(0)(x0),

dI(0)(x1) = C(0)(x0) . (3.92)

To achieve a UT result, C(0)(x0)must have UT weight zero, meaning it should be a rational
number.

At the first order in ε, the solution is given by

dI(1) (x1) =

∫
γ[x1]

d log(R(x)) C(0)(x0) + C(1)(x0) , (3.93)

which corresponds to a product of a logarithm and the boundary constant C(0)(x0), result-
ing in a total weight of one, plus the boundary constant C(1). To obtain a UT result, C(1)

must also have UT weight one, implying it should be composed of logarithms, π’s and
other weight-1 terms.

This reasoning can be iteratively continued, leading to the conclusion that the boundary
constant C(k)(x0) must have weight k. Thus, UT boundary conditions guarantee a UT
solution.
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Example: Transcendental Weight of a Tadpole Diagram Consider the tadpole diagram
with one propagator derived in Eq. (3.73). Setting µ2 = m2, rescaling the integral by
exp(γE ε) in order to remove the otherwise appearing Euler-Mascheroni constant γE and
expanding the Gamma-function, Γ(−1 + ε), in ε gives

−exp(γE ε)
m2

k

= −1

ε
− 1 +

(
π2

12
− 1

)
ε+O(ε2) . (3.94)

In the first order in ε, the number −1 with weight zero and π2 with weight two occur.
Therefore, this expression does not have UT weight. On the other hand, the expression for
a general tadpole with the propagator raised to the power ν as in Eq. (3.73) contains the
factor Γ(ν − 2 + ε). Setting ν = 3, the expansion of the gamma function reads

exp(γE ε) Γ(1 + ε) = 1 +
π2

12
ε2 +O(ε3) , (3.95)

which has uniform weight zero. It is therefore natural to use the tadpole with three
propagators instead of the tadpole with one propagator as a master integral,

−m2 exp(γE ε)

k

3

=
1

2

(
1 +

π2

12
ε2 +O(ε3)

)
. (3.96)

The transformation is given by the relation,

k

3

=
ε (−1 + ε)

m4

k

. (3.97)

The tadpole with ν = 3 exactly corresponds to the first canonical integral from Eq. (3.39).

3.4.3. Large Mass Expansion

The difficulty of computing Feynman integrals increases considerably with the number
of scales and loops involved. If a propagators of an integral family includes a mass m,
using the boundary conditionm→ ∞ can significantly simplify the dependence on other
external scales.

Consider an inverse propagator with massm,

P = (k + q)2 −m2 + iδ , (3.98)
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3. Differential Equations for Feynman Integrals

which depends on the loop momentum k and on a linear combination of the external
momenta q. Let the energy scale of the external momenta by denoted by Λ. Simply
neglecting all momenta relative to the mass whenm� Λ is not sufficient, since the loop
momentum is integrated over the entireD-dimensional space, which includes both regions
where k2 ∝ Λ2 and where k2 ∝ m2.

Thus, for the loop momentum, it is necessary to distinguish between the large mass scale
m and the smaller energy scale Λ. The large mass expansion is then given by the sum of
both cases [57],

lim
m2�Λ

∫
dDk
iπ

D
2

n∏
j=1

1

P
νj
j

=

(∫
dDk
iπ

D
2

n∏
j=1

1

P
νj
j

∣∣∣∣∣
k2∝Λ2

+

∫
dDk
iπ

D
2

n∏
j=1

1

P
νj
j

∣∣∣∣∣
k2∝m2

)
. (3.99)

Practically, the expansions of the propagators can be calculated by multiplying all small
quantities (i.e. all external momenta and masses which are not taken to infinity as well
as the loop momentum in the case k2 � m2) by a factor of ρ. The integrand is then
expanded in ρ around ρ = 0, corresponding to an expansion in the small quantities. Once
the expansion is complete, ρ is set to 1. Note that all odd orders of the expansion should
vanish since they contain factors of ρ in the numerator, which are zero when ρ = 0. This
can be used as a crosscheck for the expansion.

Example: Equal Mass Bubble Integral Consider the equal mass bubble integral I1,1 from
Eq. (3.13). In the case where the loop momentum is of the same order as the energy scale
of the external momentum, Λ, the external and loop momenta are multiplied with ρ. The
leading order expansion in ρ around ρ = 0 gives a scaleless integral,

I1,1|k2∝Λ2 = µ4−D

∫
dDk
iπ

D
2

1

[−m2 + iδ]2
+O(ρ2) = 0 . (3.100)

For large loop momenta, k2 ∝ m2, only the external momentum is multiplied with ρ. Then,
the leading order expansion around ρ = 0 yields

I1,1|k2∝m2 = µ4−D

∫
dDk
iπ

D
2

1

[k2 −m2 + iδ]2
+O(ρ2) . (3.101)

The resulting integral corresponds to a massive tadpole with its propagator raised to the
power two. According to Eq. (3.73) the leading order large mass expansion of the bubble
is then given by

lim
m�Λ

I1,1 =

(
µ2

m2 − iδ

)ε

Γ(ε) . (3.102)

The above procedure for approximating one-loop Feynman integrals with large masses
can be generalized to l-loop integrals. Then, all possible regions for the loop momenta
must be considered.
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3.5. Numerical Evaluation of Feynman Integrals

Example: Equal Mass Sunset Integral Consider the equal mass sunset integral with
incoming momentum p,

I1,1,1 =

k1 + p

k2

. (3.103)

To calculate the large mass expansion, the sum over all kinematic regions of the loop
momenta is taken into account. Specifically, this involves the following regions:

• Both loop momenta are large: This occurs when k21 ∝ m2 and k22 ∝ m2. In this
case it is important to additionally distinguish wether their difference (k1 − k2)

2 is
large or small.

• Both loop momenta are small: Here, k1 � m2 and k2 � m2.

• Mixed region: One loop momentum is large, the other one is small. The difference
k1 − k2 is considered as large.

Graphically this can be illustrated as

k1 + p1

k2

= + + + + , (3.104)

with a dotted line representing a propagator with a small loop momentum.

3.5. Numerical Evaluation of Feynman Integrals

To obtain a numerical result, the iterated integrals derived from the DEs must be evaluated.
The key challenge in this process is ensuring numerical stability. However, these integrals
may have poles near the integration path, which can significantly slow down algorithms for
numerical integration. Thus, an efficient method is necessary, which converges sufficiently
fast despite the poles.

3.5.1. Multiple Polylogarithms

A DE in canonical form can lead to iterated integrals over simple poles which corresponds
to the integral representation of multiple polylogarithms (GPLs) [58]1.
1In other literature, multiple polylogarithms might be denoted as generalized polylogarithms or Goncharov
polylogarithms.
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3. Differential Equations for Feynman Integrals

GPLs are functions that can be computed with high numerical stability. By using their
sum representation and further symmetry relations, their convergence can be significantly
accelerated, making them efficient for numerical evaluation.

Note that GPLs are not required to examine the analytic properties of the amplitude.
Divergencies at specific kinematic configurations can also be investigated using iterated
integrals.

Integral Representation

GPLs of weight w are defined by the recursive relations

G(z1, . . . , zw;x) =

∫ x

0

dt
t− z1

G(z2, . . . , zw; t) , (3.105)

withG(; t) = 1 and z1, . . . , zw ∈ Cwith at least one zj 6= 0. If all zj are zero, the definition
reads

G(0, . . . , 0︸ ︷︷ ︸
w

;x) =
logw(x)
w!

. (3.106)

Iterated integrals with simple poles such as generated from Eq. (3.45), align precisely with
this definition.

Sum Representation

The sum representation of GPLs is useful for their numerical evaluation. Its derivation
can be sketched by considering a simple example,

Gm−1

(
1

a
;x

)
=

∫ x

0

dt1
t1

∫ t1

0

dt2
t2

· · ·
∫ tm−2

0

dtm−1

tm−1

∫ tm−1

0

dtm
tm − 1

a

, (3.107)

where the following short hand notation is used,

Gm1,...,md
(z1, . . . , zd;x) = G(0, . . . , 0︸ ︷︷ ︸

m1−1

, z1, . . . , zd−1, 0, . . . , 0︸ ︷︷ ︸
md−1

, zd;x) . (3.108)

The last integrand can be expressed with the geometric series,

Gm−1

(
1

a
;x

)
= −a

∫ x

0

dt1
t1

∫ t1

0

dt2
t2

· · ·
∫ tm−2

0

dtm−1

tm−1

∫ tm−1

0

dtm
∞∑
k=0

(atm)
k

= −
∫ x

0

dt1
t1

∫ t1

0

dt2
t2

· · ·
∫ tm−2

0

dtm−1

tm−1

∞∑
k=0

(atm−1)
k+1

k + 1
.

(3.109)

Each further integration increases the power of (k + 1) by one, yielding

Gm−1

(
1

a
;x

)
= −

∑
k>0

(ax)k

km
. (3.110)
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The resulting series converges absolutely for |ax| < 1, since

∑
k>0

∣∣∣∣(ax)kkm

∣∣∣∣ < ∞∑
k=0

|ax|k = 1

1− |ax|
, (3.111)

making it a promising ansatz for numerical evaluation. The next more difficult case is an
additional integration over a non-zero pole,

G0,m−1

(
1

a1
,

1

a1, a2
;x

)
= −

∫ x

0

dt
t− 1

a1

∑
k2>0

(a1a2t)
k2

km2

=
∑
k2>0

ak22
km2

a1

∫ x

0

dt
(a1t)

k2

1− a1t
.

(3.112)

This time, the geometric series starting from k1 = k2 can be used to carry out the integra-
tion,

G0,m−1

(
1

a1
,

1

a1, a2
;x

)
=
∑
k2>0

ak22
km2

a1

∫ x

0

dt
∑
k1≥k2

(a1t)
k1 =

∑
k1>k2>0

ak11
k1

ak22
km2

. (3.113)

This procedure can be iteratively continued by adding more zeros or non-zero arguments,
resulting in the sum representation of GPLs,

Lim1,...,mn(a1, . . . , an) := Gm1,...,mn

(
1

a1
,

1

a1a2
, . . . ,

1

a1 · . . . · an
; 1

)
=

∑
k1>...>kn>0

n∏
j=1

a
kj
j

k
mj

j

,

(3.114)

which converges absolutely if |a1 · . . . · aj| < 1 for all j ∈ {1, . . . , n}.

Two assumptions have been made for the definition of the sum representation. First, the
GPL in integral representation is evaluated at x = 1. This can always be achieved, by
making use of the scaling relation,

G(λz1, . . . , λzw, λx) = G(z1, . . . , zw, x) , (3.115)

which can be derived by substituting tk → λtk in the integrals.

Secondly it was assumed, that the GPL does not have a trailing zero, meaning that a zero
does not appear as the last argument. Trailing zeros can be isolated with shuffle relations,
which GPLs inherit from their definition as iterated integrals. Consider a GPL with aj 6= 0
and w − j trailing zeros,

G(a1, . . . , aj, 0, . . . , 0︸ ︷︷ ︸
w−j

;x) . (3.116)
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The shuffle relation

G(0;x)G(a1, . . . , aj, 0, . . . , 0︸ ︷︷ ︸
w−j−1

;x) = (w − j)G(a1, . . . , aj, 0, . . . , 0︸ ︷︷ ︸
w−j

;x)

+
∑

C∈(a1,...,aj−1)tt(0)

G(C, aj, 0, . . . , 0︸ ︷︷ ︸
w−j−1

) ,
(3.117)

allows to remove a trailing zero by rewriting the GPL with w − j trailing zeros in terms
of GPLs with w − j − 1 trailing zeros and G(0;x) = log(x). By iteratively applying this
relation, the trailing zeros can be fully isolated as logarithms.

Therefore, any GPL in the integral notation can be rewritten in terms of GPLs in the sum
representation and logarithms.

Numerical Evaluation

A number of computer codes, such as GiNaC [59], provide fast and automated tools
for evaluating GPLs. The principle idea of the computation is to approximate them by
calculating their sum representation up to an upper limit N ,

I(N) :=
N∑

k1>...kn>0

n∏
j=1

a
kj
j

k
mj

j

≈ Lim1,...,mn(a1, . . . , an) +O(ε) . (3.118)

The upper limit N is determined by the desired precision ε via

|I(N)− I(N − 1)| < ε . (3.119)

Two aspects need to be highlighted for this approach. First, intermediate particles going
on-shell might result in GPLs with poles on the integration path yielding a non-converging
sum representation. To solve this, the arguments of the GPLs can be moved to a region
of convergence by a suitable transformation as explained in Ref. [40]. Secondly, poles
near the integration path can spoil the series convergence. These poles can be moved
further away from the path by alternately applying the Hölder convolution [60] and a
transformation into a region of convergence.

3.5.2. Mapping Iterated Integrals on GPLs

A DE in canonical form does not necessarily yield GPLs as its solution. However, the
iterated integrals might still be mapped to GPLs, even when they involve non-rational
dependencies on the kinematic invariants. Multiple square roots appearing together in
the DEs and avoiding a rationalization may not occur together within the same iterated
integral, allowing them to be rationalized independently.
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3.5. Numerical Evaluation of Feynman Integrals

Rationalizing Square Roots

The square roots appearing in the dlogs contain rational functions, which means that they
can be written as

y =

√
g(x1, . . . , xNkin)

h(x1, . . . , xNkin)
(3.120)

with polynomials g and h. Following Ref. [61], finding a rational transformation for x
is equivalent to finding a rational parametrization for the hypersurface defined by the
equation

f(x1, . . . , xN , y) := y2h(x1, . . . , xN)− g(x1, . . . , xN) = 0 , (3.121)

where f is a polynomial of degree n.

As a first step to get such a parametrization, the coordinates are shifted to obtain a form
where f can be written as

f(x1, . . . , xNkin , y) = fn−1(x1, . . . , xNkin , y) + fn(x1, . . . , xNkin , y) , (3.122)

with polynomials fn−1 and fn which are homogeneous of degree n−1 and n, respectively2.
In general a polynomial of degree n can just be decomposed in (n+ 1) polynomials,

f(x1, . . . , xNkin , y) = f0(x1, . . . , xNkin , y) + . . .+ fn(x1, . . . , xNkin , y) , (3.123)

where fk is homogeneous of degree k. The assumptions f0 = . . . = fn−2 = 0 and fn−1 6= 0
are equivalent to the vanishing of the first (n− 2) partial derivatives in the origin, with
at least one (n − 1)-th partial derivative being non-zero. A point with this property is
called to be of multiplicity (n− 2). A point of multiplicity 1 is called regular. If any point
p of multiplicity (n − 2) exists, the origin can be shifted to that point by applying the
transformation

xk → x̃k = xk + pk . (3.124)

Written in these new coordinates, f can be decomposed as in Eq. (3.122).

In this form, a rational transformation can be found by setting

x̃2 = t1x̃1
...

x̃Nkin = tNkin−1x̃1

y = tNkinx̃1 ,

(3.125)

yielding

f(x̃1, t1x̃1, . . . tNkinx̃) = fn−1(x̃1, t1x̃1, . . . , tNkinx̃Nkin) + fn(x̃1, t1x̃1, . . . , tNkinx̃Nkin)

= x̃n−1
1 [fn−1(1, t1, . . . , tNkin) + x̃1fn(1, t1, . . . , tNkin)] . (3.126)

2A polynomial f is homogeneous of degree k if f(λx1, . . . , λxNkin) = λkf(x1, . . . , xNkin).
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The equation vanishes if x̃1 is chosen such that the term in the brackets vanishes. This
results in the transformation

φx̃1(t1, . . . , tNkin) = −fn−1(1, t1, . . . , tNkin)

fn(1, t1, . . . , tNkin)

φx̃2(t1, . . . , tNkin) = −t1
fn−1(1, t1, . . . , tNkin)

fn(1, t1, . . . , tNkin)
...

φx̃N
(t1, . . . , tNkin) = −tN−1

fn−1(1, t1, . . . , tNkin)

fn(1, t1, . . . , tNkin)
.

(3.127)

The rational transformations for the initial coordinates xk are obtained by applying the
inverse transformation from Eq. (3.124), yielding φxk

(t1, . . . , tNkin) = φx̃k
(t1, . . . , tNkin)−pk.

Note that specifically setting the argument x1 to one in Eq. (3.127) was arbitrary. In general,
any of the arguments can be set to one.

Example: Rationalizing
√

x (4+ x) The rationalization of the square root
√
x (4 + x)

from Eq. (3.44) can be derived following the presented method. Rationalizing this square
root is equivalent to finding a rational transformation of the hypersurface defined by

f(x, y) = y2 − x(x+ 4) = 0 . (3.128)

Since the origin is a regular point, f can be decomposed as f = f1 + f2 with

f1(x, y) = −4x and f2(x, y) = y2 − x2 . (3.129)

Setting x = ty gives the parametrization

φy(t) =
4t

1− t2
and φx(t) =

4t2

1− t2
, (3.130)

which rationalizes the square root. The rationalization can be adjusted by substitutions of
the form t = g(s). The substitution t = − s

2+s
restores the transformation from Eq. (3.44),

φ̃y(s) = −s(2 + s)

1 + s
and φ̃x(s) =

s2

1 + s
, (3.131)

with the properties φ̃y(0) = φ̃x(0) = 0 and φ̃y(s), φ̃x(s) > 0 for s > 0.

Logarithmic Properties of Iterated Integrals

To further simplify iterated integrals, their origin from dlogs can be used. This means they
behave similar to logarithms with respect to each of their arguments. For instance,

I(R1, . . . , R
(1)
k ·R(2)

k , . . . , Rw;x) = I(R1, . . . , R
(1)
k , . . . , Rw;x)

+I(R1, . . . , R
(2)
k , . . . , Rw;x) .

(3.132)

Note that for logarithms an additional phase may be considered, depending on the complex
argument of R(1)

k and R(2)
k . However, for iterated integrals that are based on dlogs, this

phase can be omitted, as it vanishes when taking the derivative.
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Example: A Depth-2 Iterated Integral

Consider the iterated integral3

I = I
(
1 +

ρ

4
, 1 +

√
ρ

4 + ρ
;x

)
− I

(
1 +

ρ

4
, 1−

√
ρ

4 + ρ
;x

)
. (3.133)

Applying the rationalization ρ = r2

1+r
results in

I = I
(
1

4

(2 + r)2

1 + r
, 2

1 + r

2 + r
; ρ1

)
− I

(
1

4

(2 + r)2

1 + r
,

2

2 + r
; ρ1

)
, (3.134)

with the evaluation point

ρ1 =
1

2

(√
ρ+

√
ρ (4 + ρ)

)
. (3.135)

The logarithmic properties of dlogs in each argument can be used to obtain simple poles.
This allows to write Eq. (3.134) in terms of GPLs,

I = 2 I(r + 2, r + 1; ρ1)− I(r + 1, r + 1; ρ1)

= 2G(−2,−1; ρ1)−G(−1,−1; ρ1) .
(3.136)

The second weight-2 GPL can be further expressed as two weight-1 GPLs by applying
shuffle relations. This yields

I = 2G(−2,−1; ρ1)−
1

2
G(−1; ρ1)

2 . (3.137)

Combining the presented rationalization algorithm and logarithmic properties allows to
express most iterated integrals in terms of polylogarithms.

3.5.3. Analytic Continuation

Expressing iterated integrals in terms of GPLs is least complex in the Euclidean region.
Here, no intermediate particle is on-shell, ensuring real results. These results then have to
be analytically continued to the physical region by selecting the correct analytic continua-
tion.

Analytic Continuation to the non-Euclidean Region

Consider the external momenta pi yielding the external kinematic invariants p2i and
sij = pipj . In the Euclidean region where all pi are time-like, the kinematic invariants are
negative,

p2i < 0 and sij < 0 . (3.138)

3The example corresponds to the coefficient of ε2 of the canonical function g3 in Eq. (4.13).
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In the non-Euclidean region, at least one external kinematic quantity is positive. To carry
out the analytic continuation to this region, all positive kinematics must be given a small
imaginary part iδ to achieve the correct causality [62].

Consider the simple example

ψ(x)|x>0 = log(x) with x = − p2i
m2

, (3.139)

and therefore x > 0 corresponding to p2i < 0. To analytically continue ψ(x)|x>0 to the
non-Euclidean region, p2i must be given a small imaginary part iδ with δ > 0,

x→ x̃ = −p
2
i + iδ

m2
= x− iδ . (3.140)

Therefore, the solution for x < 0 is given by

ψ(x)|x<0 = lim
δ→0+

ψ(x̃)|x>0 = lim
δ→0+

log(x− iδ) . (3.141)

The complex shift can be removed, by opening the logarithm to obtain a real logarithm
and a complex phase,

ψ(x)|x<0 = lim
δ→0+

[log(|x− iδ|) + i arg(x− iδ)] = log(−x)− iπ . (3.142)

Note that arg maps complex numbers to the interval (−π, π], resulting in a discontinuity
along the negative real axis. Consequently, changing the sign of δ modifies the analytic
continuation for x < 0 by 2πi.

Algorithms that evaluate (poly)logarithms typically assume a specific sign for δ in such
cases. Therefore, explicitly rewriting the analytic continuation for the relevant kinematic
region, as done in Eq. (3.142), reduces the risk of an incorrect continuation during the
numerical evaluation.

However, for polylogarithms of higher weight, calculating an explicit analytic calculation
may not always be straightforward. As an alternative, the numerical evaluation can be
safeguarded by manually shifting the input values by a small imaginary number. This
helps avoid incorrect handling by the algorithm, ensuring a proper continuation.
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4. EW Corrections for Quark-initiated
Double Higgs Production

This chapter focuses on Higgs pair production initiated by two light quarks. I calculate
the LO amplitude for diagrams that include at least one top quark propagator, with the
Higgs boson coupling exclusively to theW boson. These diagrams depend on three mass
scales: The top quark mass, the Higgs boson mass, and theW boson mass.

There are no tree-level diagrams for this process since the incoming particles are massless.
Thus, the LO amplitude already involves loop contributions. Despite this, the LO must be
finite, as explained in Sec. 1.2.1.

To get the finite remainder of the interference between the LO and NLO amplitudes, I
calculate the LO amplitude up to the second order in ε. Additionally, I derive the NLO
amplitude in terms of Master integrals.

The code and results for the LO calculation are available under

https://git.particle.kit.edu/prendler/lo_qq_to_hh.git

4.1. The Contributing Diagrams

I generated the relevant diagrams using QGRAF 3.6.6 [63] and visualize them with qgraf-
xml-drawer 1.0 [64]. The model file used for the diagram generation, which includes
all considered couplings and propagators, is provided in Appendix A.1. By choosing the
unitary gauge for the EW bosons, Goldstone bosons and EW ghosts are excluded from
consideration.

The LO and NLO diagrams are generated by setting the power of the weak coupling
constant to four and the strong coupling constant to zero and two, respectively. All
external momenta are defined as incoming. The instruction file used for the generation of
the LO diagrams is attached to Appendix A.1.

The incoming quarks are defined to be of the down-type in order to produce a top quark
through their interaction with theW boson. Diagrams with incoming massless up-type
quarks and a top quark line only contribute at higher orders of the coupling constants.
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Figure 4.1.: Contributing diagrams for the quark initiated one-loop case

4.1.1. The One-Loop Case

The four diagrams contributing at the one-loop level are depicted in Fig. 4.1. The thick red
fermion line represents a top quark.

4.1.2. The Two-Loop Case

There are 24 diagrams contributing at the two-loop level, which are shown in Fig. A.1
in Appendix A.2. Eight of the diagrams contain a gluon in the s-channel, which carries
the color charge of the final state. Given that the considered final state is color-neutral,
these diagrams must vanish. However, I retain them as a cross-check during the amplitude
calculation.

4.2. The Tensor Structure

The diagrams generated by QGRAF are translated into analytic expressions using FORM
4.2 [65, 66] and the Feynman rules provided in Ref. [67], with the choice of + for all
optional signs. These expressions can be projected on form factors by applying appropriate
projection operators.

4.2.1. The Form Factors

The amplitude can be expressed as

M = v̄(p2)Ms
ij ū(p1) , (4.1)

where i and J are the color indices andMs
ij is matrix-valued in spinor space.
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The only structure involving two fundamental color indices is the Kronecker delta. Any
combination of the SU(3) generators T a will result in deltas. Thus, the color structure of
the amplitude is given by Ms

ij = δijMs.

The spinor structure is expressed in terms of gamma matrices. Any spinor structure can
be constructed with I, /p1, /p2 and /p3, each combined with the chiral projection operators
PL and PR. This leads to the ansatz

Ms =

[
FL
0 PL + FR

0 PR +
3∑

i=1

(
FL
i /piPL + FR

i /piPR

)]
, (4.2)

with the form factors FL/R
i .

Due to the Dirac equations for massless spinors,

/p1u(p1) = 0 and v̄(p2) /p2 = 0 , (4.3)

terms involving a /p1 or /p2 vanish when multiplied with the spinors. Consequently, the
form factors FL/R

1/2 do not contribute to the amplitude.

4.2.2. The Chiral Projection Operators

Projecting the scattering amplitude onto the tensor structure requires to take traces over
products of D-dimensional gamma matrices. EW interactions introduce a distinction
between left- and right-handed fermions, resulting the presence of γ5 matrices. However,
generalizing the γ5 matrix into D dimensions proves to be quite complex. The four-
dimensional definition,

γ5 =
i

4!
εµνρσγ

µγνγργσ , (4.4)

cannot be extended to arbitrary dimension D, due to the totally antisymmetric tensor
εµνρσ being uniquely defined in four dimensions.

I use the naive scheme [68] for the dimensional regularization of γ5 matrices, which is
defined by two properties: The anticommutativity with gamma matrices is extended to
D-dimensions,

{γ5, γµ} = 0 , (4.5)

and the normalization condition is

γ25 = 1 . (4.6)

This prescription allows to anticommute the chiral projection operators along the massless
propagators to the external spinors, which leads to

M = v̄L(p1) δijM̃s uL(p2) , (4.7)
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with left-handed external spinors. The remaining tensor structure M̃s does not contain γ5
matrices, allowing for simplification to

M̃s = F0 I+ F1 /p1 + F2 /p2 + F3 /p3 . (4.8)

The orthogonality of the chiral projectors implies that v̄L(p1)uL(p2) = 0. Consequently,
F0 does not contribute to the amplitude. As a result, F3 is the only relevant form factor.

4.2.3. The Projectors

I construct the projector onto /p3 by calculating the action of the tensor structure compo-
nents on the overall tensor structure. These actions are given by

tr
(
IM̃s

)
= 4F0 (4.9a)

tr
(
/p1 M̃

s
)
= 4[(p1 · p2)F2 + (p1 · p3)F3] (4.9b)

tr
(
/p2 M̃

s
)
= 4[(p1 · p2)F1 + (p2 · p3)F3] (4.9c)

tr
(
/p3 M̃

s
)
= 4[(p1 · p3)F1 + (p2 · p3)F2 + (p3 · p3)F3] , (4.9d)

Rearranging Eqs. (4.9) with respect to F3 allows to construct a projector onto /p3, given by

P3M̃s =
1

4

(p1 · p2) tr
(
/p3M̃

s
)
− (p1 · p3) tr

(
/p2M̃

s
)
− (p2 · p3) tr

(
/p1M̃

s
)

(p1 · p2) (p3 · p3)− 2 (p1 · p3) (p2 · p3)
, (4.10)

which yields the form factor F3.

4.3. Reduction to Master Integrals

The analytic expressions for the diagrams contain O(102) distinct Feynman integrals
at the one-loop level and O(103) integrals at the two-loop level. To reduze them to a
more manageable set of master integrals, they are categorized into integral families with
Reduze 2.5 starting from the output generated by QGRAF. Subsequently, I use FORM 4.2
to extract the corresponding Feynman Integrals. These integrals are then reduced to master
integrals using Reduze 2.5 for the one-loop case and KIRA 2.2 for the two-loop case.

4.3.1. Integral Families

The One-Loop Case

At the one-loop level, all four diagrams are mapped onto the integral family labeled as
P4 and shown in Tab. 2.1, together with its crossed topology P4x12, which is obtained by
interchanging the external momenta p1 and p2.
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4.3. Reduction to Master Integrals

The Two-Loop Case

The two-loop diagrams are mapped onto three planar integral families and their crossed
topologies. The three uncrossed integral families, labeled as P1, P2 and P3, are presented
in Tab. 4.1. Although the second integral family, P2, is necessary to map all diagrams onto
integral families, it does not occur in the result as all corresponding diagrams vanish due
to their color structure.

Table 4.1.: Integral families for the quark initiated double Higgs production at two-loop
level.

F P1 P2 P3

P1 k21 k21 −m2
t k21

P2 (k1 + p1)
2 (k1 + p1)

2 −m2
t k22 −m2

t

P3 (k2 + p1)
2 −m2

W (k2 + p1)
2 −m2

W (k2 − k1)
2 −m2

t

P4 (k1 − p2)
2 (k1 − p2)

2 −m2
t (k1 + p1)

2

P5 (k2 − p2)
2 −m2

W (k2 − p2)
2 −m2

W (k2 + p1)
2 −m2

W

P6 (k2 − p2 − p3)
2 −m2

W (k2 − p2 − p3)
2 −m2

W (k2 − p2)
2 −m2

W

P7 (k2 − k1)
2 −m2

t (k2 − k1)
2 (k2 − p2 − p3)

2 −m2
W

P8 (k1 − p2 − p3)
2 k22 (k1 − p2)

2

P9 k22 (k1 − p2 − p3)
2 (k1 − p2 − p3)

2

The first seven inverse propagator of the three integral families can be associated with
edges of the contributing Feynman diagrams. The last two inverse propagators are required
solely to express all scalar products in terms of inverse propagators. As a result, the top
sectors do not include these last two propagators.

4.3.2. Master Integrals

The One-Loop Case

At the one-loop level, the reduction is carried out using Reduze 2.5, which applies IBPs,
LIs and sector relations. As a result, the Feynman integrals are reduced to a set of nine
master integrals from the topology P4 and three master integrals from the topology P4x12.

The 12 master integrals are illustrated in Fig. 4.2. The depicted graphs are not Feynman
diagrams but rather a graphical representation of the Feynman integrals, with each line
corresponding to a scalar propagator appearing in the integral. Wavy lines indicate
propagators with aW mass, thick red lines represent top quark masses and dashed lines
correspond to the Higgs boson mass. The labels 1, 2, 3 and 4 at the external edges denote
the incoming momenta p1, p2, p3 and p4, respectively.
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Figure 4.2.: Master integrals for the one-loop case

The Two-Loop Case

At the two-loop level, sector relations are determined using Reduze 2.5. Applying these
sector relations before the reduction can lower the number of integrals, accelerating the
reduction process.

The fully symbolic reduction is carried out for each integral family individually using
KIRA 2.2 . For both P1 and P1x12, 60 master integrals are identified. For P3 and P3x12,
51 master integrals are sufficient for each family.

The master integrals of the different integral families are not independent, but can be
mapped onto each other using sector relations. Applying these mappings with KIRA 2.2
reduces the number of master integrals, decreasing them from 222 to 111.

The obtained master integrals correspond to the basis obtained from the Laporta algorithm.
Inserting them into the amplitude is not practical before finding a suitable basis, which
will be addressed in future work.
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4.4. Differential Equations

4.4. Differential Equations

The analytic solution for the master integrals at the one-loop level is obtained using the
method of differential equations, as discussed in Chapter 3. The master integrals from the
crossed sector P4x12 are omitted, as they can be reconstructed from P4 by interchanging
the Mandelstam variables t and u.

The evaluation of the two-loop master integrals will be addressed in future work.

4.4.1. Derivation of the Canonical Form

I derive the DEs in terms of the internal massesm2
W andm2

t , and the external quantities
m2

H = p23, s = (p1 + p2)
2 and t = (p1 + p3)

2 using Reduze. I further process them using
Mathematica 13.2 [69].

As a first step, the variables are rescaled by theW -mass, introducing the new variables

ω = − m2
t

m2
W

, ρ = −m2
H

m2
W

, σ = − s

m2
W

and τ = − t

m2
W

. (4.11)

As a result, the partial derivatives with respect tomW decouple, making the corresponding
matrix diagonal. The dependence onm2

W can be resolved immediately, giving

I = m
dimm(I)
W Ĩ . (4.12)

The functions Ĩ are dimensionless and only depend on the rescaled variables.

The system is then transformed into canonical form by using the closed formula from
Eqs. (3.28) and (3.29) and applying transformations as described in Section 3.2. The canon-
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ical basis reads,

g1 = − 1

C

ε (1− ε)

ω
Ĩ1000

g2 =
1

C
ε (1− ε) Ĩ0100

g3 =
1

C
ε

√
ρ

4 + ρ

(
(1− 2 ε) Ĩ0101 − (1− ε) Ĩ0100

)
g4 =

1

C
ε

√
σ

4 + σ

(
(1− 2 ε) Ĩ0110 − (1− ε) Ĩ0100

)
g5 =

1

C

ε

ω
√
τ 2 + 2 τ(1− ω) + (1 + ω)2

(
− 2 (1− 2 ε) τω Ĩ1001

− (1− ε)(1− τ + ω)ω Ĩ0100 − (1− ε)(1 + τ + ω) Ĩ1000

)
g6 =

1

C
ε2 (τ − ρ) Ĩ1101

g7 = − 1

C
ε2
√
σ(4 + σ) Ĩ0111

g8 = − 1

C
ε2 σ Ĩ1110

g9 =
1

C
ε2
[
σ
(
4τ 2 − 4ρ2ω + σ

(
τ 2 − 2τ(−1 + ω) + (1 + ω)2

)
− 4ρ

(
τ − τω + (1 + ω)2

))] 1
2
Ĩ1111 ,

(4.13)

where the constant

C =
Γ(1 + ε)

2
µ2ε (4.14)

normalizes all integrals to the second canonical integral, effectively setting its value to 1.

4.4.2. The dLog form

In the canonical form, the four partial differential equations are combined into a lower
triangular matrix containing dlogs, denoted as A, satisfying the equation

dg = εA g , (4.15)

where g represents the vector of the canonical integrals. The matrix A can be expressed as

A =
66∑
i=1

Ai d log (li) , (4.16)

with Ai being matrices that contain rational coefficients and a sign that depends on the
kinematic region. The 66 distinct li are algebraic functions of the external kinematics and
invariant masses, referred to as letters.
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The letters on the diagonal provide insight into the kinematic thresholds of the master
integrals. Since these letters appear as arguments of polylogarithms, the integrals become
imaginary when the letters turn negative, with a divergence occurring at zero. According
to the optical theorem, this behavior indicates that an intermediate particle has gone
on-shell.

An alternative way to point out the connection between the diagonal elements and kine-
matic thresholds is by applying the maximal cut to the canonical functions. When the
maximal cut is applied to a Feynman diagram, it effectively eliminates all its subtopologies,
setting them to zero. For the differential equations at one loop, this implies that the
off-diagonal entries are set to zero, leaving only the diagonal elements. As a result, the
remaining homogeneous differential equations describe the behavior of the maximal cut,
directly linking these diagonal elements to the kinematic thresholds of the diagram.

The kinematic thresholds computed by the maximal cut can therefore be used as a cross-
check for the letters on the diagonal. Starting from the lowest sectors, the two tadpoles do
not depend on the external kinematics. However they differ by their mass. This manifests
in the first diagonal entry,

A11 = −d log(−ω) . (4.17)

The second diagonal entry vanishes.

The third and fourth diagonal entries of A are given by

A33 = −d log(4 + ρ) and A44 = −d log(4 + σ) , (4.18)

resulting in the thresholds m2
H = 4m2

W and s = 4m2
W , respectively. These thresholds

correspond to the ε-dependent divergence in the maximal cut of the equal mass bubble,
Eq. (2.34). The divergences of the maximal cut at ρ = 0 and σ = 0 do not appear because
the canonical functions are divided by the corresponding pole.

In fact, removing ε-independent poles is essential to obtain a dlog form, as they do not
generate logarithms in the ε-expansion.

The fifth diagonal entry reads

A55 = d log(τ)− d log
(
τ 2 + 2 τ (1− ω) + (1 + ω)2

)
. (4.19)

The letters are equivalent to the divergences of the maximal cut,

1

3

2

4

∝ τ
2−D
2 (τ 2 + 2 τ (1− ω) + (1 + ω)2)

D−3
2 . (4.20)

The thresholds in τ of the second logarithm are given by τ± = −1± 2
√
−ω + ω, corre-

sponding to the condition t = (mW ±mt)
2.
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The sixth entry on the diagonal is given by

A66 = d log(ρ− τ)− d log
(
τ 2 + ρ τ (ω − 1)− ρ− ρω (2 + ρ+ ω)

)
(4.21)

−2 d log(−1− ω) . (4.22)

The corresponding maximal cut has the same divergences,

1

3

2

4

∝
(
(ρ− τ)2

) 3−D
2 (τ 2 + ρ τ (ω − 1)− ρ− ρω (2 + ρ+ ω))

D−4
2

(4.23)

The first threshold corresponds to the energy required to produce an on-shell Higgs boson,
t = m2

H .

The seventh diagonal entry is equal to

A77 = d log(σ − 4ρ)− d log(σ − ρ (4 + ρ)) . (4.24)

The thresholds are equivalent to the divergences of the maximal cut,

3

4

1

2

∝ σ− 1
2 (σ − 4 ρ)

3−D
2 (σ − ρ (4 + ρ))

D−4
2 (4.25)

The first dlog represents the necessary center of mass energy required to produce two
on-shell Higgs bosons, while the second dlog also accounts for theW -bosons propagating
within the triangle diagram.

The eighth diagonal entry reads

A88 = d log(σ)− d log
(
1 + (2 + σ)ω + ω2

)
− 2 log(−1− ω) , (4.26)

which is in accordance to the maximal cut of the corresponding diagram,

1

2

3

4

∝ σ
3−D
2

(
1 + (2 + σ)ω + ω2

)D−4
2 . (4.27)

The ninth diagonal entry, which corresponds to the box diagram, is given by

A99 = d log
(
(ρ− τ)2 + τ σ

)
+ d log

(
4 τ 2 − 4ρ2ω − 4ρ

(
τ − τ ω + (ω + 1)2

)
+ σ

(
τ 2 + 2 τ (1− ω) + (ω + 1)2

) ) (4.28)
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The maximal cut of the box has the same divergences,

1

2

3

4

∝ σ− 1
2

(
(ρ− τ)2 + τ σ

) 4−D
2
[
4 τ 2 − 4ρ2ω

− 4ρ
(
τ − τ ω + (ω + 1)2

)
+ σ

(
τ 2 + 2 τ (1− ω) + (ω + 1)2

) )]D−5
2

(4.29)

The non-diagonal entries of the dlog relate the canonical functions to lower sectors. These
terms tend to become significantly more complex and are displayed in Appendix A.3.

4.4.3. Iterated Integrals

The DEs written in dlog form naturally lead to solutions expressed as iterated integrals. To
compute the amplitude up to the second order in ε, the tadpole and bubble integrals need
to be evaluated up to the third order in ε, while the triangle and box diagrams require
evaluation up to the fourth order. This is necessary to obtain the finite remainder in the
interference with the NLO amplitude. Consequently, this involves iterated integrals of
depth three for the tadpoles and bubbles, and depth four for the triangles and boxes.

Integration Path

The integration path is chosen from x0 = (0, 0, 0) to x = (σ, ρ, τ) by successively increas-
ing each variable to the desired value,

γ : [(0, 0, 0), (σ, 0, 0)] ◦ [(σ, 0, 0), (σ, ρ, 0)] ◦ [(σ, ρ, 0), (σ, ρ, τ)] , (4.30)

where [x1, x2] is the straight path from x1 to x2, and the operator ◦ represents the con-
catenation of two paths. The three straight paths are denoted as γσ , γρ and γτ . An iterated
integral of weight one along the path is calculated by performing three integrations, one
over each of the straight lines:

I(R1;x) =

∫
γ

d log(R1(t1))

=

∫
γσ

d log(R1(t1)) +

∫
γρ

d log(R1(t1)) +

∫
γτ

d log(R1(t1)) ,

(4.31)

where t1 denotes the position on the integration path. Iterated integrals of arbitrary weight
can be split recursively, beginning from the left-most integration,

I(R1, . . . , Rw;x) =

∫
γσ

d log(R1(t1)) I(R2, . . . , Rw; t1)

+

∫
γρ

d log(R1(t1)) I(R2, . . . , Rw; t1)

+

∫
γτ

d log(R1(t1)) I(R2, . . . , Rw; t1) .

(4.32)
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The second integration should only be carried out up to the current point of the first
integration. Therefore, if the first integration is restricted to the path γσ, the second
integrations along γρ and γτ are excluded,∫

γσ

d log(R1(t1))I(R2, . . . , R2; t1)

=

∫
γσ

d log(R1(t1))

∫
γσ [t1]

d log(R2(t2)) I(R3, . . . , Rw; t2) .

(4.33)

The square brackets γσ[t1] indicate that the integration is carried out only up to the point t1.
By recursively splitting the path into three straight lines, this results in w integrations
over γσ, as the integrations over γρ and γτ are omitted at each step of the recursion.

If the first integration is performed along γρ, the second integration over γσ needs to be
carried out completely, while the integration over ρ is performed only up to the current
point of the first integration. The integration over τ is omitted,∫

γρ

d log(R1(t1))I(R2, . . . , R2; t1)

=

∫
γρ

d log(R1(t1))×
∫
γσ

d log(R2(t2)) I(R3, . . . , Rw; t2)

+

∫
γρ

d log(R1(t1))

∫
γρ[t1]

d log(R2(t2)) I(R3, . . . , Rw; t2) .

(4.34)

Finally, if the first integration is performed along γτ , the second integral is evaluated fully
along γσ and γρ, and only partially along γτ , up to the current point of the first integration,∫

γτ

d log(R1(t1))I(R2, . . . , R2; t1)

=

∫
γτ

d log(R1(t1))×
∫
γσ

d log(R2(t2)) I(R3, . . . , Rw; t2)

+

∫
γτ

d log(R1(t1))×
∫
γρ

d log(R2(t2)) I(R3, . . . , Rw; t2)

+

∫
γτ

d log(R1(t1))

∫
γτ [t1]

d log(R2(t2)) I(R3, . . . , Rw; t2) .

(4.35)

Using these prescriptions recursively, an iterated integral over weight w results in one
iterated integral along γτ , w iterated integrals along γρ and w(w+1)

2
iterated integrals

along γσ.

Shuffle Relations

Shuffle relations are applied to reduce the number and weight of the appearing iterated
integrals. Shuffle relations are particularly effective for this purpose if multiple integrals
with different arrangements of the same letters occur. In this case, only a small number
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of integrals shares the exact same letters, making shuffle relations relative ineffective for
reducing the number of integrals. While the total number of iterated integrals is of the
order O(104), the number of iterated integrals removed by shuffle relations is just of the
order O(102).

Shuffle relations play a crucial role in managing potential divergences that arise in iterated
integrals when the left-most argument of an integral approaches zero. For example,
consider the iterated integral

I(x, x+ 2;x1) =

∫
γ

dx
x

log(x+ 2) . (4.36)

As x→ 0, the denominator approaches zero, potentially causing the integral to diverge
if the path crosses this pole. When a finite result is expected, divergences of this kind
might cancel each other. To simplify such an analytic cancellation and make it explicit,
shuffle relations can be used to reorganize the terms and isolate the poles. In the previous
example, the shuffle relation

I(x, x+ 2;x1) = I(x;x1) I(x+ 2;x1)− I(x+ 2, x;x1) , (4.37)

separates the pole in x = 0 into an iterated integral, which only contains the letter causing
the divergence.

It’s important to note that not all cases where the left-most letter approaches zero lead to
an actual divergence. For instance, consider the iterated integral

I(x, x+ 1;x1) =

∫
γ

dx
x

log(x+ 1) . (4.38)

Although the denominator x appears to cause a divergence at x = 0, the potential
singularity is cancelled by the logarithm, which vanishes at x = 0. Thus, no divergence
occurs in this case.

4.4.4. Boundary Conditions

I make use of boundary function to fix the integration constants. An efficient way to
generate boundary functions is to consider the case where one of the internal masses is
much larger than any other scales in the problem. In this case, I consider the limit where
the top andW masses are large while preserving their ratio. This corresponds to the point
ρ = σ = τ = 0, with ω being kept at the desired value.

I compute the LO large mass expansions of the nine master integrals from P1 depicted
in Fig. 4.2. The resulting expressions are inserted into the formula for the canonical
basis, Eq. (4.13), and the remainingW -boson and top-quark masses are taken to infinity.
Expanding the result in ε allows to compare each order of ε to the corresponding integration
constants.

In the large mass expansion, two kinematic regions for the loop momentum k must be
distinguished: The region where k2 � m2

W and the region where k2 ∼ m2
W .
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For small loop momenta, k2 � m2
W , all canonical integrals considered here vanish, as all

momenta are negligible compared to the masses. What remains are scaleless Feynman
integrals, which are zero in dimensional regularization.

In the case where k2 ∼ m2
W , the master integrals reduce to tadpoles involving either

the top-quark mass, theW -boson mass, or both. This results in the non-zero boundary
conditions

g1(x0) = 1− ε log(−ω) + ε2

2
log2(−ω)− ε3

6
log3(−ω) + ε4

24
log4(−ω) +O(ε5)

g2(x0) = 1

g5(x0) = ε log(−ω)− ε2

2
log2(−ω) + ε3

6
log3(−ω)− ε4

24
log4(−ω) +O(ε5) .

(4.39)

The remaining canonical integrals vanish at the boundary point.

Diverging or zero letters at the boundary point can be a challenge when determining the
integration constants. For instance, consider the letters σ and σ+

√
σ(4 + σ). An iterated

integral of weight 1 containing these letters diverges for σ → 0+ because

lim
σ→0+

log(x) = ∞ and lim
σ→0+

log
(
x+

√
x(4 + x)

)
→ ∞ . (4.40)

However, by considering linear combinations of these letters, the divergences may cancel,
leaving a finite remainder,

lim
σ→0+

(
1

2
log(x)− log

(
x+

√
x(4 + x)

))
= log(2) . (4.41)

To avoid such implicit cancellations, divergences at the boundary point are extracted by
rescaling all composite letters to ensure they remain finite. The only diverging letters are
then σ, ρ and τ . Referring to the above example, the second letter can be rescaled as

log
(
x+

√
x(4 + x)

)
→ 1

2
log(x) + log

(√
x+

√
4 + x

)
, (4.42)

which makes the cancellation more apparent.

By rescaling the letters, all divergences cancel perfectly. Consequently, all iterated integrals
clearly vanish at the boundary point leading to the following expression for the canonical
integrals at that point,

g(0) = C(0) + ε C(1) + ε2C(2) + ε3C(3) + ε4C(4) +O(ε5) . (4.43)

This allows for a simple determination of the constants.

4.5. GPLs

For an efficient numerical evaluation, the iterated integrals are rewritten in terms of GPLs
whenever possible. For simplicity, the kinematics at the evaluation point are restricted
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such that no intermediate particles are produced on-shell. Furthermore, it is assumed that
the mass of the top-quark is greater than the mass of theW -boson, resulting in ω < −1.
This corresponds to the region defined as

{(σ, ρ, τ, ω) ∈ R4 |σ > ρ (4 + ρ) > 0 ∧ τ > 0 ∧ ω < −1} . (4.44)

This assumption allows to fix the sign that depends on the kinematic region. In addition,
handling square roots becomes simpler, as separating them no longer requires a case-by-
case analysis.

The canonical tadpole integrals do not depend on external kinematics. Therefore, their
expressions correspond to the boundary conditions,

g1 = 1− ε log(−ω) + ε2

2
log2(−ω)− ε3

6
log3(−ω) + ε4

24
log4(−ω) +O(ε5) (4.45)

g2 = 1 . (4.46)

The bubble integrals g3 and g4 contain the square roots r1 and r2, respectively (see Ap-
pendix A.3). They can be rationalized using the transformation from Eq. (3.131).

The expression for g3 up to the third order in ε after applying shuffle relations is given by,

g3 = −G(−1; ρ1) ε+

[
2G(−2,−1; ρ1)−

1

2
G(−1; ρ1)

2

]
ε2

+
[
− 2G(−2,−1,−1; ρ1)− 4G(−2,−2,−1; ρ1)

+2G(−1, ρ1)G(−2,−1; ρ1)−
1

6
G(−1, ρ1)

3
]
ε3 + O(ε4) ,

(4.47)

with the evaluation point

ρ1 =
1

2

(
ρ+

√
ρ (4 + ρ)

)
. (4.48)

At this stage, the shuffle relations prove highly effective, reducing the number of distinct
GPLs of weights 2 and 3 by half.

The expression for g4 is given by

g4 = −G(−1;σ1) ε+

[
2G(−2,−1;σ1)−

1

2
G(−1;σ1)

2

]
ε2

+
[
− 2G(−2,−1,−1;σ1)− 4G(−2,−2,−1;σ1)

+2G(−1, σ1)G(−2,−1;σ1)−
1

6
G(−1, σ1)

3
]
ε3 + O(ε4) ,

(4.49)

with

σ1 =
1

2

(
σ +

√
σ (4 + σ)

)
. (4.50)

73



4. EW Corrections for Quark-initiated Double Higgs Production

As the expression for the canonical integrals, Eq. (4.13), and the diagrams in Fig. 4.2 indicate,
the third and fourth canonical integrals can be converted into each other by interchanging
the variables ρ and σ.

The triangle integral g5 contains the square root r4. Inserting the parametrization

τ =
2 t (1− t (1− ω) + ω)

t2 − 1
, (4.51)

allows to rationalize it, yielding

r4 =
(t− 1)2 + (t+ 1)2 ω

t2 − 1
. (4.52)

The resulting expressions are quite lengthy and are available in Eq. (A.14), Appendix A.4.
As for the previous canonical functions, the shuffle relations prove their effectiveness.
Applying them reduces the number of distinct weight-two GPLs from 42 to 26, and the
number of distinct weight-three GPLs from 72 to 50.

The triangle integral g6 contains two square roots, r1 and r4. Since these square roots
contain different integration variables, they can be rationalized simultaneously. The first
two orders in ε are provided in Eq. (A.15).

In the expression for the triangle integral g7, three square roots appear: r1, r2 and r3.
Rationalizing all three square roots simultaneously is quite complicated. However, the
process can be simplified by noting that the first and second square roots never appear
together in the same iterated integral. By changing the integration path to

γ̃ : [(0, 0, 0), (σ, ρ, 0)] ◦ [(σ, ρ, 0), (σ, ρ, τ)] , (4.53)

the square root r3 becomes constant along the path. What remains are iterated integrals
containing at most one square root at a time. These square roots can then be rationalized
with the transformations

σ → s2

1 + s
and ρ→ r2

1 + r
. (4.54)

Due to the absence of poles in the region between the two integration paths, no additional
residues are required to change the path. The expressions for g7 up to the third order in ε
are given in Eq. (A.16).

The triangle integral g8 is relatively simple, containing only the square root r2. The
corresponding expression up to order ε3 is provided in Eq. (A.17).

The iterated integrals for the box diagram contain the square roots r1, r2, r4 and r5. These
are not simultaneously rationalizable with the method introduced in Sec. 3.5.2. Therefore,
it is not obvious how to express the iterated integrals in terms of GPLs. At present these
integrals must be numerically integrated by other means.
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4.6. Crosschecks

To check the validity of the calculation, I have performed two independent crosschecks.
On the one hand, the amplitude must fulfill certain analytic constraints. On the other hand,
integrals expressed as GPLs can be numerically evaluated and compared to the results
obtained by pySecDec.

4.6.1. Crosschecks on the Amplitude

The amplitude must fulfill two analytic properties:

1. The expressions for the triangle diagrams from Fig. 4.1 are zero.

2. The amplitude must be finite.

The first constraint must be fulfilled because a single Higgs boson cannot couple to massless
quarks, as the Yukawa coupling is directly proportional to the quark mass. This means
that all virtual corrections to the Yukawa coupling should vanish. In particular

d(p1)

d̄(p2)

H(p3) = 0 . (4.55)

The expressions for the triangle diagrams in Fig. 4.1 are proportional, up to a constant
factor, to these corrections. Hence, they must also vanish.

The expressions for the triangle diagrams vanish once the amplitude is written in terms of
master integrals.

The second requirement prohibits any poles in ε as the computed amplitude corresponds
to the LO of a process. This is checked by inserting the explicit expressions for the master
integrals into the amplitude and expanding it in ε. The master integrals are obtained by
inverting the expressions for the canonical functions, Eq. (4.13).

Inserting the master integrals into the amplitude reveals two poles of order 1with opposite
signs originating from the two box-like Feynman diagrams,

± 1

ε
g4|V |2 s− 3m2

H + 18m2
W

24m4
W

v̄L/p3uL(p1) , (4.56)

where V denotes the appropriate entry of the CKM matrix. As expected, the amplitude is
finite in ε.

4.6.2. Crosschecks on the Master Integrals

The expressions for the master integrals in terms of GPLs are checked up to the order ε2
by evaluating the GPLs using PolyLogTools and comparing the results to those obtained
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4. EW Corrections for Quark-initiated Double Higgs Production

by pySecDec. For this crosscheck, points from different kinematic regions are selected,
both in the Euclidean and Minkowski domain.

To ensure the correct analytic continuation, a small imaginary part is added to each positive
external kinematic variable. This guarantees the correct logarithm branches.

The results show that the values up to the second order in ε are consistent within the
requested numerical uncertainty of O(10−15).

For the Box diagram, which lacks an expression in terms of GPLs, the function NIntegrate
from Mathematica is used to crosscheck the zeroth order in ε in the Euclidean region. This
already involves the evaluation of weight-2 integrals. For higher weights, NIntegrate
does not converge, requiring a more sophisticated analysis.

As a further crosscheck, the master integrals are evaluated for small top quark masses,
ω ∼ 10−10. The numerical results agree with those from pySecDec for the massless quark
case.
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5. NLO EW Corrections for Gluon-initiated
Double Higgs Production

Gluon-initiated diagrams are the dominant contribution to double Higgs production due to
the dominance of gluons in the parton distribution functions. A numerical study in Ref. [26]
shows that the corresponding NLO EW corrections can significantly impact observables
such as the differential cross section with respect to the invariant mass, resulting in changes
of up to 15%.

In this chapter I perform the initial step of an analytic calculation of the gluon initiated
double Higgs production, focusing on Feynman diagrams that involve a top quark and
generate the Higgs boson via W bosons. I express the amplitudes for these Feynman
diagrams in terms of scalar Feynman integrals and compute the reduction to a Laporta
basis of master integrals with full dependence on all scales.

5.1. The Contributing Diagrams

The contributing Feynman Diagrams are generated using QGRAF, with slight adaptions
made to the code from Appendix A.1: gluons are now incoming instead of quarks. The
power of the weak coupling is set to four, and the power of the strong coupling to two.
With these parameters, QGRAF generates 32 Feynman diagrams, depicted in Appendix A.5.
The thick red fermion lines indicate propagating top quarks. Eight of the planar diagrams
contain a gluon in the s-channel. The corresponding expressions are expected to be zero
due to the color structure. The explicit check will serve as a validation of the setup.

5.2. The Tensor structure

5.2.1. The Form Factors

The incoming gluons depend on adjoint color indices a and b, and Lorentz indices µ and ν.
The amplitude takes the form

Mab = εµ(p1) εν(p2)Mµν
ab . (5.1)

The color structure of the amplitude must contain exactly two color indices a and b. The
only tensor structures that fulfills this requirement is the Kronecker delta1 δab. As a result,
1Traces over products of SU(3) generators T a

ij also result in Kronecker deltas.
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5. NLO EW Corrections for Gluon-initiated Double Higgs Production

the color structure is proportional to the Kronecker delta,

Mµν
ab = δabMµν . (5.2)

The dependence over Lorentz indices can be constructed by considering all possible
structures containing two Lorentz indices:

Mµν = F00 gµν + F11 p
µ
1p

ν
1 + F22 p

µ
2p

ν
2 + F33p

µ
3p

ν
3

+F12 p
µ
1p

ν
2 + F21 p

µ
2p

ν
1 + F13 p

µ
1p

ν
3 + F31p

µ
3p

ν
1

+F23 p
µ
2p

ν
3 + F32 p

µ
3p

ν
2 +Mµν

5 ,

(5.3)

whereMµν
5 depends on the totally antisymmetric tensor εµνρσ.

For the computation of the NLO EW corrections, the NLO amplitude must be interfered
with the LO amplitude. The only structures with Lorentz indices in the LO amplitude
are the three momenta pµ1 , p

µ
2 and pµ3 as well as the metric tensor gµν . Consequently, in

the interference of the two amplitudes, the totally antisymmetric tensor from the NLO
amplitude is contracted with any combination of the three momenta and the metric tensor,
which in either case yields zero. Therefore, for the calculation of the NLO EW corrections
Mµν

5 can be dropped.

Terms proportional to pµ1 and pν2 also do not contribute to the amplitude, as they vanish
once polarization vectors are applied.

Current conservation allows to further simplify M,

p1µMµν = p2νMµν = 0 . (5.4)

Applying these relations on Eq. (5.3) and omitting the terms proportional to pµ1 and pν2
results in two independent tensor structures T µν

1 and T µν
2 . A convenient choice for T1 and

T2 is [15]

T µν
1 = gµν − pν1p

µ
2

p1 · p2
T µν
2 = gµν +

1

p2T (p1 · p2)
[
m2

Hp
ν
1p

µ
2 − 2(p1 · p3)pν3p

µ
2

− 2(p2 · p3)pµ3pν1 + 2(p1 · p2)pν3p
µ
3

]
,

(5.5)

where the transverse momentum pT is defined as,

p2T =
ut−m4

H

s
. (5.6)

The tensor structure of the matrix element reduces to

Mµν = F1T
µν
1 + F2T

µν
2 +Mµν

0 +Mµν
5 , (5.7)

where M0 contains all terms proportional to pµ1 and pν2 . Note that M0 and M5 do not
contribute to the amplitude.
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5.2.2. The Projectors

The projection operators are constructed by applying T1 and T2 ontoMµν itself. Applying
T µν
1 onto Eq. (5.7) gives

T1µνMµν = (D − 2)F1 + (D − 4)F2 + T1µνMµν
0 + T1µνMµν

5 . (5.8)

The contraction of T1µν with Mµν
0 is zero because T1µνpµ1 = 0 and T1µνpν2 = 0. The

contraction of T1µν with Mµν
5 is zero, since εµνρσ is either contracted with the metric

tensor or with any combination of only three independent momenta p1, p2 and p3.

A similar result holds for T2, giving

T1µνMµν = (D − 2)F1 + (D − 4)F2

T2µνMµν = (D − 4)F1 + (D − 2)F2 ,
(5.9)

which yields

Pµν
1 =

1

4

D − 2

D − 3
T µν
1 − 1

4

D − 4

D − 3
T µν
2

Pµν
2 = −1

4

D − 4

D − 3
T µν
1 +

1

4

D − 2

D − 3
T µν
2 ,

(5.10)

such that

P1M = F1

P2M = F2 .
(5.11)

Consequently, P1 and P2 project out F1 and F2, respectively.

5.3. Reduction to Master Integrals

The form factors depend on O(103) distinct Feynman integrals. As seen for the quark-
initiated case, most of these integrals are related by IBPs. I use Reduze 2.5 to map them
on integral families, and Kira 2.2 to reduce them to a Laporta basis of master integrals.

5.3.1. Integral Families

Two planar and one non-planar integral families as well as their crossed topologies are
needed to describe the Feynman integrals appearing in the amplitude and are listed in
Tab. 5.1. The last two inverse propagators of each family are not associated with edges of
Feynman diagrams, but are required to express all appearing scalar products in terms of
inverse propagators.

79



5. NLO EW Corrections for Gluon-initiated Double Higgs Production

Table 5.1.: Integral families for the gluon initiated double Higgs production at two-loop
level.

F inverse propagator of P1 inverse propagator of P2 inverse propagator of NP

P1 k21 k21 −m2
t k21 −m2

t

P2 (k1 + p1)
2 (k1 + p1)

2 −m2
t k22

P3 (k2 + p1)
2 −m2

W (k2 + p1)
2 −m2

W (k1 + p1)
2 −m2

t

P4 (k1 − p2)
2 (k1 − p2)

2 −m2
t (k2 + p2)

2

P5 (k2 − p2)
2 −m2

W (k2 − p2)
2 −m2

W (k2 +−k1 + p2)
2 −m2

W

P6 (k2 − p2 − p3)
2 −m2

W (k2 − p2 − p3)
2 −m2

W (k2 − k1 + p2 + p3)
2 −m2

W

P7 (k2 − k1)
2 −m2

t (k2 − k1)
2 (k1 − k2 + p1)

2 −m2
W

P8 (k1 − p2 − p3)
2 k22 (k1 + p3)

2

P9 k22 (k1 − p2 − p3)
2 (k1 − k2)

2

5.3.2. Master Integrals

The Feynman integrals are first reduced for each integral family separately. To minimize
the set of required seed integrals, the sectors are reduced iteratively, starting from sectors
with fewer propagators. This results in 64 master integrals for NP and NPx12, 32 master
integrals for P1, and 79 master integrals for P2 and P2x12.

Some of the master integrals from different sectors are still related by sector relations. I
use KIRA 2.2 to identify such relations, which decreases the total number of independent
master integrals to 165.

As for the NLO amplitude of the quark initiated case, I calculated the amplitude in terms
of Feynman integrals and computed the fully symbolic reduction. Inserting these results
into the amplitude is not practical, until a suitable basis for the amplitude is found. This is
a highly non-trivial task, which will be addressed in future work.

80



6. Conclusion and Outlook

This thesis presents the calculation of the leading order amplitude for double Higgs
production initiated by two light quarks, focusing on diagrams that include at least one
top quark propagator and generate the Higgs Bosons throughW bosons.

The diagrams were generated using QGRAF and translated into analytic expressions with
FORM. Through the application of IBPs, LIs and sector symmetries, available in Reduze, I
reduced the amplitude to twelve master integrals, with three of them being related to the
other nine by the interchange of two momenta. I calculated these integrals analytically
using the method of differential equations and large mass expansion to fix the integration
constants. The solution is provided in terms of iterated integrals up to weight 4, with ten
of these twelve master integrals expressed in terms of GPLs.

Inserting the iterated integrals into the amplitude results in the analytic cancellation of all
poles in ε. In addition, all numerical crosschecks of the master integrals with pySecDec
were successfully completed.

Future work will extend this result to the full LO amplitude by including diagrams with
massless internal quarks and Yukawa couplings.

The NLO EW corrections for both quark- and gluon-initiated cases were calculated in
terms of master integrals, with the analysis again restricted to diagrams containing at least
one top quark propagator and generating the Higgs throughW bosons. The generation
of diagrams was performed with QGRAF, and transformed into analytic expressions with
FORM. The reduction of the Feynman integrals to master integrals was achieved using KIRA
and Reduze.

Further work will require a detailed analysis to determine a convenient basis of master
integrals. Additionally, the master integrals must be evaluated either numerically or
analytically to provide expressions for phenomenological applications.
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A. Appendix

A.1. QGRAF Code

The QGRAF model file shown in Listing A.1 defines all the propagators and vertices relevant
to the process under consideration. In this case, I include the propagators of the Higgs
boson, gluon, top quark, down quark andW -boson. Additionally, the model incorporates
the couplings between gluons and quarks, trilinear and quartic self-coupling of gluons, the
couplings between Higgs bosons andW bosons, as well as the trilinear Higgs self-coupling.
The arguments gpow and spow track the powers of the weak and strong coupling constants,
respectively.

1 % propagators
2

3 [higgs , higgs , +; mass=mH]
4 [gluon , gluon , +; mass = 0]
5 [tQuark , tbarQuark , -; mass = mt]
6 [dQuark , dbarQuark , -; mass = 0]
7 [Wp, Wm, +; mass = mW]
8

9 % vertices
10

11 [tbarQuark , tQuark , gluon; gpow = 0, spow = 1]
12 [dbarQuark , dQuark , gluon; gpow = 0, spow = 1]
13 [gluon , gluon , gluon; gpow = 0, spow = 1]
14 [gluon , gluon , gluon , gluon; gpow = 0, spow = 2]
15 [tbarQuark , dQuark , Wp; gpow = 1, spow = 0]
16 [dbarQuark , tQuark , Wm; gpow = 1, spow = 0]
17 [Wp, Wm, higgs; gpow = 1, spow = 0]
18 [Wp, Wm, higgs , higgs; gpow = 2, spow = 0]
19 [higgs , higgs , higgs; gpow = 1, spow = 0]

Listing A.1: QGRAF model file

Listing A.2 provides the instructions for executing QGRAF in the case of the quark-initiated
one-loop diagrams. After specifying the three export formats and importing the model
file from Listing A.1, all momenta are defined as incoming and on-shell. We apply several
restrictions: tadpole diagrams are excluded, diagrams must include at least one top quark
propagator, and the weak coupling constant must be raised to the fourth power. The strong
coupling constant is not allowed to appear in the one-loop case.

For the two-loop cases, the restrictions differ only in the number of loops and the powers
of the strong coupling constant, which is set to two instead of zero. In the gluon-initiated
case, gluons replace quarks as the incoming particles.
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1 % Export for FORM
2 output = 'FORM/dd_to_HH_1loop.frm' ;
3 style = 'styles/form_CORRECT.sty' ;
4

5 % Export for REDUZE
6 output = 'REDUZE/dd_to_HH_1loop.yml' ;
7 style = 'styles/reduze_CORRECT.sty' ;
8

9 % Export for xml-drawer
10 output = 'graphics/grafs ' ;
11 style = 'styles/xmldraw.sty' ;
12

13 % define model file
14 model = 'model ' ;
15

16 % define external particles
17 in = dQuark[p1], dbarQuark[p2], higgs[p3], higgs[p4];
18 out = ;
19

20 options = onshell , notadpole;
21

22 % restrict diagrams
23 loops = 1;
24 loop_momentum = k ;
25

26 true = iprop[tQuark , 1, 10];
27 true = vsum[gpow, 4, 4];
28 true = vsum[spow, 0, 0];

Listing A.2: QGRAF instruction file
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A.2. Feynman Diagrams for the Quark-Initiated Two-Loop Case
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Figure A.1.: Contributing diagrams for the quark initiated two-loop case
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A.3. The dlog Form

In this section, the non-zero entries of the dlog form for the one-loop case are presented.
For simplicity, certain entries are expressed in terms of inverse hyperbolic tangents. These
can be converted to logarithmic forms using the identity

arctanh(x) =
1

2
log(1 + x)− 1

2
log(1− x) . (A.1)

In addition the following sign is introduced, which depends solely on the kinematic region,

sgn :=

√
ρ

4 + ρ

√
4 + ρ

ρ
, (A.2)

as well as the following square roots,

r1 =

√
4 + ρ

ρ

r2 =

√
4 + σ

σ

r3 =

√
1− 4 ρ

σ

r4 =
√
τ 2 + 2 τ (1− ω) + (1 + ω)2

r5 =

√
4τ2−4ρ2ω+4ρ(τ(ω−1)−(ω+1)2)+σ(τ2−2τ(ω−1)+(ω+1)2)

σ
.

(A.3)

Finally, the dlog form A is defined as A = dÃ, with the entries of Ã listed sequentially,
starting from the lowest sector.

First Line

Ã11 = − log(−ω) (A.4)

Third Line

Ã32 = −2 arctanh(r1)
Ã33 = − log(4 + ρ)

(A.5)

Fourth Line

Ã42 = −2 arctanh(r2)
Ã44 = − log(4 + σ)

(A.6)

86



A.3. The dlog Form

Fifth Line

Ã51 = − log(τ) + log(1 + ω + τ + r4) + 2 arctanh (ω − τ + r4)

Ã52 = log(τ)− 2 log(1− ω + τ − r4)

Ã55 = log(τ)− log
(
τ 2 + 2 τ (1− ω) + (1 + ω)2

) (A.7)

Sixth Line

Ã61 = −1

2
log(τ) +

1

2
log
(
τ 2 − ρ2ω − ρ

(
τ − τ ω + (1 + ω)2

))
− log(−1− ω)

Ã62 =
1

2
log(τ)− 1

2
log
(
τ 2 − ρ2ω − ρ

(
τ − τ ω + (1 + ω)2

))
+ log(−1− ω)

Ã63 = −2 arctanh
(

r1(ρ− τ)

2 (2 + ω) + ρ− τ

)
Ã65 =

1

2
log(τ)− 1

2
log(1 + ω + τ + r4)− arctanh(ω − τ + r4)

+ arctanh
(
τ + 2ρω − τ ω + (1 + ω)2

r4(ω + 1)

)
Ã66 = 2 log(ρ− τ)− log

(
τ 2 − ρ2ω − ρ (τ − τ ω + (1 + ω)2)

)

(A.8)

Seventh Line

Ã73 = 4 arctanh (r1r3)

Ã74 = 2 arctanh
(
r3
r2

)
− 2 arctanh

(
(2 + ρ) r3

r2ρ

)
Ã77 = log(σ − 4ρ)− log(σ − ρ (4 + ρ))

(A.9)

Eigths Line

Ã81 = log
(
σ ω + (1 + ω)2

)
− 2 log(−1− ω)

Ã82 = − log
(
σ ω + (1 + ω)2

)
+ 2 log(−1− ω)

Ã84 = 2 arctanh
(

(4 + σ)

r2(2 + σ + 2ω)

)
Ã88 = log(σ)− log

(
σ ω + (1 + ω)2

)
(A.10)
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Ninth Line

Ã91 = −2 arctanh
(
τ + 2ρω − τ ω + (1 + ω)2

r4(1 + ω)

)
+ arctanh

(
(1 + ω)(τ + 2ρω − τ ω + (1 + ω)2)

r4(σ ω + (1 + ω)2) + r5σ ω(τ 2 + 2 τ(1− ω) + (1 + ω)2)

)
Ã92 = 2 arctanh

(
τ + 2ρω − τ ω + (1 + ω)2

r4(ω + 1)

)
− arctanh

(
(1 + ω)(τ + 2ρω − τ ω + (1 + ω)2)

r4(σ ω + (1 + ω)2) + r5σ ω(τ 2 + 2 τ(1− ω) + (1 + ω)2)

)
Ã93 = 4 arctanh

(
ρ (1 + τ − ω) + 2τ +

√
σ(r5 − r4)

r1r4ρ

)
+4 arctanh

(
ρ (1 + τ − ω) + 2τ −

√
σ(r5 − r4)

r1r4ρ

)
−4 arctanh

(
1 + r4 + ρ− τ + ω

r1ρ

)
−4 arctanh

(
1− r4 + τ + ρ (1 + ω)

r1ρω

)
−8 sgn log(r1 − 1)− 4 sgn log(ρ)

Ã94 = −2 arctanh
(
r2(τ + 2ρω − τ ω + (1 + ω)2)

r5(1− ω)

)
−2 arctanh

(
r2(2 τ + ρ (1 + τ − ω))

r5(2 + ρ)

)
Ã95 = 2 log(r4 + r5) + log(σ)− log

(
τ 2 − ρ2ω − ρ

(
τ − τ ω + (ω + 1)2

))
Ã96 = −2 log

(
τ 2 − 2 τ ω + (1 + ω)2 − ρ (1 + τ − ω) + r4(1 + ω − τ + ρ)

)
+2 log

(
τ 2 + ρω(1− ω) + (1 + ω)2 + 2τ + τρ ω − r4(1 + ω + τ + ρω)

)
−2 log(1− r4 + τ − ω) + 4 arctanh

(
r4 − τ

1 + ω

)
−4 arctanh

(
(ρ− τ)(τ(1 + ω − τ) + ρ(1 + ω + τ))

r4(((ρ− τ)2 + σ τ)− r5 σ τ)

)
Ã97 = 2 arctanh

(
(ρ+ 2 τ + ρ τ − ρω)r3

r5ρ

)
− arctanh

(
(τ(1 + ω − τ) + ρ (1 + ω + τ)r3)

r5(ρ+ τ)

)
Ã98 = 2 arctanh

(
τ + 2ρω − τ ω + (1 + ω)2

r5(ω + 1)

)
+2 arctanh

(
τ(1 + ω − τ) + ρ (1 + ω + τ)

r5(ρ− τ)

)
Ã99 = log

(
(ρ− τ)2 + τ σ

)
+ log

(
4 τ 2 − 4ρ2ω − 4ρ

(
τ − τ ω + (ω + 1)2

)
+ σ

(
τ 2 + 2 τ (1− ω) + (ω + 1)2

) )
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A.4. Expressions for Canonical Integrals

To simplify the expressions for the GPLs, we introduce short hand notations for terms that
appear repeatedly in the canonical integral expressions. The typical evaluation points are

σ1 :=
1

2

(
σ +

√
σ (4 + σ)

)
ρ1 :=

1

2

(
ρ+

√
ρ (4 + ρ)

)
τ1 :=

√
τ 2 − 2 τ (ω − 1) + (ω + 1)2 + ω + 1

τ − 2ω + 2
.

(A.12)

In addition, we introduce the following abbreviations,

ω± :=
−ω ± 2

√
−ω + 1

ω + 1

ω1 := −(1 + ω)

ω2 := −1 + ω

ω

ω3 :=
1 + ω

1− ω

ρ1 :=

√
ρ

4 + ρ

a± :=
1− ω2 ±

√
ρ (4 + ρ)ω2

1− (2 + ρ)ω + ω2

b±± :=
[(
ρ±1

√
ρ (4 + ρ)

)
(1 + ω)

±2

√
2 ρ
(
(2 + ρ)(ρ (4 + ρ) + (1 + ω)2) +

√
ρ (4 + ρ) ((2 + ρ)2 − (1− ω)2)

)]
×
[
ρ (4 + ρ)±1

√
ρ (4 + ρ) (2 + ρ− 2ω))

]−1

c± := − 2

1±
√

1− 4 ρ
σ

d± := ±
√
1− 4 ρ

σ
c±

e±± := −
ρ±1 σ

√
1− 4 ρ

σ
±2 (σ − 3 ρ)

ρ
(
1±1

√
1− 4 ρ

σ

)
f± :=

−4 ρ+ σ ±
√

1− 4 ρ
σ
σ

2 ρ

g± :=
σ
(
σ − 4ρ±

√
1− 4 ρ

σ
(σ − 2 ρ)

)
2ρ2

.
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Fifth Canonical Integral The first two orders in ε of the fifth canonical integral g5 are
given by

g5 =
[
2G(−1; τ1)− 2G(1; τ1) + log(−ω)

]
ε

+
[
G(−1; τ1)

2 −G(1; τ1)
2

+ 2G(0; τ1)G(−1; τ1) + 2G(1; τ1)G(−1; τ1)

− 2G(−1, 0; τ1)− 4G(−1, 1; τ1)− 2G(0, 1; τ1)

− 2G(1; τ1)G (ω3; τ1) + 2G(1−; τ1)G (ω3; τ1)

− 4G(−1; τ1)G (ω+; τ1)− 4G(−1; τ1)G (ω−; τ1)

+ 4G(1; τ1)G (ω+; τ1) + 4G(1; τ1)G (ω−; τ1)

− 2G (−1, ω3; τ1) + 2G (1, ω3; τ1)

+ 4G (−1, ω−; τ1) + 4G (−1, ω+; τ1)

− 4G (1, ω+; τ1)− 4G (1, ω−; τ1)

+ 2 log(−ω)G(1; τ1) + 2 log(−ω)G (ω3; τ1)

− 2 log(−ω)G (ω+; τ1)− 2 log(−ω)G (ω−; τ1)

− 1

2
log2(−ω)

]
ε2

+O(ε3) .

(A.14)

Sixth Canonical Integral The first two orders in ε of the sixth canonical integral g6 read

g6 =
[1
2
G (−1; ρ1)

2 − 1

2
G (1; τ1)

2 − 1

2
G (−1; τ1)

2

−G (−1; τ1)G (0; τ1) +G (−1; τ1)G (1; τ1)

−G (1; τ1)G (ω3; τ1) +G (−1; τ1)G (ω3; τ1)

+G (−1; ρ1)G (b++; τ1) +G (−1; ρ1)G (b+−; τ1)

−G (−1; ρ1)G (b−+; τ1)−G (−1; ρ1)G (b−−; τ1)

+G (−1, 0; τ1) +G (0, 1; τ1)

−G (−1, ω3; τ1) +G (1, ω3; τ1)

+G (−ρ1,−1; τ1)−G (−ρ1, 1; τ1)
+G (ρ1,−1; τ1)−G (ρ1, 1; τ1)

+G (ω1,−1; ρ1)−G (ω2,−1; ρ1)

−G (a−,−1; τ1) +G (a−, 1; τ1)

−G (a+,−1; τ1) +G (a+, 1; τ1) + log(−ω)G (−1; ρ1)

+ log(−ω)G (1; τ1)− log(−ω)G (ω1; ρ1)

+ log(−ω)G (ω3; τ1)− log(−ω)G (ω2; ρ1)

− log(−ω)G (a−; τ1)− log(−ω)G (a+; τ1)
]
ε2

+O(ε3) .

(A.15)
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Seventh Canonical Integral The expression for g7 up to the third order in ε is given by

g7 =
[
− 2G(d+,−1; ρ1) + 2G(d−,−1; ρ1)

+G(c+,−1;σ1)−G(c−,−1;σ1)

+G(e++,−1;σ1) +G(e+−,−1;σ1)

−G(e−+,−1;σ1)−G(e−−,−1;σ1)
]
ε2[

− 2G (c+,−2,−1, σ1) + 2G (c−,−2,−1, σ1)

+G(c+,−1;σ1)G(−1;σ1)−G(c+,−1;σ1)G(−1;σ1)

+G (c+,−1,−1, σ1)−G (c−,−1,−1, σ1)

− 2G(e++,−2,−1;σ1)− 2G(e+−,−2,−1;σ1)

+ 2G(e−+,−2,−1;σ1) + 2G(e−−,−2,−1;σ1)

−G(e++,−1,−1;σ1)−G(e+−,−1,−1;σ1)

+G(e−+,−1,−1;σ1) +G(e−−,−1,−1;σ1)

+G(e++,−1;σ1)G(−1;σ1) +G(e+−,−1;σ1)G(−1;σ1)

−G(e−+,−1;σ1)G(−1;σ1)−G(e−−,−1;σ1)G(−1;σ1)

−G(g+, c+,−1;σ1)−G(g−, c+,−1;σ1)

+G(g+, c−,−1;σ1) +G(g−, c−,−1;σ1)

−G(g+, e++,−1;σ1)−G(g−, e++,−1;σ1)

−G(g+, e+−,−1;σ1)−G(g−, e+−,−1;σ1)

+G(g+, e−+,−1;σ1) +G(g−, e−+,−1;σ1)

+G(g+, e−−,−1;σ1) +G(g−, e−−,−1;σ1)

+ 4G(d+,−2,−1; ρ1)− 4G(d−,−2,−1; ρ1)

+ 2G(d+,−1,−1; ρ1)− 2G(d−,−1,−1; ρ1)

+ 2G(f+, d+,−1; ρ1) + 2G(f−, d+,−1; ρ1)

− 2G(f+, d−,−1; ρ1)− 2G(f−, d−,−1; ρ1)

− 2G(d+,−1; ρ1)G(−1; ρ1) + 2G(d−,−1; ρ1)G(−1; ρ1)
]
ε3

+O(ε4) .
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Eigths Canonical Integral The eights canonical integral g8 is given by

g8 =
[
G (−1;σ1) G (ω1;σ1)−G (−1;σ1) G (ω2;σ1)

−G (−1, ω1;σ1) +G (−1, ω2;σ1)

+ log(−ω)G (−1;σ1)− log(−ω)G (ω1;σ1)

− log(−ω)G (ω2;σ1) +
1

2
G (−1;σ1)

2
]
ε2[

− 2G (−1,−2,−1;σ1) +G (−1,−1,−1;σ1) + 2G (0,−1,−1;σ1)

+ 2G (0, ω1,−1;σ1)− 2G (0, ω2,−1;σ1)

− 2G (ω2,−1,−1;σ1)− 2G (ω1,−2,−1;σ1)

+ 2G (ω2,−2,−1;σ1)−G (ω1, ω1,−1;σ1)

+G (ω1, ω2,−1;σ1)−G (ω2, ω1,−1;σ1)

+G (ω2, ω2,−1;σ1) + 2 log(−ω)G (0,−1;σ1)

− 2 log(−ω)G (0, ω1;σ1)− 2 log(−ω)G (0, ω2;σ1)

− log(−ω)G (ω1,−1;σ1)− log(−ω)G (ω2,−1;σ1)

+ log(−ω)G (ω1, ω1;σ1) + log(−ω)G (ω1, ω2;σ1)

+ log(−ω)G (ω2, ω1;σ1) + log(−ω)G (ω2, ω2;σ1)

− 1

2
log2(−ω)G (−1;σ1) +

1

2
log2(−ω)G (ω1;σ1)

+
1

2
log2(−ω)G (ω2;σ1)

]
ε3

+O(ε4) .
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Figure A.2.: Contributing planar diagrams for the gluon initiated two-loop case
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Figure A.3.: Contributing non-planar diagrams for the gluon initiated two-loop case
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