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Abstract

As of now, the Higgs potential is still largely unexplored. To overcome this, a precise

knowledge of the Higgs self coupling 𝜆 is crucial. Higgs boson pair production in gluon-

gluon fusion is one of the most promising processes to measure the self-interaction, since

here 𝜆 enters already at Born level. However, the leading order (LO) already contains one

loop. The calculation of this has been performed already before discovery of the Higgs

boson, but at next-to-leading order (NLO) substantial progress has been made in the last

decade mainly.

The present work calculates the EW corrections at NLO, focussing on the Yukawa and

Higgs self-coupling contributions, while neglecting gauge boson induced corrections.

Contrary to previous publications the full top-quark mass dependence is included.

Construction and reduction of the amplitude are performed with reduze, the resulting

master integrals are evaluated with pySecDec. The renormalization is performed employing

the Fleischer-Jegerlehner-Tadpole-Scheme. The amplitude is evaluated for a few phase

space points.

The renormalization procedure is not yet complete, since at the present state not all poles

cancel. Also, the numerical integration takes, despite being run onGPUs, a long time, which

prohibits the calculation for many phase space points, as required for phenomenological

results. Both issues are subject to further development.

Besides this, a preliminary study of𝑔𝑔 → 𝐻𝐻 mediated by bottom quark loops is presented.

It is shown that integrals containing the Higgs as well as the bottom quark mass scale can

be evaluated using pySecDec. A peek into the e�ects of varying bottom quark Yukawa

couplings on the invariant di-Higgs mass distribution is taken with POWHEG-BOX.
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Zusammenfassung

Das Higgspotential ist bisher noch weitestgehend unerforscht. Um diesen Zustand zu

ändern, ist die genaue Kenntnis der Higgs Selbstwechselwirkung 𝜆 erforderlich. Einer

der vielversprechendsten Ansätze ist die Messung der durch Gluonenfusion initiierten

Paarproduktion von Higgsbosonen, da hier 𝜆 schon in der führenden Ordnung (LO) auftritt.

Allerdings enthält selbst diese schon eine Schleife. Die LO Berechnung wurde etliche Jahre

vor der Entdeckung des Higgsbosons durchgeführt, doch in der nächst-führenden Ordnung

(NLO) wurden hauptsächlich im letzten Jahrzehnt Fortschritte gemacht.

Die vorliegende Arbeit berechnet elektro-schwache Korrekturen in NLO mit einem Fokus

auf Yukawa-artigen und Higgsselbstkopplungsbeiträgen, während von den Eichbosonen

erzeugte Korrekturen vernachlässigt werden. Anders als bei vorherigen Verö�entlichungen

wird die vollständige Topquarkmassenabhängigkeit verwendet.

Die Amplitude wird mit reduze erzeugt und reduziert, die resultierenden Masterintegrale

werden mit pySecDec berechnet. Die Renormalisierung wird unter Nutzung des Fleischer-

Jegerlehner-Tadpole-Schemas durchgeführt. An einigen Phasenraumpunkten wird die

Amplitude schließlich ausgewertet.

Die Renormalisierung ist noch nicht vollständig abgeschlossen, da sich nicht alle Pol-

stellen aufheben. Ebenfalls benötigt die numerische Integration, trotzdem sie auf GPUs

durchgeführt wird, eine sehr lange Zeit, was die Berechnung vieler Phasenraumpunkte,

und damit brauchbarer phänomenologischer Ergebnisse, verhindert. Beide Problemstellen

unterliegen fortdauernder Entwicklung.

Zusätzlich wird eine vorläu�ge Untersuchung des Prozesses 𝑔𝑔 → 𝐻𝐻 , der durch Bottom-

quark Schlaufen vermittelt wird, vorgestellt. Es wird gezeigt, dass Integrale, die sowohl die

Bottomquark-, als auch die Higgsmassenskala beinhalten, mit pySecDec berechnet werden

können. Die E�ekte verschiedener Bottomquark-Yukawa-Kopplungen auf die Verteilung

der invariante Masse des Higgspaars wird mit POWHEG-BOX untersucht.
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1. Introduction

The last monumental achievement in particle physics was the experimental con�rmation

of the Higgs boson’s existence in 2012 at the Large Hadron Collider (LHC) at CERN [1, 2],

roughly �ve decades after its prediction by theorists [3–8]. As far as the Standard Model

of particle physics (SM) is concerned, the last missing piece was found thereby. The Nobel

Prize committee was accordingly impressed and awarded F. Englert and P. Higgs with the

Nobel Prize in physics the following year [9].

Luckily, particle physics is far from being a �nished �eld. Even today, more than a

decade after its discovery, the Higgs boson remains a mystery. This is to a large extent due

to the challenging experimental setups required to measure any of its properties. In fact,

�nding the Higgs boson was already one of the main goals of the LHC physics programme.

Pinning down its properties is a work still in progress. After several cycles of data taking

and upgrading the systems, it seems clear that the LHC will never be able to enlighten

certain questions, e.g. its self-coupling.

The value of this parameter is crucial for the existence of the universe itself, as it is directly

connected to the shape of the Higgs potential. Knowing the precise form of the potential

would allow to constrain extended theoretical models beyond the SM (BSM), e.g. models

where there are more than one Higgs boson (as super symmetry has it), or models where

the Higgs is not a fundamental particle, but a composite, similar to other known scalar

particles, like the pions.

Not only improved experiments are required to extend the knowledge. One possibility

coming to prominence with the increasing capabilities of modern and post-modern com-

puting clusters is research at the precision frontier. By calculating evermore higher orders

in perturbative expansions, e�ects inaccessible due to experimental energetic limits, can be

taken into account indirectly. These theoretical predictions are matched with the simulta-

neously increasing experimental precision results to derive new bounds in unprecedented

parameter regions for BSM physics as well as SM physics.

The present work aims at contributing to exactly this objective, by presenting the calcu-

lation of the next-to-leading order (NLO) Yukawa-type electro-weak correction to Higgs

pair production from gluon fusion. It starts with an introduction of the SM in chapter 2,

elaborates the importance of the 𝑔𝑔 → 𝐻𝐻 process in ch. 3, presents the calculation in

ch. 4, and closes with an outlook on possible directions of further investigations in ch. 5.
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2. The Standard Model of Particle Physics

This chapter presents a general introduction to the Standard Model of Particle Physics (SM),

containing a more elaborated description of the Higgs sector and the connected electro-

weak symmetry breaking (EWSB) in sec. 2.2. The derivation follows mainly ref. [10].

Sec. 2.3 details the simpli�cations and conventions used during the calculations in ch. 4.

2.1. The General Stage

The SM is described by the Lagrangian density [10]

LSM = LQCD + LEW , (2.1)

which has to obey the gauge symmetry group

𝑆𝑈 (3)color × 𝑆𝑈 (2)L ×𝑈 (1)𝑌 . (2.2)

The �rst term concerns quantum chromodynamics (QCD) described in LQCD, the second

the electro-weak (EW) sector described in LEW. The Lagrangian can be written out

explicitly to show the particle content, namely the Higgs �eld, the quarks and the leptons,

as well as the force �elds, namely the photon, the gluons, the𝑊 and the 𝑍 bosons, and all

possible interactions amongst them. The force �elds emerge directly from the symmetry

group as objects in its adjoint representation, while the fermions and the Higgs �eld live

in the fundamental representation regarding the EW sector, see eqs. (2.3), (2.4) and (2.5).

In QCD the leptons and the Higgs �eld are singlets.

QCD is a non-Abelian gauge theory introducing eight bosonic gluons corresponding to

the eight generators of 𝑆𝑈 (3). These gluons only interact with particles carrying a colour

charge, which are the quarks and the gluons themselves.

The electro-weak sector adds three𝑊 �elds from the 𝑆𝑈 (2) generators and another 𝐵 �eld

from the𝑈 (1) generator. The corresponding charges for these symmetries are the third

component of the weak isospin 𝐼 3𝑤 and the hypercharge 𝑌 . These original𝑊 and 𝐵 �elds

are mixed such that the known𝑊 ±
, 𝑍 bosons and the photon emerge, and the electric

charge 𝑄 is formed, since they carry both colour and electric charge by the mechanism of

EWSB.

The leptons and the Higgs �eld turn up only in the electro-weak part of the Lagrangian,

while the quarks are also present in QCD. Left-handed fermions are arranged in doublets

of the form (
ℓ𝑖
𝜈𝑖

)
𝐿

and

(
𝑢𝑖
𝑑𝑖

)
𝐿

(2.3)
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2. The Standard Model of Particle Physics

for leptons and quarks respectively, due to symmetry constraints, whereas the right handed

versions are included as singlets

ℓ𝑅, 𝑢𝑅 and 𝑑𝑅 . (2.4)

The Higgs boson is the only fundamental scalar boson of the theory.

2.2. The Higgs Sector and Electro-Weak Symmetry Breaking

The SM Higgs �eld [10] is realized as the complex 𝑆𝑈 (2) doublet

Φ =
1

√
2

(
Φ+

Φ0

)
, (2.5)

therefore containing four degrees of freedom. Its Lagrangian density is

LΦ = (𝐷𝜇Φ)†(𝐷𝜇Φ) + 𝜇2Φ†Φ − 𝜆

4

(Φ†Φ)2 . (2.6)

No higher powers of Φ†Φ are included, due to renormalizability constraints. For some

con�gurations of 𝜇 and 𝜆 the shape of the potential resembles a sombrero hat, see �g. 2.1,

hence it is often called the ’Mexican hat potential’. Due to this particular shape, the minima

are not located at the origin, but rather on a circle around it. This causes the Higgs �eld to

have a non-vanishing vacuum expectation value (vev). It can be derived from the Fermi

constant as

0 ≠ 〈Φ〉 = 𝑣 [11]

= 246.22GeV . (2.7)

It is important to note that the ground state (so to speak in the brim of the hat) is not

symmetric any more under the original EW symmetry. This process is referred to as

electro-weak symmetry breaking (EWSB). The Lagrangian itself still is symmetric, due to

the potential consisting of only even exponents.

The Higgs �eld can be expanded around the vacuum expectation value (vev), for example

as

Φ =
1

√
2

(
𝜙1 + i𝜙2
𝑣 + 𝐻 + i𝜙3

)
(2.8)

or

Φ =
1

√
2

exp

(
i

𝜙𝑖𝜎𝑖

𝑣

) (
0

𝑣 + 𝐻

)
, (2.9)

where the 𝜙𝑖 denote the emerging Goldstone bosons, 𝜎𝑖 the Pauli matrices, 𝑣 the vev, and

𝐻 the Higgs boson. Using eq. (2.9) the vev can be calculated to be

𝑣 =

√︂
4𝜇2

𝜆
. (2.10)

It appears in the lower, uncharged component of the doublet, since this component does

not carry any charge. Otherwise the vacuum would be charged, thereby violating charge

conservation contrary to observation.

4



2.2. The Higgs Sector and Electro-Weak Symmetry Breaking

Figure 2.1.: Example of a “mexican hat potential”.

According to the Goldstone theorem [12] every broken generator of the original symmetry

group 𝑆𝑈 (2) × 𝑈 (1) can be associated with a massless scalar boson. Since only the

azimuthal𝑈 (1) symmetry of electro-magnetism remains after EWSB, only a single𝑈 (1)
generator is left, producing three Goldstone bosons, which carry the remaining degrees of

freedom. The Higgs boson is a real scalar �eld and can therefore carry only one degree

of freedom. The three Goldstone bosons are unphysical; this becomes obvious when the

unitary gauge is used. In unitary gauge the gauge �xing is performed such that all terms

containing Goldstone bosons are eliminated. At the same time the vector bosons𝑊 ±
and

𝑍 become massive via the covariant derivative of the Higgs doublet.

(
𝐷𝜇Φ

)† (𝐷𝜇Φ) = 1

8

(
0 𝑣

) (
𝑔′𝐵𝜇 + 𝑔𝑊 3

𝜇 𝑔𝑊 1

𝜇 − i𝑔𝑊 2

𝜇

𝑔𝑊 1

𝜇 − i𝑔𝑊 2

𝜇 𝑔′𝐵𝜇 + 𝑔𝑊 3

𝜇

) (
𝑔′𝐵𝜇 + 𝑔𝑊 3

𝜇 𝑔𝑊 1

𝜇 − i𝑔𝑊 2

𝜇

𝑔𝑊 1

𝜇 − i𝑔𝑊 2

𝜇 𝑔′𝐵𝜇 + 𝑔𝑊 3

𝜇

) (
0

𝑣

)
=
𝑔2𝑣2

8

[
𝑊 +
𝜇𝑊

−
𝜇 +

(
𝑔′

𝑔
𝐵𝜇 −𝑊 3

𝜇

)
2

]
.

(2.11)

Colloquially, physicists say that ‘the vector bosons eat the Goldstone bosons’. Together

with a non-zero mass these vector bosons acquire a longitudinal polarization mode. The

longitudinal polarizations correspond to the degrees of freedom formerly carried by the

Goldstone bosons.

Equation (2.11) introduces the𝑊 ±
bosons, which are de�ned as

𝑊 ±
𝜇 =𝑊 1

𝜇 ∓ i𝑊 2

𝜇 . (2.12)

5



2. The Standard Model of Particle Physics

It is now also possible to de�ne the 𝑍 and 𝐴 bosons through the rotation(
𝑍𝜇
𝐴𝜇

)
=

(
𝑐𝑤 −𝑠𝑤
𝑠𝑤 𝑐𝑤

) (
𝑊 3

𝜇

𝐵𝜇

)
⇔

(
𝐵𝜇
𝑊 3

𝜇

)
=

(
𝑐𝑤 −𝑠𝑤
𝑠𝑤 𝑐𝑤

) (
𝐴𝜇
𝑍𝜇

)
, (2.13)

where

𝑠𝑤 := sin(𝜗𝑤 ), 𝑐𝑤 := cos(𝜗𝑤 ) and tan(𝜗𝑤 ) :=
𝑔′

𝑔
. (2.14)

𝜗𝑤 is the weak mixing angle. Using these de�nitions it is possible to write(
𝑔′

𝑔
𝐵𝜇 −𝑊 3

𝜇

)
2

=
𝑠2𝑤

𝑐2𝑤

(
𝑐2𝑤𝐴𝜇𝐴

𝜇 − 2𝑐𝑤𝑠𝑤𝐴𝜇𝑍
𝜇 + 𝑠2𝑤𝑍𝜇𝑍 𝜇

)
− 2

𝑠𝑤

𝑐𝑤

(
𝑐𝑤𝑠𝑤𝐴𝜇𝐴

𝜇 + (𝑐2𝑤 − 𝑠2𝑤 )𝐴𝜇𝑍 𝜇 − 𝑠𝑤𝑐𝑤𝑍𝜇𝑍 𝜇
)

+ 𝑠2𝑤𝐴𝜇𝐴𝜇 + 2𝑠𝑤𝑐𝑤𝐴𝜇𝑍
𝜇 + 𝑐2𝑤𝑍𝜇𝑍 𝜇

=
1

𝑐2𝑤
𝑍𝜇𝑍

𝜇 =
𝑔2 + 𝑔′2
𝑔2

𝑍𝜇𝑍
𝜇 .

(2.15)

Herefrom follows that the photon, denoted by 𝐴, is massless. Combining eq. (2.15) and

eq. (2.11) gives a value for the 𝑍 mass of

𝑚𝑍 =
𝑣
√︁
𝑔2 + 𝑔′2
2

=
𝑚𝑊

𝑐𝑤
. (2.16)

Rewriting the whole Lagrangian in terms of the new 𝑊 ±
, 𝑍 and 𝐴 bosons gives the

couplings of the Higgs boson to the physical gauge �elds. It is then obvious that the

coupling strength is proportional to the mass of the coupled vector boson, hence there

exist no coupling between the photon and the Higgs boson.

To generate quark masses, Yukawa interaction terms are introduced. Since fermions have

mass dimension
3

2
, it is possible to construct terms of dimensionality 4 with two fermions

and the Higgs �eld, which has mass dimension 1. The Yukawa Lagrangian then reads

LYuk = −𝑦𝑑𝑖 𝑗𝑄𝑖𝐿Φ𝑑
𝑗

𝑅
− 𝑦𝑢𝑖 𝑗𝑄𝑖𝐿Φ

𝑐𝑢
𝑗

𝑅
+ h.c. . (2.17)

The 𝑄𝐿 encodes all left-handed quarks, the 𝑑𝑅 all right-handed down-type quarks, the 𝑢𝑅
all right-handed up-type quarks and the Φ𝑐 is the charge conjugated Higgs �eld

Φ𝑐 = i𝜎2Φ
∗ . (2.18)

Lepton mass terms are included similarly, but due to the right-handed neutrinos being

singlets under all SM interactions no Yukawa mass term can be written.

Since the Lagrangian has to be symmetric under the group stated in eq. (2.2), it is in general

not possible to have terms of mixed chirality without a Φ �eld in the Yukawa part of the

Lagrangian, therefore terms like

Levil =𝑚𝑢𝑄𝐿𝑢𝑅 (2.19)

6



2.2. The Higgs Sector and Electro-Weak Symmetry Breaking

are forbidden: they would change under a 𝑆𝑈 (2) transformation, because 𝑄𝐿 is a doublet

and 𝑢𝑅 a singlet.

When the expansion around the vev is inserted for Φ, the quark Yukawa terms become

LYuk = −
𝑌𝑑𝑖 𝑗√
2

(
𝑢𝑖
𝐿

¯𝑑𝑖
:

)
·
(
0

𝑣

)
𝑑
𝑗

𝑅
−
𝑌𝑢𝑖 𝑗√
2

(
𝑢𝑖
𝐿

¯𝑑𝑖
:

)
·
(
𝑣

0

)
𝑢
𝑗

𝑅
+ h.c.

= −𝑌𝑑𝑖 𝑗 ¯𝑑𝑖𝐿
𝑣
√
2

𝑑
𝑗

𝑅
− 𝑌𝑢𝑖 𝑗𝑢𝑖𝐿

𝑣
√
2

𝑢
𝑗

𝑅
+ h.c. .

(2.20)

It is not trivial to see the mass terms for the quarks, since the matrices 𝑌𝑢 and 𝑌𝑑 mix

di�erent generations. In order to �x this issue, the quarks can be rotated into the mass

basis via the unitary matrices

𝑑𝑖𝑅 →
(
𝑈 𝑑
𝑅

)
𝑖 𝑗

ˆ𝑑
𝑗

𝑅
𝑢𝑖𝑅 →

(
𝑈 𝑢
𝑅

)
𝑖 𝑗
𝑢
𝑗

𝑅
𝑑𝑖𝐿 →

(
𝑈 𝑑
𝐿

)
𝑖 𝑗

ˆ𝑑
𝑗

𝐿
𝑢𝑖𝐿 →

(
𝑈 𝑢
𝐿

)
𝑖 𝑗
𝑢
𝑗

𝐿
, (2.21)

resulting in the Yukawa matrices becoming diagonal:

𝑀̂𝑑 =

(
𝑈 𝑑
𝐿

)†
𝑌𝑑𝑈 𝑑

𝑅 = diag(𝑚𝑑 ,𝑚𝑠,𝑚𝑏) 𝑀̂𝑢 =
(
𝑈 𝑢
𝐿

)†
𝑌𝑢𝑈 𝑢

𝑅 = diag(𝑚𝑢,𝑚𝑐,𝑚𝑡 ) (2.22)

Inserting these de�nitions in equation (2.17) yields

LYuk = − 𝑣
√
2

¯𝑑𝐿

(
𝑈 𝑑
𝐿

)†
𝑈 𝑑
𝐿𝑀

𝑑
(
𝑈 𝑑
𝑅

)†
𝑈 𝑑
𝑅𝑑𝑅 −

𝑣
√
2

𝑢𝐿
(
𝑈 𝑢
𝐿

)†
𝑈 𝑢
𝐿𝑀

𝑢
(
𝑈 𝑢
𝑅

)†
𝑈 𝑢
𝑅𝑢𝑅 + h.c.

= −𝑣𝑀𝑖
𝑑
¯𝑑𝑖𝐿𝑑

𝑖
𝑅 − 𝑣𝑀

𝑖
𝑢𝑢

𝑖
𝐿𝑢

𝑖
𝑅 + h.c. .

(2.23)

The hat from eqs. (2.21) and (2.22) has been dropped, since all occuring quantities are in

the mass basis. The masses for the quarks are given by

𝑚𝑞 =
𝑣
√
2

𝑀𝑞 (2.24)

with𝑀𝑞 being the corresponding entry in the diagonal mass matrix.

This rotation also has to take place in the rest of the Lagrangian, namely the kinetic term

discussed above. After performing this rotation to the mass basis nearly everywhere the

rotation matrices 𝑈 drop out. Only the terms where the coupling between𝑊 ±
and the

quarks is described keep the combination

𝑉CKM :=
(
𝑈 𝑢
𝐿

)†
𝑈 𝑑
𝐿 , (2.25)

which is known as the Cabibbo-Kobayashi-Maskawa matrix. This is the source of �avour

changing charged currents in the SM and of 𝐶𝑃 violation.

As mentioned above the lepton masses are constructed similarly, but due to missing right

handed neutrinos in the SM, a similar matrix to the CKM matrix (which would be called

Pontecorvo-Maki-Nakagawa-Saki matrix) cannot be constructed within the SM.

It is important to keep in mind that the derivation so far is exclusively in unitary gauge,

which is a very speci�c choice. A more general approach would be to use 𝑅𝜉 gauges.
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To obtain the unitary gauge the limit 𝜉 → ∞ needs to be taken, thereby removing the

Goldstone bosons from the particle spectrum. If 𝜉 is not taken to in�nity these unphysical

degrees of freedom still exist and also propagate. In order to �x this ghosts are introduced

(with another extra term to the Lagrangian) to cancel the super�uous degrees of freedom.

These ghosts must also be considered when collecting all contributing Feynman diagrams.

After performing the calculations, the physical observables must not di�er from those

obtained in unitary gauge.

2.3. The Lagrangian in the Scope of This Work

In the following, only Yukawa and Higgs self interaction vertices will be considered, hence

all parts in the Lagrangian corresponding to QCD, gauge bosons, or leptons are neglected,

as well as any terms with quarks other than the top, due to their small coupling to the

Higgs boson. The Lagrangian can be written as
1

LEW,𝑡 = (𝐷𝜇Φ)†(𝐷𝜇Φ) + i𝑄𝐿𝐷̂𝑄𝐿 + i𝑢𝑅𝐷̂𝑢𝑅

+ 𝜇2Φ†Φ − 𝜆

4

(Φ†Φ)2 −
(
𝑦𝑢𝑄𝐿Φ

𝑐𝑢𝑅 + h.c.
)
.

(2.26)

The �rst line contains all the kinetic terms needed for a Higgs boson and an up-type quark.

The second line contains the biquadratic Higgs potential and the Yukawa coupling. The

covariant derivative

𝐷𝜇 = 𝜕𝜇 − i

𝑔
√
2

𝑊 𝑎
𝜇 𝜎

𝑎 − i

𝑔′

2

𝐵𝜇 (2.27)

yields the interaction terms between force and particle �elds. 𝑔 and 𝑔′ are the coupling
strengths of the original 𝑆𝑈 (2)𝐿 and𝑈 (1)𝑌 symmetries respectively. The de�nitions

𝑄𝐿 :=

(
𝑡𝐿
0

)
for a left handed and

𝑢𝑅 := 𝑡𝑅

for a right handed particle are understood. The next simpli�cation is to use unitary gauge,

such that

Φ =
1

√
2

(
0

𝑣 + 𝐻

)
(2.28)

with all Goldstone bosons set to zero.

Next the gaugeless limit is taken to get rid of any gauge boson interaction terms. This is

done by shifting

(𝑔,𝑔′) −→ (0, 0) .
Equation (2.27) then looses all gauge boson contributions so

𝐷𝜇 −→ 𝜕𝜇 . (2.29)

1
The symbol 𝐷̂ occuring in eq. (2.26) is an abbreviation of 𝛾𝜇𝐷

𝜇
, c.f. Feynman slash notation.
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2.3. The Lagrangian in the Scope of This Work

Applying all these simpli�cations to the Lagrangian (2.26) yields

LEW,𝑡

��
gaugeless

=
1

2

(
𝜕𝜇𝐻

)† (𝜕𝜇𝐻 ) + 𝜇2
2

(𝑣 + 𝐻 )2 − 𝜆

16

(𝑣 + 𝐻 )4

+ i

(
𝑡𝐿𝜕𝑡𝐿 + 𝑡𝑅𝜕𝑡𝑅

)
− 𝑦𝑡

𝑣 + 𝐻
√
2

(𝑡𝐿𝑡𝑅 + h.c.) .
(2.30)

The terms containing the top quark �elds can be simpli�ed using the anticommutation

properties of the gamma matrices and the projection operators:

𝑡𝐿𝑡𝑅 + h.c. = 𝑡
†
𝐿
𝛾0𝑡𝑅 + 𝑡†𝑅𝛾0𝑡𝐿 = 𝑡

†𝑃𝐿𝛾0𝑃𝑅𝑡 + 𝑡†𝑃𝑅𝛾0𝑃𝐿𝑡 = 𝑡†𝛾0𝑃2𝑅𝑡 + 𝑡
†𝛾0𝑃

2

𝐿𝑡

= 𝑡†𝛾0𝑃𝑅𝑡 + 𝑡†𝛾0𝑃𝐿𝑡 = 𝑡 (𝑃𝑅 + 𝑃𝐿) 𝑡 = 𝑡𝑡
(2.31)

𝑡𝑅𝜕𝑡𝑅 + 𝑡𝐿𝜕𝑡𝐿 = 𝑡†𝑃𝑅𝛾0𝛾𝜇𝜕𝜇𝑃𝑅𝑡 + 𝑡†𝑃𝐿𝛾0𝛾𝜇𝜕𝜇𝑃𝐿𝑡 = 𝑡†𝛾0𝑃𝐿𝛾𝜇𝜕𝜇𝑃𝑅𝑡 + 𝑡†𝛾0𝑃𝑅𝛾𝜇𝜕𝜇𝑃𝐿𝑡
= 𝑡 𝜕𝑃2𝑅𝑡 + 𝑡 𝜕𝑃

2

𝐿𝑡 = 𝑡 𝜕 (𝑡𝑅 + 𝑡𝐿) = 𝑡 𝜕𝑡
(2.32)

Obtained therefrom is

L =
1

2

(
𝜕𝜇𝐻

)† (𝜕𝜇𝐻 ) + 𝜇2
2

(𝑣 + 𝐻 )2 − 𝜆

16

(𝑣 + 𝐻 )4 + i𝑡 𝜕𝑡 − 𝑦𝑡
𝑣 + 𝐻
√
2

𝑡𝑡 (2.33)

=
1

2

(
𝜕𝜇𝐻

)† (𝜕𝜇𝐻 ) + 𝐻𝑣 (
𝜇2 − 𝜆𝑣2

4

)
+ 𝐻 2

1

2

(
𝜇2 − 3

4

𝜆𝑣2
)
− 𝐻 3

𝜆𝑣

4

− 𝐻 4
𝜆

16

+ i𝑡 𝜕𝑡 − 𝑣𝑦𝑡√
2

𝑡𝑡 − 𝑦𝑡√
2

𝐻𝑡𝑡 .

(2.34)

The Lagrangian depends on the parameters 𝑣 , 𝜇, 𝜆 and 𝑦𝑡 , which are not independent.

Rather𝑚𝐻 ,𝑚𝑡 and 𝑣 shall be used instead.

To obtain an expression for 𝑣 the minimum of the Higgs potential for 𝐻 = 0 is required,

which corresponds to the O(𝐻 ) term in equation (2.34).

𝜕𝑉

𝜕𝐻

����
𝐻=0

= 𝜇2 − 𝜆𝑣2

4

!

= 0 =⇒ 𝜆 =
4𝜇2

𝑣2
(2.36)

=
2𝑚2

𝐻

𝑣2
(2.35)

For the last equality an expression for the Higgs mass is needed, which comes from the

bilinear term in the Lagrangian.

−
𝑚2

𝐻

2

𝐻 2
!

=
1

2

(
𝜇2 − 3

4

𝜆𝑣2
)
𝐻 2

(2.35)

=

(
𝜇2 − 3

4

4𝜇2

𝑣2
𝑣2

)
𝐻 2

2

= −2𝜇2𝐻
2

2

=⇒ 𝜇2 =
𝑚2

𝐻

2

(2.36)

Similarly,

𝑚𝑡𝑡𝑡
!

=
𝑣𝑦𝑡√
2

𝑡𝑡 =⇒ 𝑦𝑡 =

√
2𝑚𝑡

𝑣
. (2.37)

These expressions will be exploited in sec. 4.5.
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3. Di-Higgs Production Calculations

As seen previously in equations (2.6) and (2.33), the parameter 𝜆 enters the SM on a very

fundamental level. It is of the utmost importance, since the shape of the Higgs potential is

de�ned by it, as well as the EWSB mechanism and baryogenesis.

Many new physics models alter the Higgs sector, for instance by considering the Higgs as

a composite state. All this would likewise change the form of the potential. To be able

to test it for new physics, it is therefore crucial to know the SM Higgs potential shape

precisely.

The kappa value allows, within an appropriate e�ective �eld theory framework, statements

about constraints on SM parameters from measurements. For the parameter 𝜆 it is de�ned

as

𝜅𝜆 :=
𝜆

𝜆SM
(3.1)

with the expected SM value 𝜆SM. Similar de�nitions also hold for other couplings in the

SM. The closer a 𝜅 value is to 1, the more SM like is the measured value. Right now the

value of 𝜆 is loosely constrained to be

−1.24 ≤ 𝜅𝜆 ≤ 6.4

by the CMS experiment [13] and to be

−0.4 ≤ 𝜅𝜆 ≤ 6.3

by the ATLAS experiment [14], but the high luminosity upgrade of the LHC in immediate

future is expected to decrease this interval to

0.5 ≤ 𝜅𝜆 ≤ 1.5

soon [15]. A physical process featuring the Higgs self coupling is required to decrease the

uncertainty on 𝜅𝜆 .

A prime example for such a process is di-Higgs production, which includes 𝜆 already

at leading order (LO). The cross section plot for 𝐻𝐻 production, as seen in �g. 3.1, is

quite similar to the one for only single Higgs production but shifted down by three orders

of magnitude. It is not surprising to observe the largest production cross section again

in the gluon-gluon-fusion (ggF) channel. Vector boson fusion, double Higgs-strahlung,

and 𝑡𝑡 associated pair-production are all at least one order of magnitude smaller. The

uncertainties on the gluon fusion production cross section are related to the uncertainties

of the self coupling [17] via

Δ𝜎

𝜎ggF
∼ −Δ𝜆

𝜆
.
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3. Di-Higgs Production Calculations

Figure 3.1.: The Higgs pair production cross sections for di�erent production channels

as given by [16]. Except for the scale they are very similar to single Higgs

production cross sections; again gluon-gluon-fusion dominates.

(a) Triangle diagram at LO. (b) Box diagram at LO.

Figure 3.2.: Two LO diagrams contributing toHiggs pair production. Each diagram contains

already one loop, since gluons and Higgs bosons do not couple directly. It is

obvious that the Higgs self coupling already enters at LO in diagram (a).

It is crucial to minimize the theoretical uncertainties in 𝜎ggF, otherwise the required

precision for 𝜆 cannot be achieved.

Despite the large cross section compared to the other production channels, the process is

quite di�cult to measure, because of its small cross section in absolute numbers. Just as

with single Higgs production a part of it can be ascribed to the weak coupling between

the Higgs and many of the other SM particles, as well as the necessity of loop diagrams

already at LO. Moreover, Higgs pair production requires a much higher energy in the

partonic process.

Inconveniently, as �g. 3.2 shows, the leading order for 𝑔𝑔 → 𝐻𝐻 is already at one loop

level. This is a complication, as corrections to the amplitude introduce another loop

in the diagrams and the integrals originating are in general not analytically solved yet.

Unfortunately, the two LO diagrams also interfere destructively, further diminishing the

cross section for Higgs pair production.

Despite the challenges, results in di�erent scenarios are available. QCD corrections

already include the complete NLO full top quark mass dependence [18–21]. The additional

12



HTL−−−−−−−→

Figure 3.3.: Pictorial representation of the heavy top limit. A top loop becomes an e�ective

coupling.

gluons occurring in higher order diagrams do not introduce another mass-scale to the

virtual part. In EW corrections additional Higgs,𝑊 , or 𝑍 bosons in the loops introduce

another mass-scale (𝑚𝐻 ,𝑚𝑊 , or𝑚𝑍 respectively), further complicating the integration.

Before the full theory calculations at NLO QCD were achieved, various expansions and

approximations were employed. These are nowadays put to use in higher order QCD

corrections, and help to address the multiple scales in EW corrections. One of them is the

heavy top limit
1
(HTL). In this approximation all the top quark loops are integrated out,

c.f. �g. 3.3, thereby introducing an e�ective coupling, reducing the loop order by one, and

eliminating one of the mass scales. The NNLO QCD results [22–26] have been computed

in this approximation, just as the N
3
LO ggF di-Higgs production calculations [27, 28].

Another approximation is the Born improved (BI) cross section. This uses the Born cross

section in the full theory 𝜎FT but rescales it by the normalized NLO corrections in HTL to

obtain

𝜎BI =
MNLO

HTL

MLO

FT

𝜎FT . (3.2)

This ansatz was used to calculate the NLO QCD corrections [29].

Another next step up the ladder towards a full inclusion of the theory is the approximated

full theory (FTapprox). Here everything is calculated with full top quark mass dependence

except for virtual corrections, which are calculated in the BI scheme. The authors of

ref. [30] obtain their results concerning top quark mass e�ects in this way.

The unknown EW corrections are assessed to contribute a few percent to the whole

cross section with likely larger e�ects in the tail of the distributions. The EW corrections

themselves can still be divided into several branches: one class are corrections induced by

the electro-weak bosons 𝐴,𝑊 ±
and 𝑍 , another class are the Yukawa induced corrections,

containing diagrams with an higher order of Yukawa couplings than the LO diagrams, and

yet another class contains higher orders of the Higgs self coupling. Of course, mixtures

between those classes are also possible. This thesis is neglecting all corrections from the

�rst kind, which is why the gaugeless limit is taken in sec. 2.3.

Quite recently, a paper [31] by J. Davies, G. Mishima, K. Schönwald, M. Steinhauser,

and H. Zhang investigates Yukawa induced corrections in the high energy limit. This

corresponds to an expansion of the integrands in
𝑚2

𝑡

𝑠
,
𝑚2

𝑡

𝑡
, and

𝑚2

𝑡

𝑢
. Two di�erent approaches

of handling the internal Higgs boson are tested: either as roughly same-scale to the top

quark𝑚2

𝑡 ≈ (𝑚intern

𝐻
)2 or very light𝑚2

𝑡 � (𝑚intern

𝐻
)2.

1
In some (especially older) references this is called Higgs e�ective �eld theory (HEFT).
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3. Di-Higgs Production Calculations

Another recent paper [17] published by M. Mühlleitner, J. Schlenk and M. Spira also

investigates the Yukawa induced corrections, but uses the HTL. Here, corrections to the

Higgs self coupling are included as well. With this approach they �nd a 𝐾-factor of

𝐾 = 1.002

with a LO-like trilinear Higgs coupling. The 𝐾-factor quanti�es the e�ect of the higher

order correction compared to the so far known order. It is de�ned as

𝐾 =
𝜎NLO

𝜎LO
. (3.3)
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4. Calculation of Electro-Weak Yukawa
and Self-Coupling Corrections

Section 4.1 reviews the LO calculation as performed by Glover and van der Bij [32]. The

NLO calculation is described step by step starting with the amplitude generation in sec. 4.2,

continuing with the the integral reduction in sec. 4.3, integration in sec. 4.4, and closing

with the renormalization in sec. 4.5.

4.1. LO Calculation

The �rst step is to construct the tensor structure for the 𝑔𝑔 → 𝐻𝐻 amplitude. The initial

gluons carry a Lorentz index each, since they are vector particles. The �nal state consists

of two Higgs bosons, therefore the matrix element has to be a tensor of rank two in the

Lorentz space. It is helpful to divide the amplitude in objects carrying the tensor structure

times prefactors, which are known as form factors or structure functions, so

M𝜇𝜈 =
∑︁
𝑖

𝐹𝑖𝑇
𝜇𝜈

𝑖
. (4.1)

Considering all possible terms yields an expression

M𝜇𝜈 = 𝑎00𝑔
𝜇𝜈 + 𝑎21𝑝𝜇

2
𝑝𝜈
1
+ 𝑎31𝑝𝜇

3
𝑝𝜈
1
+ 𝑎23𝑝𝜇

2
𝑝𝜈
3
+ 𝑎33𝑝𝜇

3
𝑝𝜈
3

+ 𝑎11𝑝𝜇
1
𝑝𝜈
1
+ 𝑎22𝑝𝜇

2
𝑝𝜈
2
+ 𝑎12𝑝𝜇

1
𝑝𝜈
2
+ 𝑎13𝑝𝜇

1
𝑝𝜈
3
+ 𝑎32𝑝𝜇

3
𝑝𝜈
2

(4.2)

for the amplitude. Due to momentum conservation, 𝑝
𝜇

4
can be expressed in terms of the

other momenta and therefore does not need to be included as additional parameter. The

transversal polarization of the gluons restricts the possible terms through the relations

𝜀1,𝜇𝑝
𝜇

1
= 0 and 𝜀2,𝜈𝑝

𝜈
2
= 0 . (4.3)

This prevents contributions from all terms in the second line of eq. (4.2). Further, restric-

tions can be derived from the Ward identities

𝑝
𝜇

1
M𝜇𝜈 = 0 and 𝑝

𝜇

2
M𝜇𝜈 = 0 . (4.4)

Using them gives factors of 𝑝2
1
= 0 or 𝑝2

2
= 0 in some terms, since these momenta are

associated with the initial gluons. The Ward identities can be used, since the gluons do not

show any non-Abelian behaviour from their 𝑆𝑈 (3) group. Here, they behave like photons.

The two tensor objects are given by [32]

𝑇
𝜇𝜈

1
= 𝑔𝜇𝜈 −

𝑝𝜈
1
𝑝
𝜇

2

𝑝1 · 𝑝2
(4.5)

15



4. Calculation of Electro-Weak Yukawa and Self-Coupling Corrections

and

𝑇
𝜇𝜈

2
= 𝑔𝜇𝜈 +

𝑚2

𝐻
𝑝𝜈
1
𝑝
𝜇

2

𝑝2
𝑇
𝑝1 · 𝑝2

−
2𝑝1 · 𝑝3𝑝𝜇

2
𝑝𝜈
3

𝑝2
𝑇
𝑝1 · 𝑝2

−
2𝑝2 · 𝑝3𝑝𝜈

1
𝑝
𝜇

3

𝑝2
𝑇
𝑝1 · 𝑝2

+
2𝑝

𝜇

3
𝑝𝜈
3

𝑝2
𝑇

, (4.6)

with the transversal momentum

𝑝𝑇 =

√︄
𝑢𝑡 −𝑚4

𝐻

𝑠
. (4.7)

Here, partonic Mandelstam variables are denoted as 𝑠 , 𝑡 and 𝑢. Projectors P𝜇𝜈

𝑖
are con-

structed to extract the single form factors, by imposing that

P𝜇𝜈

𝑖
𝑇𝑗,𝜇𝜈 = 𝛿𝑖 𝑗 , (4.8)

where 𝛿𝑖 𝑗 is the Kronecker delta symbol.

Form factors are gauge- and Lorentz-independent. It is worth noticing that form factor

𝐹1 belongs to the helicity amplitude where both gluons are equally polarized, i.e. ++ or −−,
whereas 𝐹2 belongs to the helicity amplitude where the gluons have opposite polarization,

i.e. +− or −+. This shows immediately that triangle diagrams can only contribute to 𝐹1
due to their rotational symmetry around the axis given by the Higgs propagator. The box

diagrams on the contrary, contribute to both form factors. In particular

𝐹1(4) =
12𝑚2

𝐻
𝑚2

𝑡

𝑠 −𝑚2

𝐻

(
2 +

(
4𝑚2

𝑡 − 𝑠
)
𝐶 (𝑝1, 𝑝2)

)
, (4.9)

𝐹1(�) =4𝑚2

𝑡

[
𝑚2

𝑡

(
8𝑚2

𝑡 − 𝑠 − 2𝑚2

𝐻

)
(𝐷 (𝑝1, 𝑝2, 𝑝3) + 𝐷 (𝑝2, 𝑝1, 𝑝3) + 𝐷 (𝑝1, 𝑝3, 𝑝2)) (4.10)

+
𝑢𝑡 −𝑚4

𝐻

𝑠

(
4𝑚2

𝑡 −𝑚2

𝐻

)
𝐷 (𝑝1, 𝑝3, 𝑝2) + 2 + 4𝑚2

𝑡𝐶 (𝑝1, 𝑝2)

+ 2

𝑠

(
𝑚2

𝐻 − 4𝑚2

𝑡

) ( (
𝑡 −𝑚2

𝐻

)
𝐶 (𝑝1, 𝑝3) +

(
𝑢 −𝑚2

𝐻

)
𝐶 (𝑝2, 𝑝3)

) ]
and

𝐹2(�) =2𝑚2

𝑡

[
2

(
8𝑚2

𝑡 + 𝑠 − 2𝑚2

𝐻

) [
𝑚2

𝑡

(
𝐷 (𝑝1, 𝑝2, 𝑝3) + 𝐷 (𝑝2, 𝑝1, 𝑝3) + 𝐷 (𝑝1, 𝑝3, 𝑝2)

)
(4.11)

−𝐶 (𝑝3, 𝑝4)
]
− 2

[
𝑠𝐶 (𝑝1, 𝑝2) +

(
𝑡 −𝑚2

𝐻

)
𝐶 (𝑝1, 𝑝3) +

(
𝑢 −𝑚2

𝐻

)
𝐶 (𝑝2, 𝑝3)

]
+ 1

𝑢𝑡 −𝑚4

𝐻

[
𝑠𝑢

(
8𝑢𝑚2

𝑡 − 𝑢2 −𝑚4

𝐻

)
𝐷 (𝑝1, 𝑝2, 𝑝3) + 𝑠𝑡

(
8𝑡𝑚2

𝑡 − 𝑡2 −𝑚4

𝐻

)
𝐷 (𝑝2, 𝑝1, 𝑝3)

+
(
8𝑚2

𝑡 + 𝑠 − 2𝑚2

𝐻

) [
𝑠
(
𝑠 − 2𝑚2

𝐻

)
𝐶 (𝑝1, 𝑝2) + 𝑠

(
𝑠 − 4𝑚2

𝐻

)
𝐶 (𝑝3, 𝑝4)

+ 2𝑡
(
𝑚2

𝐻 − 𝑡
)
𝐶 (𝑝1, 𝑝3) + 2𝑢 (𝑚2

𝐻 − 𝑢)𝐶 (𝑝2, 𝑝3)
] ] ]
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4.2. Amplitude Generation

for the triangle (4) and box (�) type diagram contributions [32]. The gluon momenta are

𝑝1 and 𝑝2, the Higgs boson momenta are 𝑝3 and 𝑝4. The functions

𝐶 (𝑝1, 𝑝2) =
∫
d
4𝑙

iπ2

1

(𝑙2 −𝑚2

𝑡 ) ((𝑙 + 𝑝1)2 −𝑚2

𝑡 ) ((𝑙 + 𝑝1 + 𝑝2)2 −𝑚2

𝑡 )
(4.12)

and

𝐷 (𝑝1, 𝑝2, 𝑝3) =
∫
d
4𝑙

iπ2

1

(𝑙2 −𝑚2

𝑡 ) ((𝑙 + 𝑝1)2 −𝑚2

𝑡 )

× 1

((𝑙 + 𝑝1 + 𝑝2)2 −𝑚2

𝑡 ) ((𝑙 + 𝑝1 + 𝑝2 + 𝑝3)2 −𝑚2

𝑡 )
(4.13)

are scalar integrals in 𝐷 = 4 dimensions
1
.

4.2. Amplitude Generation

Just as with the LO calculation, the �rst step at NLO is to determine the contributing

diagrams. For EW corrections only additional Yukawa-like and Higgs self-couplings are

considered; additional gluon lines would contribute to QCD corrections. Furthermore, only

virtual corrections, i.e. additional internal lines, are possible, since real corrections (initial

or �nal state radiation or additional particle radiation from the loop) would change the

process from 𝑔𝑔 → 𝐻𝐻 to something else, e.g. 𝑔𝑔 → 𝐻𝐻𝐻 . This has the great advantage

that the calculation of the diagrams is greatly simpli�ed , since no real emission need to

be considered and therefore all integrals and the amplitude must be IR �nite
2
.

QGRAF [33] is used to automatically generate all contributing Feynman diagrams. A few

examples are shown in �g. 4.1. As can be seen, planar as well as non-planar integral

contribute. It needs a few �les which de�ne the properties of the used physics model. In

the present case the EW sector of the SM. Once this is completed, a con�guration script

is created. In it the model, the loop order, conventions for the momenta, output style,

particles to be considered and a �ock of other options is speci�ed.

All external momenta are set to be incoming. The momentum conservation law reads

0 = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 ⇔ 𝑝4 = −𝑝1 − 𝑝2 − 𝑝3 , (4.14)

and the Mandelstam variables are

𝑠 = (𝑝1 + 𝑝2)2 , 𝑡 = (𝑝1 + 𝑝3)2 and 𝑢 = (𝑝2 + 𝑝3)2 . (4.15)

Some of the diagrams, as, for example, the lower two, are non-planar.

Two di�erent approaches to generate the form factors are used. The �rst method consists

of using alibrary [34], a Mathematica library, developed to facilitate the connection of

1
Here, at LO, 𝐷 = 4 can be used, since the corresponding scalar integrals in 𝐷 = 4 − 2𝜀 dimensions are

�nite.

2
Integrals without divergences from the integration momentum approaching zero are called IR-�nite.
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4. Calculation of Electro-Weak Yukawa and Self-Coupling Corrections

(a) (b)

(c) (d)

Figure 4.1.: Subset of diagrams considered for NLO EW corrections. The diagrams (c) and

(d) are non-planar.

the several programs needed in the computation. alibrary provides a model and a style

�le for QGRAF and interacts through a python wrapper script with it. The default model

needs to be adapted to accommodate Higgs self-interaction. QGRAF returns a .m �le, the

content of which must be adapted to the direction of momenta and the elimination of 𝑝4
by eq. (4.14).

Afterwards, the amplitude is constructed from the diagrams using a Mathematica function

contained in alibrary and multiplied by the projectors to get the form factors. The

projectors used here are

𝑃
𝜇𝜈

1
=

i

4(𝑑 − 3)𝛿𝑎𝑏

{
(𝑑 − 2)

(
𝑔𝜇𝜈 −

𝑝𝜈
1
𝑝
𝜇

2

𝑝1 · 𝑝2

)
+ (4 − 𝑑)

[
𝑔𝜇𝜈 + 1

2(𝑝1 · 𝑝3) 𝑝2·𝑝3𝑝1·𝑝2 −𝑚
2

𝐻

·

·
(
2𝑝

𝜇

3
𝑝𝜈
3
+
𝑚2

𝐻
𝑝𝜈
1
𝑝
𝜇

2
− 2(𝑝1 · 𝑝3)𝑝𝜇

2
𝑝𝜈
3
− 2(𝑝2 · 𝑝3)𝑝𝜈

1
𝑝
𝜇

3

𝑝1 · 𝑝2

)]} (4.16)

and

𝑃
𝜇𝜈

2
=

i

4(𝑑 − 3)𝛿𝑎𝑏

{
(4 − 𝑑)

(
𝑔𝜇𝜈 −

𝑝𝜈
1
𝑝
𝜇

2

𝑝1 · 𝑝2

)
+ (𝑑 − 2)

[
𝑔𝜇𝜈 + 1

2(𝑝1 · 𝑝3) 𝑝2·𝑝3𝑝1·𝑝2 −𝑚
2

𝐻

·

·
(
2𝑝

𝜇

3
𝑝𝜈
3
+
𝑚2

𝐻
𝑝𝜈
1
𝑝
𝜇

2
− 2(𝑝1 · 𝑝3)𝑝𝜇

2
𝑝𝜈
3
− 2(𝑝2 · 𝑝3)𝑝𝜈

1
𝑝
𝜇

3

𝑝1 · 𝑝2

)]}
.

(4.17)

The 𝑎 and 𝑏 indices are adjoint 𝑆𝑈 (3)color indices. A normalization factor of

(𝛿𝑎𝑏𝛿𝑎𝑏 − 1)−1 = 1

𝑁 2

𝑐 − 1

=
1

8

(4.18)

for the colours is included later in eq. (4.29).
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4.2. Amplitude Generation

The next step consists of extracting the list of denominators (containing loop momenta),

which can be directly used by the interface to kira [35–37] after minor transformations;

one of the options for the IBP reduction programs (c.f. sec. 4.3). This is feasible at LO. At

NLO the amplitude proved to be too complicated to be reduced by the automated interface.

Here, the reduction is performed by another IBP reduction program named reduze [38],

for further details see sec. 4.3. Hence, kira is not used and therefore another way of

generating the amplitude is followed.

The second method used to generate the amplitude, which is followed here, is via reduze.

reduze also contains interfaces to some other programs typically used in particle physics

calculations, even though its main focus is the IBP reduction. One of them is, again, QGRAF:

a style �le is provided, so that reduze may be able to convert the diagrams generated by

QGRAF into integral expressions. QGRAF still needs to be run separately as described above,

but everything else is automated within reduze. The only thing left to do is to con�gure

reduze. In general, reduze takes a job �le as input. This �le de�nes all actions reduze

takes during the run. Other important �les are contained in the required directory config.

The �le kinematics.yaml contains all the conventions for the momenta as well as kine-

matic invariants, i.e. the used names of the Mandelstam variables and particle masses, and

scalar products of the external momenta.

The �le feynmanrules.yaml contains all the rules for diagrams to be converted to mathe-

matical expressions. The projectors from eqs. (4.16) and (4.17) need to be de�ned here as

well. The coupling constants are kept general to be 𝑔𝐻𝐻 for triple-Higgs vertex, 𝑔𝐻 3 for

four-Higgs vertex and 𝑔𝐻𝑡 for top-Higgs-interaction.

The third necessary �le is integralfamilies.yaml. The Feynman diagrams are translated

to integrals for the calculation and those integrals all belong to certain classes. As a matter

of fact, each integral is de�ned by the type and power of occurring propagators in the

integrand, and admits the general representation

𝐼 (𝜈𝑖) =
∫ 𝐿∏

𝑙=1

d
𝐷𝑘𝑙

(2π)𝐷/2
1

𝑃
𝜈1
1
. . . 𝑃

𝜈𝑡
𝑡 𝑃

𝜈𝑡+1
𝑡+1 . . . 𝑃

𝜈𝑛
𝑛

, (4.19)

where the propagators 𝑃𝑖 read

𝑃 =

(∑︁
𝑖

𝛼𝑖𝑙𝑖 +
∑︁
𝑖

𝛽𝑖𝑝𝑖

)
2

−𝑚2
(4.20)

with loop momenta 𝑙𝑖 , external momenta 𝑝𝑖 and the particle mass𝑚 ≥ 0. The indices 𝐿

and 𝑛 in eq. (4.19) give the number of loops and the number of propagators respectively.

The number of propagators in an integral family is �xed by the fact that all scalar products

containing at least one loop momentum have to be unambiguously expressed through a

linear combination of propagators; so there must be

#𝑃 = 𝐸 · 𝐿 + 1

2

𝐿(𝐿 − 1) (4.21)

propagators with the number of legs 𝐸 and the number of loops 𝐿. The exponents 𝜈𝑖 with

𝑖 > 𝑡, 0 ≤ 𝑡 ≤ 𝑛 are negative to allow construction of momenta in the numerator. At
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4. Calculation of Electro-Weak Yukawa and Self-Coupling Corrections

two-loop level Feynman diagrams for gluon-gluon fusion initiated di-Higgs production

exhibit up to seven internal lines, each of which gives rise to a distinct denominator. Two

additional, auxiliary denominators are needed to allow the construction of every possible

scalar product, as required. integralfamilies.yaml describes all integral families for the

speci�ed loop order. Each family is de�ned by a name, the names of the loop momenta and

a list of nine propagators. The families can be constructed from the observed diagrams or

from similar processes with already known families, but whenever a family is missing,

reduze issues a message, so that the �le content can be extended.

To generate the amplitude, �rst the reduze job setup_sector_mappings is run to check

for symmetries between di�erent sectors of the integral families. A sector is de�ned by

propagators in eq. (4.19) with a positive, non-zero exponent. Many sectors are either

zero or can be expressed as a linear combination of other sectors. Some are related by

symmetries, for example a shift of momenta. In this way, all zero or redundant sectors can

be skipped in the next steps.

Second, the job find_diagram_shifts is called. This translates the diagrams generated

by QGRAF to integral expressions. The integrals are expressed in form of speci�c sectors

of the integral families, by specifying the family name and the vector ®𝜈 of propagator

exponents; other information – like the sector number, the number of positive exponents 𝑡

and the number of inverted propagators, i.e. negative exponents, 𝑠 – can all also be derived

therefrom. The sectors vary a lot in complexity and this job tries to match the diagrams to

the least complicated ones.

Following this, the job compute_diagram_interference introduces interferences between

the diagrams to account for cancellations and �nally the jobs sum_terms, normalize and

collect_integrals allow to �nalize the construction of the amplitude. sum_terms just

adds up terms given as input, whilst normalize simpli�es the acquired expressions by

applying symmetries, shifts and normalization. collect_integrals creates a list of all

the integrals contained in the output of the job normalize. This is not necessary for the

amplitude itself, but is necessary to process the loop integrals.

At all times, it is possible to export generated �les to a Mathematica format, where they

can be processed further. In principle the amplitude is now available, but since the next

step – reduction – is also performed with reduze, the results are not yet exported.

Both ways of generating the amplitude were implemented at LO, but due to the fact

that the NLO computation needs a far more complicated reduction than the automation of

the kira interface in alibrary could handle, the �rst ansatz was abandoned.
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4.3. Reduction

4.3. Reduction

The mathematical expressions arising from the diagrams contain many integrals. To

a large extent it is not (yet) possible to calculate them analytically, so they need to be

evaluated numerically. Performing numerical integration to a high precision can be very

time-consuming. In order to decrease the number of integrals, a mathematical trick is

employed: integration-by-parts (IBP) reduction. The algorithm is described in ref. [39]

by S. Laporta, on account of which it is colloquially referred to as Laporta algorithm. The

method uses integration by parts to �nd dependencies between various integrals. It is based

on the fact that integrals of total derivatives are zero in dimensional regularization [40].∫ 𝐿∏
𝑙=1

d
𝐷𝑘𝑙

d

d𝑘
𝜇

𝑖

[
𝜂𝜇I(®𝜂)

]
= 0 (4.22)

with 𝜂 any linear function of internal or external momenta and I an integrand as in

eq. (4.19). From every integral a number of equations can be built with this technique,

generating an system of equations. A Gaussian algorithm can now be used to eliminate as

many integrals as possible from the amplitude. The comparatively small set of remain-

ing integrals called master integrals needs to be integrated numerically. Another set of

equations used to reduce the integrals are the Lorentz-invariance identities. They do not

introduce new information, but help speeding up the calculations [40].

There is a certain freedom in the choice of the master integrals and it is critical to choose

them wisely. Both the reduction speed and the complexity of the �nal expression for the

amplitude strongly depend on it. If it turns out that the chosen basis is not ideal, reduze

allows for a change of basis without the need to go through the whole reduction process

again. One criterion is that the basis D-factorizes. This means that the integrand can be

represented as a product of a polynomial depending only on the dimensionality 𝐷 (and

therefore the regularization parameter 𝜀) and one depending only on kinematic variables.

reduze is able to swap momenta within an integral family to generate the corresponding

crossed families. For example, a family F1x12 is constructed by exchanging the momenta

𝑝1 and 𝑝2 whenever they turn up in family F1.

At LO the whole amplitude is reduced to eight master integrals. The NLO expression is by

far more complicated, hence the reduction needs considerably more time and computing

resources. Due to this, the NLO reduction has been performed and contributed by Matthias

Kerner. The families used in the reduction can be found in tab. 4.1.

A peculiarity of the setup arises from the fact that reduze is able to create the crossed

versions of the families, but kira does not. As alibrary is intended for use with kira, it

cannot handle the crossed families returned by reduze. Another complication is given

by integrals with an integration dimension di�ering from 4 − 2𝜀. In the current case one

integral with a reduced integration dimension of 2 − 2𝜀 (denoted by an appended dimdec2

to the family name) is present. To overcome these complications, nine additional auxiliary

integral families F8 through F14 are introduced, see tab. 4.2, where the corresponding

changes are hard-coded in the de�nition of the family.

The reduction can be performed using either �xed values for𝑚𝐻 and𝑚𝑡 or by keeping

them symbolic. The latter has the advantage, that at a later stage the masses could be
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4. Calculation of Electro-Weak Yukawa and Self-Coupling Corrections

Table 4.1.: Integral families used in the reduction (up to permutations of the external

legs). reduze automatically constructs crossed versions, for alibrary they are

manually entered as additional families 8 through 14, c.f. tab. 4.2.

F1 F2 F3 F4

𝑙2
1
−𝑚2

𝑡 𝑙2
1
−𝑚2

𝑡 𝑙2
1
−𝑚2

𝐻
𝑙2
1
−𝑚2

𝑡

𝑙2
2
−𝑚2

𝑡 𝑙2
2
−𝑚2

𝑡 (𝑙1 − 𝑙2)2 −𝑚2

𝑡 𝑙2
2
−𝑚2

𝐻

(𝑙1 − 𝑙2)2 −𝑚2

𝐻
(𝑙1 − 𝑙2)2 −𝑚2

𝐻
(𝑙1 + 𝑝1)2 −𝑚2

𝐻
(𝑙1 − 𝑙2)2 −𝑚2

𝑡

(𝑙1 + 𝑝1)2 −𝑚2

𝑡 (𝑙1 + 𝑝1)2 −𝑚2

𝑡 (𝑙2 + 𝑝1)2 −𝑚2

𝑡 (𝑙1 + 𝑝1)2 −𝑚2

𝑡

(𝑙2 + 𝑝1)2 −𝑚2

𝑡 (𝑙2 + 𝑝1)2 −𝑚2

𝑡 (𝑙1 − 𝑝2)2 −𝑚2

𝐻
(𝑙2 + 𝑝1)2 −𝑚2

𝐻

(𝑙1 − 𝑝2)2 −𝑚2

𝑡 (𝑙1 − 𝑝3)2 −𝑚2

𝑡 (𝑙2 − 𝑝2)2 −𝑚2

𝑡 (𝑙1 − 𝑝2)2 −𝑚2

𝑡

(𝑙2 − 𝑝2)2 −𝑚2

𝑡 (𝑙2 − 𝑝3)2 −𝑚2

𝑡 (𝑙2 − 𝑝2 − 𝑝3)2 −𝑚2

𝑡 (𝑙2 − 𝑝2)2 −𝑚2

𝐻

(𝑙1 − 𝑝2 − 𝑝3)2 −𝑚2

𝑡 (𝑙1 − 𝑝2 − 𝑝3)2 −𝑚2

𝑡 (𝑙1 + 𝑝1 + 𝑝3)2 −𝑚2

𝐻
(𝑙1 − 𝑝2 − 𝑝3)2 −𝑚2

𝑡

(𝑙2 − 𝑝2 − 𝑝3)2 −𝑚2

𝑡 (𝑙2 − 𝑝2 − 𝑝3)2 −𝑚2

𝑡 (𝑙2 + 𝑝1 − 𝑝2)2 −𝑚2

𝐻
(𝑙2 − 𝑝2 − 𝑝3)2 −𝑚2

𝐻

F5 F6h F7h

𝑙2
1
−𝑚2

𝐻
𝑙2
1
−𝑚2

𝐻
𝑙2
1
−𝑚2

𝑡

𝑙2
2
−𝑚2

𝑡 𝑙2
2
−𝑚2

𝑡 𝑙2
2
−𝑚2

𝑡

(𝑙1 − 𝑙2)2 −𝑚2

𝑡 (𝑙1 − 𝑙2)2 −𝑚2

𝑡 (𝑙1 − 𝑙2)2 −𝑚2

𝐻

(𝑙1 + 𝑝1)2 −𝑚2

𝐻
(𝑙1 − 𝑝3)2 −𝑚2

𝐻
(𝑙1 + 𝑝1)2 −𝑚2

𝑡

(𝑙2 + 𝑝1)2 −𝑚2

𝑡 (𝑙2 − 𝑝3)2 −𝑚2

𝐻
(𝑙2 + 𝑝1)2 −𝑚2

𝑡

(𝑙1 − 𝑝3)2 −𝑚2

𝐻
(𝑙2 + 𝑝2)2 −𝑚2

𝑡 (𝑙1 − 𝑝2)2 −𝑚2

𝑡

(𝑙2 − 𝑝3)2 −𝑚2

𝑡 (𝑙1 + 𝑝1 + 𝑝2)2 −𝑚2

𝐻
(𝑙2 − 𝑝2)2 −𝑚2

𝑡

(𝑙1 − 𝑝2 − 𝑝3)2 −𝑚2

𝐻
(𝑙1 − 𝑙2 + 𝑝1)2 −𝑚2

𝑡 (𝑙1 − 𝑙2 + 𝑝3)2 −𝑚2

𝐻

(𝑙2 − 𝑝2 − 𝑝3)2 −𝑚2

𝑡 (𝑙1 − 𝑙2 − 𝑝2 − 𝑝3)2 −𝑚2

𝐻
(𝑙2 − 𝑝2 − 𝑝3)2 −𝑚2

𝑡

Table 4.2.: Translation of the reduze syntax family names to the alibrary names. x indi-

cates the crossing of the momenta following the x, dimdec indicates a reduction

of the integration dimension by the number following the dimdec.

reduze F1 F1dimdec2 F1x12 F2 F2x12 F3 F4

alibrary B1 B2 B3 B4 B5 B6 B7

reduze F4x12 F5 F5x12 F6h F6hx12 F7h F7hx12

alibrary B8 B9 B10 B11 B12 B13 B14
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4.4. Integration of Master Integrals

exchanged for other values, e.g. including a bottom quark instead of a top quark, but the

disadvantage of being more challenging for the reduction procedure. In the present case

the ratio of the two masses is �xed according to

𝑚2

𝐻

𝑚2

𝑡

≡ 12

23

. (4.23)

This an approximation of the measured values with the advantage of being composed of

integers. This reduces �oating point errors in numerical calculations.

It is possible that the basis used here is not optimal. A hint in this direction is the long

time needed to evaluate the master integrals, see sec. 4.4. In principle an optimal basis

should also be quasi-�nite, i.e. the divergencies should be factorized to the prefactor.

After the reduction is performed, the reduced amplitude is imported into a Mathematica

notebook. For the next steps, a list of all master integrals, a list of their coe�cients, and

the propagators associated with each family are extracted from it.

4.4. Integration of Master Integrals

Finally, the integration of the master integrals is performed with pySecDec, as described

in refs. [41–43]. pySecDec is a software implementing the semi-analytical sector decompo-

sition method from refs. [44, 45].

In multi-loop calculations integrals are in general divergent, either for high values of the

loop momenta (ultraviolet divergence, UV) or for values around zero (infrared divergence,

IR). In order to evaluate these integrals numerically, those divergences need to be sub-

tracted. A subtraction procedure describes the splitting of the integral into one summand

carrying the pole and one summand consisting of the �nite part of the integral still to

be integrated, see ref. [45] for a formal description. As long as the singularities are all

separated from each other, subtraction is straightforward. However, in higher orders the

pole structure is often so complicated that the naïve schemes do not work.

The canonical example [45] is the following integral

ℑ =

∫
1

0

d𝑥

∫
1

0

d𝑦𝑥−1−𝑎𝜀𝑦−𝑏𝜀 (𝑥 + (1 − 𝑥)𝑦)−1 ; (4.24)

the integrand is simultaneously diverging for 𝑥 → 0 and 𝑦 → 0. Sector decomposition

is then applied in two steps. The �rst step consists of multiplying the integrand with a

conveniently chosen factor of 1.

ℑ =

∫
1

0

d𝑥

∫
1

0

d𝑦𝑥−1−𝑎𝜀𝑦−𝑏𝜀 (𝑥 + (1 − 𝑥)𝑦)−1 [Θ(𝑥 − 𝑦) + Θ(𝑦 − 𝑥)] . (4.25)

Now, a variable transformation 𝑦 = 𝑥𝑡 in the �rst and 𝑥 = 𝑦𝑡 in the second summand is

performed.

ℑ =

∫
1

0

d𝑥

𝑥1+(𝑎+𝑏)𝜀

∫
1

0

d𝑡

𝑡𝑏𝜀 (1 + (1 − 𝑥)𝑡)
+

∫
1

0

d𝑥

𝑦1+(𝑎+𝑏)𝜀

∫
1

0

d𝑡

𝑡1+𝑎𝜀 (1 + (1 − 𝑦)𝑡) (4.26)
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4. Calculation of Electro-Weak Yukawa and Self-Coupling Corrections

and both limits 𝑥 → 0 and 𝑦 → 0 are independent.

In particle physics the integration variables will often be Feynman parameters, and the

expressions are in general not so easy that the poles factor performing a single division of

the integration region. Rather, the algorithm needs to be iterated several times, until all

overlapping in�nities are separated. In principle one can proceed as described above for

each of the emerging sub-sectors
3
.

pySecDec is built upon an earlier tool of name SecDec, see ref. [46], programmed to a large

part in C++. In addition to several feature enhancements, a python and a C++ interface are

supplied.

To compute the master integrals, �rst the sector-decomposed expression for the amplitude

and the integrals is generated, and then the numerical integration for a speci�c phase

space point takes place. For pySecDec usage, all the integrals and their prefactors are

de�ned at �rst. This is done through a python script. Interpreting that script generates

several C++ �les, which produce the executable once compiled. The executable takes a

phase space point as input and returns its value as a series expansion in 𝜀.

In the present calculation, the alibrary interface to pySecDec is relied on to transfer

the kinematic invariants and conventions from reduze to pySecDec by Mathematica. The

integration �les can be generated in two ways. On the one hand, the alibrary function

SecDecPrepareSum can be used for each of the form factors separately. It takes a list of

all integrals to be evaluated, a list of their coe�cients, and a list of bases as input. Then

it constructs a compile.py �le, which de�nes all integrals in a syntax compatible with

pySecDec by usage of its LoopPackage, and all corresponding coe�cients by usage of its

Coefficient function. Additionally, this �le contains a call for the sum_package function

from pySecDec, which contains the instructions on how to combine all integrals with

each other to receive the full form factor back. The order of the 𝜀 expansion and the real

parameters, like the Higgs and top quark mass, can be speci�ed. Additionally, a Makefile

and a script integrate.py are created. All of this is done for each form factor separately,

which in principle introduces unnecessary duplications of code, since the master integrals

are almost exactly the same for both form factors and would hence be needed to be

evaluated only once. The di�erence lies in the di�erent prefactors multiplying the master

integrals.

The other option is to use again the sum_package, providing a nested list for the integrals

and the coe�cients, where the sub-lists correspond to the respective form factors. However,

when testing this method for the LO case, the expansion in 𝜀 showed an unexpected

behaviour, the origin of which is not yet clear. To avoid introducing any errors, this

method is discarded at present.

At LO, the form factor 𝐹1 requires the evaluation of eight master integrals, whereas for 𝐹2
only a subset of seven is needed. The additional master integral in 𝐹1 is of triangle type,

since box diagrams contribute to both form factors, but triangle type diagrams only to 𝐹1
(see sec. 4.1). Similarly, at NLO 𝐹1 contains 496 master integrals, one of which is missing in

𝐹2. At NLO, the expressions for the coe�cients grow very large. In order to handle them

properly, it is helpful to substitute the values for the masses𝑚𝐻 and𝑚𝑡 from the very

3
Further details can be found in ref. [45].
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4.4. Integration of Master Integrals

beginning. To further facilitate the numerical evaluation of the integrals, the rescaling

𝑚𝑡 ≡ 1 (4.27)

is applied. According to the squared-mass ratio of eq. (4.23) the Higgs mass becomes

𝑚𝐻 ≈ 0.722315 . (4.28)

These numerical values are substituted in the form factors. In the case of NLO, the

compile.py �les created by SecDecPrepareSum are ∼ 4GB large.

This script generates a directory containing a subdirectory for each master integral with

the C++ source code �les. The �le integrate_sum.cpp de�nes the integration routine and

the construction of the expression for the form factor, storing all adjustable parameters

for the integrator of choice. This can be used to adjust the requested relative precision

order by order in 𝜀. The relative precision is the ratio of the uncertainty on the value over

the value itself. In the basis used for the reduction at NLO, 𝜀 poles down to 𝜀−4 occur,
even though only 𝜀−1 poles are non-spurious. The terms of spurious poles must cancel

each other. Requesting a too high relative precision for the prefactors is computationally

ine�cient
4
. Therefore the relative precision for the spurious orders is set to 100, whereas

the orders 𝜀−1 and 𝜀0 are requested at a relative uncertainty of 1 × 10
−3

for form factor 𝐹1
and of 5 × 10

−3
for form factor 𝐹2. The di�erence is due to the fact that the integration

of 𝐹2 takes way longer, so a smaller relative precision is used to reduce the integration time.

The code is now compiled to produce numerical results. The executable program should

be run on graphical processing units (GPUs) for time optimization. Compiling for GPUs

requires the usage of the nvcc compiler, instead of the usual g++. Moreover, parallelization

to multiple threads greatly decreases integration time. All of this has to be carried out

separately for each form factor.

The compilation returns the executable integrate_sum. Calling it like

./integrate_sum <mH> <mT> <s> <t>

on a GPU with actual values substituted for the masses and kinematic variables returns a

result for the form factor as a series expansion in 𝜀 up to the requested order. This allows

to check whether spurious poles cancel or not.

As input a set of points distributed according to the Born-level cross-section, generated by

M. Kerner for a previous project, is used. All points are rescaled to match the top mass

from eq. (4.27).

For two phase space points the integration is executed to validate the program. Tab. 4.3

lists the results, omitting the spurious poles. For some phase-space regions the integration

converges, as the �rst point shows, but in others, as the second point proofs, it does not.

Possibly, this is due to the complexity of the integrals, with several non-planar contribu-

tions. Also the integration usually takes several days. At the present state the program is

not feasible to integrate large sets of phase-space points, as required for phenomenological

4
The zero will already be represented by a very small number and the uncertainty on this zero must be an

even smaller number, which is readily a numerical �asco.
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4. Calculation of Electro-Weak Yukawa and Self-Coupling Corrections

Table 4.3.: Results for the integration of the algorithm validation phase space points. 𝜎𝐹𝑖
denotes the uncertainty on the speci�ed order and𝑇 (𝐹𝑖) shows the time required

for the integration in hours. 𝑠 and 𝑡 are rescaled according to (4.27). The second

validation point shows non-convergent behaviour.

𝑠 6.392 5.709

𝑡 −1.038 −4.597
O(1) of 𝐹1 −278.3 + i495.6 −15011.6 − i901.57

O(1) of 𝜎𝐹1 −5.8 − i36.1 26053.1 + i25813.5

O(𝜀−1) of 𝐹1 866.55 + i235.91 873.495 + i120.488

O(𝜀−1) of 𝜎𝐹1 10.7971 − i15.6292 3.86608 + i3.81091

O(1) of 𝐹2 −5.8 − i36.1 −54908.3 + i108288

O(1) of 𝜎𝐹2 0.19 + i0.17 516882 + i554901

O(𝜀−1) of 𝐹2 10.7971 − i15.6292 57320.7 + i12899

O(𝜀−1) of 𝜎𝐹2 0.014 + i0.016 27729.6 + i38457.8

𝑇 (𝐹1)/h 45 163

𝑇 (𝐹2)/h 347 131

results. With a better suited basis for themaster integrals this behaviourmight be improved.

The values for the form factors are now combined to get the value of the amplitude

through

A =
𝛼2𝑠𝐺

2

𝐹

8
2 · 256π2

(
|𝐹1 |2 + |𝐹2 |2

)
, (4.29)

where 𝛼𝑠 is the strong coupling constant and𝐺𝐹 the Fermi constant. The correction factor

1/8 is included to account for the colour structure.

4.5. Renormalization

The concept of renormalizability is of great importance in �eld theories. As stated in

sec. 2.2 the Higgs potential contains no higher powers than (Φ†Φ)2, due to renormalizability

constraints.

To illustrate the problem consider the 1-loop correction to the photon propagator [10],

∼
∫

d
4𝑘
𝑘2

𝑘4
∼

∫
𝑘d𝑘 = ∞ (4.30)

with loop momentum 𝑘 . A singularity cannot occur in the real world, but luckily the

Lagrangian itself is only an intermediate state in the calculation, and is not a observable

by itself. It is then possible to extend it by adding counterterms. These counterterms are

chosen such that they exactly cancel all in�nities during the calculation, so in the end,

when calculating observables, �nite results are obtained. The prescriptions de�ning how

the counterterms are calculated are called renormalization conditions.

Counterterms appear, when parameters and �elds in the Lagrangian are rede�ned to
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4.5. Renormalization

be the bare quantities, which can be expressed by a combination of counterterms and

renormalized quantities. This is done order by order, which is why this procedure is known

as renormalized perturbation theory.

To get a full renormalization of the amplitude for Higgs boson pair production at NLO

EW in the gaugeless limit, the renormalization of 𝑣 via the Fleischer-Jegerlehner-Tadpole-

Renormalization-Scheme (FJTS) (see sec. 4.5.1) and then the renormalization of �elds and

masses (see sec. 4.5.2) is needed.

4.5.1. Tadpole Renormalization

Tadpole renormalization is required, whenever higher order corrections in EW theories are

calculated. The idea is that 𝑣 is not necessarily the true minimum of the Higgs potential,

but rather only for a given perturbative order. Hence at the next order the Higgs �eld is

not expanded around its true vev, but around a slightly o� value. Therefore, in addition to

the usual higher order diagrams, also tadpoles, like

,

need to be taken into account. The blob includes all possible structures at all loop orders.

Only tadpoles with a Higgs leg need to be considered here, since tadpoles with a top leg

do not exist in the SM. The complete renormalization procedure is iteratively performed

order by order, c.f. [47].

The process is started at LO by determining the Higgs mass and the vev, as in eqs. (2.36)

and (2.35):

𝑚2

𝐻 =
3

4

𝜆𝑣2 − 𝜇2 = 2𝜇2 and 𝑣 =

√︂
4𝜇2

𝜆
.

Nothing else needs to be done, since the Higgs �eld is actually expanded around its true

minimum: all tadpole diagrams include at least one loop and are hence relevant only at

higher perturbative orders.

The renormalization condition for tadpole renormalization is that the renormalized one-

point function Γ𝐻
1PI

vanishes [47]

Γ𝐻𝑅 = Γ𝐻
1PI

+ 𝛿𝑡 = 𝑇𝐻 + 𝛿𝑡 = 0 , (4.31)

which in turn yields

𝛿𝑡 = −𝑇𝐻 . (4.32)

𝛿𝑡 is the tadpole counterterm and 𝑇𝐻 are the Higgs-legged tadpole diagrams.

At NLO 𝛿𝑡 is not zero and to calculate its value the FJTS [48] either introduces the shift

𝐻0 −→ 𝐻0 + Δ𝑣 (4.33)

or, before �xing the vev, the shift

𝑣 −→ 𝑣 + Δ𝑣 . (4.34)
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4. Calculation of Electro-Weak Yukawa and Self-Coupling Corrections

The Lagrangian from eq. (2.33) becomes

L =
1

2

(
𝜕𝜇𝐻

)† (𝜕𝜇𝐻 ) + 𝜇2
2

(𝑣 + Δ𝑣 + 𝐻 )2 − 𝜆

16

(𝑣 + Δ𝑣 + 𝐻 )4 + i𝑡 𝜕𝑡 − 𝑦𝑡
𝑣 + Δ𝑣
√
2

𝑡𝑡 − 𝑦𝑡√
2

𝐻𝑡𝑡 .

(4.35)

After the expansion of the brackets, this reads

L =
1

2

(
𝜕𝜇𝐻0

)† (𝜕𝜇𝐻0) + i𝑡 𝜕𝑡 −
(
𝑦𝑡𝑣√
2

+ Δ𝑣
𝑦𝑡√
2

)
𝑡𝑡 − 𝑦𝑡√

2

𝐻𝑡𝑡

+
[
𝜇2𝑣2

2

− 𝜆𝑣4

16

+ Δ𝑣

(
𝜇2𝑣 − 𝑣3𝜆

4

)
+ Δ𝑣2

(
𝜇2

2

− 3𝑣2𝜆

8

)
− Δ𝑣3

(
𝑣𝜆

4

)
− Δ𝑣4

(
𝜆

16

)]
+ 𝐻

[
𝜇2𝑣 − 𝜆𝑣3

4

+ Δ𝑣

(
𝜇2 − 3

4

𝜆𝑣2
)
− Δ𝑣2

(
3

4

𝜆𝑣

)
− Δ𝑣3

(
𝜆

4

)]
+ 𝐻 2

[
𝜇2

2

− 3

8

𝜆𝑣2 − Δ𝑣

(
3

4

𝜆𝑣

)
− Δ𝑣2

(
3

8

𝜆

)]
− 𝐻 3

[
𝜆

4

𝑣 + Δ𝑣

(
𝜆

4

)]
− 𝐻 4

[
𝜆

16

]
.

(4.36)

All terms of order Δ𝑣2 are not required at NLO and will be omitted. The renormalization

condition of eq. (4.31) is constructed using the O(𝐻 ) terms, giving

−𝑇𝐻 = 𝜇2𝑣 − 𝜆𝑣3

4

+ Δ𝑣

(
𝜇2 − 3

4

𝜆𝑣2
)
. (4.37)

Comparing these terms to the LO expressions, one �nds that the �rst two terms must

be equal to zero, whereas the part within brackets is identi�ed with the unrenormalized

Higgs mass, resulting in

𝛿𝑡 = −Δ𝑣𝑚2

𝐻 ⇔ Δ𝑣 = − 𝛿𝑡

𝑚2

𝐻

(4.38)

for the tadpole counterterm. The contribution of the tadpole correction to other quantities

can then be extracted. The Higgs mass receives the correction

Δ𝑚2

𝐻 = 2

[
3

8

𝜆𝑣2 − 𝜇2

2︸      ︷︷      ︸
(2.36)

= 𝑚2

𝐻
/2

+Δ𝑣 3
4

𝜆𝑣

]
−𝑚2

𝐻 =
3

2

𝜆𝑣Δ𝑣 , (4.39)

as follows from the O(𝐻 2) term. This yields

Δ𝑚2

𝐻 :=
3

2

·
(
2𝑚2

𝐻

𝑣

)
·
(
− 𝛿𝑡

𝑚2

𝐻

)
= −3𝛿𝑡

𝑣
. (4.40)
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The three-Higgs counterterm reads

Δ𝐻 3 :=
𝜆𝑣

4

+ 𝜆
4

Δ𝑣 − 𝑐𝐻 3 =
Δ𝑣𝜆

4

= − 𝛿𝑡
2𝑣2

. (4.41)

Finally, the top mass counterterm reads

Δ𝑚𝑡 :=
𝑦𝑡𝑣√
2

+ Δ𝑣
𝑦𝑡√
2

−𝑚𝑡 = Δ𝑣
𝑦𝑡√
2

= − 𝑚𝑡

𝑚2

𝐻
𝑣
𝛿𝑡 . (4.42)

To obtain the expressions for the counterterms all that is left to do is to calculate

𝛿𝑡 = −𝑇𝐻 , i.e. all the Higgs-legged tadpole diagrams. There are two of them at 1-loop level:

one containing a top loop and one containing a Higgs loop.

The top loop tadpole gives

[49]

= −
∑︁

colours

i

𝑔

2

𝑚𝑡

𝑚𝑊

(−1)
∫

d
𝐷𝑙

(2π)𝐷
Tr

[
i(ˆ𝑙 +𝑚𝑡 )
𝑙2 −𝑚2

𝑡

]
= −𝑁𝑐𝑚𝑡

𝑣

∫
d
𝐷𝑙

(2π)𝐷
𝐷 ·𝑚𝑡

𝑙2 −𝑚2

𝑡

= − 𝐷 · 𝑁𝑐 ·
𝑚2

𝑡

𝑣
𝐴0(𝑚𝑡 ) .

(4.43)

𝐴0 denotes the scalar integral

𝐴0(𝑚) = 𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
1

𝑙2 −𝑚2

[50]

=
Γ2(1 − 𝜀)Γ(1 + 𝜀)

Γ(1 − 2𝜀)
i

2
𝐷π𝐷/2

𝑚2

(
𝜇2

𝑚2 − i0

)
(𝜀−1 + 1) + O(𝜀)

(4.44)

in 𝐷 dimensions, where 𝑁𝑐 is the number of colours and 𝜇𝐷−4 a correction factor to stay

consistent with the mass scale. It is possible to take the limit 𝐷 → 4 without any problems,

since the integral is �nite in 𝐷 = 4 − 2𝜀 dimensions.

The Higgs loop tadpole is evaluates to

[49]

= − i

3𝑔

4

𝑚2

𝐻

𝑚𝑊

𝜇𝐷−4
∫

d
𝐷𝑙

(2π)𝐷
i

𝑙2 −𝑚2

𝐻

=
3𝑚2

𝐻

2𝑣
𝜇𝐷−4

∫
d
𝐷𝑙

(2π)𝐷
1

𝑙2 −𝑚2

𝐻

=
3𝑚2

𝐻

2𝑣
𝐴0(𝑚𝐻 ) .

(4.45)

The Feynman rules used here can be found in ref. [49]. The𝑊 boson mass is removed via

the relation

𝑚𝑊 =
1

2

𝑔𝑣 . (4.46)

The counterterm is the negative of the sum of the two diagrams of eqs. (4.43) and (4.45)

𝛿𝑡 = 𝐷𝑁𝑐 ·
𝑚2

𝑡

𝑣
𝐴0(𝑚𝑡 ) −

3𝑚2

𝐻

2𝑣
𝐴0(𝑚𝐻 ) . (4.47)

The FJTS introduces tadpole counterterms via the shift of either the Higgs �eld or the

vev. The inclusion of all tadpoles in the calculation would be therefore equivalent. A huge

bene�t of this scheme is that all the mass and coupling counterterms are gauge independent.

Another advantage is that the tadpole counterterm cancels all tadpole sub-diagrams; this

property will be of use in subsection 4.5.2.
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4.5.2. Field and Mass Renormalization

After the tadpole renormalization, the Lagrangian takes the form

L =
1

2

(
𝜕𝜇𝐻0

)† (𝜕𝜇𝐻0) + i𝑡0𝜕𝑡0 −
(
𝑚𝑡,0 −

𝑚𝑡

𝑚2

𝐻
𝑣
𝛿𝑡

)
𝑡0𝑡0 −

𝑚𝑡,0

𝑣
𝐻0𝑡0𝑡0 + const.

+ 𝐻𝛿𝑡 − 𝐻 2

0

(
𝑚2

𝐻,0

2

− 3𝛿𝑡

2𝑣

)
− 𝐻 3

0

(
𝑚2

𝐻,0

2𝑣
− 𝛿𝑡

2𝑣2

)
− 𝐻 4

0

𝑚2

𝐻,0

8𝑣2
,

(4.48)

where the index 0 denotes bare quantities, while renormalized quantities have no index.

Note that neither 𝑣 , which was renormalized in the last subsection, nor any quantity in a

term together with 𝛿𝑡 displays an index, since 𝛿𝑡 already contains higher order e�ects. The

counterterms are de�ned by �xing the relation between bare and renormalized quantities

to

𝐻0 =
√︁
𝑍𝐻𝐻 ≈

(
1 + 1

2

𝛿𝑍𝐻

)
𝐻 , (4.49)

𝑡0 =
√︁
𝑍𝑡𝑡 ≈

(
1 + 1

2

𝛿𝑍𝑡

)
𝑡 , (4.50)

𝑚2

𝐻,0 =𝑚
2

𝐻 + 𝛿𝑚2

𝐻 , (4.51)

𝑚𝑡,0 =𝑚𝑡 + 𝛿𝑚𝑡 . (4.52)

Substituting these in eq. (4.48) gives

L =
1

2

(
1 + 1

2

𝛿𝑍𝐻

)
2 (
𝜕𝜇𝐻

)† (𝜕𝜇𝐻 ) + i

(
1 + 1

2

𝛿𝑍𝑡

)
2

𝑡 𝜕𝑡 −
(
1 + 1

2

𝛿𝑍𝑡

)
2

(
𝑚𝑡 + 𝛿𝑚𝑡 −

𝑚𝑡

𝑚2

𝐻
𝑣
𝛿𝑍𝑡

)
𝑡𝑡

− 𝑚𝑡 + 𝛿𝑚𝑡

𝑣

(
1 + 1

2

𝛿𝑍𝐻

) (
1 + 1

2

𝛿𝑍𝑡

)
2

𝐻𝑡𝑡 + const. + 𝛿𝑡𝐻

−
(
1 + 1

2

𝛿𝑍𝐻

)
2

(
𝑚2

𝐻
+ 𝛿𝑚2

𝐻

2

− 3𝛿𝑡

2𝑣

)
𝐻 2 −

(
1 + 1

2

𝛿𝑍𝐻

)
3

(
𝑚2

𝐻
+ 𝛿𝑚2

𝐻

2𝑣
− 𝛿𝑡

2𝑣2

)
𝐻 3

−
(
1 + 1

2

𝛿𝑍𝐻

)
4 (𝑚2

𝐻
+ 𝛿𝑚2

𝐻
)

8𝑣2
𝐻 4

(4.53)

=
1

2

(
𝜕𝜇𝐻

)† (𝜕𝜇𝐻 ) + i𝑡 𝜕𝑡 −𝑚𝑡𝑡𝑡 −
𝑚𝑡

𝑣
𝐻𝑡𝑡 − 𝐻 2

𝑚2

𝐻

2

− 𝐻 3
𝑚2

𝐻

2𝑣
− 𝐻 4

2𝑚2

𝐻

𝑣2
+ const.

+ 𝛿𝑍𝐻
2

(
𝜕𝜇𝐻

)† (𝜕𝜇𝐻 ) + i𝛿𝑍𝑡𝑡 𝜕𝑡 −
(
𝑚𝑡𝛿𝑍𝑡 + 𝛿𝑚𝑡 −

𝑚𝑡𝛿𝑡

𝑚2

𝐻
𝑣

)
𝑡𝑡

− 1

𝑣

(
𝛿𝑚𝑡 +

𝑚𝑡

2

𝛿𝑍𝐻 +𝑚𝑡𝛿𝑍𝑡

)
𝐻𝑡𝑡 + 𝛿𝑡𝐻 −

(
𝑚2

𝐻𝛿𝑍𝐻 + 𝛿𝑚2

𝐻 − 3𝛿𝑡

𝑣

)
𝐻 2

2

−
[
1

2𝑣

(
𝛿𝑚2

𝐻 +
3𝑚2

𝐻

2

𝛿𝑍𝐻

)
− 𝛿𝑡

2𝑣2

]
𝐻 3 − 1

8𝑣2
(𝛿𝑚2

𝐻 + 2𝑚2

𝐻𝛿𝑍𝐻 )𝐻
4 .

(4.54)
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Again, all terms containing higher than linear orders of counterterms are omitted. The

�rst line of eq. (4.54) is the known Lagrangian with renormalized quantities instead of

bare ones. The next two lines give the counterterm insertions for the propagators and

vertices. Their Feynmanrules are

= i

[
𝛿𝑍𝐻𝑝

2 −
(
𝑚2

𝐻𝛿𝑍𝐻 + 𝛿𝑚2

𝐻 − 3𝛿𝑡

𝑣

)]
, (4.55)

= i

[
𝑝𝛿𝑍𝑡 −

(
𝑚𝑡𝛿𝑍𝑡 + 𝛿𝑚𝑡 −

𝑚𝑡𝛿𝑡

𝑚2

𝐻
𝑣

)]
, (4.56)

= − i

𝑣

(
𝛿𝑚𝑡 +

𝑚𝑡

2

𝛿𝑍𝐻 +𝑚𝑡𝛿𝑍𝑡

)
, (4.57)

= −i3
[
1

𝑣

(
𝛿𝑚2

𝐻 +
3𝑚2

𝐻

2

𝛿𝑍𝐻

)
− 𝛿𝑡

𝑣2

]
, (4.58)

= −i 3
𝑣2

(𝛿𝑚2

𝐻 + 2𝑚2

𝐻𝛿𝑍𝐻 ) (4.59)

This is in agreement with the counterterms, as found by [47].

In the vertex insertions the top-quark �eld renormalization is actually not needed; the

reason being that each top-leg of any vertex comes with a top-quark �eld renormalization

factor of

√
𝑍𝑡 , whereas each propagator (i.e. inverse two-point function) comes with a

factor of 𝑍−1
𝑡 , so for all internal particles these contributions cancel. For the given process

top-quarks only occur in the loop. Hence, the only �eld renormalization required is the

one for the Higgs, which also appears as an external particle, see also sec. 4.5.3.

Top quark renormalization Considering the top quark two-point function up to NLO, one

�nds

𝐺𝑡 (𝑝) = + 1PI + (4.60)

=
1

𝑝 −𝑚 + i

𝑝 −𝑚Σ2(𝑝)
i

𝑝 −𝑚 + i

𝑝 −𝑚

[
𝑝𝛿𝑍𝑡 −

(
𝑚𝑡𝛿𝑍𝑡 + 𝛿𝑚𝑡 −

𝑚𝑡𝛿𝑡

𝑚2

𝐻
𝑣

)]
i

𝑝 −𝑚 .

The �rst term is the LO part, which is just the propagator, then all the one particle irre-

ducible (1PI) loop contributions to the self-energy Σ2(𝑝) follow, and �nally the counterterm
insertion from eq. (4.56) is included. The latter is also a NLO e�ect. If this series would

be expanded by further 1PI subdiagrams a geometric series would emerge, c.f. [10]. It is

common to include all higher order corrections to the self-energy in the de�nition of

Σ𝑡 (𝑝) = Σ2(𝑝) + (𝑝 −𝑚𝑡 )𝛿𝑍𝑡 − 𝛿𝑚𝑡 +
𝑚𝑡𝛿𝑡

𝑚2

𝐻
𝑣
+ . . . (4.61)
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with the higher orders denoted by the dots. Therefrom follows the form

𝐺𝑡 (𝑝) =
1

𝑝 −𝑚𝑡 + Σ𝑡 (𝑝)
(4.62)

for the two-point function. At this stage, the renormalization scheme has to be decided on.

A common choice is the on-shell scheme. It requires the pole of a particles propagator to

be exactly at its renormalized mass. In formulae, this is written as [10]

0 =

[
Σ𝑡 (𝑝)

]
𝑝=𝑚𝑡

and 0 =

[
d

d𝑝
Σ𝑡 (𝑝)

]
𝑝=𝑚𝑡

. (4.63)

These two conditions �x the remaining counterterms 𝛿𝑚𝑡 and 𝛿𝑍𝑡 .

Before eq. (4.63) can be processed, the expression for Σ2(𝑝) is needed. For the top quark

only the sunrise diagram with a Higgs contributes to NLO. This is

Σ2(𝑝) =
[49]

=

(
−i𝑚𝑡

𝑣

)
2

𝜇𝐷−4
∫

d
𝐷𝑙

(2π)𝐷
i

(
𝑝 + ˆ𝑙 +𝑚𝑡

)
(𝑝 + 𝑙)2 −𝑚2

𝑡

· i

𝑙2 −𝑚2

𝐻

=
𝑚2

𝑡

𝑣2
·
[
(𝑝 +𝑚𝑡 )𝐵0 (𝑝,𝑚𝐻 ,𝑚𝑡 ) + 𝜇𝐷−4𝛾𝜇

∫
d
𝐷𝑙

(2π)𝐷
𝑙 𝜇(

𝑙2 −𝑚2

𝐻

) (
(𝑝 + 𝑙)2 −𝑚2

𝑡

) ]
(A.19)

=
𝑚2

𝑡

𝑣2
·
(
𝑚𝑡 +

𝑚2

𝑡 −𝑚2

𝐻
+ 𝑝2

2𝑝2
𝑝

)
𝐵0(𝑝,𝑚𝐻 ,𝑚𝑡 ) +

𝑚2

𝑡 𝑝

2𝑝2𝑣2

[
𝐴0(𝑚𝐻 ) −𝐴0(𝑚𝑡 )

]
.

(4.64)

A comprehensive calculation can be found in A.2.3. The scalar integral 𝐵0 is de�ned as

𝐵0(𝑝,𝑚0,𝑚1) := 𝜇𝐷−4
∫

d
𝐷𝑙

(2π)𝐷
1(

𝑙2 −𝑚2

0

) (
(𝑝 + 𝑙)2 −𝑚2

1

) . (4.65)

The Passarino-Veltman reduction is shown explicitly of the tensor integral is shown

explicitly in app. A.2.1. Inserting Σ2 in eq. (4.61) entails

Σ𝑡 (𝑝) =
𝑚2

𝑡

𝑣2
·
(
𝑚𝑡 +

𝑚2

𝑡 −𝑚2

𝐻
+ 𝑝2

2𝑝2
𝑝

)
𝐵0(𝑝,𝑚𝐻 ,𝑚𝑡 ) +

𝑚2

𝑡 𝑝

2𝑝2𝑣2

[
𝐴0(𝑚𝐻 ) −𝐴0(𝑚𝑡 )

]
+ (𝑝 −𝑚𝑡 )𝛿𝑍𝑡 − 𝛿𝑚𝑡 +

𝑚𝑡𝛿𝑡

𝑚2

𝐻
𝑣
. (4.66)

Applying the �rst renormalization condition of eq. (4.63) yields

0 =
𝑚𝑡 · (4𝑚2

𝑡 −𝑚2

𝐻
)

2𝑣2
𝐵0(𝑚𝑡 ,𝑚𝐻 ,𝑚𝑡 ) +

𝑚𝑡

2𝑣2

[
𝐴0(𝑚𝐻 ) −𝐴0(𝑚𝑡 )

]
− 𝛿𝑚𝑡 +

𝑚𝑡𝛿𝑡

𝑚2

𝐻
𝑣

(A.20)

⇔ 𝛿𝑚𝑡 =
𝑚𝑡 · (4𝑚2

𝑡 −𝑚2

𝐻
)

2𝑣2
𝐵0(𝑚𝑡 ,𝑚𝐻 ,𝑚𝑡 ) −

𝑚𝑡

𝑣2
𝐴0(𝑚𝐻 ) +

2𝐷𝑁𝑐𝑚
3

𝑡 −𝑚𝑡𝑚
2

𝐻

2𝑚2

𝐻
𝑣2

𝐴0(𝑚𝑡 ) .

(4.67)
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As mentioned above the counterterm 𝛿𝑍𝑡 is not needed here, since there are no external

quarks in this process.

Higgs renormalization An equivalent calculation is done for the Higgs propagator, to �x

𝛿𝑍𝐻 and 𝛿𝑚𝐻 . The two-point function up to NLO reads

𝐺𝐻 (𝑝) =
i

𝑝2 −𝑚2

𝐻

+ i

𝑝2 −𝑚2

𝐻

Σ2(𝑝)
i

𝑝2 −𝑚2

𝐻

(4.68)

+ i

𝑝2 −𝑚2

𝐻

[
(𝑝2 −𝑚2

𝐻 )𝛿𝑍𝐻 − 𝛿𝑚2

𝐻 + 3𝛿𝑡

𝑣

]
i

𝑝2 −𝑚2

𝐻

.

A big di�erence to the top quark case is that here three diagrams contribute to Σ2(𝑝).

Σ2(𝑝) = + +

[49]

=
∑︁
colors

(−1)𝜇−𝜀
∫

d
𝐷𝑙

(2π)𝐷
(
−i𝑚𝑡

𝑣

)
2

Tr

[
i(ˆ𝑙 +𝑚𝑡 )
𝑙2 −𝑚2

𝑡

i(𝑝 + ˆ𝑙 +𝑚𝑡 )
(𝑝 + 𝑙)2 −𝑚2

𝑡

]
+ (−i𝑐𝐻 3)2

2

𝜇−𝜀
∫

𝑑𝐷𝑙

(2π)𝐷
i
2

(𝑙2 −𝑚2

𝐻
) ((𝑝 + 𝑙)2 −𝑚2

𝐻
)
+ (−i𝑐𝐻 4)

2

𝜇−𝜀
∫

𝑑𝐷𝑙

(2π)𝐷
i

𝑙2 −𝑚2

𝐻

(A.21)

= −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷

[
𝐴0(𝑚𝑡 ) +

4𝑚2

𝑡 − 𝑝2

2

𝐵0(𝑝,𝑚𝑡 ,𝑚𝑡 )
]
+
𝑐2
𝐻 3

2

𝐵0(𝑝,𝑚𝐻 ,𝑚𝐻 ) +
𝑐𝐻 4

2

𝐴0(𝑚𝐻 ) .

(4.69)

This result can be used in the Higgs self energy

Σ𝐻 (𝑝) =Σ2(𝑝) +
[
(𝑝2 −𝑚2

𝐻 )𝛿𝑍𝐻 − 𝛿𝑚2

𝐻 + 3𝛿𝑡

𝑣

]
= −

𝑚2

𝑡

𝑣2
𝑁𝑐𝐷

[
𝐴0(𝑚𝑡 ) +

4𝑚2

𝑡 − 𝑝2

2

𝐵0(𝑝,𝑚𝑡 ,𝑚𝑡 )
]
+
𝑐2
𝐻 3

2

𝐵0(𝑝,𝑚𝐻 ,𝑚𝐻 ) +
𝑐𝐻 4

2

𝐴0(𝑚𝐻 )

+ (𝑝2 −𝑚2

𝐻 )𝛿𝑍𝐻 − 𝛿𝑚2

𝐻 + 3𝛿𝑡

𝑣
.

(4.70)

To determine the values of 𝛿𝑍𝐻 and 𝛿𝑚𝐻 the on-shell renormalization conditions of

eq. (4.63) are used. The only necessary adjustment is the substitution of the top mass by

the Higgs mass. The mass counterterm is calculated as

0 = −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 ·

[
𝐴0(𝑚𝑡 ) +

4𝑚2

𝑡 −𝑚2

𝐻

2

𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 )
]
+
𝑐2
𝐻 3

2

𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )

+ 𝑐𝐻 4

2

𝐴0(𝑚𝐻 ) − 𝛿𝑚2

𝐻 + 3𝛿𝑡

𝑣
(4.71)

(A.26)

⇔ 𝛿𝑚2

𝐻 = − 𝑁𝑐𝐷
𝑚2

𝑡 (4𝑚2

𝑡 −𝑚2

𝐻
)

2𝑣2
𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 ) +

𝑐2
𝐻 3

2

𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )
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+ 𝐷𝑁𝑐
2𝑚2

𝑡

𝑣2
𝐴0(𝑚𝑡 ) +

[
𝑐𝐻 4

2

−
9𝑚2

𝐻

2𝑣2

]
𝐴0(𝑚𝐻 ) . (4.72)

The wave function counterterm is computed from the condition on the derivative of Σ𝐻 .

0 = −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 ·

[
4𝑚2

𝑡 −𝑚2

𝐻

2

𝐵′
0
(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 ) −𝑚𝐻𝐵0(𝑝,𝑚𝑡 ,𝑚𝑡 )

]
+
𝑐2
𝐻 3

2

𝐵′
0
(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 ) + 2𝑚𝐻𝛿𝑍𝐻

= −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 · 1

2𝑚𝐻

[
2(𝐷 − 2)𝐴0(𝑚𝑡 ) −

(
4𝑚2

𝑡 +𝑚2

𝐻 · (𝐷 − 2)
)
𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 )

]
(4.73)

+
𝑐2
𝐻 3

6𝑚3

𝐻

[
2(𝐷 − 2)𝐴0(𝑚𝐻 ) − 𝐷 ·𝑚2

𝐻𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )
]
+ 2𝑚𝐻𝛿𝑍𝐻 (4.74)

(A.22)

⇔ 𝛿𝑍𝐻 =
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 · 1

4𝑚2

𝐻

[
2(𝐷 − 2)𝐴0(𝑚𝑡 ) −

(
4𝑚2

𝑡 +𝑚2

𝐻 · (𝐷 − 2)
)
𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 )

]
(4.75)

−
𝑐2
𝐻 3

12𝑚4

𝐻

[
2(𝐷 − 2)𝐴0(𝑚𝐻 ) − 𝐷 ·𝑚2

𝐻𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )
]

(4.76)

4.5.3. The Renormalized Amplitude

Putting everything together, the renormalized amplitude can be constructed. The matrix

element reads

Mren = 𝑍𝑔𝑍𝐻 ·
[
MLO

(
𝑚𝑡 + 𝛿𝑚𝑡 ,𝑚

2

𝐻 + 𝛿𝑚2

𝐻 , 𝑣 + Δ𝑣
)
+MNLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
) ]

(4.77)

= 𝑍𝐻 ·
[
MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)
+ 𝛿𝑚𝑡

𝜕

𝜕𝑚𝑡

MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)
+ 𝛿𝑚2

𝐻

𝜕

𝜕𝑚2

𝐻

MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)

+ Δ𝑣
𝜕

𝜕𝑣
MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)
+MNLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
) ]

= MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)
+ 𝛿𝑚𝑡

𝜕

𝜕𝑚𝑡

MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)
+ 𝛿𝑚2

𝐻

𝜕

𝜕𝑚2

𝐻

MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)

+ Δ𝑣
𝜕

𝜕𝑣
MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)
+MNLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)
+ 𝛿𝑍𝐻MLO

(
𝑚𝑡 ,𝑚

2

𝐻 , 𝑣
)
.

(4.78)

The renormalization factors 𝑍𝑔 and 𝑍𝐻 have to be included for the external legs of the

contributing diagrams. In the present calculation the gluon renormalization function can

be taken to be 1, since

𝑍𝑔 = 1 + O(𝛼𝑠) + O(𝛼𝑠𝛼) + · · · ≈ 1 . (4.79)

The Higgs �eld renormalization constant 𝑍𝐻 can be expressed as in eq. (4.49).

De facto the counterterms are included employing a trick in reduze: a Higgs-Higgs vertex
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and a top-top vertex with the counterterm insertion from eqs. (4.55) or (4.56) as coupling

constant is added to the �le feynmanrules.yaml. The Higgs self-interaction vertices and the

Yukawa vertex are adjusted as well to incorporate the counterterm insertions of eqs. (4.57)

and (4.58). Then the LO amplitude is again constructed, but this time it contains lines with

the counterterm insertions. Several diagrams contain more than one counterterm insertion,

which is a higher order e�ect. To exclude these diagrams the amplitude is expanded in

the counterterm insertion vertices and the resulting sum truncated accordingly. After this

procedure only diagrams containing one counterterm insertion on one internal line remain.

This is identi�ed withMLO(𝑚𝑡 + 𝛿𝑚𝑡 ,𝑚
2

𝐻
+ 𝛿𝑚2

𝐻
, 𝑣 + Δ𝑣). This part of the calculation is

also contributed by M. Kerner.

Evaluating (4.77) with a given phase-space point should then return a �nite result. At

present, this check still fails, i.e. the poles do not cancel each other identically. The

renormalization procedure is hence understood as a work under continuing construction.
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5. Conclusion and Directions for Further
Investigations

As seen in the previous chapters, di-Higgs production is an important process to investigate

the shape of the Higgs potential. Due to its small cross section, it is still mainly unexplored.

The present work took �rst steps into direction of calculating EWNLO corrections with the

full top mass dependence to this process. Some intermediate milestones to this �nal goal

were reached: The amplitude was generated, reduced (contributed by M. Kerner) and for

the �rst phase space points the master integrals were evaluated. Renormalization is begun,

but still under development. The most pressing matter at hand is to �nish this and speed

up the integration routine, in order to get results distributed in a bigger phase-space volume.

A natural extension to the present work would be the inclusion of gauge bosons,

requiring the calculation of diagrams similar to the ones shown in �g. 5.1. This is particular

challenging, as another mass scale (𝑚𝑊 or𝑚𝑍 ) enters the integrals.

𝑍,𝛾

𝑡 𝑡

𝑡 𝑡

𝑡𝑡

Double box with three mass scales from 𝑡 quark,

𝑍 and 𝐻 boson.

𝑡

𝑡

𝑏𝑡

𝑊

𝑊

The𝑊 bosons make a fourth mass scale neces-

sary.

Figure 5.1.: Diagrams contributing to EW correction. Additional mass scales are introduced

by the gauge bosons.

Another direction is the inclusion of a second quarks, especially the bottom quark. The

hope is that some interesting e�ects might show up through the interference of diagrams

which are mediated by top loops and those which are mediated by bottom loops. An

investigation with POWHEG-BOX [51–53] has already been performed, based on the code

in [54], which shows some unexpected structure in the tail region for varying bottom

Yukawa coupling strength 𝑐𝑏 , c.f. �g. 5.2. However, due to the large scale di�erence be-

tween𝑚𝑡 and𝑚𝑏 this operation is numerically challenging. A promising ansatz is the use

of pySecDec with expansion by regions. This method expands in the small mass-scale ratio.

Thus, the calculation becomes numerically stable. For some of the expected topologies

this ansatz has already been tested, the results can be found in appendix A.1. Another

complication is given by the necessity of computing a full symbolic reduction in order to
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5. Conclusion and Directions for Further Investigations

Figure 5.2.: First steps towards inclusion of bottom loops in Higgs pair production. Note

the variations in the tail.

exchange the quark mass in the amplitude.

A third possibility, building directly on the calculation performed here, would be to allow

for anomalous couplings in the Higgs sector. This includes anomalous Yukawa couplings

as well as anomalous trilinear and quartic Higgs couplings. This is justi�ed by the rather

loose bounds on 𝜆 and would very probably change the distributions observed for di-Higgs

production. This could be of tremendous importance for experimental physics in the

coming years of HL-LHC where those distributions will be measured to a unprecedented

precision.
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A. Appendix

A.1. Integrals with BottomQuark Loops

Table A.1.: Values for some sectors of the families used for the reduction, where the

top quark is exchanged for a bottom quark. The column “dim.” shows the

dimensionality of the integral, O the order in 𝜀, the columns labelled with the

𝜎 contain the numerical uncertainty.

Family Sector Quark dim. O Re Im Re(𝜎) Im(𝜎) Fig.

F1 254 top 6 𝜀0 -0.0819 -0.0075 0.0006 0.0005 A.1a

bottom 6 𝜀0 0.1703 -0.0745 0.0007 0.0008

439 top 6 𝜀0 -0.0363 -0.0005 0.00017 0.00018 A.1b

bottom 6 𝜀0 -0.250 -0.339 0.0017 0.002

445 top 4 𝜀0 -0.0408 0.0895 0.0004 0.0004 A.1c

top 4 𝜀−1 0.0490 0.0290 0.00014 0.00013

F2 254 top 6 𝜀0 -0.0352 -0.0004 0.00016 0.00017 A.1d

bottom 6 𝜀0 -0.355 -0.222 0.0017 0.0019

F3 190 top 6 𝜀0 -0.111 -0.150 0.0010 0.0011 A.1e

bottom 6 𝜀0 0.0911 -0.0980 0.0009 0.0009

F4 381 top 6 𝜀0 -0.0965 -0.0519 0.0007 0.0007 A.1f

bottom 6 𝜀0 0.094 -0.203 0.0012 0.0013

F6h 239 top 6 𝜀0 -0.0573 -0.0287 0.0003 0.0003 A.1g

bottom 6 𝜀0 -0.059 -0.262 0.0012 0.0013

F7h 439 top 6 𝜀0 -0.0308 -0.0004 0.00015 0.00016 A.1h

bottom 6 𝜀0 -0.222 -0.167 0.0011 0.0012

445 top 6 𝜀0 -0.0496 -0.0024 0.0003 0.0002 A.1i

bottom 6 𝜀0 0.0677 -0.1923 0.0009 0.001
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(g) F6h, sector 239

𝑘4𝑘2

𝑘3 𝑘1

𝑝1

𝑝1 − 𝑝2 + 𝑘3

𝑝1 − 𝑘2

𝑝1 − 𝑝2
𝑝2

𝑝2 + 𝑘1

𝑝2 − 𝑘2 − 𝑘3

(h) F7h, sector 439

𝑘2 𝑘4

𝑘3𝑘1

𝑝2 + 𝑘1

𝑝1 − 𝑝2 + 𝑘3

𝑝2 − 𝑘2 − 𝑘3

𝑝1 − 𝑝2
𝑝1 + 𝑘1

𝑝1

𝑝1 − 𝑘2

(i) F7h, sector 445

Figure A.1.: The diagrams, whose values are given in tab. A.1. The lower three are non-

planar.
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A.2. Scalar Integrals and Passarino-Veltman Reduction

In the performed 1-loop calculation scalar integrals turn up. Their integrand is a fraction,

whose denominator is a product of objects like (𝑃2 −𝑚2). 𝑃 can be any linear combination

of external and loop momenta, and𝑚 a mass. The numerator can depend on the loop

momenta, such that the integral itself carries a Lorentz structure. This is called a tensor

integral where the rank of the tensor equals the number of loop momenta in the numerator.

Tensor integrals can be reduced to scalar integrals using Passarino-Veltman reduction, as

shown in sec. A.2.1. In sec. A.2.2 the derivation and the following reduction of a scalar

integral is shown. Finally, sec. A.2.3 applies the results to some calculations required in

sec. 4.5.

As already seen in eq. (4.44) and (4.65) the notation used here for the scalar integrals is

the following:

𝐴0(𝑚0) =
∫

d
4𝑙

(2π)4
1

(𝑙2 −𝑚2

0
)

(A.1)

𝐵0(𝑝1,𝑚0,𝑚1) =
∫

d
4𝑙

(2π)4
1

(𝑙2 −𝑚2

0
) ((𝑙 + 𝑝1)2 −𝑚2

1
)

(A.2)

𝐶0(𝑝1, 𝑝2,𝑚0,𝑚1,𝑚2) =
∫

d
4𝑙

(2π)4
1

(𝑙2 −𝑚2

0
) ((𝑙 + 𝑝1)2 −𝑚2

1
) ((𝑙 + 𝑝1 + 𝑝2)2 −𝑚2

2
)

(A.3)

Due to the length of the expressions the arguments are often omitted, especially in the

calculations below. Often, the switch to𝐷 dimensions instead of the given 4 is assumed. To

conserve the correct mass dimension, this requires the introduction of a mass correction

factor 𝜇, e.g.

𝐵0 = 𝜇
4−𝐷

∫
d
𝐷𝑙

(2π)𝐷
1

(𝑙2 −𝑚2

0
) ((𝑙 + 𝑝1)2 −𝑚2

1
)
. (A.4)

Tensor integrals carry the according Lorentz indices additionally to the integer indices.

The abbreviation

𝐷𝑖 =

(
𝑙 +

𝑖∑︁
1

𝑝𝑖

)
2

−𝑚2

𝑖 (A.5)

in the denominators of the integrands is frequently employed. Any arguments of scalar

functions are usually omitted, unless this introduces ambiguities.

The integrals can be evaluated as an expansion in 𝜀. A list of many of them can be found

in [50].

A.2.1. Tensor integral reduction

In the course of the present calculations one tensor integral is relevant. It is de�ned as

𝐵
𝜇

0
(𝑝,𝑚0,𝑚1) = 𝜇4−𝐷

∫
d
𝐷𝑙

(2π)𝐷
𝑙 𝜇

𝐷0𝐷1

. (A.6)
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This integral’s Lorentz structure can only be written as

𝐵
𝜇

0
= 𝑐𝑝𝜇 . (A.7)

Projecting onto 𝑝𝜇 yields all necessary relations.

𝑝𝜇𝐵
𝜇

0
= 𝑐𝑝2 = 𝜇4−𝐷

∫
d
𝐷𝑙

(2π)𝐷
𝑝 · 𝑙
𝐷0𝐷1

= 𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
𝐷1 − 𝐷0 − 𝑝2 +𝑚2

1
−𝑚2

0

2𝐷0𝐷1

=
𝜇4−𝐷

2

∫
d
𝐷𝑙

(2π)𝐷

[
1

𝐷0

− 1

𝐷1

+
𝑚2

1
−𝑚2

0
− 𝑝2

𝐷0𝐷1

]
=
𝐴0(𝑚0) −𝐴0(𝑚1)

2

+
𝑚2

1
−𝑚2

0
− 𝑝2

2

𝐵0

(A.8)

The �nal result for 𝐵𝜇 is

𝐵
𝜇

0
(𝑝,𝑚0,𝑚1) =

𝑝𝜇

2𝑝2

[
𝐴0(𝑚0) −𝐴0(𝑚1) + (𝑚2

1
−𝑚2

0
− 𝑝2)𝐵0

]
. (A.9)

A.2.2. Derivative of the Scalar Functions

One of the conditions for the on-shell renormalization scheme includes a derivative. Here

the derivative of 𝐵0 is needed.

𝜕

𝜕𝑝
𝐵0 =𝜇

4−𝐷
∫

d
𝐷𝑙

(2π)𝐷

𝜕
𝜕𝑝

(
(ˆ𝑙 + 𝑝)2 −𝑚2

1

)−1
(𝑙2 −𝑚2

0
)

= 𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
−2(ˆ𝑙 + 𝑝)

(𝑙2 −𝑚2

0
)
(
(𝑙 + 𝑝)2 −𝑚2

1

)
2

= − 2𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
(ˆ𝑙 + 𝑝)
𝐷0𝐷

2

1

= −2
[
𝑝𝐵12 + 𝛾𝜇𝜇4−𝐷

∫
d
𝐷𝑙

(2π)𝐷
𝑙 𝜇

𝐷0𝐷
2

1

]
= −2

[
𝑝𝐵12 + 𝛾𝜇𝐵𝜇

12

]
= − 2

[
𝑝𝐵12 +

𝑝

2𝑝2

(
𝐵0 −𝐴2 −

(
𝑝2 +𝑚2

0
−𝑚2

1

)
· 𝐵12

)]
=
𝑝

𝑝2

[
𝐴2 − 𝐵0 −

(
𝑝2 +𝑚2

1
−𝑚2

0

)
· 𝐵12

]
(A.10)

Scalar functions with more than one index contain dots. The multiple indices represent

the respective propagator powers. In this formalism 𝐵0 ≡ 𝐵11 and 𝐴0 ≡ 𝐵10. Similar to

eq. (A.9) also the dotted tensor integral is reduced to

𝐵
𝜇

12
=
𝑝𝜇

2𝑝2

[
𝐵0 −𝐴2 + (𝑚2

1
−𝑚2

0
− 𝑝2)𝐵12

]
(A.11)

in the second to last step. Using IBP reduction the dotted scalar functions can again be

expressed by their simpler siblings.

0 =𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
d

d𝑙 𝜇
𝑙𝜈𝑔

𝜇
𝜈

𝐷0𝐷1

= 𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷

[
𝐷

𝐷0𝐷1

+ 𝑙 𝜇
−2𝑙𝜇
𝐷2

0
𝐷1

+ 𝑙 𝜇
−2(𝑙𝜇 + 𝑝𝜇)
𝐷0𝐷

2

1

]
=𝐷 · 𝐵0 − 2 · 𝜇4−𝐷

∫
d
𝐷𝑙

(2π)𝐷

[
𝑙2 −𝑚2

0
+𝑚2

0

𝐷2

0
𝐷1

+
𝑙2 −𝑚2

0
+𝑚2

0
+ 𝑙 · 𝑝

𝐷0𝐷
2

1

]
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=(𝐷 − 2) · 𝐵0 − 2𝑚2

0
· 𝐵21 − 2 · 𝐵02 − 2𝑚2

0
· 𝐵12 − 2𝜇4−𝐷

∫
d
𝐷𝑙

(2π)𝐷
𝑙 · 𝑝
𝐷0𝐷

2

1

=(𝐷 − 2) · 𝐵0 − 2𝑚2

0
· 𝐵21 − 2 · 𝐵02 − 2𝑚2

0
· 𝐵12 − 𝜇4−𝐷

∫
d
𝐷𝑙

(2π)𝐷
𝐷1 − 𝐷0 −𝑚2

0
− 𝑝2 +𝑚2

1

𝐷0𝐷
2

1

=(𝐷 − 2) · 𝐵0 − 2𝑚2

0
· 𝐵21 − 2 · 𝐵02 − 2𝑚2

0
· 𝐵12 − 𝐵0 + 𝐵02 + (𝑚2

0
+ 𝑝2 −𝑚2

1
)𝐵12

=(𝐷 − 3) · 𝐵0 − 2𝑚2

0
· 𝐵21 − 𝐵02 + (𝑝2 −𝑚2

1
+𝑚2

0
)𝐵12 (A.12)

Before an equation for 𝐵12 is found, �rst 𝐵02 = 𝐵20 = 𝐴2 has to be reduced, following the

same steps.

0 = 𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
d

d𝑙 𝜇
𝑙𝜈𝑔

𝜇
𝜈

𝐷0

= 𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷

[
𝐷

𝐷0

+ 𝑙 𝜇
−2𝑙𝜇
𝐷2

0

]
= 𝐷 · 𝐴0 − 2𝜇4−𝐷

∫
d
𝐷𝑙

(2π)𝐷
𝑙2 −𝑚2

0
+𝑚2

0

𝐷2

0

= (𝐷 − 2) · 𝐴0 − 2𝑚2

0
𝐴2 (A.13)

So this yields

𝐴2 =
𝐷 − 2

2𝑚2

0

𝐴0 . (A.14)

Inserted in eq. (A.12) this entails

0 = (𝐷 − 3) · 𝐵0 − 2𝑚2

0
· 𝐵21 +

2 − 𝐷
2𝑚2

0

𝐴0 + (𝑝2 −𝑚2

1
−𝑚2

0
)𝐵12 . (A.15)

In the special case of𝑚0 ≡𝑚1 =:𝑚 it is further possible to use

𝐵12(𝑝,𝑚,𝑚) =
∫

d
4𝑙

(2π)4
1

(𝑙2 −𝑚2) ((𝑙 + 𝑝)2 −𝑚2)2
𝑙→𝑙−𝑝
=

∫
d
4𝑙

(2π)4
1

((𝑙 − 𝑝)2 −𝑚2) (𝑙2 −𝑚2)2
𝑙𝜈→−𝑙𝜈
=

∫
d
4𝑙

(2π)4
1

((𝑙 + 𝑝)2 −𝑚2) (𝑙2 −𝑚2)2 = 𝐵21(𝑝,𝑚,𝑚) , (A.16)

and thus simplify above eq. (A.15) further to obtain

𝐵12 =
𝐷 − 3

4𝑚2 − 𝑠 · 𝐵0 +
2 − 𝐷

2𝑚2(4𝑚2 − 𝑠)𝐴0 . (A.17)

The relation 𝑠 = 𝑝2 is used. Upon returning to the original problem, but now with identical

masses𝑚0 and𝑚1, from eq. (A.10), the derivative reveals itself to be

𝜕

𝜕𝑝
𝐵0 =

𝑝

𝑝2

[
𝐷 − 2

2𝑚2
𝐴0 − 𝐵0 − 𝑠 ·

(
𝐷 − 3

4𝑚2 − 𝑠 · 𝐵0 +
2 − 𝐷

2𝑚2(4𝑚2 − 𝑠)𝐴0

)]
=

𝑝

(4𝑚2 − 𝑠)𝑠
[
2(𝐷 − 2)𝐴0 − (4𝑚2 + 𝑠 · (𝐷 − 4)) · 𝐵0

]
(A.18)
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A.2.3. Comprehensive Calculations from the Renormalization

Top quark self energy.

Σ2(𝑝) =
(
−i𝑚𝑡

𝑣

)
2

𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
i

(
𝑝 + ˆ𝑙 +𝑚𝑡

)
(𝑝 + 𝑙)2 −𝑚2

𝑡

· i

𝑙2 −𝑚2

𝐻

=
𝑚2

𝑡

𝑣2
·
[
(𝑝 +𝑚𝑡 )𝐵0 (𝑝,𝑚𝐻 ,𝑚𝑡 ) + 𝜇4−𝐷𝛾𝜇

∫
d
𝐷𝑙

(2π)𝐷
𝑙 𝜇(

𝑙2 −𝑚2

𝐻

) (
(𝑝 + 𝑙)2 −𝑚2

𝑡

) ]
=
𝑚2

𝑡

𝑣2
·
(
𝑚𝑡 +

𝑚2

𝑡 −𝑚2

𝐻
+ 𝑝2

2𝑝2
𝑝

)
𝐵0(𝑝,𝑚𝐻 ,𝑚𝑡 ) +

𝑚2

𝑡 𝑝

2𝑝2𝑣2

[
𝐴0(𝑚𝐻 ) −𝐴0(𝑚𝑡 )

]
.

(A.19)

Top quark mass renormalization counterterm.

0 =
𝑚𝑡 · (4𝑚2

𝑡 −𝑚2

𝐻
)

2𝑣2
𝐵0(𝑚𝑡 ,𝑚𝐻 ,𝑚𝑡 ) +

𝑚𝑡

2𝑣2

[
𝐴0(𝑚𝐻 ) −𝐴0(𝑚𝑡 )

]
− 𝛿𝑚𝑡 +

𝑚𝑡𝛿𝑡

𝑚2

𝐻
𝑣

⇔ 𝛿𝑚𝑡 =
𝑚𝑡 · (4𝑚2

𝑡 −𝑚2

𝐻
)

2𝑣2
𝐵0(𝑚𝑡 ,𝑚𝐻 ,𝑚𝑡 ) −

𝑚𝑡

𝑣2
𝐴0(𝑚𝐻 ) +

2𝐷𝑁𝑐𝑚
3

𝑡 −𝑚𝑡𝑚
2

𝐻

2𝑚2

𝐻
𝑣2

𝐴0(𝑚𝑡 ) .

(A.20)

Higgs self energy.

Σ2(𝑝) =
∑︁
colors

(−1)𝜇4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
(
−i𝑚𝑡

𝑣

)
2

Tr

[
i(ˆ𝑙 +𝑚𝑡 )
𝑙2 −𝑚2

𝑡

i(𝑝 + ˆ𝑙 +𝑚𝑡 )
(𝑝 + 𝑙)2 −𝑚2

𝑡

]
+ (−i𝑐𝐻 3)2

2

𝜇4−𝐷
∫

𝑑𝐷𝑙

(2π)𝐷
i
2

(𝑙2 −𝑚2

𝐻
) ((𝑝 + 𝑙)2 −𝑚2

𝐻
)
+ (−i𝑐𝐻 4)

2

𝜇4−𝐷
∫

𝑑𝐷𝑙

(2π)𝐷
i

𝑙2 −𝑚2

𝐻

= −
𝑚2

𝑡

𝑣2
𝑁𝑐𝜇

4−𝐷
∫

d
𝐷𝑙

(2π)𝐷
Tr

[
𝑝 · 𝑙 +𝑚2

𝑡 + 𝑙2
]

(𝑙2 −𝑚2

𝑡 ) ((𝑝 + 𝑙)2 −𝑚2

𝑡 )

+ (−i𝑐𝐻 3)2

2

𝜇4−𝐷
∫

𝑑𝐷𝑙

(2π)𝐷
i
2

(𝑙2 −𝑚2

𝐻
) ((𝑝 + 𝑙)2 −𝑚2

𝐻
)
+ (−i𝑐𝐻 4)

2

𝜇4−𝐷
∫

𝑑𝐷𝑙

(2π)𝐷
i

𝑙2 −𝑚2

𝐻

= −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷

[
𝐴0(𝑚𝑡 ) + 2𝑚2

𝑡 𝐵0(𝑝,𝑚𝑡 ,𝑚𝑡 ) + 𝑝𝜇𝐵𝜇
0
(𝑝,𝑚𝑡 ,𝑚𝑡 )

]
+ (−i𝑐𝐻 3)2

2

𝜇4−𝐷
∫

𝑑𝐷𝑙

(2π)𝐷
i
2

(𝑙2 −𝑚2

𝐻
) ((𝑝 + 𝑙)2 −𝑚2

𝐻
)
+ (−i𝑐𝐻 4)

2

𝜇4−𝐷
∫

𝑑𝐷𝑙

(2π)𝐷
i

𝑙2 −𝑚2

𝐻

= −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷

[
𝐴0(𝑚𝑡 ) +

4𝑚2

𝑡 − 𝑝2

2

𝐵0(𝑝,𝑚𝑡 ,𝑚𝑡 )
]
+
𝑐2
𝐻 3

2

𝐵0(𝑝,𝑚𝐻 ,𝑚𝐻 ) +
𝑐𝐻 4

2

𝐴0(𝑚𝐻 ) .

(A.21)

Higgs wave function renormalization counterterm.

0 = −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 ·

[
4𝑚2

𝑡 −𝑚2

𝐻

2

𝐵′
0
(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 ) −𝑚𝐻𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 )

]
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+
𝑐2
𝐻 3

2

𝐵′
0
(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 ) + 2𝑚𝐻𝛿𝑍𝐻

= −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 ·

[
4𝑚2

𝑡 −𝑚2

𝐻

2

𝑚𝐻

(4𝑚2

𝑡 − 𝑠)𝑠
[
2(𝐷 − 2)𝐴0 − (4𝑚2

𝑡 + 𝑠 · (𝐷 − 4)) · 𝐵0
]

(A.22)

−𝑚𝐻𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 )
]
+
𝑐2
𝐻 3

2

𝑚𝐻

(4𝑚2

𝐻
− 𝑠)𝑠

[
2(𝐷 − 2)𝐴0 − (4𝑚2

𝐻 + 𝑠 · (𝐷 − 4)) · 𝐵0
]

(A.23)

+ 2𝑚𝐻𝛿𝑍𝐻

= −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 · 1

2𝑚𝐻

[
2(𝐷 − 2)𝐴0(𝑚𝑡 ) −

(
4𝑚2

𝑡 +𝑚2

𝐻 · (𝐷 − 2)
)
𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 )

]
(A.24)

+
𝑐2
𝐻 3

6𝑚3

𝐻

[
2(𝐷 − 2)𝐴0(𝑚𝐻 ) − 𝐷 ·𝑚2

𝐻𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )
]
+ 2𝑚𝐻𝛿𝑍𝐻 (A.25)

Higgs mass renormalization counterterm.

0 = −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 ·

[
𝐴0(𝑚𝑡 ) +

4𝑚2

𝑡 −𝑚2

𝐻

2

𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 )
]
+
𝑐2
𝐻 3

2

𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )

+ 𝑐𝐻 4

2

𝐴0(𝑚𝐻 ) − 𝛿𝑚2

𝐻 + 3𝛿𝑡

𝑣
(A.26)

= −
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷 ·

[
𝐴0(𝑚𝑡 ) +

4𝑚2

𝑡 −𝑚2

𝐻

2

𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 )
]
+
𝑐2
𝐻 3

2

𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )

+ 𝑐𝐻 4

2

𝐴0(𝑚𝐻 ) − 𝛿𝑚2

𝐻 + 3

𝑣

[
𝐷𝑁𝑐

𝑚2

𝑡

𝑣
𝐴0(𝑚𝑡 ) −

3𝑚2

𝐻

2𝑣
𝐴0(𝑚𝐻 )

]
(A.27)

= − 𝑁𝑐𝐷
𝑚2

𝑡 (4𝑚2

𝑡 −𝑚2

𝐻
)

2𝑣2
𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 ) +

𝑐2
𝐻 3

2

𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )

− 𝛿𝑚2

𝐻 +
[
𝐷𝑁𝑐

3𝑚2

𝑡

𝑣2
−
𝑚2

𝑡

𝑣2
𝑁𝑐𝐷

]
𝐴0(𝑚𝑡 ) +

[
𝑐𝐻 4

2

−
9𝑚2

𝐻

2𝑣2

]
𝐴0(𝑚𝐻 ) (A.28)

⇔ 𝛿𝑚2

𝐻 = − 𝑁𝑐𝐷
𝑚2

𝑡 (4𝑚2

𝑡 −𝑚2

𝐻
)

2𝑣2
𝐵0(𝑚𝐻 ,𝑚𝑡 ,𝑚𝑡 ) +

𝑐2
𝐻 3

2

𝐵0(𝑚𝐻 ,𝑚𝐻 ,𝑚𝐻 )

+ 𝐷𝑁𝑐
2𝑚2

𝑡

𝑣2
𝐴0(𝑚𝑡 ) +

[
𝑐𝐻 4

2

−
9𝑚2

𝐻

2𝑣2

]
𝐴0(𝑚𝐻 ) (A.29)
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