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CHAPTER 1

Introduction

“If nature were not worth knowing, life would not be worth living.”
– Henri Poincaré, [1] –

Since thousands of generations the human mind strives to explain nature, steadily increasing
the small amount of existing knowledge by understanding a part of the infinite unknown.
“Today we still yearn to know why we are here and where we came from. [...] And our goal is
nothing less than a complete description of the universe we live in” (Stephen Hawking, [2]).
But we have come a long way since the early days of civilisation. Already over two thousand
years ago, philosophers in China, India and Greece gave correct descriptions in mechanics,
atomism and astronomy. But from then until the 19th century, when Dalton proposed
his atomic theory [3], not much more insight into the deeper nature of matter has been
gained.

Finally, in the 20th century, beginning with Rutherford’s scattering experiment [4], the
discovery of the quantisation of light [5, 6] and the thereby triggered theory developments
aiming to describe the inner structure of atoms and nuclei, particle physics was born. The
discovery of many new particles in the 20th century, most of them observed in cosmic
rays, raised the need for new theories in which electrons, protons and neutrons could no
longer be the fundamental constituents of matter. The idea of quarks was introduced to
explain the vast number of newly found baryons and mesons [7, 8]. The further study
in the 1960s of the structure of the proton in deep inelastic scattering experiments lead
to the parton model [9], which describes nucleons as made up of smaller constituents.
Both observations were combined in form of a quantum field theory called Quantum
Chromodynamics (QCD) [10]. In parallel, a theory was developed by Steven Weinberg and
Abdus Salam [11, 12] which combines electromagnetic and weak interaction, until then
described by the Fermi theory, to form the electroweak model. Both theories describing all
three of strong, electromagnetic and weak interactions were combined to form the Standard
Model of Particle Physics. Up to today the Standard Model is the most accurate theory
of nature that is known, with all of its particle constituents having been experimentally
observed and its predictions being in high agreement with experimental data (see e.g.
Reference [13]).
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2 Chapter 1 Introduction

Despite this success, the Standard Model is no complete theory to describe nature. For
one thing it does not include gravity, the fourth fundamental force of nature. Gravity is
described by General Relativity and could so far not be formulated as a quantum field
theory, making it impossible to find a unified theory of all interactions. For another
thing, the Standard Model lacks an explanation of cosmological phenomena such as baryon
asymmetry and dark matter. The observed baryon asymmetry is much too large to be
explained solely by the CP-violating mechanisms of the Standard Model. The second
mentioned phenomenon, dark matter, was first proposed by Fritz Zwicky in order to hold
galaxy clusters together, followed later on by more evidences observed in rotation curves of
spiral galaxies, by gravitational lensing of the Bullet Cluster and in the Cosmic Microwave
Background. In addition, if only ordinary baryonic matter would have driven structure
formation in the universe, it could not have led to the structure of the sky as it is today.
Besides these cosmological problems, the Standard Model su�ers under what is called the
hierarchy problem due to the small Higgs boson mass of 125 GeV. Theoretically, the Higgs
mass is expected to have large quantum corrections that can only be cancelled by excessive
fine-tuning in order to result in this small mass. Such a fine-tuning is however not seen as
“natural” in physics [14, 15].

Every one of these puzzles drives the necessity to search for physics beyond the Standard
Model. Besides proposing and directly searching for new particles, general limits on new
physics or extensions of the Standard Model can be found by comparing data with Standard
Model predictions. To be able to find significant discrepancies to the Standard Model, its
predictions have to be known to very high accuracy. Because cross section calculations
of the Standard Model are done perturbatively, higher corrections need to be taken into
account for such precise calculations, especially for corrections with respect to the large
strong coupling constant.

The most promising particle accelerator to gain the comparison data is the Large Hadron
Collider (LHC) at CERN [16]. It has performed proton-proton collisions starting from
2008, having reached 13 TeV center-of-mass energy in its recent run from 2015 to 2018
(Run 2). At the time of this work being written it is paused in order to upgrade and
replace damaged detector components in its experiments, amongst which are the ATLAS
and CMS experiments [17]. It is planned to resume running from 2021 onwards with higher
performance and a center-of-mass energy of 14 TeV. With this large center-of-mass energy
the coming run is especially sensitive in phase space regions that are probed by the process
classes vector boson fusion and vector boson scattering, characterised by two high energetic
jets in the forward regions and reduced jet activity in the central region of the detector.
Vector boson fusion and scattering processes contain interactions between three and four
electroweak gauge bosons, making them well suited to probe the electroweak sector of the
Standard Model.

The objective of this thesis is to make high precision predictions of the QCD next-to-leading
order cross section of W boson production in association with three jets via vector boson
fusion. This process has a comparably large cross section and thus a higher sensitivity in
comparison to for example Zjjj production, both being important background processes to
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Higgs productions at the LHC. The calculation of the cross section is done by implementing
the process in the flexible Monte Carlo program Vbfnlo [18–21], which allows also for the
addition of anomalous gauge couplings in order to analyse the e�ects of E�ective Field
Theory approaches.

Chapter 2 aims to recall and explain the fundamentals of perturbative quantum field
theory after describing the two sectors of the Standard Model, including its interactions
and particle content. In addition, problematic and necessary features of the calculation of
hadronic cross sections up to next-to-leading order in perturbation theory are illustrated.
Lastly in this chapter, vector boson fusion is explained in more detail.

The need for and principles of Monte Carlo methods for the simulation of hadronic cross
sections are depicted in Chapter 3, before the actual calculation of Wjjj production for
proton-proton as well as antiproton-antiproton collisions is performed. The calculation is
split into leading order, real emissions and virtual corrections, with infrared divergences
handled by dipole subtraction. The implementation is systematised in a way to remove all
redundant steps, thereby assuring an as fast as possible and stable calculation.

The correctness of the calculation is validated in Chapter 4, where the results of various
crosschecks verifying all steps of the implementation are presented. These include tests of
the matrix elements, the integrated leading order cross section and the dipole subtraction
terms.

The phenomenology of Wjjj production is discussed in Chapter 5. Specific di�erential
cross section distributions are analysed and the scale dependences of the leading order in
comparison to the next-to-leading order calculations are investigated. In addition, the QCD
structure of Wjjj production is compared to Hjjj production via vector boson fusion.

At last, the calculation, results and conclusions are summarised in Chapter 6.





CHAPTER 2
Theoretical Framework

2.1 The Standard Model

The discovery of the Higgs boson in 2012 [22, 23] completed the experimental confirmation
of all particle constituents of the Standard Model of Particle Physics (SM), which comprises
three of the four fundamental forces of nature: the electromagnetic, the weak and the
strong force. The SM is a relativistic quantum field theory based on the gauge group
SU(3)C ◊ SU(2)L ◊ U(1)Y. Besides the Higgs boson, the particle content of the SM can
be split into gauge bosons, mediating the interactions, and fermions, which make up
the matter content of the SM and themselves are divided into colour charged quarks
and colourless leptons. All fermions included in the SM are subject to the electroweak
interactions described by the SU(2)L ◊ U(1)Y symmetry of the Glashow-Weinberg-Salam
model [11, 12, 24]. Only the colour charged ones are additionally a�ected by Quantum
Chromodynamics with its SU(3)C symmetry that describes strong interactions [8].

Table 2.1: Fermions of the Standard Model and their electroweak quantum numbers.

Generation Quantum numbers
1st 2nd 3rd T3 Y Q

Leptons

✓

ne
e≠

◆

L

✓

nµ
µ≠

◆

L

✓

nt
t≠

◆

L

+1/2 ≠1 0
≠1/2 ≠1 ≠1

e≠
R µ≠

R t≠
R 0 ≠2 ≠1

Quarks

✓

u
d

◆

L

✓

c
s

◆

L

✓

t
b

◆

L

+1/2 +1/3 +2/3

≠1/2 +1/3 ≠1/3

uR cR tR 0 +4/3 +2/3

dR sR bR 0 ≠2/3 ≠1/3
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6 Chapter 2 Theoretical Framework

2.1.1 Electroweak Sector

The fermions of the SM, quarks and leptons, are grouped into three generations, as displayed
in Table 2.1. For the quarks, every generation includes an up-type quark, namely up (u),
charm (c) and top (t), and a down-type one, namely down (d), strange (s) and bottom (b).
For each of these particles a corresponding antiparticle with quantum numbers of opposite
sign and opposite handedness exists. All of them are chiral fermions, thus carrying spin 1

2 ,
with their left- and right-handed field components

ÂL, R = 1 û “5
2 Â (2.1)

transforming di�erently under the SU(2)L of weak interactions. The left-handed fermions
form doublets of the third component of the weak isospin T3, while the right-handed ones
are singlets and do not couple to SU(2)L gauge fields. The hypercharge Y is the quantum
number related to U(1)Y and together with T3 gives an expression for the electric charge
Q of a particle,

Q = T3 + Y

2 . (2.2)

Since right-handed neutrinos are singlets under SU(2)L transformations and do not carry
electric charge, thus also Y = 0, they, if existing, do not interact at all in the SM, which is
why they are not included in Table 2.1. The generators of SU(2)L, T i, and of U(1)Y, Y ,
correspond to three W i

µ

fields and one B
µ

field, respectively, that mediate the interactions.
A representation for the T i are the Pauli matrices, T i = ‡i

2 , whose non-abelian nature
causes the W i

µ

gauge fields to interact with themselves. With the covariant derivatives

DL
µ

= ˆ
µ

≠ igW k

µ

‡k

2 ≠ igÕB
µ

Y

2 and (2.3)

DR
µ

= ˆ
µ

≠ igÕB
µ

Y

2 , (2.4)

acting on left-handed doublets �L and right-handed singlets ÂR, respectively, the La-
grangian for these gauge fields, fermions and their interactions is

LEW = �L
g

i /D
L�L

g

+ Â
R
f

i /D
R

ÂR
f

≠ 1
4W k

µ‹

W µ‹,k ≠ 1
4B

µ‹

Bµ‹ , (2.5)

with

W k

µ‹

= ˆ
µ

W k

‹

≠ ˆ
‹

W k

µ

≠ gÁkijW i

µ

W j

‹

, (2.6)

B
µ‹

= ˆ
µ

B
‹

≠ ˆ
‹

B
µ

, (2.7)

and coupling constants g and gÕ [25]. The implied sum over index g covers the six fermion
generations, as two fermions of one generation (such as electron and electron neutrino or
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up and down quarks) form a doublet, while the index f covers all fermions. The first two
terms of the Lagrangian include the kinetic terms of the fermions and their interactions
with the gauge bosons, while the other two terms give the self-interactions and kinetic
terms of the gauge fields. Mass terms of the form

mÂÂ = m
⇣

Â
L
ÂR + Â

R
ÂL

⌘

and m2
V

2 V
µ

V µ (2.8)

are not invariant under an SU(2)L transformation and would hence break gauge invariance
if included in the Lagrangian. In order to still explain the observed massive fermions and
gauge bosons, a mechanism of spontaneous symmetry breaking that generates massive
gauge fields has been formulated independently by three groups in 1964 [26–29]. This
nowadays called Higgs mechanism works by introducing a weak isospin doublet

� =
✓

„
a

„
b

◆

, (2.9)

where „
a

and „
b

are scalar fields under Lorentz transformations and carry hypercharge
Y = 1. Its Lagrangian

LH = (Dµ�) (D
µ

�) ≠ µ2� � ≠ ⁄
�

� �
�2

| {z }

= ≠V (� �)

(2.10)

is invariant under SU(2)L ◊ U(1)Y transformations. For µ2 < 0 and ⁄ > 0, V (� �) takes
the form of a mexican hat potential with its minimum at

�0�0 =
�

�„0
a

�

�

2 +
�

�„0
b

�

�

2 = ≠µ2

2⁄
=: v2

2 . (2.11)

By choosing without loss of generality

�0 =
 

0
vÔ
2

!

(2.12)

one can easily see that this ground state is no longer invariant under SU(2)L ◊U(1)Y, which
is called spontaneous symmetry breaking. As the charge of the component „

a

is Q
a

= 1,
whereas the one of component „

b

is Q
b

= 0, spontaneous symmetry breaking occurs only
in the electrically neutral component of �0, so the ground state is still invariant under
U(1)em electromagnetic transformations. By expanding the field � around the vacuum
expectation value and choosing unitary gauge,

� =
 

„1 + i„2
1Ô
2(v + H) ≠ i„3

!

æ 1Ô
2

✓

0
v + H

◆

, (2.13)

only one of the formerly four degrees of freedom survives in the form of the physical Higgs
field H(x). Inserting this into the scalar field Lagrangian, the potential term gives a Higgs
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mass term and Higgs self-couplings, while the kinetic term gives

LH,kin = 1
2(ˆ

µ

H)2 + 1
8(v + H)2 �g2 �W 2

1,µ

+ W 2
2,µ

+ W 2
3,µ

�

+ gÕ2B2
µ

≠ 2gÕgW µ

3 B
µ

�

= 1
2(ˆ

µ

H)2 + 1
8(v2 + 2vH + H2)

⇣

g2 �
�W ≠

µ

�

�

2 + g2 �
�W +

µ

�

�

2 +
�

gÕ2 + g2� |Z
µ

|2
⌘

,

(2.14)

with newly defined fields

W û
µ

:= 1Ô
2

(W1,µ

± iW2,µ

) and Z
µ

:= cwW3,µ

≠ swB
µ

, (2.15)

where the Weinberg angle ◊w is defined by

cw := cos ◊w := g
p

gÕ2 + g2
, sw := sin ◊w := gÕ

p

gÕ2 + g2
. (2.16)

The v2 terms in Equation 2.14 now yield masses for these new fields, namely

mW = vg

2 and mZ = vg

2cw
. (2.17)

The fourth linear independent field

A
µ

:= swW3,µ

+ cwB
µ

, (2.18)

the photon, remains massless and does not directly interact with the Higgs field.

Hence, the masses of the weak bosons W± and Z can be incorporated in the theory. Fermion
masses on the other hand do not result from spontaneous symmetry breaking, but are
introduced via Yukawa couplings of fermion fields with �. This leads to a mixing between
fermion generations, causing mass eigenstates to di�er from weak interaction eigenstates,
which is parametrised in the CKM matrix. Since fermion masses (except for the top quark)
are neglected here, CKM mixing is irrelevant for the calculations done in this thesis.

By inverting Equations 2.15 and 2.18 for the fields W
i,µ

and B
µ

, inserting them into
the Lagrangian of electroweak interactions of Equation 2.5, and applying the covariant
derivatives with correct hypercharge values Y for the specific fields, the interactions
between the new fields with fermions as well as with themselves can be seen directly (see
Appendix A). To identify the basic properties of the couplings it is enough to consider the
leptonic interaction terms,
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which take the form

LEW,LI = ≠gÕcwÂ
l

/AÂ
l

≠ g

2cw
Â

L
l

/Z(1 ≠ 2s2
w)ÂL

l

+ gÕswÂ
R
l

/ZÂR
l

+ g

2cw
Â

L
nl

/ZÂL
nl

+ g
Ô

2
2

⇣

Â
L
l

/W
≠

ÂL
nl

+ Â
L
nl

/W
+

ÂL
l

⌘

= ≠gÕcwÂ
l

/AÂ
l

≠ g

4cw
Â

l

/Z(1 ≠ “5 ≠ 4s2
w)Â

l

+ g

4cw
Ânl

/Z(1 ≠ “5)Ânl + g

2
Ô

2

⇣

Â
l

/W
≠(1 ≠ “5)Ânl + Ânl

/W
+(1 ≠ “5)Â

l

⌘

,

(2.19)

with l = e, µ, t. The first term can be identified with the electromagnetic interaction and
defines the elementary charge e := gÕcw. The second and third term are the interactions
with the Z boson, while the last terms describe the W boson interactions. These terms
directly show the imbalance in handedness causing parity violation in weak interactions, as
the W boson only couples to the left-handed field components and the Z boson couples
di�erently to left- and right-handed ones.

2.1.2 Quantum Chromodynamics

The discovery of many new hadrons in the mid of the 20th century that could not all be
thought of as new fundamental particles, as well as the results of deep inelastic scattering
of electrons and protons led to the introduction of quarks as constituents of hadrons [7–9].
In order to further explain the existence of particles like the �++, that would formerly have
disagreed with the Pauli exclusion principle, a new quantum number, the colour charge,
and with this an additional SU(3)C symmetry for quarks was introduced [30]. Out of
this, Quantum Chromodynamics (QCD) [10] was developed, in which quarks form triplets
y = (Â

r

Â
g

Â
b

)T under SU(3)C, while leptons do not participate in strong interactions and
thus are singlets. The eight generators ta of SU(3)C give rise to eight gauge boson fields
Aa

µ

, the gluons, which themselves carry colour charges. In the fundamental representation
of SU(3), under which the quarks transform, the generators are given by the Gell-Mann
matrices, ta = ⁄

a

2 , a = 1, . . . , 8, and satisfy the relations

Tr
⇣

tatb

⌘

= TR”ab,
h

ta, tb

i

= ifabctc, and ta

ij

ta

kl

= TR

✓

”
il

”
jk

≠ 1
N

”
ij

”
kl

◆

, (2.20)

with N = 3, TR = 1
2 , and totally antisymmetric structure constants fabc. The non-vanishing

commutator of the generators makes QCD a non-abelian field theory. The Casimir invariant
of the fundamental representation is given by

CF = tata = N2 ≠ 1
2N

= 4
3 . (2.21)

The gluon fields transform under the adjoint representation of SU(3), whose generators are
proportional to the structure constants fabc, giving the Casimir invariant of the adjoint
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representation

CA = N = 3, (2.22)

and an identity relating Casimir operators of fundamental and adjoint representation,

tatbta =
✓

CF ≠ CA
2

◆

tb. (2.23)

With the quark triplets y, the covariant derivative

D
µ

= ˆ
µ

≠ ig
s

taAa

µ

(2.24)

with strong coupling constant g
s

, and the gluon field strength tensor

G
µ‹

= i
g

s

[D
µ

, D
‹

] = ta

�

ˆ
µ

Aa

‹

≠ ˆ
‹

Aa

µ

� ≠ ig
h

tbAb

µ

, tcAc

‹

i

= ta

⇣

ˆ
µ

Aa

‹

≠ ˆ
‹

Aa

µ

+ gfabcAb

µ

Ac

‹

⌘

(2.25)

= taGa

µ‹

,

the Lagrangian of QCD reads [25]

LQCD =
X

quarks q

y
q

�

i /D ≠ m
q

�

y
q

| {z }

= Lquarks

≠ 1
4Ga

µ‹

Ga,µ‹

| {z }

= Lgauge

. (2.26)

In practice, an additional gauge fixing term Lfix proportional to
�

ˆµAa

µ

�2 is added to
the Lagrangian, as it does not change the equations of motion but makes the theory
quantizable. This is the case for all gauge theories, also the electroweak one above. In
addition, another term Lghost is needed in non-abelian gauge theories (which is the case
both for QCD and weak interactions) to compensate unphysical degrees of freedom, which
shall not be explained here further as it is irrelevant for the calculation of this thesis.
Interested readers are referred to textbooks on quantum field theory like References [31]
and [32]. The additional gauge fixing and ghost terms can be examined as parts of the full
gauge invariant and quantizable QCD Lagrangian in Appendix A, but are not explained
here in further detail.
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2.2 Perturbative Quantum Field Theory

For some readers, the preceding section may have raised two important questions. One
is how these Lagrangian densities and symmetry groups that describe Nature have been
constructed, the other how experimentally measurable quantities and predictions can
be obtained from these, which is certainly necessary for the verification1 or disproof of
the theory. The answers to both questions lie in quantum field theory, which makes use
of a computational framework based on the Lagrange and Hamilton formalisms to gain
mathematical rules for describing the interactions and propagation of particles from only a
Lagrangian density, and with these rules to be able to calculate measurable quantities, such
as cross sections. The other question can then be answered similarly, because for known
interactions and particles as well as completely new, unobserved particles a Lagrangian can
be built (or guessed) which then through the framework of quantum field theory produces
observable results. In the following, a short overview over the method of perturbative
quantum field theory is given.

The Lagrangian of a quantum field theory can be written as a free Lagrangian (including
mass terms and gauge terms) and an interaction Lagrangian, including all terms containing
three or more fields,2

L = L0 + Lint. (2.27)

The interaction Hamiltonian of the theory is given by

Hint = ≠Lint = ≠
ˆ

d3x Lint. (2.28)

The equations of motion resulting from the free Lagrangian can easily be solved using
second quantization to give the free fields

„(x) =
ˆ d3p

(2p)32Ê
p

�

a
p

e≠ip·x + a
p

eip·x� (2.29)

as a linear combination of creation and annihilation operators. However, most interacting
field theories are not exactly solvable [31, p. 81], raising the need for approximation methods
like perturbation theory. In perturbation theory, the interaction Hamiltonian is treated
as a small quantity and thus an expansion can be made. The interacting vacuum � and
the interacting fields „ can be expressed in terms of the free vacuum, the fields in the
interaction picture „I, which have the same form as the free fields in Equation 2.29, and
the time evolution operator U(t, t0). The correlation function of two fields can then be

1 Or rather “survival”, since no theory can ever be truly verified.
2 In quantum field theory, particles are seen as excitations of their respective fields.
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brought to the form [31, p. 87]

È�| T {„(x)„(y)} |�Í = lim
tæŒ(1≠iÁ)

È0| T
n

„I(x)„I(y) exp
h

≠i
´

T

≠T

dt HI(t)
io

|0Í
È0| T

n

exp
h

≠i
´

T

≠T

dt HI(t)
io

|0Í
, (2.30)

with the interaction Hamiltonian HI given in the interaction picture and T {. . .} implying
the time-ordered product of the included fields. Since HI only consists of fields and a
coupling constant ⁄, the numerator gives a series expansion in ⁄ whose terms are correlation
functions of two and more free fields. Using Wick’s theorem [33], these can be reduced
to time ordered two-point correlation functions of free fields, called Feynman propagators,
that are Green’s functions of the fields’ equations of motion. Every term in the expansion
thus gives a set of Feynman propagators multiplied by factors of ⁄, which can be illustrated
in Feynman diagrams. The order of the expansion, i.e. the order of ⁄, gives the number
of vertices in this diagram. Diagrams without ending points are cancelled out by the
denominator in Equation 2.30.

The last step to make this formalism appliable to scattering processes, and thus the theory
experimentally tangible, is to relate these correlation functions of the fields „I to the
amplitudes between incoming and outcoming states in scattering experiments, i.e. to
S-matrix elements

S
fi

= out Èq1 . . . q
m

|p1 . . . p
n

Íin = È�| aout(q̨1) . . . aout(q̨m

) ain(p̨1) . . . ain(p̨
n

) |�Í (2.31)

for n initial and m final state particles. The in- and out-states can be described as
one-particle states created by asymptotically free fields in the limit of times long before
and long after the interaction, respectively. More explicitly, an in-state is basically a
momentum eigenstate created by the full interacting field „ from the interacting vacuum �
and projected on the subspace of one-particle states of the full interacting theory. For the
calculation of S-matrix elements however, it is enough to use a weaker relation between
„in(x) and „out(x) and the full interacting field „(x) in the limit of far past or far future
times,

Èf | „(x) |iÍ tæ≠Œ≠≠≠≠≠æ
Ô

Z Èf | „in(x) |iÍ ,

Èf | „(x) |iÍ tæŒ≠≠≠≠≠æ
Ô

Z Èf | „out(x) |iÍ ,

(2.32)

where Z is the field strength renormalization.1 By expressing the creation operator in
terms of the field, it is inside an S-matrix element possible to write, for the example of

1 For further information on field strength renormalization and the relation between in-, out- and
interacting fields, see text books such as Reference [31].
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scalar fields (where free field operators satisfy the Klein-Gordon Equation),

aout(p̨) ≠ ain(p̨) = ≠i
✓ˆ

d3x̨ e≠ip·x ¡
ˆ0 „out(x) ≠

ˆ
d3x̨ e≠ip·x ¡

ˆ0 „in(x)
◆

= ≠iÔ
Z

✓

lim
tæŒ

ˆ
d3x̨ e≠ip·x ¡

ˆ0 „out(x) ≠ lim
tæ≠Œ

ˆ
d3x̨ e≠ip·x ¡

ˆ0 „in(x)
◆

= ≠iÔ
Z

ˆ
d4x ˆ0

✓

e≠ip·x ¡
ˆ0 „(x)

◆

(2.33)

= ≠iÔ
Z

ˆ
d4x e≠ip·x �ˆ2

0 + Ê2
p

�

„(x)

= ≠iÔ
Z

ˆ
d4x e≠ip·x �⇤ + m2�„(x),

where A
¡
ˆ0 B := B(ˆ0A) ≠ (ˆ0A)B and in the last step Ê2

p

= p̨2 + m2 was used followed by
two integrations by parts. Using this identity, one ain in Equation 2.31 can be replaced by
aout and a term containing the interacting field „(x). The operator aout can be permuted
to the left to annihilate the vacuum. The commutators give Delta functions and S-matrix
elements of n ≠ 1 to m ≠ 1 particles. These terms are called disconnected and do not need
to be considered here. By replacing another ain, the field „(x) now needs to permute with
aout before this operator can be permuted further left. This can be done using

„(x)ain(q̨) ≠ aout(q̨)„(x) = iÔ
Z

ˆ
d4y e≠iq·y �⇤

y

+ m2�T {„(x)„(y)} . (2.34)

By further reduction the connected term is in the end given by the LSZ reduction for-
mula [34], which for scalar fields reads

{out Èq1 . . . q
m

|p1 . . . p
n

Íin}connected =
✓

iÔ
Z

◆

n+m

2

4

m

Y

j=1

ˆ
d4x

j

eiqj ·xj
�

⇤
xj + m2�

3

5

·
"

n

Y

i=1

ˆ
d4y

i

eipi·yi
�

⇤
yi + m2�

#

È�| T {„(x1) . . . „(x
m

)„(y1) . . . „(y
n

)} |�Í . (2.35)

All in all that means that S-matrix elements can be expressed by time ordered Green’s
functions of the interacting theory, which themselves reduce to vacuum expectation values
of time ordered free field operators. Every order in perturbation theory of a process can
separately be illustrated as Feynman diagrams, with external lines for incoming and outgoing
particles, propagators for internal particles and vertices. Feynman rules, which result
from the procedure explained above, make it possible to calculate each Feynman diagram
of an interacting theory with the same scheme. Selected Feynman rules of electroweak
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interactions and QCD are given in Appendix A.1 From here on, the term matrix elements
is used for the elements M resulting from Feynman diagrams using Feynman rules and
not containing the overall momentum conservation, which are then related to the total
S-matrix element by

S = 1+ iT, with Èf | T |iÍ := (2p)4 ”(4)
⇣

X

p
f

≠
X

p
i

⌘

M ({p
f

} æ {p
i

}) . (2.36)

Diagrams involving the smallest possible power of the coupling constant ⁄ for a given
process give the leading order, LO. The next-to-leading order, NLO, is the one with next
non-vanishing order of ⁄, and so on.

Figure 2.1 shows Bhaba scattering, which is electron-positron scattering, at leading or-
der (a) and selected diagrams contributing to its next-to-leading order (b) in Quantum
Electrodynamics (QED). For n æ n processes in QED, terms proportional to odd factors
of ⁄QED = e vanish in the expansion, so the coupling constant normally used in QED is
–

e

:= e2/(4p). There are only two diagrams contributing to Moeller scattering at leading
order, which is then proportional to –

e

. They are called tree-level diagrams, as they do not
include loops. The next-to-leading order diagrams contain loops in the form of vacuum
polarisation of the photon, vertex corrections, and box diagrams.

In experiments, it is impossible to detect arbitrarily soft photons or collinear particles
and thus specify the final state of a process completely. This necessitates the inclusion
of real emission contributions to the cross section. For NLO cross section calculations
of a process with n æ m particles, this means to include the tree-level diagrams of the

(a)

e≠

e+

e+

e≠

e≠ e≠

e+ e+

g

(b)

e≠

e+

e+

e≠

e≠ e≠

e+ e+

e≠ e≠

e+ e+

Figure 2.1: All diagrams contributing to Bhaba scattering at LO (a) and some virtual
correction diagrams (b).

1 Especially in the case of QCD, another formalism, path integral quantisation, is needed to obtain the
Feynman rules because of its non-abelian nature. See again textbooks such as Reference [31].
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process n æ m + 1. These have the same order of the coupling constant as the one-loop
virtual corrections, since (for an example where the leading order is of order ⁄0 and the
loop diagrams, including two more vertices, therefore of order ⁄2)

|M
m

|2 = |MLO + M1-loop + O(⁄4)|2 = |MLO|2 + 2 · Re(Mú
LO · M1-loop) + O(⁄4), (2.37)

and the real emissions, which include one more vertex than the leading order, give

|M
m+1|2 = |MR + O(⁄3)|2 = |MR|2 + O(⁄4). (2.38)

In this work, the process of W boson production via vector boson fusion in association with
three jets, which is a 2 æ 5 process if including the decay of the W boson, is considered.
At leading order it contains one QCD and four electroweak vertices. As the electroweak
coupling constants g and –

e

= 1
137 are much weaker than the strong coupling constant

–
s

:= g2
s

/(4p) = 0.1181 (at the scale of the Z boson mass) [35], the QCD corrections are in
general dominating, which is why only these are included for the NLO calculation in this
thesis.

2.3 Hadronic Cross Sections at NLO

So far only the calculation of matrix elements contributing to the amplitude of a process
n æ m has been discussed. In order to find the di�erential cross section, which is a measure
for the probability for this explicit process to happen, the amplitude has to be multiplied by
a flux factor and the Lorentz-invariant phase space measure d�

m

. For a 2 æ m scattering
process with initial momenta q1 and q2 it is given by

d‡̂2æm

= 1
4
p

(q1 · q2)2 ≠ m2
1m2

2

X

|M|2 ·
m

Y

f=1

d3p
f

(2p)32E
f

(2p)4”(4)
⇣

X

p
f

≠
X

p
i

⌘

| {z }

= d�m

. (2.39)

Since the particles’ polarisations and colour charges are generally not prepared or measured
in experiments, the total squared matrix element |M|2 is averaged over incoming and
summed over outgoing polarisations and colour charges, which is denoted above as

P|M|2,
to give the unpolarised cross section. In hadronic scattering processes, the elementary
particles involved in the scattering, gluons or quarks, called partons, carry only a fraction
of the full hadron momentum P . In the approximation of massless partons, the flux factor
can be written as 1/(2ŝ), with the squared center-of-mass energy of the two interacting
partons ŝ given by

ŝ = (q1 + q2)2 = 2q1 · q2 = x1x2 2 · P1 · P2 = x1x2s, (2.40)

where x denotes the fraction of the hadron momentum carried by the parton and s is the
total squared center-of-mass energy of the hadrons. The probability to find a parton a with
momentum fraction x in the hadron with momentum P is given by the parton distribution
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function (PDF) f
a/P

(x). In order to get the full cross section for the hadronic scattering
process, the di�erential cross sections of all possible subprocesses that give the wanted final
state have to be integrated over phase space, folded with PDFs, and summed, giving

‡(pp æ X) =
ˆ

d‡(pp æ X)

=
X

a,b

sub-
proc.

1ˆ

0

dx1

1ˆ

0

dx2 f
a/P1(x1)f

b/P2(x2)
ˆ

d‡̂(ab æ X) (2.41)

for the example of a proton-proton scattering process resulting in a final state observable
X. Here, a and b can mean all quark types or gluons if the resulting combination gives a
possible subprocess for this final state.

For a calculation up to next-to-leading order, the cross section can be split into contributions
from the di�erential cross section in the Born approximation d‡B, which corresponds to
the leading order cross section, the virtual corrections d‡V containing the interference term
of the Born and one-loop diagrams in Equation 2.37, and the real emission di�erential
cross section d‡R with m + 1 final state particles, reading

‡ = ‡LO + ‡NLO =
ˆ

m

d‡B +
ˆ

m

d‡V +
ˆ

m+1
d‡R. (2.42)

2.3.1 Ultraviolet Divergences and Renormalisation

During the NLO calculation, singularities appear that have to be handled to get a finite
result for the cross section. In the virtual corrections, these originate from the integration
over the loop momentum k, which is of the form

ˆ
d4k

kµ1 · · · kµh

D0 · · · D
n≠1

, D
j

:=
 

k +
j

X

i=1
±p

i

!2

≠ m2
j

, (2.43)

with p
i

being the in- or outgoing momenta (coming with a + or ≠ sign, respectively) of
the n external particles coupling to the loop, h the number of fermions in the loop, and m

j

the masses of the internal loop particles. If some of these are zero, the mass singularities
appearing in the integration for low values of k give infrared divergences that cancel with
the real emissions, which will be explained in Section 2.3.2. From the integration over k
up to infinity further ultraviolet divergences arise when the numerator of the integrand
contains too much powers of k (when h > 2n ≠ 4).

To handle these divergences, the loop integrals are regulated to separate finite and divergent
parts. A convenient method to do this is dimensional regularisation, where the dimension
of spacetime is continued from 4 to d = 4 ≠ 2Á dimensions during the calculation [36]. The
singularities then manifest as poles in Á. Further, as physical observables are always finite
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and measurable, the idea is that the parameters of the Lagrangian, such as masses and
coupling constants, are bare quantities that are neither observable nor finite. To get a finite,
measurable result, these bare quantities, from now on called m0, ⁄0, „0, etc., are expressed
by renormalised quantities m, ⁄, „, and so on. By expressing the Lagrangian in these
quantities, counterterms appear that absorb the infinite but unobservable shifts between
bare and renormalised quantities. In this way new Feynman diagrams appear, whose
amplitudes can be calculated as functions of the shifting parameters. Using renormalisation
conditions at a specific momentum scale, called renormalisation scale µR, these are adjusted
to give finite amplitudes that are independent of the choice of the regularisation procedure.
This procedure to eliminate ultraviolet divergences by a redefinition of parameters is called
renormalisation.

There are several renormalisation schemes, for example on-shell renormalisation, where
two renormalisation conditions are given by the specification that the renormalised mass
m of a particle is the pole of its propagator with residue one, meaning the physical mass
of the particle. Another often used scheme is the minimal subtraction scheme, where the
counterterms are chosen in a way to exactly cancel the divergent poles in Á appearing
after dimensional regularisation, but all remaining finite terms are kept. Independent of
the scheme, the renormalisation scale can be chosen arbitrarily, which is why physical,
observable quantities must be independent of the choice of this scale. This is equivalent to
Green’s functions remaining fixed under a shift in µR, where Green’s functions

G(n)(x1, . . . , x
n

) = È�| T {„(x1) . . . „(x
n

)} |�Í , (2.44)

can be thought of as functions of the renormalisation scale µR, coupling constant ⁄, and
particle mass m. As a consequence, there have to be compensating shifts in the renormalized
coupling constant, mass and also field strength. For a massless theory, this leads to the
Callan-Symanzik equation [37, 38],



µR
ˆ

ˆµR
+ —(⁄) ˆ

ˆ⁄
+ n“(⁄)

�

G(n)({x
i

} ; µR, ⁄) = 0, (2.45)

with functions —(⁄) = µR ·d⁄/dµR and “(⁄) corresponding to the shifts in coupling constant
and field strength, respectively. This equation can be solved for the coupling constant as a
function of the scale µR.

Because of this so-called running of the coupling constant, the choice of the scale µR,
although arbitrary, a�ects the precision of the result of a cross section calculation up to
a specific order. In the loop corrections at NLO and higher orders, logarithms appear
that get large if µR is not chosen reasonably. To justify a perturbational approach, these
logarithms need to be kept small, which is done by adjusting the scale µR to the process
energy. This is most important for leading order calculations, where the scale only enters
in the scale dependent coupling constant. By choosing µR too far o� the process energy,
perturbation theory looses its accuracy, which is why the calculation only up to LO gets
highly unprecise. In the calculation of hadronic cross sections, the fraction of the total
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energy involved for the specific considered process is mostly not known exactly. In addition,
however reasonable the renormalisation scale is chosen, the error of a calculation up to
a specific order due to the missing orders of perturbation theory cannot be eliminated
completely by a rational choice of the scale. The scope of this error can however very
roughly be estimated by analysing the variation of the cross section with the scale. The
error and thus also the scale uncertainties reduce accordingly by including higher-order
corrections to the cross section.

The exact dependence of the coupling constant on the energy scale can be found by
rewriting Equation 2.45 for Fourier transformed Green’s functions of rescaled momenta
and solving the resulting di�erential equation for ⁄ by using the —-function. The evolution
of the strong coupling of QCD up to one-loop is then given by [32]

–
s

(Q2) = –
s

(µ2
0)

1 + –s(µ2
R)

4p

�11
3 N ≠ 4

3n
f

TR
�

ln Q

2

µ

2
R

, (2.46)

with n
f

being the number of quark flavours contributing at energy scale Q2 and µR being the
renormalisation scale. This formula comprises two kinds of behaviour of strong interactions,
known as asymptotic freedom and confinement. For large energies, the coupling approaches
zero, which was experimentally discovered in deep inelastic scattering experiments where
partons as constituents of hadrons behave like free particles. On the other hand, the
coupling diverges for low energies, preventing the use of perturbation theory in this region.
As a consequence, colour charged particles cannot be isolated, since their spatial separation
leads to new quark-antiquark pairs being produced. In scattering experiments this manifests
in the form of parton showers and hadronisation.

2.3.2 Infrared and Collinear Divergences

With the ultraviolet divergences regularised, there are still singularities to be handled during
the NLO calculation appearing in the low momentum region. When an e�ectively massless
particle of small momentum k is emitted from a fermion line or gluon, the propagator
before emission behaves as

1
(pµ ≠ kµ)2 ≠ m2

kæ0≠≠≠≠æ Œ, (2.47)

where p and m are the momentum and mass of the on-shell particle after emitting the soft
particle. If the emitter is also a massless particle, the propagator diverges not only if a soft
particle is emitted, but for any k that obeys k Î p, since

1
(pµ ≠ kµ)2 = 1

≠2p · k
= 1

≠2|p̨||̨k|(1 ≠ cos ◊)
◊æ0≠≠≠≠æ Œ. (2.48)

Such soft and collinear divergences appear both in the virtual corrections and in the real
emission part of the cross section. Kinoshita and Lee/Nauenberg independently showed
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that by summing over all degenerate states, that means over virtual corrections, real
emissions and absorptions, these soft and collinear divergences cancel out completely at all
orders of perturbation theory (KLN theorem) [39, 40].

In QCD the use of perturbation theory is justified only for short-distance interactions
because of asymptotic freedom (see Section 2.3.1). However, real emissions can take place
in the whole range of a detector. In order to still use the KLN theorem to cancel infrared
singularities, only so-called infrared safe observables are considered, meaning observables
that are independent of the number of collinear and soft particles in the final state and
thus do not depend on long distance physics. The fully inclusive cross section for example
is such a quantity. For infrared safe quantities, the sum over all final state configurations
is taken to cancel soft and collinear final state singularities. If partons appear in the initial
state, there are additional collinear initial state singularities that do not cancel, but can be
factorized into splitting functions and absorbed in the PDFs.

Parton Evolution

Partons as constituents of hadrons are confined in bound states. In this low energy range
the strong coupling is very large, so that no perturbative calculation of the PDFs is possible.
Instead, they are obtained by fitting experimental data. In the early days of deep inelastic
scattering experiments, James Bjorken proposed that the structure functions of nucleons
are only dependent on the momentum fraction x of the parton and not on the energy
scale of the scattering, which is called Bjorken scaling [9]. However, further experiments
showed a violation of this scaling behaviour, meaning a dependence on the energy scale, of
the structure functions. This scaling violation could be explained with the introduction
of QCD, since it originates from the above mentioned additional collinear singularities
appearing in higher order corrections to cross sections with initial state partons.

From the viewpoint of a perturbative higher-order calculation of a partonic cross section, an
incoming quark can itself, when resolved to very small scales, be seen as a quark constituent
along with further gluons and quark-antiquark pairs, all of which carry a specific momentum
fraction and can enter a so-called hard scattering process [31]. Singularites arising from
the collinear emission of initial partons are thus associated with their PDFs and not
the hard scattering cross section. This, however, makes the PDFs dependent on the
momentum scale of the hard scattering process. In contrast to the PDFs themselves, their
evolution with momentum scale can be determined perturbatively and is given by the
DGLAP equations [41–43]. The momentum scale at which the PDFs f

a/P

= f
a/P

(x, µF)
are evaluated is called the factorisation scale µF and qualitatively marks the edge between
soft long-distance and hard short-distance physics. Analogously to the renormalisation
scale µR it is an unphysical scale in the sense that all observables are independent of this
scale. The sum of all orders of perturbation theory should thus be independent of both
the renormalisation and factorisation scale. However, just as the renormalisation scale
the factorisation scale can be chosen in a rational way to reduce the error of a calculation
only up to a specific order in perturbation theory. If the considered process has a specific
momentum scale Q, this would be a rational choice for both scales.
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Dipole Subtraction Method

The left infrared and collinear final state divergences cancel according to the KLN theorem
when taking the sum over all contributions to the cross section. In analytic calculations,
this sum can be taken before phase space integration to cancel the singularities at the
integrand level.

For Monte Carlo techniques this is not possible, because real emission and virtual contri-
butions are calculated and integrated separately and numerically. A solution for numerical
calculations is to subtract a local counterterm d‡A from the real emission di�erential cross
section d‡R, which matches its singular behaviour in d dimensions. This counterterm
should furthermore be analytically integrable over the one additional subspace of the
(m + 1)-process to give a contribution proportional to the Born matrix elements which
contains poles that exactly cancel the ones of the virtual contribution. As a result, Á can
be set to zero in both integrals of

‡NLO =
ˆ

m+1

h⇣

d‡R
⌘

Á=0
≠
⇣

d‡A
⌘

Á=0

i

+
ˆ

m



d‡V +
ˆ

1
d‡A

�

Á=0
, (2.49)

which can then be integrated numerically over four-dimensional phase space by Monte
Carlo integration [44].

Catani and Seymour show in Reference [44] that the subtraction term d‡A can be con-
structed with process independent dipole factors dVdipole, symbolically written as

d‡A =
X

dipoles
d‡B ¢ dVdipole. (2.50)

The operation ¢ denotes a properly defined phase space convolution of a colour and spin
projection of the Born cross section with the universal factors dVdipole. With the insertion
operator

I =
X

dipoles

ˆ
1

dVdipole (2.51)

the NLO part of a cross section without initial hadrons can be written in the form

‡NLO =
ˆ

m+1

2

4d‡R ≠
X

dipoles
d‡B ¢ dVdipole

3

5 +
ˆ

m

h

d‡V + d‡B ¢ I
i

. (2.52)

As mentioned above, the additional initial state singularities for a process with incoming
partons are factorised and absorbed in a redefinition of the process-independent PDFs.
The finite terms that remain after cancelling all infrared and collinear divergences are
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summarised in the finite collinear remainder d‡C. Then the NLO cross section gets

‡NLO =
ˆ

m+1
d‡R +

ˆ
m

d‡V +
ˆ

m

d‡C

=
X

a,b

1ˆ

0

dx1

1ˆ

0

dx2 f
a/P1(x1, µF)f

b/P2(x2, µF)

·
2

4

ˆ
m+1

0

@d‡̂R
a,b

≠
X

dipoles
d‡̂B

a,b

¢
h

dV a,b

dipole + dṼ a,b

dipole

i

1

A

+
ˆ

m

⇣

d‡̂V
a,b

+ d‡̂B
a,b

¢ I
⌘

+
ˆ

m

ˆ
dz

⇣

d‡̂B ¢ [P(z) + K(z)]
⌘

a,b

3

5 ,

(2.53)

where a and b denote the initial state partons of the partonic subprocesses. The term
dṼdipole includes the dipole terms corresponding to initial-final collinearity, while dVdipole
includes the soft and collinear final state dipole splittings. The construction of the specific
dipole subtraction terms is explained in Section 3.3.3, where they are needed to subtract
the singularities in the real emission amplitudes. The integral over the dipole splittings
does not depend on the specific kind of subprocesses, meaning it has the same structure
for processes with only final hadrons, one initial hadron or two initial hadrons. It is given
by the insertion operator, which itself can be written universally as [44]

I ({p} ; Á) = ≠–
s

2p
1

G(1 ≠ Á)
X

I

1
T

2
I

V
I

(Á)
X

J ”=I

T

I

T

J

✓

4pµ

2p
I

· p
J

◆

Á

, (2.54)

with indices I and J running over all partons (initial and final). In dimensional regularisa-
tion, the functions V

I

are given by

V
I

(Á) = T

2
I

✓

1
Á2 ≠ p2

3

◆

+ “
I

1
Á

+ “
I

+ K
I

+ O(Á), (2.55)

with constants “
I

and K
I

depending on the particle being a quark/antiquark or a gluon,

“q = “q = 3
2CF, “g = 11

6 CA ≠ 2
3TRn

f

, (2.56)

and

Kq = Kq =
✓

7
2 ≠ p2

6

◆

CF, Kg =
✓

67
18 ≠ p2

6

◆

CA ≠ 10
9 TRn

f

, (2.57)

with the number of quark flavours n
f

. The operator T

I

is a colour-charge operator of
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parton I, defined as in Reference [44] and satisfying

T

I

· T

J

= T

J

· T

I

, T

2
I

= C
I

,
X

I,J

T

I

T

J

= 0, (2.58)

with C
I

= CA for gluons and C
I

= CF for quarks and antiquarks. The third relation
follows directly from colour conservation,

P

I

T

I

= 0. The calculation and application of
the insertion operator to cancel infrared divergences of the virtual correction amplitudes is
explained in detail in Section 3.4.1, as are the finite collinear remainder terms including
the operators P and K in Section 3.5.

2.4 Vector Boson Fusion

In Vector Boson Fusion (VBF) processes, an electroweak gauge boson (W, Z or g) is
exchanged between a pair of quarks, antiquarks or a quark and an antiquark, which then
emits another gauge boson or Higgs particle. To produce a W boson via vector boson
fusion, the two quark lines have to radiate di�erent kinds of bosons, one neutral Z boson
or photon and one W boson, that fuse to a charged W boson, as in Figure 2.2(a). By also
considering the leptonic decay of the W boson, non-resonant diagrams as in Figure 2.2(c),
with the same final state signature but no intermediate boson, also contribute. These
as well as diagrams like the one in Figure 2.2(b), where the final state boson is emitted
from one of the quark legs, need to be included in a calculation in addition to the “true”
VBF diagrams in order to preserve gauge invariance. All of these diagrams resemble an
electroweak t-channel exchange, with the Mandelstam variables for a 2 æ 2 process with
incoming momenta p1 and p2 and outgoing momenta p3 and p4 defined as

s = (p1 + p2)2,

t = (p3 ≠ p1)2, (2.59)

u = (p4 ≠ p1)2,

see also Figure 2.3. In the VBF approximation, s-channel diagrams giving the same final
state are neglected by reasoning that these contributions are highly suppressed in phase
space regions where VBF processes are observed. These regions are characterised by two

q1 q3

q2 q4

W
Z,g

W

(a) True VBF diagram

q1 q3

q2 q4

WZ,g/W

(b) W emission from leg

q1 q3

q2 q4

l≠

nl

Z,g

W

(c) Non-resonant diagram

Figure 2.2: Some example diagrams contributing to W boson production via vector boson
fusion.
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p1

p2

p3

p4

Ã 1
s

(a) s-channel diagram

p1 p3

p2 p4

Ã 1
t

(b) t-channel diagram

p1 p3

p2 p4

Ã 1
u

(c) u-channel diagram

Figure 2.3: The three di�erent channels for a 2 æ 2 process defining the Mandelstam variables
s, t and u.

high-energetic, widely rapidity separated final jets, called tagging jets, and a reduced
jet activity in the central region. In addition, interferences between t- and u-channel
diagrams are neglected because of colour suppression, meaning the interference terms
are suppressed by a factor of 1/N = 1/3, since only quarks with identical colour give a
non-zero interference term. The justification of these approximations is demonstrated in
Reference [45] exemplary for the process pp æ Wjj/Zjj.





CHAPTER 3
Calculation and Implementation

This chapter presents the calculation of W production in association with three jets via
vector boson fusion up to NLO in –

s

. The processes W≠jjj and W+jjj are handled in
parallel, as they are highly similar to each other. Both have been implemented in the parton-
level Monte Carlo program Vbfnlo [18–21], whose general structure and performance
is described in Section 3.1. Subsequently, the calculation and implementation of the LO
process of Wjjj is explained first before the real emission and virtual correction contributions
are depicted in detail.

3.1 VBFNLO

Vbfnlo [18–21] provides simulations of vector boson fusion as well as double and triple
vector boson production in collisions of proton and/or antiproton beams at QCD NLO with
up to three additional jets. The program includes beyond the Standard Model physics, for
example anomalous couplings, and is fully flexible in respect to the possibility of choosing
between di�erent scales, set individual cuts, and select from all available PDF sets. Another
benefit of Vbfnlo is its speed, which arises to some extent from the precalculation of
reusable parts of matrix elements, which is explained in detail for the special case of
Wjjj in Section 3.2. The VBF approximations mentioned in Section 2.4 further simplify
the calculations in Vbfnlo, as besides neglecting the interference of t- and u-channel
diagrams no loops connecting both quark lines are considered for the NLO calculations.
Additionally, quark masses are approximated by zero. Since this approximation is not valid
for top quarks, they are not considered in Vbfnlo, and bottom quarks are only included
in processes where no top quark can appear in an intermediate state.

3.1.1 Monte Carlo Integration and Phase Space Generation

The total cross section formula for a pp æ X process as in Equation 2.41 has to be modified
with the application of cuts to

‡ =
X

sub-
proc.

1ˆ

0

dx1

1ˆ

0

dx2 f
a/P1(x1)f

b/P2(x2) 1
2ŝ

ˆ
d�

m

�cuts
X

|M
ab

|2 . (3.1)
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Besides the di�culties due to the high dimensional integral and the unavailability of
analytic PDFs, the cuts �-function makes it in general impossible to solve these integrals
analytically and a naive direct numerical integration would be highly time consuming. In
Vbfnlo, the integration is performed numerically via Monte Carlo integration. The idea,
adapted from Reference [46], is to express the integral of the integrand function f(x̨) over
the n-dimensional volume � as

I =
ˆ

�
dnx̨ f(x̨) =

ˆ
�

dnx̨
f(x̨)
g(x̨) g(x̨), (3.2)

where g(x̨) is a normalised distribution function of points in �,
ˆ

�
dnx̨ g(x̨) = 1. (3.3)

By choosing M points x̨
i

œ � according to this distribution, the integral I can be
approximated by

I
M

= 1
M

M

X

i=1

f(x̨
i

)
g(x̨

i

) . (3.4)

which converges to I in the limit of M æ Œ. The error of this estimate,
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5 , (3.5)

is independent of the dimension of the integration, making Monte Carlo integration
especially convenient for high dimensional phase space integrals.

Importance sampling further reduces the error by choosing the random points according to
a distribution g(x̨) that resembles the integrand f(x̨), causing more points to be chosen
in regions where f is large. In Vbfnlo this is done by Monaco, an algorithm based on
Vegas [46]. It performs the integration in several iterations, factorising the distributions
g(x̨) in step functions, called grids, g

j

(x
j

) for each dimension j,

g(x̨) =
n

Y

j=1
g

j

(x
j

). (3.6)

For each step in the g
j

the same number of sampling points is chosen. In the first iteration,
all grids are chosen uniformly, meaning that the steps of g

j

have the same width. During
each iteration, the integrand values at the sampled points are written in histograms to be
used to adjust the boundaries of the grid steps and thus the g

j

(x
j

) for the next iteration.

In addition to the importance sampling done by Monaco, Vbfnlo contains phase space
generators for the various classes of implemented processes. These use knowledge about the



3.1 VBFNLO 27

shape of resonances in the amplitudes, such as Breit-Wigner resonances for the propagators
of massive gauge bosons, in order to convert the random numbers x

i

in a sensible way to
external particle momenta.

3.1.2 Program Structure and Operation

Vbfnlo is written in Fortran and has a modular structure, containing various subrou-
tines calculating for example bras, kets, and currents, that can be used in all amplitude
calculations. Before running the program, desired parameters for the calculation can be
set in input files, such as physics parameters, cuts and anomalous couplings, as well as
adjustments for the output in form of histograms, root files etc. The file vbfnlo.dat

contains general regulations for the calculation, which besides the selection of the process
to calculate are switches for LO or NLO, selection of final state leptons and the number of
phase space points and Monte Carlo iterations that shall be performed.

The main routine of Vbfnlo reads these parameters when being executed, before initialising
the phase space for the chosen process, the random number generator Monaco and the
histograms. The program then starts with the first Monte Carlo iteration and converts the
first generated random number vector x̨ to the momenta of the external particles. The
routine cuts then checks if this produced phase space point passes the cut criteria, or if it
is skipped to continue with the next random number vector. If it passes, the factorisation
and renormalisation scales µF and µR for this point in phase space are calculated, before
the function Amplitude is called. Here, the actual calculation of the squared matrix element
|M|2 for the requested process is called. This is described in detail in the following sections
for the Wjjj process. After this calculation, the amplitude |M|2 is multiplied by the phase
space factor before being returned to the integration and added to the previous calculated
amplitudes at di�erent phase space points. In the last iteration, the results of each phase
space point are written in histograms and the total cross section including errors is returned.
Details about the histograms that are to be created can be defined and changed in the file
histograms.F. The whole operation flow is shown in compact form in Figure 3.1.

In the case of an NLO calculation, separate calculations are done for the virtual contribution
and real emission cross section, for which a separate phase space is constructed. For the
virtual corrections the grid of the last LO iteration is used as starting Monte Carlo grid,
while the real emission calculation needs to perform separate iterations beginning again
with a uniform starting grid due to the di�ering phase space. It is also possible in Vbfnlo
to only calculate real emission amplitudes, which resemble the LO of a process containing
one additional jet.
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Ԧ𝑥

ℳ 2

Figure 3.1: Schematic diagram of the operation sequence in Vbfnlo [partially adapted from
47, p. 24].

3.2 Leading Order

The considered process of two partons interacting via vector boson fusion to give the final
state observable Wjjj – three jets in addition to a lepton-antineutrino pair for the case of
W≠ and an antilepton and corresponding neutrino for the case of W+, to be precise – is
at Born level of electroweak order –4

e

including the leptonic decay of the W boson and of
order –

s

in respect to strong interactions. There are several subprocesses that contribute
to the overall process, each given by a di�erent constellation of the five involved partons,
four of which are quarks and one is a gluon. These subprocesses are related to each other
via crossing symmetry. In Vbfnlo, the matrix element calculation is implemented for the
subprocess

q1(p̃1) q2(p̃2) æ q3(p̃3) q4(p̃4) g(p̃5) W(pW). (3.7)

All other subprocesses are calculated by mapping the physical momenta of the particles
to the momenta used in the calculation following the formalism of Reference [48]; so for
example for the crossing g(p1) q2(p2) æ q3(p3) q1(p5) q4(p4) W(pW), the incoming physical
momentum p1 is assigned to the gluon, which has outgoing momentum p̃5 during the
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calculation, so p̃5 is set to ≠p1.

In the VBF approximation, there is no interference between t- and u-channel diagrams
and no s-channel diagrams are included. This is realised in the calculation by considering
the two quark lines as belonging to di�erent colour algebras, under which the quarks of
the opposite line transform as singlets. Thus, diagrams with gluon emitted on the upper
quark line, that is to quark q1 or q3 (thus this line will also be denoted line q1q3), have to
be treated separately and the resulting matrix elements have to be squared before being
added to the squared matrix elements of the process with gluon emitted on the lower quark
line (also denoted line q2q4). As of now, diagrams with the gluon coupling to the upper
quark line are referred to as colour structure 1 (cs1) diagrams, while diagrams with gluon
coupled to the lower line are called colour structure 2 diagrams. The quarks belonging to
the lower line colour algebra will be denoted by upper case letters.

The number of subprocesses contributing to a process of two initial and three final state
partons thus reduces to eight in the VBF approximation. In Figure 3.2 the subprocesses
that have contributions from cs1 diagrams are shown. The subprocesses (a), (b) and
(d), (e) (with no initial gluon) also exist for cs2, while (c) and (f) do not. There are two
subprocesses only existing in colour structure 2, which are similar to (c) and (f), but with
an initial gluon coupled to the lower line instead of the upper one. Since the amplitudes
are integrated over phase space, the inclusion of a subprocess with q1 and q3 switched in
Figures 3.2(c) and (f) would be double counting.

For the Wjjj process, the possible subprocesses on the parton level are identical, with the
addition of a W observable in the final state. The only possible flavour combinations in

q1 q3

Q2 Q4

g

(a) q1Q2 æ q3Q4g

q3 q1

Q2 Q4

g

(b) q3Q2 æ q1Q4g

g q1

Q2 Q4

q3

(c) gQ2 æ q3q1Q4

q1 q3

Q4 Q2

g

(d) q1Q4 æ q3Q2g

q3 q1

Q4 Q2

g

(e) q3Q4 æ q1Q2g

g q1

Q4 Q2

q3

(f) gQ4 æ q3q1Q2

Figure 3.2: All subprocesses that have contributions from colour structure 1. The grey circle
indicates that the order of the couplings in this circle is irrelevant, so there are diagrams where
the quark line couples to the electroweak current before emitting the gluon and also ones
where the gluon is emitted before the line couples to the current. This is part of the notation
explained in Appendix B.
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the chosen crossing of Equation 3.7 giving this final state are

W≠jjj

d D æ d U g l≠ nl,

u D æ u U g l≠ nl,

d D æ u D g l≠ nl,

d U æ u U g l≠ nl,

W+jjj

u U æ u D g l+ nl,

d U æ d D g l+ nl,

u U æ d U g l+ nl,

u D æ d D g l+ nl.

(3.8)

Here, u/U can be replaced by all up-type quarks except top quarks, and similarly d/D by
all down-type ones except for bottom quarks. Yet, as CKM mixing is neglected, quarks of
one line belong to the same generation. The matrix elements themselves do not depend on
the generation of the involved quarks, so the calculation is implemented only for up and
down quarks.

3.2.1 Electroweak Currents and Leptonic Tensors

The W final state observable, (anti-)lepton and (anti-)neutrino, can be produced in two
general ways, classifying the diagrams contributing to the process in two groups:

• Emission from one quark leg, as in Figure 2.2(b) for Wjj, and decay æ diagrams
with an e�ective polarisation vector.

• True VBF, as in Figure 2.2(a), and direct lepton-neutrino production, as in Figure
2.2(c) æ leptonic tensor diagrams.

As mentioned in Section 2.4, all of these diagrams have to be included to preserve gauge
invariance. In detail, the terms of the boson propagators proportional to (1 ≠ ›)kµk‹/k2

with gauge parameter › cancel only by including all of the mentioned diagrams. By thus
including them all, only the propagator terms proportional to gµ‹ have to be implemented
in the calculation, since the gauge-dependent ones would eventually cancel anyway.

In any case the intermediate state W boson can have o�-shell momentum. The first
production mechanism can additionally be split into two categories depending on the
kind of electroweak current that is exchanged between the quark lines. For each flavour
combination the process contains neutral current (NC) diagrams with Z boson or photon
exchange, charged current (CC) diagrams with W boson exchange, and leptonic tensor
(LT) diagrams. The position of the W boson emission depends on the flavour combination
and on the type of current. In NC diagrams, the W boson is emitted from the line that
changes flavour, while in CC diagrams, it can only be emitted either before or after the
emission of the current of the line not changing flavour, depending on the flavour of this
line and the kind of W boson considered. Figures 3.3(a) and (b) show the possible NC
and CC diagrams for the flavour combination u D æ u U g W≠, with the gluon, which can
be emitted from every position on both quark lines, omitted for simplicity. Since the NC
can consist either of a Z boson or of a photon, and considering all five di�erent positions
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(c) Leptonic tensor

Figure 3.3: Diagrams for the flavour combination u D æ u U g l≠ n
l

. The final state gluon
is omitted for simplicity, as it can be emitted on each external quark leg or internal quark
propagator, which is indicated with red crosses. The grey circle is explained in Appendix B.
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Figure 3.4: Leptonic tensors Lµ‹ that produce the W≠ final state observable. The first two
exist for both neutral bosons, the third only for a Z boson.

for gluon emission, there are in total 20 NC and five CC diagrams for this single flavour
combination.

Figure 3.3(c) combines the five (times four for the possible position of gluon emission)
additional LT diagrams, with leptonic tensor symbolized by the black circle. The five
explicit leptonic tensors are shown in Figure 3.4, where (c) only exists for Z bosons, as
photons do not couple to the intermediate neutrino propagator.

In Vbfnlo, the e�ective polarisation vector and all leptonic tensors are calculated with
HELAS (HELicity Amplitude Subroutines for feynman diagram evaluations)[49]. These
are implemented in Fortran77 and include routines to compute incoming and outgoing
wavefunctions of fermions and vector bosons for fixed helicities, as well as three-particle
amplitudes. A subroutine not included in HELAS, but of similar construction, is VCARTX,
which computes an e�ective vector wavefunction for an internal vector boson including its
propagator. This routine is especially needed for the leptonic tensor calculation.

The e�ective polarisation vector and leptonic tensors are the same for all subprocesses
and are thus calculated only once per phase space point, which reduces the computing
time significantly. While the e�ective polarisation vector only depends on the momenta
of the decaying leptons, the leptonic tensors are calculated for all possible momentum
configurations. These are the two possible momentum flows corresponding to the two colour
structures, and the two directions corresponding to the position of the flavour changing
line.
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3.2.2 Calculation of Matrix Elements

The total squared matrix element for a specific flavour combination is given by the average
over incoming particles’ and sum over outgoing particles’ polarisations and colours,

X

|M|2 = 1
4f

c

X

a

X

i,j,k

X

s1,s2

X

⁄

|M
s1,s2,⁄,i,j,k,a

|2 (3.9)

where ⁄ = 0, 1 is the gluon polarisation, s1, s2 = ≠1, 1 and i, j, k = 1, . . . , N the helicities
and colour charges of the quarks, respectively, and a = 1, . . . , N2≠1 the gluon colour
charge. Since quark helicities of the same line are preserved, as is the colour charge of
the line not coupling to the gluon, the sums over the missing two final state helicities and
one colour charge were eliminated by Kronecker deltas. The factor f

c

depends on the
incoming particles, since the colour charge average over two incoming quarks gives a factor
of f

c

= 1/N2, whereas f
c

= 1/(N(N2 ≠ 1)) if the incoming particles are a gluon and a
quark. All diagrams contain a gluon-fermion vertex proportional to ≠ig

s

ta

ji

, which in the
squared matrix element sum gives a factor of

�

ta

ji

�ú
ta

ji

= (ta)
ij

ta

ji

= Tr (tata) = N2 ≠ 1
2 = CFN, (3.10)

multiplied by the coupling factor g2
s

= 4p–
s

, which is calculated at a constant or dynamic
scale. The left colour charge sum over k only gives an additional factor of N , as the
diagrams for di�erent colour charges of the gluon-disconnected line give identical results.
In addition, the cs1 and cs2 diagrams do not interfere, so the total squared matrix element
can be expressed as

X

|M|2 = p–
s

CFN2f
c

X

s1,s2,⁄

⇣

�

�Mcs1
s1,s2,⁄

�

�

2 +
�

�Mcs2
s1,s2,⁄

�

�

2
⌘

. (3.11)

The Mcs1
s1,s2,⁄

themselves contain the sum of all diagrams with gluon emitted from line q1q3,
meaning NC, CC, and LT diagrams, for a specific helicity and polarisation combination.
Their computation is simplified by computing the currents of upper and lower line J1 and
J2, respectively, and combining them with the exchanged current or the pre-calculated
leptonic tensor. In this way, a large amount of computation time can be saved, because
many diagrams share the same currents. Specific factors, such as propagators and couplings
for di�erent flavours, can be multiplied in the end. The matrix elements for cs1 can thus
be expressed with flavour combination index j and position of gluon emission i as

Mcs1
j

= gV D
µ‹

V J2
‹

X

i,l

J1,i,l

µ

+ gL L
µ‹

j,cs1 J
2
‹

X

i

J1,i

µ

, (3.12)

where the legs of the W boson emission l for NCs (possible on two legs) and CCs (only
one possible leg) depend on the flavour combination j, as explained in Section 3.2.1, and
D

µ‹

V Ã gµ‹ is the propagator of the exchanged current, with V going over W, Z, and g.
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The combined electroweak coupling factors gV/L are the only components that are totally
diagram specific.

Currents and diagrams for helicity combinations that give zero are not calculated in the
first place. These are all diagrams in which right-handed quarks couple to a W boson.
Consequently, CC diagrams only give a contribution if all quarks are left-handed, NC and
LT diagrams if the quarks of the flavour changing line are left-handed.

The implementation in Vbfnlo is done via braket routines. These o�er the possiblity to
attach vector bosons to incoming or outgoing spinors (bras and kets) of fermions. Bras
and kets can be combined to currents via the routine curr6, and then contracted with
other currents via dotcc or two currents with a leptonic tensor via contract_Tjj. The
calculation sequence of the total amplitude at one phase-space point can be summarised in
the following steps:

1. Calculate e�ective polarisation vector and leptonic tensors.

2. First subprocess: Map physical momenta to momenta of the chosen crossing, Eq. 3.7.

3. Calculate quark spinors and gluon polarisation vector.

4. Compute all needed currents: Empty quark lines, lines with W boson attached, lines
with gluon attached, lines with W boson and gluon attached, in every order.

5. Calculate diagrams by contracting currents and leptonic tensors and multiplying by
progagator and/or coupling factors.

6. Sum up diagrams for di�erent positions of W boson emission and leptonic tensors
and square the result.

7. Sum over helicities, gluon polarisation and colour structure (if both exist1), and
multiply by factors.

8. Fold with PDFs for all combinations of possible initial state partons for the considered
subprocess.

9. Repeat step 2 to 8 for all subprocesses and sum over results.

10. Return squared amplitude to function Amplitude.

In step eight the term all possible initial state partons refers to up, down, strange and
charm quarks, but not to bottom or top quarks, for the reasons explained in Section
3.1. For a combination of charm quark as particle 1 and down quark as particle 2 for
example, the squared matrix element for the flavour combination u D æ u U g W is folded
with the corresponding PDFs for a charm quark of momentum p1 and a down quark of
momentum p2.

1 Subprocesses with initial state gluon only exist for one colour structure.
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3.3 Real Emissions

The real emission contribution contains one additional jet in the final state, so the final
state observable is given by Wjjjj. The subprocesses leading to this observable can be
separated into two general subprocess classes, namely

(a) subprocesses with six external quarks (q1Q2 æ q3Q4qÕ
5qÕ

6 and crossing related ones
with antiquark(s) in the initial state), and

(b) subprocesses with two external gluons and four external quarks.

The second class can further be separated into

(i) subprocesses with two final state gluons, e.g. q1Q2 æ q3Q4gg,

(ii) subprocesses with one intial state gluon, e.g. q1g æ q3Q4Q2g or gQ2 æ q3Q4q1g,

(iii) subprocesses with two initial state gluons, gg æ q3Q4q1Q2,

and for the quark initiated ones the corresponding crossing related subprocesses with
antiquark(s) in the initial state.

In analogy to the LO calculation, the leptonic tensors and the e�ective polarisation vector
of the W boson are calculated once per phase space point and reused during the calculation
of di�erent subprocesses. The leptonic tensors are needed for four momentum flows,
corresponding to p5 and p6 being connected either both to the upper line, both to the
lower line or one to the upper line and one to the lower line. Only the first two cases are
needed for the six-quark subprocesses, since the two additional quarks both couple to the
same line.

To reduce calculational e�ort, all currents needed for the matrix element calculation are
calculated before entering the first subprocess, saved, and later on called when needed.
Because many currents are needed at least twice, such as an empty line q1q3 for both
the qQ as well as the qQ incoming state, this reduces the computing time considerably.
For a sole tree-level calculation of the real emission amplitude, the amount of computing
time saved after implementing this precalculation of currents was tested to be 17 % for the
calculation running over 226 phase space points with 4 grid iterations, of which about 224

passed the cuts in the last iteration.

3.3.1 Subprocesses with Two Gluons

Subprocesses with the same topology but exchanged gluons give the same amplitude at
another phase space point. Due to the performed integration over phase space, only one of
these configurations has to be calculated per phase space point. As the additional gluon
does not a�ect the flavours of the quarks, the flavour combinations and possible positions
of W boson emission are the same as in the leading order calculation. However, there are
now more colour structures, which are related to the positions of the two gluons. These
shall be explained in detail for the qQ initial state with two final state gluons.
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In the following, the amplitude MqQ for a specific helicity and polarisation combination
shall be considered. It can be expressed as the sum of six colour structure subamplitudes
multiplied with tensors T(m),

MqQ =
6
X

m=1
T(m)M(m). (3.13)

If the gluons are emitted from opposite lines, the amplitudes are given by1

T(3)M(3) = ta

ji

t̂b

lk

M(3) and (3.14)

T(4)M(4) = tb

ji

t̂a

lk

M(4), (3.15)

where M(3) includes all diagrams with the gluon of colour a being emitted from the upper
line and the one with colour b being emitted from the lower one. M(4) analogously contains
the diagrams with contrariwise emissions. The indices i and j label the colour charges of
the upper line quarks, k and l the colour charges of the lower line quarks and the hat over
t symbolises the di�erent SU(3) algebra. If the two gluons are both emitted from the upper
line, there are three possible topologies. They can be emitted one after another, as in
Figures 3.5(a) to (c), where either the one corresponding to colour a can be emitted closer
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Figure 3.5: Diagrams contributing to colour structures 1 and 2 for a two-gluon subprocess
with W boson production as leptonic tensor.

1 For better readability, the indices of a component of T(i) will be suppressed here and in the following
equations, so instead of T(m)ab

jilk , T(m) will be written.



36 Chapter 3 Calculation and Implementation

to the final quark, or the one corresponding to colour b. The matrix elements comprising
the corresponding diagrams are called M

A

and M
B

, respectively. The gluons can also be
produced in non-abelian diagrams with a three-gluon vertex, like in Figures 3.5(d) and (e),
which is denoted by M

C

. Since the generators appearing from the quark-gluon vertices are
now of the same colour algebra, they do not commute. This gives three di�erent tensor
structures for the three topologies, whose sum gives the first two colour structures of
Equation 3.13,

T(1)M(1) + T(2)M(2) = ”
lk

⇣

tatb

⌘

ji

M
A

+ ”
lk

⇣

tbta

⌘

ji

M
B

+ ”
lk

h

ta, tb

i

ji

M
C

. (3.16)

In order to simplify the calculation in such a way that the squared amplitude does
not contain interference terms of these di�erent diagram kinds, the T(m) can be chosen
orthogonal. It can easily be shown that all three terms are already separately orthogonal
to T(3) and T(4), as the preservation of the lower line colour charge leads to the trace over
t̂b or t̂a, which gives zero. By forming linear combinations of the terms, T(1) and T(2) can
be chosen as two orthogonal tensors, namely the commutator and anticommutator of ta

and tb, since
n

ta, tb

oú

ji

h

ta, tb

i

ji

=
n

ta, tb

o

ji

h

ta, tb

i

ji

= Tr
⇣

tatbtatb + tbtatatb ≠ tatbtbta ≠ tbtatbta

⌘

= 0,

(3.17)
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⇣
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⌘
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. (3.18)
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)
◆

. (3.19)

The tensors for colour structures five and six, where both gluons are emitted from the
lower line, can be derived similarly. Summing up, the colour structure tensors T(m) in
Equation 3.13 are given by
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lk

.

(3.20)
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With this, the colour sums of the squared amplitude give
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X
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�
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=
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X
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X
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⇣

M(n)
⌘ú

M(m),

(3.21)

with constants C(nm) calculable with the colour algebra relations of Equation 2.20 to (see
Appendix C)

C(11) = C(55) = NCF
2

✓

NCF ≠ 1
2

◆

,

C(33) = C(44) = N2C2
F,

C(15) = C(51) = NCF
2 ,

C(22) = C(66) = NCF
2

✓

NCF + 1
2

◆

,

C(34) = C(43) = NCF
2 ,

(3.22)

and all other interference terms being zero. In the VBF approximation, also the non-zero
interference terms are neglected, as due to the approach with two di�erent colour algebras
the gluon with colour a has to be identified with either the upper or the lower colour algebra.
While for the LO calculation the approximation was justified by a 1/N suppression of the
neglected terms, the interference terms of the two-gluon subprocesses are colour suppressed
by a factor of 1/(N2 ≠ 1) with respect to the other terms. In both cases, the neglected
terms are additionally subject to a kinematic suppression when applying standard VBF
cuts [50, p. 7].

For other subprocesses than the one with two initial quarks considered so far not all six
colour structures exist. Processes with one gluon in the initial state only contain diagrams
of colour structure 1, 2 and 3, if the initial gluon is attached to quark line q1q3, or colour
structures 4, 5, and 6, if it is attached to line q2q4. Here, only the gluon with colour a is
considered as an initial state gluon, since the integration over phase space gives also the
process with exchanged gluons. For processes with two initial state gluons only one colour
structure exists, which can be either colour structure 3 or 4 depending on which gluon is
coupled to which line. It does not matter which of these two colour structures is chosen for
the calculation as the phase space integration leads to the same result for both.

The calculation of the matrix elements M(m) follows the same logic as in the leading
order calculation, since the possible flavour combinations giving the expected final state
are the same for the two-gluon processes. The main di�erence is the calculation of the
currents contributing to the diagrams for colour structures 1, 2, 5, and 6, where two gluon
polarisation vectors have to be added to the bras or kets, or the e�ective polarisation
vectors of the gluon for the non-abelian graphs M

C

have to be built. Another di�erence
are the colour prefactors f

c

in the averaged polarisation sum over the squared real emission
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matrix element,
P |MR|2. The subprocesses with two initial quarks or antiquarks contain

an additional factor 1/2 to take care of the two identical final state particles, the gluons, so
in this case f

c

= 1/(2N2). For subprocesses with one initial state gluon, the factor stays the
same as in the leading order calculation, so f

c

= 1/(N(N2 ≠ 1)). The subprocess with two
initial gluons, that did not exist in the leading order, carries a factor of f

c

= 1/(N2 ≠ 1)2

to average over both gluon colour charges.

3.3.2 Subprocesses with Six External Quarks

For processes with the gluon splitting into two quarks, only four subprocesses need to be
considered, namely

q1 Q2 æ q3 Q4 qÕ
5 qÕ

6 W,

q1 Q4 æ q3 Q2 qÕ
5 qÕ

6 W,

q3 Q2 æ q1 Q4 qÕ
5 qÕ

6 W,

q3 Q4 æ q1 Q2 qÕ
5 qÕ

6 W,

(3.23)

because all other subprocesses, like ones with qÕ
5 in the initial state, are then reached by the

phase space integration. The third quark pair is denoted with primes, as it can either be
coupled to the upper quark line and thus belong to the colour algebra of q1 and q3, which
is likewise colour structure 1 in the LO calculation, or it can be connected to the lower line
and thus belong to the algebra of Q2 and Q4. While the implementation in Vbfnlo was
done for the crossing related process q1Q2qÕ

5 æ q3Q4qÕ
6W for reasons of simplicity, the first

of the above mentioned subprocesses is chosen for the following explanation of the matrix
element calculation.

Because there is now a third quark line to which the electroweak current or the emitted W
boson can couple, there are 15 flavour combinations contributing to the Wjjjj process, which
are given in Table 3.1. Likewise to Equation 3.8, u/U/uÕ and d/D/dÕ are representative
for all included quark generations. Since there are three quark lines, from which two are
coupled by a gluon, the electroweak current connecting the not-gluon-connected line can
couple to either one of these two lines. This classifies the two general diagram topologies
A and B in Figures 3.6(a), (b) for colour structure 1 and Figures 3.7(a), (b) for colour
structure 2. In these Figures the emission of the W boson is omitted for simplicity. It
can be emitted from one of the now six quark legs, or as leptonic tensor, where again the
possible positions depend on the flavour combination and if the exchanged electroweak
current is an NC or CC. For flavour combinatons (a) to (l), diagram types A and B exist
as NC, CC, and as LT diagrams. In NC diagrams, the W boson can be emitted from
both quarks of the flavour changing line, while in CC diagrams it is emitted from one of
the quarks of the line not changing flavour but also connected to the electroweak current.
Since in the remaining flavour combinations (m) to (o) all three lines in diagram types A
and B change flavour, these do only exist as CC.
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Table 3.1: Flavour combinations for the real emission subprocesses with six external quarks.

W≠jjjj W+jjjj

d D æ d U dÕ dÕ W (a) u U æ u D uÕ uÕ W

d D æ d U uÕ uÕ W (b) u U æ u D dÕ dÕ W

u D æ u U dÕ dÕ W (c) d U æ d D uÕ uÕ W

u D æ u U uÕ uÕ W (d) d U æ d D dÕ dÕ W

d D æ u D dÕ dÕ W (e) u U æ d U uÕ uÕ W

d D æ u D uÕ uÕ W (f) u U æ d U dÕ dÕ W

d U æ u U dÕ dÕ W (g) u D æ d D uÕ uÕ W

d U æ u U uÕ uÕ W (h) u D æ d D dÕ dÕ W

d D æ d D dÕ uÕ W (i) u U æ u U uÕ dÕ W

d U æ d U dÕ uÕ W (j) u D æ u D uÕ dÕ W

u D æ u D dÕ uÕ W (k) d U æ d U uÕ dÕ W

u U æ u U dÕ uÕ W (l) d D æ d D uÕ dÕ W

d D æ u U uÕ dÕ W (m) u U æ d D dÕ uÕ W

d U æ u D dÕ uÕ W (n) u D æ d U uÕ dÕ W

u D æ d U dÕ uÕ W (o) d U æ u D uÕ dÕ W

In contrast to the leading order calculation, two quark lines now belong to the same colour
algebra. This means that if they belong to the same flavour generation, there are additional
contributions from diagrams of type C and D as in Figures 3.6(c), (d) (cs1) and 3.7(c), (d)
(cs2), which interfere with the A and B diagrams. For the chosen reference subprocess, C
and D diagrams can basically be obtained from A and B by exchanging q3 and qÕ

6 for cs1,
or Q4 and qÕ

6 for cs2, but keeping the momenta. Thus there are flavour combinations with
the same initial and final state particles, giving the same process for another phase space
point. For example the process

d D æ u U u d W

corresponds to flavour combination (m), but also to flavour combination (b), with the
only di�erence that the final u and d quarks carry the momenta p3 and p6 in di�erent
order. After phase space integration, this process would thus be included twice, which is
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q1 q3

Q2 Q4

q6

q5

(a) Type A diagram

q1 q3

Q2 Q4

q6

q5

(b) Type B diagram

q1 q6

Q2 Q4

q3

q5

(c) Type C diagram

q1 q6

Q2 Q4

q3

q5

(d) Type D diagram

Figure 3.6: Diagram types for six-quark subprocesses for colour structure 1. The final state
W boson is omitted for simplicity. The grey circle is explained in Appendix B.

q1 q3

Q2 Q4

Q6

Q5

(a) Type A diagram

q1 q3

Q2 Q4

Q6

Q5

(b) Type B diagram

q1 q3

Q2 Q6

Q4

Q5

(c) Type C diagram

q1 q3

Q2 Q6

Q4

Q5

(d) Type D diagram

Figure 3.7: Diagram types for six-quark subprocesses for colour structure 2. The final state
W boson is omitted for simplicity. The grey circle is explained in Appendix B.

why C and D diagrams in cs1 are calculated only for one of the two flavour combinations.
Except for (b)-(m), there are three more flavour combination pairs that are redundant
in interference for cs1, which are (c)-(o), (e)-(i), and (g)-(j). For cs2, the redundant
interference pairs are (a)-(i), (c)-(k), (f)-(m), and (g)-(n).

However, these pairs are only redundant in the case of the two incoming particles being
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quarks, which is the case in the chosen subprocess. For subprocesses with incoming
antiquarks, the redundant combinations di�er, since then qÕ

5 and q1 or qÕ
5 and Q2 are

the exchangeable particles for cs1 or cs2, respectively. The redundant pairs for incoming
antiquark and colour structure 1, meaning q3 is incoming, are (b)-(o), (c)-(m), (f)-(k), and
(h)-(l). These are independent of the kind of incoming particle on line q2q4. For colour
structure 2, meaning Q4 is incoming, the redundant pairs are (b)-(j), (d)-(l), (f)-(n), and
(g)-(m).

The calculation of currents is again done with the braket routines of Vbfnlo, in which now
also whole currents are attached to one bra or ket, for example the current of line q5q6 to
q1 or q3 for a cs1 diagram of type A. As stated above, all needed currents are precalculated
before the calculation of the first subprocess, as most of them are needed for more than
one subprocess. During the calculation of one subprocess, these precalculated currents are
accessed, contracted and multiplied by propagator and coupling factors to construct the
necessary diagrams. The diagram types A and B are summed and squared separately from
the C and D diagrams and summed over helicites. For the amplitude in the interference
case,

|Mint|2 = |MA,B ≠ MC,D|2 = |MA,B|2 + |MC,D|2 ≠ 2Re
�

Mú
A,BMC,D

�

, (3.24)

the interference term Mú
A,BMC,D is also needed. The minus sign stems from the exchange

of two fermions in the final state, which is why the C and D diagrams are also called Pauli
interference graphs. Since this term is zero if the helicities of the interfering quark lines are
not identical,1 this term is only summed over the helicities of q1 and q2, with the helicity
of q5 set to the one of q1 for cs1, and to q2 for cs2 matrix elements.

In all diagram types there are two quark-gluon vertices, that give in the sum over external
colours i

k

, with k = 1, . . . , 6, a factor of
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, (3.25)

while the interference term carries a factor of
�

”
i4i2ta

i3i1ta

i6i5
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⇣
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i4i2tb

i6i1tb

i3i5

⌘

= N Tr
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tatbtatb

⌘
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4
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N2 ≠ 1
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. (3.26)

This causes the interference term to be colour suppressed by a factor of N = 3. The colour
prefactor stemming from the average over incoming colours is always f

c

= 1/N2, as the
incoming particles are either quarks or antiquarks. In the interference case an additional
factor of 1/2 has to be multiplied, which accounts in some cases for identical particles in
the final state and in others to not having calculated a process twice after phase space
integration.

1 A cs1 example can be considered to illustrate this. Then MA,B is only non-zero for s1 = s3 and ≠s5 = s6,
while MC,D is non-zero for s1 = s6 and ≠s5 = s3, with si denoting the helicity of quark i. Thus, the
only non-zero interference terms are the ones with s1 = s3 = ≠s5 = s6.
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Inclusion of Bottom Quarks

In the LO calculation, only the quark flavours up, down, strange, and charm are considered,
as the inclusion of bottom quarks would essentially lead to diagrams where an intermediate
top quark is produced, which would violate the approximation of massless partons. For
the real emission amplitude, there are flavour combinations for which the third quark line
does not change flavour and never couples to a charged electromagnetic current. In cs1,
this is the case only if the flavour of line q1q3 changes, so for flavour combinations (e) and
(g), while for cs2 line q2q4 needs to change flavour, which is the case for (a) and (c). For
these combinations, the flavour of q5 and q6 can also be chosen as bottom, while for all
other flavour combinations this would lead to diagrams with intermediate or even external
top quarks. In the program this inclusion can be done by simply changing one variable,
called “nflVBF”, which incorporates the number of included quark flavours. If this variable
is set to 5, the above mentioned diagrams with bottom quarks are included in addition
to the diagrams that appear for only first and second generation quarks. It is however
disputable if this inclusion would lead to an improvement of the result due to the small
portion of additional diagrams that can be included, while experimental measurements
can only distinguish between the final observables produced. Since bottom and top quarks
produce distinct observables in a detector, it is probably a more correct approach to neglect
all diagrams including top and bottom quarks in the first place.

3.3.3 Dipole Subtraction Terms

Divergent terms appear in the real emission cross section if one of the final partons gets soft
or two partons are collinear. They can be subtracted before the phase space integration
with the dipole subtraction method proposed by Catani and Seymour [44], see Section 2.3.2.
The 4-final-parton contribution to the cross section can accordingly be written as
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(3.27)

with dipole terms D(m) and symmetry factor c
s

= 1 for most subprocesses and c
s

= 1/2
for subprocesses with identical final state particles. Here and in the following, the incoming
partons are always numbered 1 and 2. The number of dipole kinematics n

d

depends on
the subprocess, meaning on the kind of incoming partons. Each kinematic consists of a
particle triplet of emitter, emittee and spectator, whereby the collinearity of emitter and
emittee produces a singularity in the real emission cross section. With their momenta a
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Figure 3.8: If qa and qb are collinear, the photon propagator in the diagram on the left
diverges. This diagram gives an electroweak correction to the diagram on the right. To handle
the singularity, a cut is imposed on the virtuality of the t-channel exchange.

corresponding Born-level momentum configuration is determined, which is
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for a kinematic with initial state emitter a and final state spectator k,
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for a kinematic with final state emitter i but initial state spectator b, and
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for a kinematic with both emitter i and spectator k being final state partons [44]. Here the
emittee, which is always final, has been labelled with j. For a given triplet the dipole terms
are then given by kinematic-dependent factors multiplied by colour and spin-correlated
Born matrix elements of this momentum configuration. In general their calculation depends
on the kind of dipole, which can be classified according to the emitter and spectator being
initial or final state partons. In the limit of soft gluons1 and collinear partons that cause
singularities, these dipole terms exactly cancel the real emission matrix elements.

Dipole terms transcending the VBF approximation are neglected in the calculation. These
are all terms for which the triplet of emitter, emittee, and spectator involves partons of
both the upper and the lower colour algebra. Examples for such terms are the dipoles
D13

4 , D34,5, etc., where the notation is chosen such that initial spectators/splittings are
superscripts, whereas final ones are subscripts. Consequently, no kinematics involving both
an initial state emitter and an initial state spectator are considered.

Diagrams with emitter and emittee pair being connected to a weak current do not cause
singularities, as the denominator of the propagator then contains at least the invariant
mass of the current. The propagator of a t-channel photon on the other hand diverges if

1 In constrast to soft gluons, soft quarks do not cause singularities, since their wavefunctions contain a
factor of energy cancelling the one in the denominator of the propagator.
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the quarks of a gluonless line coupling to it become collinear. Diagrams involving such
a photon correspond to electroweak corrections to processes with an inital photon and
one parton going into three partons, as shown in Figure 3.8. They appear for both the
six-quark and the two-gluon subprocesses. Following the example of Reference [45, p. 12],
this singularity is handled by introducing a cut on the virtuality Q2 = ≠t of the exchanged
t-channel current at Q2

min = 4 GeV2. This procedure and the specific choice for the cut
are justified in Section 4.4, where the e�ect on the total cross section is shown. To obtain
the small part of the total cross section lost by this procedure, the cross section of the
corresponding process pg æ WjjjX needs to be calculated, which is not done in this work
similar to all other electroweak corrections. In the leading order calculation, this situation
does not appear because of the required minimum number of identified jets. A jet collinear
to the beam line cannot be measured.

The dipole kinematics and calculation of the dipole factors for the two-gluon subprocesses
are similar to the one for the process ppæHjjj and demonstrated in detail in Reference [51].
Here, only the general idea shall be pointed out exemplary for the subprocess with two
initial gluons,

g(p1) g(p2) æ qb(p3) Qd(p4) q
a

(p5) Q
c

(p6) W(PW), (3.31)

with PW = pl + pn. In all two-gluon subprocesses, singularities involve at least one gluon,
for example a gluon being collinear to the quark it was emitted from. In this specific
subprocess, the two gluons belong to di�erent colour algebras, so in addition all dipole
terms involving both gluons are colour suppressed. The quarks themselves all couple to an
electromagnetic current, so singularities only exist for a quark solely coupling to one of the
gluons and becoming collinear to this gluon. This means there are only four dipole terms
for this subprocess, all of which subtract singularities caused by the emission of a collinear
quark from an initial state gluon. They are given by squared Born amplitudes (summed
over polarisations and colours) of the following momentum configurations:
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(p̃6) W(PW).

The D
ij,k

if,qg are the dipole prefactors for initial-final splittings, meaning for initial emitter
and final spectator, and can be looked up in Reference [51] or constructed following
Reference [44].

With the cut on the photon virtuality, singularities in the six-quark subprocesses only
appear in the gluon propagator if the quarks of the line not coupling to the electromagnetic
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current become collinear. If the two quarks of this line do change flavour, the final state
W boson is emitted from one of them and thus no singularity appears. As a consequence,
flavour combinations (m), (n) and (o) do not contain diagrams causing singularities and
no dipole terms are calculated for those.1 In the non-interference case, where the flavour
generation of qÕ

5 and qÕ
6 is not the same as the one of either q1 or Q2, up to eight dipole

configurations exist. These correspond to the two quarks of each line becoming collinear,
so for example if qÕ

5 and qÕ
6 are collinear and do not change flavour, diagrams of type A are

singular, and if q1 and q3 are collinear and of same flavour, diagrams of type B are singular.
In the interference case, additional dipoles need to be subtracted to treat singularities
arising from diagram types C and D, which appear for example if qÕ

6 and q1 are collinear
and have the same flavour.

All possible dipoles for subprocesses with two initial quarks and two initial antiquarks and
their corresponding Born configurations are listed in Tables 3.2 and 3.3, respectively, where
for a specific flavour combination only those dipoles contribute for which q

i

= q
j

/Q
i

= Q
j

with emitter i and emittee j. This means for the process d D æ d D sÕ cÕ W only D13
5 , D13

6 ,
D24

5 , and D24
6 are subtracted. The dipoles for qQ æ . . . -subprocesses match the cs1 ones

of the qQ æ . . . -subprocess and the cs2 ones of the qQ æ . . . -subprocess, and for the
qQ æ . . . -subprocess analogously.

1 Some of the interference graphs of these flavour combinations can contain singularities, but are redundant
with the ones of other flavour combinations and their dipole terms handled there.
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Table 3.2: Dipoles for qa(p
1

) Qc(p
2

) æ qb(p3

) Qd(p
4

) qÕ
5

(p
5

) qÕ
6

(p
6

) W(P
W

) processes and
the corresponding Born kinematics. Depending on the flavours of the quarks not all dipoles
contribute.

Colour structure 1 dipoles
Dipole Born kinematic

D13
5 : g(p̃13) Q

c

(p2) æ Q
d

(p4) q5(p̃5) q6(p6) W(PW)
D13

6 : g(p̃13) Q
c

(p2) æ Q
d

(p4) q5(p5) q6(p̃6) W(PW)
D1

56 : q
a

(p̃1) Q
c

(p2) æ q
b

(p3) Q
d

(p4) g(p̃56) W(PW)
D56,3: q

a

(p1) Q
c

(p2) æ q
b

(p̃3) Q
d

(p4) g(p̃56) W(PW)
D16

3 : g(p̃16) Q
c

(p2) æ q
b

(p̃3) Q
d

(p4) q5(p5) W(PW)
D16

5 : g(p̃16) Q
c

(p2) æ q
b

(p3) Q
d

(p4) q5(p̃5) W(PW)
D1

35 : q
a

(p̃1) Q
c

(p2) æ Q
d

(p4) g(p̃35) q6(p6) W(PW)
D35,6: q

a

(p1) Q
c

(p2) æ Q
d

(p4) g(p̃35) q6(p̃6) W(PW)

Colour structure 2 dipoles
Dipole Born kinematic

D24
5 : q

a

(p1) g(p̃24) æ q
b

(p3) Q5(p̃5) Q6(p6) W(PW)
D24

6 : q
a

(p1) g(p̃24) æ q
b

(p3) Q5(p5) Q6(p̃6) W(PW)
D2

56 : q
a

(p1) Q
c

(p̃2) æ q
b

(p3) Q
d

(p4) g(p̃56) W(PW)
D56,4: q

a

(p1) Q
c

(p2) æ q
b

(p3) Q
d

(p̃4) g(p̃56) W(PW)
D26

4 : q
a

(p1) g(p̃26) æ q
b

(p3) Q
d

(p̃4) Q5(p5) W(PW)
D26

5 : q
a

(p1) g(p̃26) æ q
b

(p3) Q
d

(p4) Q5(p̃5) W(PW)
D2

45 : q
a

(p1) Q
c

(p̃2) æ q
b

(p3) g(p̃45) Q6(p6) W(PW)
D45,6: q

a

(p1) Q
c

(p2) æ q
b

(p3) g(p̃45) Q6(p̃6) W(PW)
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Table 3.3: Dipoles for qa(p
1

) Qc(p
2

) æ qb(p3

) Qd(p
4

) qÕ
5

(p
5

) qÕ
6

(p
6

) W(P
W

) processes and
the corresponding Born kinematics. Depending on the flavours of the quarks not all dipoles
contribute.

Colour structure 1 dipoles
Dipole Born kinematic

D13
5 : g(p̃13) Q

c

(p2) æ Q
d

(p4) q5(p̃5) q6(p6) W(PW)
D13

6 : g(p̃13) Q
c

(p2) æ Q
d

(p4) q5(p5) q6(p̃6) W(PW)
D1

56 : q
a

(p̃1) Q
c

(p2) æ q
b

(p3) Q
d

(p4) g(p̃56) W(PW)
D56,3: q

a

(p1) Q
c

(p2) æ q
b

(p̃3) Q
d

(p4) g(p̃56) W(PW)
D15

3 : g(p̃15) Q
c

(p2) æ q
b

(p̃3) Q
d

(p4) q6(p6) W(PW)
D15

6 : g(p̃15) Q
c

(p2) æ q
b

(p3) Q
d

(p4) q5(p̃6) W(PW)
D1

36 : q
a

(p̃1) Q
c

(p2) æ g(p̃36) Q
d

(p4) q5(p5) W(PW)
D36,5: q

a

(p1) Q
c

(p2) æ g(p̃36) Q
d

(p4) q5(p̃5) W(PW)

Colour structure 2 dipoles
Dipole Born kinematic

D24
5 : q

a

(p1) g(p̃24) æ q
b

(p3) Q5(p̃5) Q6(p6) W(PW)
D24

6 : q
a

(p1) g(p̃24) æ q
b

(p3) Q5(p5) Q6(p̃6) W(PW)
D2

56 : q
a

(p1) Q
c

(p̃2) æ q
b

(p3) Q
d

(p4) g(p̃56) W(PW)
D56,4: q

a

(p1) Q
c

(p2) æ q
b

(p3) Q
d

(p̃4) g(p̃56) W(PW)
D25

4 : q
a

(p1) g(p̃25) æ q
b

(p3) Q
d

(p̃4) Q6(p6) W(PW)
D25

6 : q
a

(p1) g(p̃25) æ q
b

(p3) Q
d

(p4) Q6(p̃6) W(PW)
D2

46 : q
a

(p1) Q
c

(p̃2) æ q
b

(p3) g(p̃46) Q5(p5) W(PW)
D46,5: q

a

(p1) Q
c

(p2) æ q
b

(p3) g(p̃46) Q5(p̃5) W(PW)
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3.4 Virtual Corrections

The virtual corrections for the NLO QCD calculation of the Wjjj process are given by
diagrams of the form of the Born-level graphs with one additional gluon loop as well
as quark loop diagrams. The latter include quark triangle and box graphs and are not
considered in this calculation by reasoning that they are suppressed by a factor of 1/N
compared to the gluon loop diagrams. In addition, most diagrams including a quark triangle
cancel when taking the sum over all diagrams. Regarding the gluon loop corrections, no
diagrams with the virtual gluon connecting upper and lower line are considered due to
the VBF approximation. As a consequence, the virtual amplitude can be divided into two
sets, one with the gluon loop being attached to the upper line and one with the gluon loop
being attached to the lower line. Analogously to the Born matrix element

MB = ”
lk

ta

ji

Mcs1
B + ”

ji

ta

lk

Mcs2
B , (3.32)

the virtual one can be written as

MV = ”
lk

ta

ji

Mcs1
V + ”

ji

ta

lk

Mcs2
V , (3.33)

with colour charges i, j of quarks 1, 3 and k, l of quarks 2, 4, respectively, and a being
the colour index of the external gluon. The calculation of the corrections to one line is
identical to the one for the other line, which is why in the following only corrections to the
upper line, line q1q3 or colour structure 1, are explained in detail.

The one-loop virtual corrections can further be classified into three topologies:

1. Corrections to quark lines with one gauge boson attached;

2. Corrections to quark lines with two gauge bosons attached;

3. Corrections to quark lines with three gauge bosons attached.

In the first case, the considered quark line is an empty line and the attached boson is the
electroweak exchange current between the two quark lines. There exists only one correction
diagram for this case, which is the vertex correction

q1 q2

V .

For the second topology, the one-loop diagrams in Figure 3.9 contribute independent of
the kind of the second boson. If the second boson is the emitted W boson, no further
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correction diagrams exist for this case. If it is a gluon, there are additional non-abelian
box and gluon vertex correction diagrams as shown in Figure 3.10.

In case 3, both the emitted W boson and the gluon couple to the considered quark
line, giving two propagator corrections, three vertex corrections, two box graphs and one
pentagon correction, along with non-abelian graphs, all shown in Figure 3.11. The colour
algebra of a line with a gluon loop in abelian diagrams gives

ta

jl1tc

l1l2tc

l2i

= ta

jl1 (tctc)
l1i

= CFta

ji

(3.34)

for a diagram with the external gluon being emitted outside the loop (like the one in
Figure 3.11(a)), and

tc

jl1ta

l1l2tc

l2i

= (tctatc)
ji

=
✓

CF ≠ CA
2

◆

ta

ji

(3.35)

for a diagram with the external gluon being attached to the loop (like the one in Figure 3.10),
meaning an additional factor of CF or CF ≠ CA/2, while non-abelian diagrams give

i tc

jl

tb

li

fabc =
h

ta,tb

i

jl

tb

li

= CA
2 ta

ji

, (3.36)

q1 q2

V1 V2

(a) Vertex corr.

q1 q2

V1 V2

(b) Vertex corr.

q1 q2

V1 V2

(c) Prop. corr.

q1 q2

V1 V2

(d) Box diagram

Figure 3.9: Corrections to a line with two electroweak gauge bosons attached. For a line
with the electroweak current and gluon attached, the same diagrams appear in addition to the
non-abelian diagrams in Figure 3.10.

q1 q2

V

g

(a) Vertex correction

q1 q2

V

g

(b) Box diagram

q1 q2

V

g

(c) Vertex correction

Figure 3.10: Additional non-abelian diagrams for a quark line coupling to a gluon and an
electroweak current. These include all non-abelian corrections corresponding to Born graphs
with the gluon being emitted before the electroweak current as well as those with the gluon
being emitted after the electroweak current.
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so an additional factor of CA/2. Here, the identities and relations in Equations 2.20, 2.21
and 2.22 were used.

While the calculation of the vertex correction of the first topology does not need much
e�ort since it is proportional to the corresponding Born graph, the other two topologies
include various graphs up to boxes and pentagons, which have to be evaluated for all
possible sequences of attached vector bosons. To simplify the calculation of all necessary
correction graphs in Vbfnlo, loop routines that calculate all diagrams of one topology for
a given sequence of bosons are used. These have been implemented for NLO corrections to
single (second topology) and double (third topology) vector boson production with two jets
via VBF, pp æ VVjj [52]. They can be used universally since they do not include coupling

q1 q2

V1V2 g

(a) Box diagram

q1 q2

V1 V2 g

(b) Box diagram

q1 q2

V1 V2 g

(c) Prop. corr.

q1 q2

V1V2 g

(d) Prop. corr.

q1 q2

V1 V2 g

(e) Vertex corr.

q1 q2

V1 V2 g

(f) Vertex corr.

q1 q2

V1 V2 g

(g) Vertex corr.

q1 q2

V1 V2 g

(h) Pentagon

q1 q2

V1 V2g

(i) Vertex correction

q1 q2

V1 V2 g

(j) Vertex correction

q1 q2

V1 V2g

(k) Vertex correction

q1 q2

V1 V2

g

(l) Box diagram

q1 q2

V1 V2

g

(m) Box diagram

q1 q2

V1 V2

g

(n) Pentagon

Figure 3.11: Corrections to a line with three gauge bosons attached. (a) to (h) give the
abelian corrections for an emission sequence with the gluon being emitted last, while the
non-abelian corrections in (i) to (n) correspond to Born graphs with the gluon being emitted
at any position of the line (before, in between or after the two electroweak bosons).
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factors, instead using a general coupling of vector bosons of “
µ

, and use the helicity of the
quarks as input parameter. They further use generic e�ective currents as input, which
can be both on- and o�-shell polarisation vectors, or for example a current that includes
another quark line, etc.

The abelian graphs of the second topology, Figure 3.9, are calculated with the
boxlineAbeTotal routine. If one of the attached currents is a gluon, its position also has
to be passed to the routine to distinguish the di�erent colour structures, and the additional
colour factor (Equations 3.34 to 3.36) has to be multiplied to the routine result. In addition,
non-abelian diagrams have to be calculated by calling the routine boxlineNoAbeTotal.
This routine computes all three diagrams shown in Figure 3.10, meaning both the ones
corresponding to Born graphs where the gluon is emitted before and those where it is emit-
ted after the electroweak current. For one call of this routine thus two calls with di�erent
sequence of gluon and electroweak current of boxlineAbeTotal have to be made.

Graphs of the third topology are computed via the penlineAbeTotal (graphs in Fig-
ures 3.11(a) to (h)) and penlineNoAbeTotal (Figures 3.11(i) to (n)) routines, that include
all the corrections to a line with three vector bosons, meaning self-energy graphs, vertex
corrections, boxes and pentagon graphs. Analogously to the abelian boxline routine, the
position of the gluon for the abelian correction has to be passed to the abelian penline
routine, while the non-abelian one sums the corrections to one line corresponding to Born
graphs with the gluon being attached at any position of that line.

The actual calculation of the loop integrals done in the implemented routines is described
in detail in Reference [52]. These one-loop calculations with multiple legs attached yield
tensor integrals that have to be reduced. Such a tensor reduction is commonly done via the
method of Passarino and Veltman [53], which computes the inverse of Gram and Cayley
determinants in order to solve high-dimensional linear equations. However, this causes
unstable results for small determinants, which is why an improved method using the LU
decomposition [54, 55] method and following Reference [56] is implemented, which avoids
these singularities by solving the appearing linear equations numerically. In addition, Ward
identity tests are implemented which for each call of the routines check for instabilities.
For the newly implemented Wjjj process it was tested that by neglecting the contributions
of the loop calculations for unstable points this leads to an error in the total cross section
of less than one per mill.

3.4.1 Subtraction of Infrared Singularities

The result obtained for the virtual correction matrix elements includes a finite part and a
divergent part,

Mcsi
V = Mcsi

V,div + M̃csi
V , (3.37)

with tilde denoting the finite part. Since all ultraviolet divergences have been handled in the
loup routines by renormalisation, the divergent part solely contains infrared singularities.
These are subtracted via the method by Catani and Seymour. As explained in Section 2.3.2,
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the insertion operator needed for the subtraction has a process-independent form, given by
Equation 2.54. The colour structure of this process in the VBF approximation – meaning
the two quark lines are considered as belonging to di�erent colour algebras – is similar to
two independent processes, one involving two quarks and one gluon (e.g. q1 æ q3g), the
other resembling a single quark line (q2 æ q4), meaning the insertion operator also splits
into two parts proportional to the Born amplitudes of di�erent colour structures. With the
identities for the colour charge operators given in Equation 2.58 and colour conservation,
the insertion operator applied to the Born matrix elements for the example of a subprocess
with outgoing gluon thus simplifies to

ÈI(Á)Í =|Mcs1
B (p1p2 æ p3p4p5)|2 CF–

s

2p

�

4pµ2�Á

2 · G(1 ≠ Á)

·
⇢

Vq(Á)


2
✓

1
p2 · p4

◆

Á

+ 1
2

✓

1
p1 · p3

◆

Á

+ CA
2CF

✓✓

1
p1 · p5

◆

Á

+
✓

1
p3 · p5

◆

Á

◆�

+ 1
2Vg(Á)

✓

1
p1 · p5

◆

Á

+
✓

1
p3 · p5

◆

Á

��

+ |Mcs2
B (p1p2 æ p3p4p5)|2 CF–

s

2p

�

4pµ2�Á

2 · G(1 ≠ Á) (3.38)

·
⇢

Vq(Á)


2
✓

1
p1 · p3

◆

Á

+ 1
2

✓

1
p2 · p4

◆

Á

+ CA
2CF

✓✓

1
p2 · p5

◆

Á

+
✓

1
p4 · p5

◆

Á

◆�

+ 1
2Vg(Á)

✓

1
p2 · p5

◆

Á

+
✓

1
p4 · p5

◆

Á

��

,

with V
i

, “
i

and K
i

defined as in Section 2.3.2. The divergent terms cancel with the
divergent terms of the virtual contributions, leaving only finite terms to be added to the
total amplitude,

2Re [Mú
VMB] + ÈI(Á)Í = F1 · |Mcs1

B (p1p2 æ p3p4p5)|2 + F2 · |Mcs2
B (p1p2 æ p3p4p5)|2

+ CF
⇣

2Re
h

�

M̃cs1
V
�ú

Mcs1
B

i

+ 2Re
h

�

M̃cs1
V
�ú

Mcs2
B

i⌘

, (3.39)

where the prefactors F
i

depend on the parton momenta.

3.5 Finite Collinears

Besides the real emissions and virtual corrections, there is an additional contribution to
the NLO part of the cross section for this process as it includes two partons in the initial
state. As explained in Section 2.3.2, the additional inital collinear singularities arising from
these partons are absorbed in the PDFs, leaving only a finite collinear remainder whose
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contribution to the cross section is given by (see also Equation 2.53)

‡C =
X

a,b

1ˆ

0

dx1

1ˆ

0

dx2 f
a/P1(x1, µF)f

b/P2(x2, µF)
ˆ

m

d‡̂C
a,b

(µF). (3.40)

The labels a and b refer to the incoming partons of the contributing partonic subprocesses
and carry momenta p1 = x1P1 and p2 = x2P2, respectively, with P

i

denoting the momenta
of the incoming hadrons. The di�erential term can be written as [44, pp. 11, 47, 105]1

d‡̂C
a,b

(p1, p2; µF) =
1ˆ

0

dz
X

c

nh

Pa,c (z, zp1, p2, µF) + Ka,c(z)
i

¢ d‡̂B
c,b

(zp1, p2)

+
h

Pc,b (z, p1, zp2, µF) + Kc,b(z)
i

¢ d‡̂B
a,c

(p1, zp2)
)

.

(3.41)

The first line corresponds to a collinear splitting of parton a into parton c, which then
interacts with parton b from another hadron in the so-called hard process giving the Born
amplitude |MB|2, which can be illustrated as follows (modified according to [57]):

P1

p1

a

xp1

c

b

P1

P2

.

Analogously, the second line gives the contribution from parton b splitting into c, which
then enters the hard scattering process with parton a.

After folding d‡̂C
a,b

with the PDFs of partons a and b and inserting the explicit expressions
of P and K, expressions for the di�erential finite collinear remainder for the several
combinations of incoming partons can be found. Since these are rather lengthy and
identical to the ones for Hjjj production which has the same QCD structure, the detailed
expressions are not given here, but interested readers are referred to Reference [51].

In the program, the finite collinear terms are added to the virtual correction terms before
being integrated over the Born phase space. For each phase space point a new random
number has to be generated due to the additional z integration.

1 One might take notice of the fact that in the here considered case the two incoming partons belong to
separate colour algebras, thus the formula of Reference [44] for one initial state hadron has to be used.





CHAPTER 4
Verification

The implementation of the Wjjj cross section calculation at NLO was tested on various
levels of the calculation to assure its correctness. The Born and real emission matrix
elements were compared to matrix elements calculated by code that was generated by
MadGraph. The LO calculation was crosschecked at the level of its integrated cross
section with already existing and validated results. To the author’s knowledge, there does
not exist another calculation for the total NLO cross section of W production via vector
boson fusion in association with three jets, but tests of the several building blocks of the
calculation ensure a correct total result. Besides the real emission matrix elements these
include tests of the dipole subtraction terms and of the loop routines as well as virtual
matrix elements for the calculation of virtual corrections. Moreover, the simplification to
introduce a cut on the virtuality of a t-channel photon to remove singularities has been
justified with an estimation of the thereby lost contribution to the cross section.

4.1 Matrix Elements

4.1.1 Comparison of Matrix Elements with MadGraph

MadGraph [58] generates Fortran code and Feynman graphs for tree level amplitudes.
The generated code calls HELAS subroutines to calculate each graph contributing to the
process separately. For the comparison in this thesis, code generated by MadGraph II is
used. To compare specific matrix elements, a correct helicity basis has to be constructed as
MadGraph uses circular polarisation in contrast to Vbfnlo. The sum over helicities of
the squared matrix elements can be compared without modifications. As MadGraph also
includes s-channel contributions and interference between the two quark lines, processes
involving di�erent quark generations, such as d s æ d c g l≠ nl, are generated. These include
the same contributions as the VBF approximation, since MadGraph also neglects CKM
mixing.

The deviation between the squared LO matrix elements calculated by MadGraph and
the newly implemented ones in Vbfnlo,

DB =
�

�

�

�

�

|MB, MadGraph|2 ≠ |MB, Vbfnlo|2
|MB, MadGraph|2

�

�

�

�

�

, (4.1)

55
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is below 3 · 10≠7 for all 2 · 106 matrix elements tested each for W≠jjj and for W+jjj at
randomly chosen phase space points. The logarithm to base 10 of DB is approximately
normally distributed with mean at ≠12.8 and standard deviation of 1.3, so the results are
in agreement up to statistical errors due to the numerical calculation.

For the real emission calculation, all two-gluon and six-quark subprocesses were tested both
for W+ and W≠, each subprocess class for a sample of 2 · 106 squared matrix elements. The
relative di�erence DR to the MadGraph results does not exceed 5 · 10≠7 for the two-gluon
subprocess matrix elements, with a mean of ≠12.7 of the logarithmic distribution. The
logarithmic distribution of the six-quark subprocess matrix elements has a mean of ≠12.0
with standard deviation of 1.5.

4.1.2 Virtual Correction Matrix Elements

The calculation of the virtual correction matrix elements is based on loop routines that
have already been implemented in Vbfnlo, see Section 3.4. Their correctness has been
assured with extensive tests explained in Reference [52]. To further verify their correct
integration in the newly implemented program, a crosscheck with virtual matrix elements
of the already existing code for Zjjj production at QCD NLO [59] has been performed.
By adjusting parameters of the electroweak theory, the couplings of the Z boson can be
matched to those of the W boson, while the couplings of the photon are concurrently set
to zero. With this adjustment, linear combinations of matrix element contributions of
di�erent flavour combinations can be found for which the process with final state observable
Zjjj shall give the same result as the Wjjj process.1 For these linear combinations l the
relative di�erence

DMV,l

=

�

�

�

M
W,l

V ≠ M
Z,l

V

�

�

�

�

�

�

M
W,l

V

�

�

�

(4.2)

has been calculated. For linear combinations only including diagrams with W/Z boson
emitted from a quark leg, the relative di�erence is exactly zero. For linear combinations
including leptonic tensor diagrams, the maximum di�erence is of the order 10≠6, with mean
of the logarithmic distribution to base 10 at ≠11.7. This di�erence is due to a dependence
of results calculated with HELAS on the order in which the several partial results are
calculated, which is the case for the leptonic tensors, while the results of diagrams with
leg emissions are in both programs calculated using only braket routines. This suggests a
better accuracy and precision of the braket routines in comparison to HELAS.

1 These contributions include all diagrams with either leptonic tensor or leg emission of W/Z boson,
since no linear combination of the complete matrix elements (including both LT and CC/NC diagrams)
of di�erent flavour combinations can be found for which Wjjj and Zjjj are identical.
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4.2 Integrated LO Cross Section

As mentioned in Section 3.1, implementations of NLO cross section calculations in Vbfnlo
allow to calculate the corresponding processes with one additional jet at LO. Thus,
the integrated LO cross section for Wjjj can be crosschecked with the real emission
(without NLO) cross section of the previously implemented and extensively validated Wjj
process. This was done for W≠jjj as well as W+jjj for the cuts and parameters listed
in Section 5.1, except for the renormalisation and factorisation scale which was chosen
constant at 100 GeV.1 All processes were run over 224 phase space points from which
about 30 % passed the cuts and gave a nonzero contribution. The cross sections are in
full agreement within statistical fluctuations, both processes giving (175.843 ± 0.294) fb
for W≠jjj production and (310.782 ± 0.516) fb for W+jjj production, with their relative
deviation

D‡ =
�

�

�

�

‡(pp æ Wjj)RE
‡(pp æ Wjjj)LO

≠ 1
�

�

�

�

(4.3)

being of the order 10≠15.

4.3 Dipole Subtraction Terms

In Section 3.3.3 the construction of dipole subtraction terms following the method proposed
by Catani and Seymour to remove infrared and collinear divergences in the real emission
cross section is explained. The sum over all dipole configurations for a specific flavour
subprocess should in the soft (pµ

i

= ⁄qµ, ⁄ æ 0) and collinear (pµ

i

Î pµ

j

) limit exactly repro-
duce the singularities of the corresponding squared real emission amplitude to annihilate
the divergent contribution to the cross section in Equation 3.27, that is

R :=
�

�

�

�

�

P

nd
m=1 D(m) ≠ P|MR|2

P|MR|2

�

�

�

�

�

⁄, pi·pjæ0
≠≠≠≠≠≠æ 0. (4.4)

This quantity was checked separately for soft and collinear phase space points and for the
di�erent subprocess classes. Soft singularities only appear for subprocesses with a final
state gluon, that is for the two-gluon subprocesses with both gluons being final as well as
the ones with one initial gluon. The resulting normalised di�erence R over the energy of a
final gluon normalised to the minimum energy of the initial partons, Emin := min (E1, E2),
is shown in Figure 4.1. R behaves as expected for small gluon energies E

g

.

The collinear limit exists for all subprocesses and is tested separately for initial state and
final state radiation, which corresponds to the emitter being an initial or final parton,
respectively. Both cases are tested by examining quantities that are invariant under boosts

1 At LO, these cuts and parameters a�ect only the phase space generation, coupling constant, PDFs, etc.
Thus, both implementations are a�ected by a change of these parameters in the same way, which is why
a test at one set of these is su�cient.
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Figure 4.1: Normalised di�erence R between dipole terms and squared real emission amplitude
for small final gluon energies. (a) shows the R for subprocesses with both gluons being final,
(b) for the ones with one final state gluon. As expected, R approximates zero in the soft limit.

along the beam axis. For initial state radiation, where an emitted final parton may be
collinear to the emitting initial one, the maximal rapidity ymax := max (|y

i

|) of all final
partons is used as a measure scale for collinearity, which for massless particles coincides
with its pseudorapidity

÷ = y := 1
2 ln

✓

E + p
z

E ≠ p
z

◆

, (4.5)

with p
z

being the momentum component along the beam axis. For final state radiation,
where two final partons may become collinear, the angular separation of a parton pair,

DR
ij

:=
q

(y
i

≠ y
j

)2 + (Ï
i

≠ Ï
j

)2, (4.6)

with azimuthal angle Ï
i

= arctan(p
y

/p
x

), is used as collinearity scale. In both cases, the
tested phase space points had to pass the cuts of Section 5.1 that provide for at least three
jets to form from the four final partons. In addition, restrictions were made demanding
the considered phase space points for the initial dipole tests to not include partons with
angular separation of DR

ij

< 0.51, and for the final dipole tests to not include a final
parton of rapidity y Ø 4.5 (besides not more than one parton pair having DR

ij

< 0.5)1.
For the subprocesses with final gluons also phase space points with these gluons being

1 For all parton pairs that can potentially cause a singularity when becoming collinear. This means that
for DR34 for example no restriction is made in any subprocess.
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soft have been excluded for the tests. These restrictions ensure that for the specific tests
no additional singularity of another kind enters. Since the momentum configurations of
a specific dipole kinematic have to pass the overall cuts also, these restrictions make it
possible to control that all kinematics needed to subtract the considered kind of singularity
pass these cuts and are calculated. If not, points with R being 1, 0.75, 0.5, and 0.25 appear,
as it lacks a fraction of the needed subtraction terms.
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Figure 4.2: Normalised di�erence R for large rapidities of a final parton, meaning this parton
becomes collinear to an initial state parton. (a) shows R for subprocesses with two final gluons,
(b) for the ones with one initial state gluon and (c) for the subprocess with both gluons being
initial. In the graph of the six-quark subprocesses, (d), a line at R = 1 appears, implying that
not all singularities are cancelled by the dipole terms. The results of Figure 4.3 show that
this is caused by divergent t-channel photon propagators which are handled by the cut on the
photon virtuality.
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The results of the tests of dipole terms for collinear singularities resulting from initial
state radiation are shown in Figure 4.2 for all four subprocess classes. For the six-quark
subprocesses, singular phase space points seem to exist where the dipole terms do not
exactly cancel the divergence, leading to a straight line at R ¥ 1. These points are due
to the cut on the photon virtuality and are therefore caused by phase space points where
particles 1 and 3 or 2 and 4 are collinear. In Figure 4.3 the cut on the photon virtuality
was set to 30 GeV2, causing the line to vanish above a considerably lower value of ymax
than before. In the two-gluon subprocesses, such points do not appear, since singularities
in a quark or gluon propagator always involve at least one gluon becoming collinear to
another parton, meaning at least three particles couple to this quark line. Thus, its total
invariant mass cannot be singular (because of the cuts), causing the exchanged photon
propagator to be o�-shell.1

There are also points where R gets much larger than 1, meaning the dipole terms are much
larger than the real emission matrix element. They originate from phase space points
where dipole terms of other kinematics than the one cancelling the singularity are large.
This phenomenon has not been studied thoroughly so far, but similar tests with the dipole
terms of the Hjjj process implementation [50, 51] – which has been verified up to the level
of the integrated NLO cross section – show the same results. Consequently, this behaviour
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Figure 4.3: By setting the cut on the photon virtuality to 30 GeV2, the points at R = 1 stop
to appear at a lower y

max

than the ones in Figure 4.2(d), leading to the conclusion that these
points are solely caused by singularities in the propagator of an exchanged t-channel photon.

1 The only scenario where the photon virtuality cut is necessary for these processes is when particles 1
and 3 or 2 and 4 are both quarks and become collinear, but in this case no quark or gluon propagator
diverges, which is relevant for the test of the dipole subtraction terms, meaning those points are not
included in the shown figures.
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is not connected to a failure of the newly implemented dipole subtraction terms.

In Figure 4.4, the results for the test of final state radiation dipoles are shown, which do
not appear in the subprocesses with two initial gluons. Like for the initial state radiation
dipoles, the dipole terms of the six-quark subprocesses contain points with R deviating from
the expected result. In order to ensure that this behaviour is not correlated to an incorrect
calculation of the subtraction terms, the same test was run for the above mentioned Hjjj
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Figure 4.4: Normalised di�erence between dipole terms and squared real emission amplitude
in dependence of the angular separation of a parton pair, meaning for final state singularities.
The definition of the quantities and cuts to ensure no other singularities occur for these points
are given in the text. Again, (a) shows R for subprocesses with two final gluons, (b) for the
ones with one initial state gluon and (c) for the six-quark subprocesses. In the subprocess
with both gluons being initial, no final state singularities exist.
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Figure 4.5: Test results for final state collinear singularities in the six-quark subprocesses
of the Hjjj process, which show the same behaviour as observed in Figure 4.4(c) for the Wjjj
process.

implementation. The results are shown in Figure 4.5, and reproduce the unanticipated
behaviour of the dipole terms of the newly implemented Wjjj process. Nevertheless, it
would be interesting for future examinations to clarify this unexpected behaviour of the
dipole subtraction terms and its origin.

4.4 Influence of the Photon Virtuality Cut

In Section 3.3.3 a cut on the virtuality Q2 = ≠t of a t-channel current was imposed in
diagrams like the one on the left of Figure 3.8, which correspond to electroweak correction
diagrams to processes with an initial photon, like the one on the right of the same figure. The
cut was set at Q2

min = 4 GeV2. Shifting the cut to smaller values would cause the calculation
to include regions where the perturbational QCD approach cannot be justified due to the
energies getting small and the reliability of the parton model fading [60, p. 4, 61, p. 120],
thus leading to the introduction of larger higher order QCD corrections. Instead, the
missing part can be calculated separately as the pg æ WjjjX cross section with use of the
correct electromagnetic proton structure functions (see Reference [60] for an analogous
example).

In Figure 4.6, the di�erential NLO cross section in dependence of the natural logarithm of the
virtuality normalised to the cut value, ln

�

Q2/Q2
min

�

, is shown for the process pp æ W+jjj,
run with the cuts and parameters listed in Section 5.1 at scales µR = µF = pT,j1 . For Q2

approaching the cut value, the di�erential cross section converges to about 3 fb. Since
the proton has a finite mass, there exists a physical lower bound on the virtuality of the
photon, which can be approximated to [45, p. 13, 61, p. 117, 62]
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Figure 4.6: Di�erential cross section of W+jjj production as a function of the virtuality of
the t-channel photon.
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p
M4

s(s ≠ M2) ¥ m2
p

 

M2
Wjjj
xs

!

. (4.7)

Here M denotes the invariant mass of the final hadron system including the Wjjj system
and the upper proton remnant as shown in Figure 4.7, M2

Wjjj is the invariant mass of the
Wjjj system only, and x is the momentum fraction of the upper proton which enters the
process (so M2

Wjjj ¥ xM2). The invariant mass of the Wjjj system at minimum contains the
mass of the W boson and the invariant mass of the two tagging jets. With the information
from the tagging jet invariant mass distribution presented in the next chapter, Figure 5.6,
a sensible lower value of the invariant mass of the Wjjj system is

M2
Wjjj & 600 GeV. (4.8)

By using the fact that in the considered limit the photon is parallel to the proton it was emit-
ted from, the invariant mass of the Wjjj system can also be expressed as M2

Wjjj ¥ x2s [62].

p

p

g MWjjj
M

Figure 4.7: Schematic diagram for the process pp æ WjjjX + p.



64 Chapter 4 Verification

Thus, a highly generous approximation of the lower bound on the photon virtuality for a
center-of-mass energy of 14 TeV is

Q2
limit ¥ m2

p
M2

Wjjj
s

& 1.8 · 10≠3 GeV2. (4.9)

Using this bound and the asymptotic limit of the di�erential cross section, the total cross
section lost by applying the cut may be estimated to

‡lost ¥ d‡

d ln
⇣

Q

2

Q

2
min

⌘

�

�

�

�

�

�

Q

2
min

·
✓

ln
✓

Q2
min

Q2
min

◆

≠ ln
✓

Q2
limit

Q2
min

◆◆

¥ 23 fb. (4.10)

This would give a correction of 8 % to the total cross section of the process of 278.46 fb.
However, this is a large overestimate of the real loss of cross section due to the cut, firstly
because the invariant mass of the Wjjj system used for the calculation above is probably
much underestimated, and secondly because the di�erential cross section does not stay
constant for low Q2, but drops o� already before reaching Q2

limit. The real lost cross section
rather lies at a few per cent. This is exactly the range of the electroweak corrections to the
process, which have not been treated in this work but need to be calculated separately to
give a more exact result of the total cross section for Wjjj production.



CHAPTER 5
Phenomenology

With all parts of the newly implemented Wjjj cross section calculation up to NLO in QCD
tested, Vbfnlo can be run with a specific set of cuts and parameters to produce results, as
explained in Section 3.1. Before analysing important di�erential cross section distributions
and the scale dependence of the total cross section in the following sections, the cuts,
physical parameters and Monaco settings used to produce these results are presented.
In the last section of this chapter, the Wjjj di�erential cross sections and K factors are
compared to the ones of the process pp æ Hjjj in order to examine di�erences or similarities
in their structure.

5.1 Cuts and Parameters

The cuts imposed on experimentally measurable quantities of the final observables can be
changed in the file cuts.dat. The ones relevant for the considered process pp æ Wjjj with
leptonic decay of the W boson can be classified in jet cuts, lepton cuts, and VBF cuts.
Some jet and lepton cuts resemble experimental bounds, for instance to distinguish two jets.
Others, including the VBF cuts, assure for the results to not include phase space regions
where the approximations made in the calculation do not hold and where other background
processes, such as QCD induced processes, get significant. The several relevant cuts are
listed in Table 5.1. Most of the cuts have been chosen in compliance with cuts used by
the CMS and ATLAS collaborations for Wjj production via VBF, see References [63, 64].
Only events with at least three distinguishable jets are considered, which are reconstructed
from final state partons using the generalised k

T

algorithm [65–67] (for its application see
Reference [68]). The two jets with highest transverse momentum are called tagging jets
and need to be detected in opposite detector hemispheres. The common constraint that
the decay lepton needs to fall inside their rapidity gap is not applied here.

As parton distributions the CTEQ6L1 PDFs [69] are used for the LO calculation and
the CT10 PDFs [70] for the NLO calculation. No bottom quark contributions are con-
sidered, neither as incoming, outgoing or intermediate particles. The masses of the W
and Z bosons mZ = 91.188 GeV and mW = 80.398 GeV along with the Fermi coupling
GF = 1.166 · 10≠5 GeV≠2 are chosen as input parameters, from which the fine structure
constant and the weak mixing angle are obtained.

65
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Table 5.1: All relevant cuts that are applied.

Jet cuts
Minimal R separation of two jets Rmin

jj = 0.4
Maximal absolute parton rapidity |yp|max = 5
Maximal absolute jet rapidity |yj|max = 4.5
Minimal transverse momenta of jets (sorted in pT ) pmin

T,j = 50/30/20 GeV
Exponent of generalised k

T

algorithm P
kT = ≠1

Lepton cuts (l labels the charged lepton)

Maximal absolute lepton rapidity |yl|max = 2.5
Minimal transverse momentum of lepton pmin

T,l = 25 GeV
Minimal R separation of lepton and jets Rmin

jl = 0

Minimal missing transverse momentum pmin
T,miss = 30 GeV

VBF cuts (applied on tagging jets)

Minimal rapidity separation Dy
ab

= |y
a

≠ y
b

| of tag. jets Dymin
j1j2

= 3
Tagging jets must be in opposite det. hemispheres yj1 · yj2 < 0
Minimum invariant mass of tagging jets mmin

j1j2
= 500 GeV

The results are obtained for a center-of-mass energy of Ecm = 14 TeV. The implemented
process can be calculated with incoming protons as well as antiprotons, and the decay of the
W boson can be in any lepton family or summed over all three. For the presented results,
the process with two initial protons and the decay of the W boson into electron/positron
and respective neutrino was chosen. For the statistics to be high enough to obtain a
satisfying resolution for the di�erential cross section distributions, the LO and virtual
calculation were run over 226 phase space points and the real emissions over 230 phase space
points, from which between 25 % to 33 % gave non-zero contributions in the last iteration.
Depending on the chosen scales and with three iterations over an already improved grid,
this caused runtimes of around 320 h on a single 3.2 GHz core.1 For the analysis of scale
dependences, less statistics of 224 points for the LO and virtual corrections and 227 points
for the real emissions was used.

1 Vbfnlo supports MPI, which allows for running code in parallel. Thereby, this runtime can further
be reduced largely by using multiple cores in parallel. By using the already optimised grid the same
statistics can for example be reached in less than two days by doing parallel runs on four cores.
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5.2 Di�erential Cross Section Distributions

Considering only LO, the results are expected to be highly dependent on the factorisation
and renormalisation scale, as mentioned in Section 2.3.1. By including the NLO corrections,
this dependence should flatten out. The detailed analysis of scale dependences follows in
the next section, but by examining the di�erential cross section distributions of LO and
NLO results at di�erent scales, “good” scales can already be found since for these LO
and NLO distributions are alike. For this reason the distributions on the following pages
show the results obtained at four di�erent scale choices µR = µF = µ, three of them being
dynamic and one being constant. The dynamic scales chosen are the transverse momenta
of the three jets j1, j2, and j3, where the numbering of the jets here and in the following is
chosen according to the magnitude of their transverse momentum. The tagging jets are the
jets with highest pT , so by definition j1 and j2 are always the tagging jets. The constant
scale is chosen at µconst = 100 GeV, and is only meant for comparison, as the chosen scale
should be directly connected to the quantities where the scale enters in the calculation.

The total LO and NLO cross sections obtained for the parameters described in the preceding
section are given in Table 5.2 together with their resulting K factors

K = ‡NLO

‡LO
. (5.1)

The di�erences in magnitude between the processes pp æ W+jjj and pp æ W≠jjj are due
to the di�erent densities of quarks in the proton.

In Figure 5.1, the di�erential cross sections in dependence of the transverse momenta of
jets 1, 2, and 3 are shown (that is the maximal, second largest and third largest transverse
jet momenta), with the results for W+jjj production on the left- and the ones for W≠jjj
on the right-hand side. The LO distributions are shown as dashed lines, while the solid
lines show the NLO results. Below each distribution, the K factors for the four scales
are plotted. In all three distributions, the NLO curves seem to coincide, showing only
statistical deviations, except for the ones with scale µ = pT,j3 , which drop faster after
peaking. The LO distributions on the other hand vary significantly more with the scale.
This is a first sign for a high reduction in scale uncertainties and low scale dependence
of the NLO calculation. The LO distributions of the scale pT,j1 cannot be spotted clearly

Table 5.2: Full LO and NLO cross sections for four di�erent scale choices µR = µF = µ and
the parameters specified in Section 5.1.

µ ‡W+
LO in fb ‡W+

NLO in fb KW+
‡W≠

LO in fb ‡W≠
NLO in fb KW≠

pT,j1 273.66 ± 0.17 278.46 ± 0.47 1.02 156.45 ± 0.13 163.62 ± 0.27 1.05
pT,j2 314.51 ± 0.19 276.14 ± 0.55 0.88 180.13 ± 0.11 162.99 ± 0.29 0.90
pT,j3 407.71 ± 0.26 241.90 ± 0.89 0.59 232.13 ± 0.15 146.01 ± 0.52 0.63
100 GeV 311.20 ± 0.20 269.41 ± 1.48 0.87 175.96 ± 0.11 160.77 ± 0.32 0.91
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Figure 5.1: Transverse momentum distributions and respective K factors for W+jjj (left
column) and W≠jjj (right column) production, for the three jets j

1

, j
2

, and j
3

sorted in
descending order according to their pT . The dashed lines show the LO, the solid lines the NLO
distributions for the four colour-distinguished scale choices µR = µF = µ shown in the legend
(with µ

const

= 100 GeV).
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Figure 5.2: Rapidity distributions and respective K factors for W+jjj (left column) and W≠jjj
(right column) production, for the three jets j

1

, j
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, and j
3

sorted in descending order according
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because of it being very similar to the respective NLO curves. This behaviour enters
also in the K factors of this scale wavering around one. The maximum transverse jet
momentum thus seems to be a good scale choice for these processes, at least with respect
to the pT -distributions, while µ = pT,j3 is much too small a scale to use.

The rapidity distributions in Figure 5.2 show the same behaviour regarding the scales,
leading to the same conclusion. All K factors here are almost flat, in constrast to the
transverse momentum distributions above. It is rather interesting that the constant scale
choice seems to also produce very accurate results. The rapidity distributions also show
the typical VBF behaviour, with the two tagging jets appearing in the forward directions
of the detector, and a reduced jet acticity in the central region. In the distribution of the
third jet’s rapidity, this dip in the central region gets less distinct.

Since a cut forces the two tagging jets to appear in di�erent detector hemispheres, their
rapidity distributions already show that the two jets are widely rapidity separated. This
behaviour can be seen more directly by considering the rapidity separation of the two
tagging jets,

Dyj1j2 = |yj1 ≠ yj2 |, (5.2)

which is shown on the left of Figure 5.3 for W+jjj production (as can be seen in the
preceding distributions, W≠jjj production shows analogous results). The Dyj1j2 distribution
begins at three because of the cut that was applied, see Section 5.1. After peaking at a
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maximum cross section at a rapidity separation of around four, the curves slowly decrease.
In the histogram on the right-hand side of the same figure, the distribution of the angular
separation of the two tagging jets, DFj1j2 , is shown. It is defined by subtracting the angle of
the jet with smaller rapidity from the one with higher rapidity, meaning it is ordered in the
direction of the detector. Also with respect to this coordinate the tagging jets appear in
opposite directions. While the K factors of all scales are stable with respect to the angular
separation, they are highly dependent on the phase space region with regard to the rapidity
separation of the tagging jets. In addition, the peak in the latter distribution moves to
higher rapidity separations Dyj1j2 for the NLO corrections of all four scale choices.

To analyse the position of the third jet relative to the tagging jets, it is convenient to
consider the normalised relative rapidity di�erence of the third jet to the tagging jets,

zú
j3 =

yj3 ≠ yj1 +yj2
2

1
2 Dyj1j2

= 2yj3 ≠ (yj1 + yj2)
Dyj1j2

, (5.3)

which is zero if the third jet’s rapidity lies exactly in between the two tagging jets’ ones,
and one or minus one if it coincides with the rapidity of one of the tagging jets.

In the top left histogram of Figure 5.4 the distribution of zú
j3 is shown, this time only for

W+jjj production at the scale µ = pT,j1 . The LO distribution is again marked as dashed
line, the NLO one as solid line. Apparently, the third jet mostly appears in the vicinity of
one of the tagging jets, with regard to rapidity. The slight bumps at zú

j3 = ±1 arise due to
the minimum R separation of two jets to be able to distinguish them in the detector. In
the bottom histograms of the same Figure the distributions of relative angular separations
of the third jet to jets 1 (DFj3j1) and 2 (DFj3j2) are shown, in which the above mentioned
bumps also appear. These in addition show that the third jet also with respect to the
angle appears primarily in the vicinity of one of the tagging jets, as the di�erential cross
section is large either if the third jet is at the position of the respective tagging jet, or
in the opposite F direction, where the other tagging jet is most likely to be located, as
follows from the DFj1j2 distribution in combination with the rapidity and relative rapidity
distributions. The increase of the cross section for the third jet being in the vicinity of
a tagging jet in respect to both angle and rapidity can directly be seen in the top right
histogram of Figure 5.4 showing the minimum R separation between the third jet and
one of the tagging jets. To be precise, jet 3 is to appear most likely in the vicinity of
the jet with second highest pT , which gets clear when comparing the DFj3j1 and DFj3j2
distributions.

To further analyse the position of the produced W boson (or rather the charged decay lepton,
since the neutrino cannot be detected experimentally except for its missing momentum),
Figure 5.5 shows the normalised relative rapidity di�erence of the lepton with respect to
the two tagging jets,

zú
l = 2yl ≠ (yj1 + yj2)

Dyj1j2

. (5.4)
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Figure 5.4: Di�erential cross section distributions indicating the relative position of the third
jet to the tagging jets. On the upper left, the normalised relative rapidity di�erence zú

j3 is
shown, on the upper right the minimum R separation between the third and one of the tagging
jets. The lower plots show distributions of the angular separation between the third jet and
first (left) or second (right) tagging jet (as always numbering ordered according to pT ). All
distributions are obtained for W+jjj production at the scale µR = µF = pT,j1 .
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the four used scales are distinguished by colour.

The largest part of the cross section is found between zú
l = ≠1 and zú

l = 1, meaning in
most cases the lepton appears in between the tagging jets with respect to rapidity.

Finally, the left graph of Figure 5.6 shows the di�erential cross section in dependence of
the invariant mass of the two tagging jets,

mj1j2 =
q

�

pj1 + pj2

�2
. (5.5)

The cuto� at 500 GeV cuts a large part of the cross section for this process, but it is necessary
for removing possible overlying signals such as QCD induced background processes. The
di�erential cross section reaches a maximum at an invariant mass of about 600 GeV before
declining. The LO and NLO distributions again show striking di�erences in their shapes
which manifests as a change in the K factor for all considered scales over the range of mj1j2 .
Such a phase space dependence of the K factor is also strongly visible in the pT and Dyj1j2
distributions, while the K factors of the DF and rapidity distributions are rather flat. In
the mj1j2 distribution it is also noticeable that the phase space dependence of the K factor
is larger for the scale µ = pT,j3 than for the other scales, especially µ = pT,j1 . The right
graph of Figure 5.6 shows the ratios between mj1j2 distributions obtained for scale choice
µ = pT,j1 to distributions obtained for µ = pT,j2 (blue) and to those obtained for µ = µconst
(red). By considering the di�erence in the LO and NLO ratios it gets evident that this
phase space dependence results primarily from the di�erent shapes of the LO distributions,
while the NLO distributions behave fairly similar. Striking is further that the LO (to a
smaller extent also the NLO) ratio between dynamic and constant scale varies much more
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Figure 5.6: Distribution of the di�erential cross section in dependence of the invariant mass
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over phase space than the ratio between the two dynamic scales.

In conclusion, it is not recommendable to multiply LO distributions by known K factors
in order to obtain the corresponding NLO distributions for Wjjj production, since the K
factors are highly phase space dependent. The degree of this dependence further changes
with di�erent scales. The scale which shows the least phase space dependences and can,
following the analysis so far, be considered as the best one of the chosen scales to describe
Wjjj production is µ = pT,j1 . However, there are phase space regions where other scales
lead to a better agreement of LO and NLO result.

5.3 Scale Variations

Renormalisation and factorisation scales are unphysical quantities, introduced to control
ultraviolet and infrared singularities, that cancel if the full cross section including all higher
order corrections would be calculated. However, this is not possible, so by calculating the
NLO corrections to a process the aim is to at least reduce the scale dependences of the LO
calculation by some amount. The more precise the NLO calculation is, the more the scale
dependences should flatten out. This implies that the more scale dependent the NLO cross
section still is, the more uncertain is the calculation up to this order.

The investigation of di�erential cross section distributions in the preceding section already
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Figure 5.7: Total cross section and K factor for W+jjj production in dependence of di�erent
variations of renormalisation and factorisation scale around µ = pT,j1 .

indicated a strong reduction of scale uncertainties, since the NLO distributions are strongly
compatible. Solely the distributions for the lowest scale µ = pT,j3 show some discrepancies
in comparison to the other three. For a more precise analysis, the total cross section is
examined at scales ›µ, with › œ [1/10, 10] for µ œ �

pT,j1 , pT,j2 , µconst
 

and › œ [1/5, 20]
for the smaller scale µ = pT,j3 . In Figure 5.7 the cross section for W+jjj production is
shown for variations of renormalisation scale (dark blue), factorisation scale (turquoise)
and simultaneous variation of both scales (medium blue) around the scale µ = pT,j1 . The
scale uncertainties introduced by variation of the renormalisation scale are much larger
than the ones caused by varying the factorisation scale. In both cases, the inclusion of
the NLO corrections compensates most of the LO scale dependences by adding to the
cross section for large scales (leading to a K factor larger than one) and subtracting in the
region of low scales (giving a K factor smaller than one). The NLO cross section itself is
very stable for large scales, di�ering only by maximal 12 % at › = 10 with respect to its
value at › = 1, while the LO cross section for › = 10 di�ers up to about 40 %. For low
scales, where the LO cross section exceeds its central value of about 95 % when varying
both scales, the NLO cross section drops to 62 % of its maximal value.

The variations around the scales µ œ �

pT,j2 , pT,j3 , µconst
 

, shown in Figure 5.8, lead to
similar behaviours of the NLO cross section. For high scales it stabilises while it drops
rapdily for low scales that are too small to describe this process correctly. The curves of
µ = pT,j2 and µ = µconst look almost identical for both LO and NLO, in addition to their
di�erential cross section distributions also being similar. For the smallest scale µ = pT,j3 ,
the LO cross section exceeds 700 fb already for › = 0.2, where the NLO cross section gets
negative. The variation of the NLO cross section for 0.5 Æ › Æ 2 is larger than 30 %. Thus,
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it is obvious that this is no good scale choice for the considered process. Rather is µ = pT,j1 ,
where the variation in the same range is below 3 %. This is due to the maximum of the
NLO curve, marking the region with least scale uncertainties, being close to › = 1. The
intersection between LO and NLO curves also coincides roughly with › = 1 for µ = pT,j1 ,
which also became apparent in the good accordance between LO and NLO di�erential
distributions.

The similar K factor distributions in Figures 5.1 and 5.2 roughly indicate that there are
no significant di�erences between pp æ W+jjj and pp æ W≠jjj regarding the relative
change between LO and NLO cross sections with respect to di�erent scale choices and
di�erent phase space regions. To demonstrate this behaviour more precisely, the K factors
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Figure 5.9: K factors for W+jjj production in comparison to those for W≠jjj production for
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= 100 GeV, in
dependence of the transverse momenta of the three highest pT jets, their rapidities and the
invariant mass of the tagging jets.

of W+jjj (solid lines) and W≠jjj (dashed lines) production for one dynamic scale (pT,j1)
and one constant scale (µconst) in dependence of some selected kinematic variables are
shown side by side in Figure 5.9. There, the analogy between the two processes distinctly
manifests. As a consequence, it can rightly be assumed that the total cross sections of
the two processes behave analogously under shifts in the renormalisation and factorisation
scale, and therefore all results obtained above generalise to pp æ W≠jjj.
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5.4 Comparison to H Production via VBF in Association with Three Jets

Beyond the Standard Model physics is thought to appear most likely in the Higgs sector.
It is thus important to understand the structure of Higgs boson production to search for
discrepancies to the Standard Model. Both W and Higgs production in association with
three jets via VBF share the same QCD topology regarding their Feynman diagrams. In
this section, the QCD predictions of these two processes are compared in order to gain
a better understanding of their QCD structure. This might for example also be useful
in the context of central jet veto, which is used to reduce the QCD induced background
to electroweak Higgs or weak boson production. In contrast to their QCD topology, the
electroweak topologies of Higgs and W boson production in association with three jets
di�er. As the Higgs’ coupling to light quarks is negligible and top along with bottom quarks
are not considered for this analysis, the Higgs boson can only be produced via leptonic
tensor graphs. The W boson on the other hand can be emitted from the external quark
legs as well. This may lead to di�erences in their di�erential cross section distributions.

The following results were obtained with the implementation of Hjjj production via VBF
in Vbfnlo, see References [50, 51]. The same cuts as listed in Table 5.1 have been used,
except for the cuts on the decay products of the W boson, meaning the lepton and missing
transverse momentum cuts. The results were obtained for on-shell Higgs production, so to
obtain a comparable result to the Wjjj results with the mentioned lepton cuts, a transverse
momentum cut on the produced Higgs boson of pT,H Ø 55 GeV was used.

Figure 5.10 shows normalised transverse momentum and rapidity distributions for both
W+jjj (turquoise) and Hjjj (dark blue) production at next-to-leading order along with their
respective K factor distributions for the dynamic scale µR = µF = pT,j1 . For this scale
choice, the K factors of W and H production in association with three jets do not coincide,
and even show a slightly di�erent phase space behaviour in the pT,j1 and yj3 distributions.
This behaviour is however not surprising when considering the shapes of the transverse
momentum distributions. For Hjjj production, the first tagging jet more probably appears
with a lower transverse momentum than for Wjjj production. This behaviour is caused
by the fact that the production of a Higgs boson via VBF is favoured for two incoming
longitudinally polarised weak bosons, while for the production of a W boson the fusion of
transverse polarised weak bosons plays a more important role, which leads to a harder jet
pT distribution for Wjjj production [71]. Consequently, a dynamic scale proportional to the
transverse momentum of one of the jets is not a good choice to compare these processes.

A better choice for this aim is the constant scale µR = µF = 100 GeV, which lies in between
the W boson and the Higgs boson masses. The results are presented in Figure 5.11, with the
distributions for Wjjj production again marked in turquoise and those for Hjjj production
marked in dark blue. Apparently, the flat K factor distributions, such as the rapidity ones,
coincide for Hjjj and Wjjj production within statistical fluctuations. At first glance the K
factor distributions over the transverse momenta of the two tagging jets, pT,j1 and pT,j2 ,
seem to di�er. The shapes of the K factor distributions are however similar, being only
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Figure 5.10: K factors and normalised di�erential NLO cross section distributions for W+jjj
production (turquoise) in comparison to those for Hjjj production (dark blue) for the dynamic
scale µR = µF = pT,j1 . The transverse momentum distributions are shown on the left-hand
side, the right-hand side shows the rapidity distributions.
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Figure 5.11: K factors and normalised di�erential NLO cross section distributions for W+jjj
production (turquoise) in comparison to those for Hjjj production (dark blue) for the constant
scale µR = µF = 100 GeV. The left-hand side shows the transverse momentum distributions,
the right-hand side shows the rapidity distributions.
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shifted along the pT -axis due to the higher transverse momenta of the tagging jets for Wjjj
production.

Noteworthy is also the di�erential cross section distribution with respect to the angular
separation between the two tagging jets, shown in Figure 5.12. While the two tagging jets
for Wjjj production are most probably to be found in opposite F directions, the di�erential
cross section for Hjjj production drops to a second minimum for DFj1j2 = p. This behaviour
can be explained by the transverse momentum cut on the Higgs boson that has been
imposed. For comparison, Figure 5.13 again shows the normalised di�erential cross section
distribution with respect to the angular separation between the two tagging jets for Hjjj
production, but for the results shown in turquoise no cut on the transverse momentum of
the Higgs boson was imposed. There is no longer a minimum for DFj1j2 = p in the Hjjj
distribution, but the maximum in this region is still significantly less pronounced than
the one for Wjjj production, which can again be explained by the di�erent production
preferences of W and Higgs boson via VBF regarding longitudinal or transverse polarisation
of the incoming weak bosons. In contrast to the di�erential cross section, the shape of the
K factor distribution for Hjjj production is solely influenced up to a maximum of 5 % by
the cut on its transverse momentum. This was also checked for the transverse momentum
and rapidity distributions, so the results concerning the similar QCD structure of Wjjj and
Hjjj production obtained from Figure 5.11 are not dependent on this cut.
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Figure 5.12: Normalised NLO and K factor distributions over the angular separation between
the two tagging jets for W+jjj production (turquoise) in comparison to those for Hjjj production
(dark blue) with transverse momentum cut on the Higgs boson of pT,H Ø 55 GeV. The scales
are chosen at the constant value µR = µF = 100 GeV.
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CHAPTER 6
Summary

In order to find new physics and probe the limits of the Standard Model, precise predictions
of Standard Model signals as well as possible backgrounds are required. Vector boson
fusion and scattering processes are especially sensitive to test the electroweak sector of the
Standard Model due to triple and quartic gauge boson couplings. In addition, they are
an important background to searches beyond the Standard Model. The LHC [16] is the
instrument of choice for acquiring the needed experimental data for comparison, performing
proton-proton collisions at high center-of-mass energies. The proven approach to compute
hadronic cross sections is perturbative QCD, which necessitates the calculation of higher
order corrections in addition to the LO in order to obtain precise, less scale-dependent
results.

This thesis presented the calculation and discussed the phenomenology of Wjjj production
via VBF at NLO in QCD, which was implemented in the fully flexible Monte Carlo program
Vbfnlo [18–21] enabling the computation of cross sections and distributions both for
proton-proton and antiproton-antiproton collisions. The calculation was simplified by the
use of VBF approximations and by neglecting CKM mixing. The leptonic decay of the
W boson is included, which is why all resonant and non-resonant matrix elements are
considered. The production of the W observable can then be described either by a leptonic
tensor or an e�ective polarisation vector. Matrix elements are computed by combining
di�erent building blocks, such as fermion line currents and leptonic tensors, that reappear
in various matrix elements. By precalculating such building blocks only once per phase
space point a fast computation could be achieved.

The real emission contribution is still a very time consuming part of the calculation,
because several new topologies arise due to the possibility of either two gluons taking part
in the process or six external quarks, the latter leading to additional Pauli interference
graphs. The virtual corrections contain loop diagrams up to pentagon level, with abelian
and non-abelian contributions, which could be computed with the help of loop routines
already implemented in Vbfnlo for double vector boson production in association with
two jets [52]. Since the real emission contributions and the virtual corrections are handled
and integrated separately in the Monte Carlo program, the infrared divergences were
cancelled using the dipole subtraction algorithm proposed by Catani and Seymour [44].
This procedure included the subtraction of process-specific terms in the real emission
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amplitude and the addition of an insertion operator to the virtual corrections. As a final
contribution, the finite collinear remainder arising from the absorption of further collinear
initial splittings into the PDFs was added to the cross section.

All newly implemented parts of the calculation were thoroughly verified. LO and real
emission matrix elements were crosschecked with MadGraph [58], virtual correction
matrix elements with an already existing implementation of Zjjj production by adjusting
the electroweak coupling parameters. The integrated LO cross section was compared
to already validated results. Furthermore, the cancellation of infrared and collinear
singularities in the real emissions due to the dipole subtraction terms was checked.

The presented results were produced for proton-proton collisions as done at the LHC, with
VBF specific cuts to exclude phase space regions where other backgrounds would dominate
the signal. The cross section for ppæW+jjj is significantly larger than for ppæW≠jjj
due to the structure of the proton, being 278.5 fb for a dynamic renormalisation and
factorisation scale chosen as the maximum transverse momentum of the outgoing jets.
This scale emerged as the best scale choice for these processes, with its LO and NLO
di�erential cross section distributions being similar and with a total K factor of 1.05. Other
inspected scale choices were the second and third largest transverse momenta of the jets
and one constant scale at 100 GeV, which produced less matching LO and NLO results.
The K factor distributions show a strong phase space dependence for all analysed scale
choices, meaning LO distributions cannot be multiplied with the total K factor to obtain
the according NLO distributions. The largest dependences herefore are observed in the
transverse momentum and tagging jet invariant mass distributions, while the rapidity K
factor distributions are rather flat.

A more detailed analysis of the behaviour of the LO and NLO cross sections with varying
scales demonstrated a considerable reduction of scale dependences by including the NLO
constributions. By increasing and lowering the scale by a factor of two around the maximal
transverse jet momentum, µF = µR = ›pT,j1 with 0.5 Æ › Æ 2, the LO cross section deviates
up to 20 % from its central value, whereas the variation of the NLO cross section does not
excede 3 %. It was found that the NLO cross section drops considerably for particularly
low scales, but stabilises at high scales, whereas the LO cross section does not stabilise at
all. This stresses the importance of the inclusion of NLO corrections for eliminating higher
order e�ects appearing in the LO cross section. Furthermore it demonstrates that with the
NLO corrections at hand still a reasonable scale has to be chosen to obtain an accurate
estimate of the full cross section. For ppæW+jjj this choice was found to be the highest
transverse jet momentum.

The distributions of W production in association with three jets were further compared
to distributions for H production via VBF in association with three jets [50, 51]. The
processes share the same QCD topology, with a di�ering electroweak structure due to
di�erent production mechanisms of W and Higgs boson. It appeared that the two processes
have similar K factor distributions if considering a constant scale choice in between the
two boson masses. The di�erential cross section with respect to the angular separation
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between the two tagging jets evinced dissimilar shapes in their distributions, which could
be useful to distinguish weak and Higgs boson production signals.

In conclusion, the work at hand provides relevant results for future analyses of LHC data,
attempting to pave the way for the discovery of new physics. The implementation is easily
extendable to double W boson production in association with three jets, which is even
more sensitive to new physics influencing the electroweak sector due to its quartic gauge
boson couplings.





A Selected Feynman Rules of the Standard Model

A.1 Electroweak Sector

With the elementary charge e := gÕcw, the charge Q = T 3 + Y/2, and the covariant
derivative with respect to the new fields,
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where ‡± = ‡1 ± i‡2, and mass terms for fermions resulting from Yukawa interactions of
fermions and Higgs field, the Lagrangian of electroweak theory after spontaneous symmetry
breaking can be expressed as
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(A.3)

Here, Z
µ‹

, A
µ‹

, and W +,≠
µ‹

are defined analogously to B
µ‹

in Equation 2.7. The index f
covers all fermions, l the three leptons electron, muon and tau, u sums over all up-type
quarks and d over all down-type ones. The terms LHiggsInt and Lquartic, containing Higgs
interactions and quartic couplings of gauge bosons, are not written in detail, as their
resulting Feynman rules are not needed for the calculations in this thesis. The term Lfix
contains gauge fixing terms needed for a proper definition of the gauge boson propagators.
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The Feynman rules for fermion and triple gauge boson interactions, as well as fermion and
gauge boson propagators are presented below for an R

›

gauge. Readers interested in a full
set of Feynman rules for the Standard Model may have a look at Reference [72].

Selected Feynman Rules
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A.2 Quantum Chromodynamics

The full Lagrangian of QCD reads
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with the field strength tensor G
µ‹

and the covariant derivative D
µ

defined as in Section
2.1.2. D̃

µ

is the covariant derivative acting on a field in the adjoint representation, › is
the gauge parameter and ÷ names the ghost fields. By writing out the interaction terms
explicitly, one gets

LQCD =
X

quarks q

y
q

�

i /̂ ≠ m
q

�

y
q

+ g
s

X

quarks q

Aa

µ

y
q

“µtay
q

| {z }

= Lquarks

≠ 1
4
�

ˆ
µ

Aa

‹

≠ ˆ
‹

Aa

µ

�2

| {z }

= Lgauge, abelian part

≠ 1
2›

�

ˆµAa

µ

�2

| {z }

= Lfix

≠ g
s

fabc (ˆ
µ

Aa

‹

)Ab,µAc,‹ ≠ 1
4g2

s

⇣

fabcAb

µ

Ac

‹

⌘⇣

fadeAd

µ

Ae

‹

⌘

| {z }

= Lgauge, non-abelian part

≠ ÷aˆµˆ
µ

÷a ≠ g
s

fabc (ˆµ÷a) ÷bAc

µ

| {z }

= Lghost

.

(A.5)

In the following, the Feynman rules for propagators, interactions and external lines of
quarks and gluons are listed, where the indices i and j name the colour charges of quarks
and thus go from 1 to 3, while a, b and c refer to the gluon fields and thus go from 1 to 8.
Feynman rules involving ghosts are spared, as they are not needed for the calculations in
this thesis.
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Selected Feynman Rules
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B Notation in Feynman Diagrams

The diagrams shown in Figures 3.2, 3.3, 3.6, and 3.7 each compromise two kinds of diagrams,
which is denoted by the grey circle. The explicit meaning of this notation is explained by
the following diagrams:
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.
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C Colour Factors for the Two-Gluon Subprocesses

The colour factors C(nm) for the colour structure subamplitudes of the two-gluon subpro-
cesses are given by the colour sums over the products of the colour structure tensors T(i).
In the following calculation, a and b denote the colour charges of the gluons, i and j the
colour charges of the upper line quarks and k and l the colour charges of the lower line
quarks. The relations used during the calculation are given by Equation 2.20.
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In the first step it was used that the generators ta are hermitian, (ta) = ta, which implies
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where in the third step the commutativity of the two di�erent colour structures was used.
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C(26) = C(62) and C(25) = C(52) can analogously be shown to give zero, as they also include
the trace over a commutator.
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