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1. Introduction

The fundamental description of nature in which the scientific field of particle physics
plays an essential role, had tremendous success in the 20th century both in theoretical and
experimental aspects. The interplay between theory and experiment, especially, played
an important part in the achievements of particle physics and is one of the core beauties
of it. On one side, there are theoretical models based on mathematical principles and
experimental observations, which not only can reproduce the experimental results, but can
make new predictions as well. And on the other side stand the experimental observations,
which by chance, by experimental ingenuity or by searching for theoretical predictions
actually observe new physics phenomena. As an example: With the introduction of the
Dirac equation [1] not only relativistic electrons could be described, but also predictions in
the form of new particles could be made. The equation allows for a positive electron-like
particle with negative energy [2]. Later, this so-called positron was actually discovered as
the anti-particle of the electron [3].

Moreover, the interplay between theoretical models and experimental observations be-
comes even more subtle with the occurrence of divergences in higher-order calculations
in perturbative quantum field theory and their proper treatment. Divergent parts in a
physical theory are not an exclusive feat of quantum field theories. They can be found
in many theories and hint at the fact that the theoretical model lacks some fundamental
aspect of nature, since divergences cannot occur in observables. The methods to properly
treat these divergent parts in quantum field theories are regularization and renormalization
[4, 5], which in turn need experimentally measured results as an input. Therefore, theo-
retical models in particle physics rely on experimental results in order to make precision
calculations and the methods to correctly regularize and renormalize a theory are crucial.

With this in mind, one of the key achievements in the 20th century in particle physics was
the development of the Standard Model (SM) [6–8]. With the combination of experimental
observations and theoretical developements step by step all known elementary particles
and forces of nature (except for gravity) could be included. However, one of the key pieces
of the SM was not discovered in the 20th century, although it was already proposed in
the 1960s: the Higgs boson [9–13]. With the discovery of the 125GeV Higgs boson at
the Large Hadron Collider (LHC) in 2012 [14, 15], the SM was finally completed from the
theoretical point of view. All particles that where predicted by the SM had been found.

Nevertheless, the search for new particles is far from being over and new theories beyond
the SM (BSM) are developed to explain so far unanswered questions. To mention two of
them, first of all cosmological observations clearly indicate the existence of so-called Dark
Matter (DM) in the universe, e.g. [16], which might consist of a new type of particle. In the
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1. Introduction

SM, however, no suitable candidate can be found. Furthermore, the observable universe
possesses a matter-antimatter asymmetry, which has origins in the early universe. The
three Sakharov conditions [17] would offer through electroweak (EW) baryogenesis a
dynamical solution for this asymmetry. The SM is, in principle, able to fulfill all conditions,
but a Higgs boson mass of about 70-80GeV [18, 19] would be required for the EW phase
transition to be of strong first order [20–22], in contrast to the discovery of the 125GeV
Higgs boson, and the CP violation within the SM arising from the Cabibbo-Kobayashi-
Maskawa (CKM) matrix is not large enough [23–25]. A possible approach for a BSM theory
is to extend the Higgs sector of the SM. The scalar potential of the SM has not been fully
measured yet and there is still room for physics beyond the SM. These models introduce
new scalar particles, which can be a suitable DM candidate.

The Complex Singlet Extension of the Standard Model (CxSM) [26–39] is one of the
many theories which extend the scalar sector of the SM and is able to provide a suitable
DM candidate. It is especially interesting, since it is quite simple in its extension. The
model only adds, as the name suggests, a complex singlet field to the scalar sector of
the SM. Therefore, only the scalar sector receives a significant change with respect to
the SM. Within the CxSM, theoretical calculations can be perfomed and compared with
experimental results. At the Large Hadron Collider (LHC), the decay of the 125GeV
Higgs boson into invisible particles can be probed for, and there already exist experimental
limits [40]. The upcoming LHC run [41] might further improve on this. Thus, from a
theoretical point of view it is desirable to perform precision calculations in order to be
able to compete with experimental results and further constrain the parameters of the
model. In the CxSM, for example, the decay of the 125GeV Higgs boson into DM particles
can be computed at higher order to obtain precise results and to compare them with the
aforementioned current and future experimental data. In this thesis the next-to-leading
order (NLO) EW corrections to this process will be calculated, and their impact will be
analyzed and discussed in detail.

The structure of the thesis is as follows. To start with, an introduction to the CxSM, as
well as the key differences to the SM are given in Chapter 2. In addition to the choice of
input parameters (Sec. 2.4), the constraints on the model from theoretical requirements
and experimental observations are discussed (Sec. 2.5).

Next, the description of the renormalization of the CxSM is presented in Chapter 3. The
important parts in renormalizing the model with respect to the later calculated decay
process as well as detailed discussions of several renormalization schemes for the different
input parameters are presented.

Subsequently, in Chapter 4, the computational tools applied in the calculation of the NLO
decay width of the 125GeV Higgs boson decay into dark matter particles is presented.
Furthermore, technical details of the calculation and analytical tests of the result are
presented. Next, the numerical analysis with the generated input parameters, that obey
the aforementioned theoretical and experimental constraints, is shown in Chapter 5. In
particular, the results are presented and discussed in detail.

Finally, the conclusion of the thesis and an outlook on possible further future work is
given in Chapter 6.

2



2. Introduction to the CxSM

In this Chapter an introduction to the CxSM is presented. As already mentioned in the
Introduction, the CxSM is a simple extension of the SM, by expanding the scalar sector. The
version of the CxSM discussed in this thesis is able to provided a possible DM candidate.
Thus, a description of the expanded scalar sector is given (Sec. 2.2). The choice of input
parameters is discussed (Sec. 2.4) and theoretical and experimental constraints on the
model are presented 2.5.

2.1. The CxSM Lagrangian

In the CxSM the scalar sector is extended beyond the SM by introducing an additional
complex singlet S. The singlet does not couple to any gauge bosons and fermions and
therefore only changes the scalar sector of the SM Lagrangian. The complete Lagrangian
reads

LCxSM = LYM + LF + LS + LYuk + LGF + LFP. (2.1)

The Yang-Mills Lagrangian LYM, the fermion Lagrangian LF, the gauge fixing Lagrangian
LGF as well as the Fadeev-Popov Lagrangian LFP are unchanged with respect to the SM
and can be found in the literature, e.g. in Refs. [42, 43]. The third term, LS, encapsulates
the scalar sector of the theory, which is different with respect to the SM and is described
in detail in Sec. 2.2. The part LYuk describes the couplings of the fermions to the Higgs
boson and can, in general, be different with respect to the SM. In the CxSM, however, this
is not the case, as can be seen in Sec. 2.3.

2.2. The Scalar Sector

With the additional singlet S the scalar potential potential now contains more possible
terms. To constrain this potential, a global* (1) symmetry is imposed on S which is softly
broken. The most general renormalizable scalar potential thus reads

+scalar =
<2

2
Φ†Φ + _

4

(
Φ†Φ

) 2
+ X2

2
Φ†Φ|S|2 + 12

2
|S|2 + 32

4
|S|4

+
(
11

4
S2 + 01S + 2.2 .

)
,

(2.2)
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2. Introduction to the CxSM

where Φ denotes the doublet field. The soft breaking terms proportional to the couplings
11 and 01 are in parentheses. All parameters are, in general, real except for 11 and 01. The
two fields can be written as

Φ =

(
�+

1√
2

(
E + � + 8�0

) ) , S = 1
√
2
(E( + ( + 8 (E� +�)), (2.3)

where � , ( and � are real scalar fields. The �+ and �0 fields will form the respective
Goldstone bosons for the / and, + bosons similarly as in the SM. The E , E� and E( are the
vacuum expectation values (vevs) of the corresponding fields and can all be, in general,
non-zero which in turn can lead to mixing between all three scalar fields,

©«
ℎ1
ℎ2
ℎ3

ª®¬ = '
©«
�

(

�

ª®¬ , (2.4)

with a general rotation matrix R.

This description is still a quite general formulation for the CxSM. In this thesis, a special
case was considered by demanding that the real part ( and the imaginary part � of the
singlet field obey a Z2 symmetry separately. So the potential has to be invariant under the
transformations ( → −( and � → −�. From this it immediately follows that 01 = 0 and
11 ∈ R. Furthermore, without loss of generality, one of the vevs can be chosen to be zero.
Here, E� is be chosen to be zero whereas E( is non-zero. This means that the scalar field �
will obey the Z2 symmetry, whereas for ( the symmetry will be spontaneously broken.
Thus, the particle associated with the field � is stable since a decay into particles that do
not transform under this symmetry would break it.

With the broken symmetry, ( can now mix with � . Thus, the mass eigenstates ℎ8 (8 = 1, 2)
relate to the gauge eigenstates � and ( through(

ℎ1
ℎ2

)
= 'U

(
�

(

)
, (2.5)

where the rotation matrix is given by

'U =

(
cos(U) sin(U)
− sin(U) cos(U)

)
=

(
2U BU
−BU 2U

)
, (2.6)

with the abbreviations 2U and BU for cos(U) and sin(U) respectively. The mass matrix for
the gauge eigenstates is given by

M =

(
E2_
2

X2EE(
2

X2EE(
2

32E
2
(

2

)
+

(
)1
E

0

0 )2
E(

)
, (2.7)

with the tadpole parameters)1 and)2. They are defined trough theminimization conditions
as

m+

mE

���� ≡ )1 ⇒ )1

E
=
<2

2
+
X2E

2
(

4
+ E

2_

4
, (2.8a)

m+

mE(
≡ )2 ⇒ )2

E(
=
11 + 12

2
+ X2E

2

4
+
E2
(
32

4
, (2.8b)
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2.2. The Scalar Sector

where the expressions in Eq. (2.3) have been inserted into the potential. The mass term
for the field � is given by

M� =
−11 + 12

2
+ X2E

2

4
+
E2
(
32

4
= −11 +

)2

E(
, (2.9)

At tree level, the tadpole parameters )8 (8 = 1, 2) have to be zero to fulfill the minimum
conditions. These equations can then be used to express the remaining parameters by the
chosen set of input parameters, see also Sec. 2.4.

The minimization conditions can have multiple solutions for possible vev parameters. The
desired minimum state that is investigated in this thesis is the configuration with both
vevs E and E( to be non-zero, however there might be other possibilities as well. A detailed
discussion on these potential minima will be given in Sec. 2.5.1.

With the rotation matrix 'U the mass matrix can be diagonalized,

�2
ℎℎ

≡ 'UM')U . (2.10)

The field � is already given in mass basis, thus the mass term reads

�2
� ≡ M� . (2.11)

The diagonal entries of the mass matrix �2
ℎℎ

and the mass term �2
�
can be interpreted as

the physical masses of the corresponding fields, i.e.

�2
ℎℎ

= 3806(<2
ℎ1
,<2

ℎ2
), �2

� =<2
� . (2.12)

With the scalar fields described, the overall scalar Lagrangian reads

LS =
(
�`Φ

) † (�`Φ) + m`S∗m`S −+Scalar, (2.13)

where �` is the covariant derivative [42, 43],

�` = m` + 86
f0

2
, 0
` (G) + 86′

.

2
�` (G). (2.14)

Since S is a singlet it does not couple to any gauge bosons and therefore only the partial
derivative enters into the Lagrangian, whereas the doublet Φ couples to both the (* (2)!
and* (1). gauge bosons of the SM, with the corresponding coupling constants 6 and 6′, the
hypercharge . and the Pauli matrices f0 (0 = 1, 2, 3). The, 0

` and �` are the gauge fields
of the (* (2)! and * (1). symmetries, respectively. The doublet structure of the CxSM is
identical to the doublet structure of the SM,which means that all relations between the
doublet vev E and the gauge boson masses <, and </ remain be unchanged and the
photon is still massless.

The couplings of the gauge bosons to the scalar particles change, since the gauge eigenstates
have to be rotated to the mass eigenstates. Therefore the CxSM couplings read

6ℎ8++ = 6�SM++:8, :8 ≡
{
cos(U), 8 = 1

− sin(U), 8 = 2
, (2.15)

where 6�SM++ denotes the SM coupling between the SM Higgs and the massive gauge
bosons + (+ = /,, ±).

5



2. Introduction to the CxSM

2.3. The Yukawa Sector

When introducing additional scalar fields in the SM, the Yukawa Sector can, in general, be
altered with respect to the SM. But since in the CxSM only a singlet field is added, which
does not couple to the SM particles, the Yukawa sector remains unchanged. Thus the
Lagrangian reads

LYuk = −!̄!.;Φ;' − &̄
′
!.3Φ3

′
' − &̄

′
!.DΦ̃D

′
' + h.c. , (2.16)

with the left-handed lepton and quark doublets !! and & ′
!
and the general complex 3 × 3

matrices .; , .3 and .D . Here a sum over the generations is implied and

Φ̃ ≡ 8f2Φ∗, (2.17)

with f2 being the second Pauli matrix. To transform the quarks into the mass basis a
unitary transformation has to be applied, which eventually leads to the CKM matrix that
is already known in the SM (for more details see for example [43]).

The major change with respect to the SM is again similar to the gauge boson part. The
couplings receive an additional angular factor from the rotation of the scalar gauge fields
into the mass eigenstates. Thus, the couplings between the scalar particles ℎ8 and fermions
5 reads

6ℎ8 5 5̄ = 6�SM 5 5̄ :8, (2.18)

where 6�SM 5 5̄ denotes the SM coupling between the SM Higgs and the fermions 5 .

2.4. Choice of Input Parameters

With the introduction of the additional singlet in the CxSM, the scalar potential (Eq. (2.2))
has 8 parameters among which 2 are vevs. However, it is more convenient to use the
scalar masses and the scalar mixing angle as inputs. They can be related to the original
parameters of the potential by using Eqs. (2.8), (2.10) and (2.11). In total these are 6
equations: 2 minimization conditions, 1 equation from the mass term �� and 3 equations
from the rotation of the mass matrix�2

ℎℎ
. Thus, all potential parameters except for the vevs

can be expressed through scalar masses and the scalar mixing angle. The input parameters
read

{E, E( , U,<ℎ1,<ℎ2,<�,)1,)2}. (2.19)

The tadpole parameters )8 are zero at tree level, but they will be important later when the
renormalization of the NLO calculation is discussed (see Sec. 3.2).

6



2.5. Constraints

The other potential parameters can be expressed as

_ =
<2
ℎ1

+<2
ℎ2

+ cos(2U) (<2
ℎ1

−<2
ℎ2
)

E2
, (2.20a)

32 =
<2
ℎ1

+<2
ℎ2

+ cos(2U) (<2
ℎ2

−<2
ℎ1
)

E2
(

, (2.20b)

X2 =
(<2

ℎ1
−<2

ℎ2
) sin(2U)

EE(
, (2.20c)

<2 =
1

2

(
cos(2U) (<2

ℎ2
−<2

ℎ1
) −

E (<2
ℎ1

+<2
ℎ2
) + E( (<2

ℎ1
−<2

ℎ2
) sin(2U)

E

)
, (2.20d)

12 =
1

2

(
2<2

� −<2
ℎ1

−<2
ℎ2

+ cos(2U) (<2
ℎ1

−<2
ℎ2
) −

E (<2
ℎ1

−<2
ℎ2
) sin(2U)

E(

)
, (2.20e)

11 = −<2
� . (2.20f)

In the EW sector of the SM the masses of the gauge bosons and fermions, as well as the
electric charge 4 , can be chosen as input parameters. Further useful relations, which are
used in the upcoming calculations, are

Bw ≡ sin(ΘW), 2w ≡ cos(ΘW) = <,

</

, (2.21a)

6′ =
4

2w
, (2.21b)

6 =
4

Bw
, (2.21c)

E =
2<,

6
, (2.21d)

where ΘW is the weak mixing angle.

2.5. Constraints

In order to investigate the validity of the model, relevant theoretical and experimental
constraints have to be considered. Some of them are already fulfilled by the structure of
the CxSM, whereas other constraints will give tight limits on certain parameters of the
model. The discussion of these constraints here follows earlier works, cf. Refs. [37–39,
44]. All of the described constraints are already implemented in ScannerS [37, 39, 44]
which will be used in order to generate viable parameter points that are not yet excluded
by theoretical and experimental constraints (see Sec. 5.2).
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2. Introduction to the CxSM

2.5.1. Theoretical Constraints

The following theoretical constraints have to be taken into account:

• Boundedness from below

The scalar potential has to be bounded from below in order to have a stable minimum
around which perturbation theory can be applied. In the SM this is already achieved
by requiring that the quartic term of the potential is positive. In the CxSM this is
more complicated.

For the potential to be bounded from below it is sufficient to look at the quartic
terms. The replacements Φ†Φ ≡ G and |S|2 ≡ ~ can be made to look at all possible
field directions. Now the simplified potential reads

+quartic(G,~) =
_

4
G2 + X2

2
G~ + 32

4
~2 =

1

4

(
G ~

)T (
_ X2
X2 32

) (
G

~

)
. (2.22)

Since G and ~ are by definition positive, the matrix describing the quartic potential
has to be co-positive in order for the potential to be bounded from below [45]. This
means that the diagonal elements as well as the determinant have to be positive if
the off-diagonal elements are negative and leads to the constraints (at tree level)

_ > 0 ∧ 32 > 0 ∧ (X22 < _32 if X2 < 0). (2.23)

The same result was also obtained in [37].

• Unitarity constraints
As in the SM, the couplings of the CxSM have to satisfy certain relations in order to
obey unitarity [46]. In the SM, the processes +!+! → +!+! and 5+ 5̄+ → +!+! do not
break unitarity at tree level because of the unique coupling of the SM Higgs with
the respective particles. Now in the CxSM this also has to be the case.

As described in the Secs. 2.2 and 2.3 the couplings of the scalar fields to fermions
and gauge bosons are such that the relations

2∑
8=1

62
ℎ8++

= 62�SM++
, (2.24)

2∑
8=1

6ℎ8++6ℎ8 5 5̄ = 6�SM++6�SM 5 5̄
, (2.25)

hold, and the above mentioned processes do not violate unitarity [47].

Furthermore, the quartic interactions between scalar particles can be used to obtain
constraints on the parameters of the potential, as was already described by Lee,Quigg
and Thacker for the SM in [48]. These interactions also have to obey unitarity. In
the high-energy limit they are proportional to the quartic terms of the potential and
the scattering matrix M2→2 of all possible two-to-two scalar scattering interactions

8



2.5. Constraints

can be calculated. In order for unitarity to hold, the eigenvalues of this matrix are
not allowed to exceed a certain value. Thus, the eigenvalues _8 have to obey

|_8 | < 8c. (2.26)

This leads to the constraints (cf. Ref [44])

|_ | ≤ 16c ∧ |32 | ≤ 16c ∧ |X2 | ≤ 16c

∧

������32_ + 32 ±
√(

3

2
_ − 32

) 2
+ 2X22

������ ≤ 16c.
(2.27)

• Stability of the Vacuum
In the SM the scalar potential [42] is given by

+SM =
<2

2
Φ†Φ + _

4

(
Φ†Φ

) 2
, (2.28)

with the same parametrization of Φ as in Eq. (2.3). The potential has two extreme

values for the vev E , of the Higgs field � : E = 0 or E =

√
−<2

_
. In order for the

non-zero value to be a stable minimum, _ has to be positive and<2 negative. With
these conditions, the stability of the vacuum at tree level is already assured since
no other possible minima exist. The calculated minimum will always be the global
minimum.

In the CxSM the scalar potential is more complex and potentially allows for different
minima to exist simultaneously, which in turn could lead to an unstable vacuum
state. If the current state is not the global minimum, tunneling may lead to the decay
of the vacuum into a deeper minimum which should be avoided. More generally, a
tunneling process with a lifetime of the age of the universe would still be allowed.
For more details see [49]. In the following, a detailed description of the minima of
the CxSM at tree level is given.

Using the general description

Φ =
1
√
2

(
�1 + 8�2

� + 8�0

)
, S =

1
√
2
(( +�) , (2.29)

the minimization conditions read

m+

m ®q

�����
〈q8 〉=G8

= 0 ⇒

©«

<2

2 G� + _
4G

3
�
+ X2

4 G�G
2
(
= 0

11+12
2 G( + 32

4 G
3
(
+ X2

4 G(G
2
�
= 0

0 = 0
0 = 0
0 = 0
0 = 0

ª®®®®®®®®¬
, (2.30)
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2. Introduction to the CxSM

with the scalar fields collected in the vector

®q =
(
� ( � �0 �1 �2

)T
, (2.31)

and only allowing for non-zero vevs G� and G( for the fields � and ( . Here, in
general, the vev parameters are called G� and G( to keep them separate from the
input values E and E( .

The two nontrivial equations lead to 4 possible cases for the vevs:

– G� = G( = 0:
This trivially solves the equations and the potential at this point results in

+ (0, 0) = 0. (2.32)

– G� = 0, G( ≠ 0:
This trivially solves the first equation and, since 32 ≠ 0, the second equation
can be solved for G( and results in

G( =

√
−2(11 + 12)

32
≡ G1, (2.33)

if 11 + 12 is negative. Inserting this into the potential gives

+ (0, G1) = − (11 + 12)2
432

. (2.34)

– G� ≠ 0, G( = 0:
This trivially solves the second equation and, since _ ≠ 0, the first equation
can be solved for G� and results in

G� =

√
−2<2

_
≡ G2, (2.35)

if<2 is negative. Inserting this into the potential gives

+ (G2, 0) = −<
4

4_
. (2.36)

– G� = E, G( = E( :
From the above equations it can be seen that only one unique solution is possi-
ble. Since both vevs are treated as input values, the minimization conditions
can be used to be solved for other parameters. This results in

<2 =
−1
2

(
_E2 + X2E2(

)
, 11 + 12 =

−1
2

(
32E

2
( + X2E2

)
. (2.37)

The potential with these input parameters reads

+ (E, E( ) =
1

16

(
4<2E2 + _E4 + 2X2E

2E2( + 4(11 + 12)E2( + 32E4(
)
. (2.38)
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2.5. Constraints

In this thesis, the minimum with both vevs non-zero is the desired ground state and
should be the global minimum. This means that Eq. (2.37) has to hold. Moreover, in
order for this vev configuration to be a minimum, the Hesse matrix of the potential
has to be positive definite, i.e. the determinant has to be positive. This matrix is
identical to the mass matrix in Eq. (2.7). Therefore, the requirement reads

X22 < _32. (2.39)

With Eq. (2.37) the values of the potential for the different vev configurations can
be simplified and compared. The differences are

+ (E, E( ) −+ (0, 0) = − 1

16

(
_E4 + X2E2E2( + 32E4(

)
< 0, (2.40a)

+ (E, E( ) −+ (0, G1) = −
(32_ − X22)E

4

1632
< 0, (2.40b)

+ (E, E( ) −+ (G2, 0) = −
(32_ − X22)E

4
(

16_
< 0. (2.40c)

All these inequalities hold because of the requirement (2.39). The parameters _ and
32 have to be positive for the potential to be bounded from below. Thus, if the vev
configuration with only non-zero values is a minimum, then it is a unique and global
minimum. The only requirement that needs to be fulfilled is relation (2.39).

2.5.2. Experimental Constraints

The following experimental constraints have to be taken into account:

• The d parameter
The d parameter has been precisely measured [50] to be close to 1. In the SM the
identity

d =
<2
,

<2
/
22w

= 1, (2.41)

holds at tree level [51], with<, and</ being the / and, boson mass, respectively,
and 2w the cosine of the weak mixing angle.

In models with extended scalar sectors, this relation can be generalized [46]. With =
scalar multiplets in the theory the following identity holds,

d =

∑=
8=1

(
�8 (�8 + 1) − 1

4.
2
8

)
E8∑=

8=1
1
2.

2
8
E8

, (2.42)

with the isospins �8 and hypercharges .8 of the scalar fields q8 . (* (2) singlets do not
contribute to this relation since their hypercharge and isospin are zero. For (* (2)
doublets also the relation

�8 (�8 + 1) = 1

2
. 2
8 , (2.43)
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2. Introduction to the CxSM

holds so that the d parameter is 1 at tree level. Therefore this constraint is automati-
cally fulfilled when introducing additional singlets or doublets into the SM.

• No flavor changing neutral currents (FCNC)
FCNC are tightly constrained by experimental results [52, 53] and therefore give
tight restrictions to extensions of the SM. These constraints also have to be met by
the CxSM. However, the CxSM is also a flavor conserving model at tree level since
the Yukawa sector is unchanged with respect to the SM and FCNC do not occur in
the SM at tree level [54].

The following experimental constraints are implemented in ScannerS and used for the
generation of parameter points. A brief review of the constraints is given here, for more
information see Refs. [37, 44].

• (,) ,* precision parameters
The ( ,) and* precision parameters [55, 56] have to be considered to constrain the
parameters in the model. When introducing additional scalar fields in the theory,
the contributions from these fields can be calculated and the deviation with respect
to the SM result can be obtained. These deviations have to be within experimental
bounds, i.e. ScannerS uses a fit result to compare the model predictions with. Then
the program applies a consistency check with 95% confidence level to see if the
constraints are fulfilled.

• Searches for scalar particles and Higgs measurements
With the discovery of the 125GeV Higgs Boson at the LHC and other measurements
and searches for additional scalar particles, the scalar sector is already severely
constrained by experimental bounds, which are imported in ScannerS from the
program packages HiggsBounds [57–61] and HiggsSignals [62, 63]. Therefore,
agreement of the signal rates of the SM-like Higgs boson of the CxSM with the
observations at 2f level is checked by HiggsSignals-2.6.1. Through HiggsBounds-
5.9.0 the exclusion bounds from searches for extra scalars are taken into account.

• DM searches and cosmological constraints
The CxSM contains a dark matter candidate and therefore DM constraints are
applied as well. First of all, the predicted DM relic density of this model should
not exceed the measured value. Smaller values are not excluded since they allow
for additional contributions coming from other sources outside of the described
model. ScannerS can be linked to the program package MicrOMEGAs [64–66] to
include this constraint from the relic density. Moreover, direct detection searches
for DM, c.f. e.g. [67], can be used to constrain the model parameters by calculating
the spin-independent cross sections and comparing with current exclusion limits.
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3. Renormalization of the CxSM

It is well established that divergences occur in quantum field theories, when calculating
higher-order corrections [42]. The proper treatment of these divergent terms is necessary
to obtain physical results which can be compared to experimental results. In order to
apply the renormalization procedure, the divergences have to be isolated. This procedure
is called regularization and there are several methods to obtain a regularized result. In this
thesis, dimensional regularization is used [4, 5], which means that all integrals emerging
from NLO calculations are treated in general � dimensions, with � = 4 − 2n and n → 0.
Now the divergences have the form

Δn =
1

n
− WE + ln(4c), (3.1)

where WE is the Euler-Mascheroni constant [42]. The cancellation of all divergences can be
tested analytically as well as numerically after the successful renormalization of the theory.
Also the gauge structure of the theory is preserved with this method of regularization.

Formally, in the renormalization procedure all physical quantities V obtain a shift

V0 = V + XV , (3.2)

with XV being the respective counterterm of the physical quantity V and V0 being the bare
unrenormalized quantity. All fields q in the theory are factorized as

q0 =

√
/qq ≈

(
1 +

X/q

2

)
q , (3.3)

with the unrenormalized field q0 and the field strength renormalization constant /q . The
approximation holds at NLO. Inserting these relations into the bare Lagrangian of the
theory gives rise to additional Feynman diagrams at NLO including counterterms. If
the counterterms are properly defined via certain conditions, the overall amplitude of a
given process will be free of any divergences (also called UV-finite) and can be used to
make physical predictions. The procedure of regularization and renormalization is quite
involved, but the renormalizability of the SM was proven in [5]. The CxSM can be seen as
an extension of the SM by only introducing renormalizable terms. Therefore the CxSM is
a renormalizable theory as well.

The main part of the renormalization is to define the conditions for the derivation of the
counterterms and also calculate the renormalization constants. The procedures used in
this thesis follow the work of [68], but are now applied to the CxSM.
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3. Renormalization of the CxSM

Σ(?2) = 1PI ≈ +

Figure 3.1.: Topologies of Feynman diagrams, which contribute to the self-energy of a
scalar particle.The diagrams shown here and all following diagrams are created
with [69].

3.1. On-Shell Renormalization of the Scalar Sector

One possible scheme to renormalize the theory and obtain physical amplitudes is the on-
shell (OS) scheme [42]. The OS scheme is defined in a way that the given input parameters
for masses of particles are the measured masses from experimental results. As a brief
summary this means that all higher order corrections to the mass of a particle (i.e. the
self-energy) are canceled by the respective mass counterterms to all orders of perturbation
theory.

The OS scheme is introduced in the following way in the CxSM. First of all, when consid-
ering the field �, the field and the corresponding mass can be rewritten as

�0 =
√
/�� ≈

(
1 + X/�

2

)
�, �2

�,0 = �
2
� + X�2

�, (3.4)

where the index 0 generally indicates the unrenormalized field, /� is the field strength
renormalization constant and X�� the corresponding counterterm for the mass term of
�. These expressions can be put in relation with the renormalized self-energy, i.e. the
self-energy combined with the propagator counterterm, which reads at NLO [42]

Σ̂� (?2)) = Σ� (?2) − X�2
� +

X/ ∗
�

2
(?2 − �2

�) + (?2 − �2
�)
X/�

2
. (3.5)

The unrenormalized self-energy Σ� consists of all 1 particle-irreducible (PI) diagrams which
contribute to the propagator of the particle at NLO. Diagrammatically, the self-energy of a
scalar particle is determined by the diagrams given in Fig. 3.1.

The two mixing scalars ℎ1 and ℎ2 can be treated in the same way, but now the field strength
renormalization constant is a matrix as well as the mass counterterm since the two fields
can mix at NLO. The relations read(

ℎ1,0
ℎ2,0

)
=

√
/ℎℎ

(
ℎ1
ℎ2

)
≈

(
1 + X/ℎℎ

2

) (
ℎ1
ℎ2

)
, �2

ℎℎ,0 = �
2
ℎℎ

+ X�2
ℎℎ
, (3.6)

with the matrices

X/ℎℎ =

(
X/ℎ1ℎ1 X/ℎ1ℎ2
X/ℎ2ℎ1 X/ℎ2ℎ2

)
, X�2

ℎℎ
=

(
X�2

ℎ1ℎ1
X�2

ℎ1ℎ2

X�2
ℎ1ℎ2

X�2
ℎ2ℎ2

)
. (3.7)
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3.1. On-Shell Renormalization of the Scalar Sector

As can be seen, the counterterm mass matrix is symmetric whereas the field strength
renormalization matrix is, in general, not symmetric. These expressions can be again put
into relation with the renormalized self-energies, which at NLO read

Σ̂ℎ8ℎ 9 (?2) = Σℎ8ℎ 9 (?2) − X�2
ℎ8ℎ 9

+
X/

†
ℎ8ℎ 9

2

(
?2Xℎ8ℎ 9 − �2

ℎ8ℎ 9

)
+

(
?2Xℎ8ℎ 9 − �2

ℎ8ℎ 9

) X/ℎ8ℎ 9
2

.

(3.8)

Here and in all following equations, if nothing else is mentioned, 8, 9 ∈ {1, 2} holds.

With the above relations, the counterterms for all scalar fields can be defined by imposing
certain conditions in order to achieve the goals of OS-renormalization. These corresponding
equations read

Re
(
Σ̂ℎ1ℎ2 (<2

ℎ1
)
)
= Re

(
Σ̂ℎ1ℎ2 (<2

ℎ2
)
)
= 0, (3.9a)

Re
(
Σ̂ℎ1ℎ1 (<2

ℎ1
)
)
= Re

(
Σ̂ℎ2ℎ2 (<2

ℎ2
)
)
= 0, (3.9b)

Re
©«
mΣ̂ℎ1ℎ1 (?2)

m?2

�����
(?2=<2

ℎ1
)

ª®®¬ = Re
©«
mΣ̂ℎ2ℎ2 (?2)

m?2

�����
(?2=<2

ℎ2
)

ª®®¬ = 0. (3.9c)

The first two conditions mean that the mixing of the two scalar particles vanishes on-shell,
i.e. that the scalar particles cannot mix when the momentum is set to the respective masses
of the particles. The next two conditions ensure that the poles of the propagators of the
respective scalar particles remain at their masses, i.e. that the given input masses indeed
match with the measured mass values. The last two conditions are used to ensure that
the residuum of the propagator of the respective particle does not change and the field is
properly normalized.

In the case of the scalar field � there exists no mixing with other scalar fields. The
conditions on the renormalized self-energy of � simplify to

Re
(
Σ̂� (<2

�)
)
= 0, (3.10a)

Re
©« mΣ̂� (?

2)
m?2

�����
(?2=<2

�
)

ª®¬ = 0. (3.10b)

In all these conditions only the real part of the renormalized self-energies is used. This
is due to the fact that only the real part of the amplitudes will later be considered. For a
treatment of the imaginary part of the self-energies the complex mass scheme [70] can be
used. In this thesis, however, the imaginary part does not need to be taken into account.

These imposed conditions can now be used to solve for the mass counterterms and field
strength renormalization counterterms and lead to the expressions
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3. Renormalization of the CxSM

ℎ:

)ℎ:
−

ℎ:

X)ℎ:
= 0.

Figure 3.2.: Diagrammatic description of the tadpole renormalization condition in the mass
basis.

X�2
ℎ8ℎ8

= Re
(
Σℎ8ℎ8 (<2

ℎ8
)
)
, (3.11a)

X/ℎ8ℎ8 = −Re ©«
mΣℎ8ℎ8 (?2)

m?2

����
?2=<2

ℎ8

ª®¬ , (3.11b)

X/ℎ8ℎ 9 =
2

<2
ℎ8
−<2

ℎ 9

Re
(
Σℎ8ℎ 9 (<2

ℎ 9
) − X�2

ℎ8ℎ 9

)
(8 ≠ 9), (3.11c)

for the counterterms of the scalar fields ℎ8 . Similarly, the expressions for the field � read

X�2
� = Re

(
Σ� (<2

�)
)
, (3.12a)

X/� = −Re
(
mΣ� (?2)
m?2

����
?2=<2

�

)
. (3.12b)

With these expressions the counterterm X�2
�
and the mass counterterm matrix X�2

ℎℎ
need

closer consideration. At the end the mass counterterms X<2
ℎ8

and X<2
�
are the essential

counterterms which are part of the diagonal elements of X�2
ℎℎ

or X�2
�
, respectively. The

other parts of the diagonal and off-diagonal elements depend on the treatment of tadpole
diagrams and is discussed in the next section.

3.2. Tadpole Renormalization

As already mentioned in Sec. 2.2, it is quite crucial how the tadpoles are treated [71]. The
tadpole parameters in Eq. (2.8) are taken as bare parameters and at NLO they receive a
shift which corresponds to a change of the vacuum state due to NLO contributions to the
scalar potential. The tadpoles are then renormalized such that the vevs correspond to the
same minimum as at tree level. Thus, the conditions

)̂1 = )1 − X)1 = 0 , )̂2 = )2 − X)2 = 0, (3.13a)
⇒ )1 = X)1, )2 = X)2, (3.13b)
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3.2. Tadpole Renormalization

are used, where )8 are the tadpoles of the respective fields � and ( in the gauge basis and
symbols with a circumflex indicate the renormalized quantities. From these conditions it
follows that the renormalized tadpoles also have to vanish at NLO and therefore that the
tree level minimum still is a minimum of the potential at NLO.

These tadpoles can also be transformed into the mass basis, which results in(
X)1
X)2

)
= 'TU

(
X)ℎ1
X)ℎ2

)
=

(
X)ℎ12U − X)ℎ2BU
X)ℎ1BU + X)ℎ22U

)
. (3.14)

In the mass basis the conditions for the tadpole counterterms mean diagrammatically that
the tadpole counterterms correspond to the tadpole contributions of the respective scalar
particle (see also Fig. 3.2).

However, what the proper values of the vevs actually are and how the expressions in
the mass counterterm matrix X�2

ℎℎ
exactly are defined have not yet been fixed by this

definition. The investigation of these questions leads to two different schemes and is
discussed in the following sections.

3.2.1. Standard Tadpole Scheme

The here called standard tadpole scheme is a possible way to renormalize the SM [71], and
can also be used for the CxSM. The essence of this scheme is that the vev parameters are
chosen such that the resulting masses from the tree level relations (2.7) and (2.8) are the
proper physical masses. Therefore, all shifts coming from NLO corrections are already
present in the mass counterterms and the vevs are not shifted and resemble the proper
values.

For the definition of the X�2
ℎℎ

counterterm, Eq. (2.10) can be used to obtain the relation

X�2
ℎℎ

≈
(
X<2

ℎ1
0

0 X<2
ℎ2

)
+ 'U

(
X)1
E

0

0 X)2
ES

)
'TU

≡
(
X<2

ℎ1
0

0 X<2
ℎ2

)
+

(
X)ℎ1ℎ1 X)ℎ1ℎ2
X)ℎ1ℎ2 X)ℎ2ℎ2

)
,

(3.15)

where the resulting matrix from the tadpole counterterms is defined via the entries X)ℎ8ℎ 9 .
Using Eq. (3.14) to transform the tadpole counterterms into the mass basis results in

X)ℎ1ℎ1 = X)ℎ1
E(2

3
U + EB3U
EE(

+ X)ℎ2
2UBU (EBU − E(2U )

EE(
, (3.16a)

X)ℎ1ℎ2 = X)ℎ1
2UBU (EBU − E(2U )

EE(
+ X)ℎ2

2UBU (E2U + E(BU )
EE(

, (3.16b)

X)ℎ2ℎ2 = X)ℎ1
2UBU (E2U + E(BU )

EE(
+ X)ℎ2

E23U − E(B3U
EE(

. (3.16c)

Now the mass counterterms for the fields ℎ8 can be expressed with Eq. (3.11) as
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X<2
ℎ1

= Re
(
Σℎ1ℎ1 (<2

ℎ2
)
)
− X)ℎ1ℎ1, (3.17a)

X<2
ℎ2

= Re
(
Σℎ2ℎ2 (<2

ℎ2
)
)
− X)ℎ2ℎ2, (3.17b)

X�2
ℎ1ℎ2

= X)ℎ1ℎ2 . (3.17c)

The derivation for the field � is simpler. Using Eq. (2.11) the counterterm of �� can be
derived. Rotating the tadpole counterterms into the mass basis with Eq. (3.14) results in

X�2
� = X<2

� + X)2
E(

= X<2
� +

BU)ℎ1 + 2U)ℎ2
E(

. (3.18)

Using Eq. (3.12), X<2
�
can be expressed as

X<2
� = Re

(
Σ� (<2

�)
)
−
BU)ℎ1 + 2U)ℎ2

E(
. (3.19)

The derived counterterms will lead to UV-finite results and are a viable option in this regard.
However, the use of the standard tadpole scheme in combination with the renormalization
of the mixing angle U in both the KOSY scheme (see Sec. 3.4.1) and the pinched scheme
(see Sec. 3.4.2) will lead to gauge-dependent counterterms and also gauge-dependent
amplitudes.

3.2.2. Alternative Tadpole Scheme

The alternative tadpole scheme follows the work of Fleischer and Jegerlehner [72] who
introduced this scheme in the SM. Since then the alternative tadpole scheme was also
applied to extended Higgs sectors, see e.g. [73, 74]. For the CxSM a description of it is
given here.

In contrast to the standard tadpole scheme, in the alternative tadpole scheme, the vevs
are no longer determined by their tree level values, but they also obtain a shift when
considering NLO contributions. With this shift the vevs obtain their proper values since
they are now also determined order by order in perturbation theory and this will lead to
gauge-independent mass counterterms. Moreover, the technique will be useful later when
introducing the pinch technique (see Sec. 3.4.2).

First, the additional shifts

E → E + ΔE, (3.20a)
E( → E( + ΔE( , (3.20b)
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3.2. Tadpole Renormalization

in the vev parameters are introduced. Using Eq. (2.8) and inserting the vev shifts leads to
a relation between the tadpole counterterm and the shift in the vevs:

)1 → )1 +
E2_

2
ΔE + X2EE(

2
ΔE( ≡ )1 + X)1, (3.21a)

)2 → )2 +
X2EE(

2
ΔE +

32E
2
(

2
ΔE( ≡ )2 + X)2. (3.21b)

With further inspection it can be seen that this equation can be written with the help of
the mass matrix (Eq. (2.7)) as

⇒
(
X)1
X)2

)
= M|)8=0

(
ΔE
ΔE(

)
, (3.22)

where the tadpole parameters in the mass matrix are set to zero. Since both the mass
matrix and the tadpole counterterms can be rotated with the same matrix 'U into the mass
basis (see Eqs. (2.10) and (3.14)), the above equation in the mass basis results in

(
ΔEℎ1
ΔEℎ2

)
=

©«
X)ℎ1

<2
ℎ1

X)ℎ2

<2
ℎ2

ª®®¬ . (3.23)

This last relation can be viewed in terms of Feynman diagrams and reveals that the shift in
the vev parameters corresponds to connected tadpole diagrams. This is the case since the
tadpole counterterms X)ℎ8 are the respective tadpole diagrams of the given scalar particle
and the inverse mass of the particle represents the corresponding propagator with zero
momentum transfer (compare with Fig. 3.3).

Another useful relation is between the shift in the vevs in the gauge basis and the tadpole
counterterms in the mass basis. Using Eq. (3.23) the desired relation is

(
ΔE
ΔE(

)
= 'TU

©«
X)ℎ1

<2
ℎ1

X)ℎ2

<2
ℎ2

ª®®¬ . (3.24)

The shift introduced in the vevs can now be applied to the mass matrix from Eq. (2.7). The
addtional terms resulting from that shift read

M → M +
(

2EΔE_ X2
2 (ΔEE( + EXE( )

X2
2 (ΔEE( + EXE( ) 32E(ΔE(

)
−

(
)1ΔE
E2

0

0 )2ΔE(
E2
(

)
︸           ︷︷           ︸

vanishes

. (3.25)

The last term in Eq. (3.25) vanishes, because after the shift the tadpole conditions can be
applied again, which means that )8 = 0 (8 = 1, 2), canceling the terms. The mass matrix
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3. Renormalization of the CxSM

(−8_ℎ8ℎ 9ℎ: ) −8
<2

ℎ:

8X)ℎ: = ℎ8 ℎ 9

ℎ:

X)ℎ:

Figure 3.3.: Diagrammatic description of the additional terms appearing after the shift of
the vev parameters.

can now be rotated into the mass basis and all counterterm shifts can be applied (i.e. the
tadpole counterterms and mass counterterms). This leads to

�2
ℎℎ

= 'UM'TU → �2
ℎℎ

+
(
X<2

ℎ1
0

0 X<2
ℎ2

)
+ 'U

(
X)1
E

+ 2EΔE_ X2
2 (ΔEE( + EXE( )

X2
2 (ΔEE( + EXE( )

X)2
E(

+ 32E(ΔE(

)
'TU

≡ �2
ℎℎ

+
(
X<2

ℎ1
0

0 X<2
ℎ2

)
+

(
Δ�2

ℎ1ℎ1
Δ�2

ℎ1ℎ2

Δ�2
ℎ1ℎ2

Δ�2
ℎ2ℎ2

)
.

(3.26)

Using Eqs. (3.14) and (3.24) to rotate all vev shifts and tadpole counterterms into the mass
basis and using Eqs. (2.20) to express all parameters in terms of input parameters, Δ�2

ℎℎ

can be brought into the form

Δ�2
ℎ1ℎ1

= X)ℎ1

(
3(E(23U + EB3U )

EE(

)
+ X)ℎ2

(
(2<2

ℎ1
+<2

ℎ2
)2UBU (EBU − E(2U )
EE(<

2
ℎ2

)
, (3.27a)

Δ�2
ℎ1ℎ2

= X)ℎ1

(
(2<2

ℎ1
+<2

ℎ2
)2UBU (EBU − E(2U )
EE(<

2
ℎ1

)
+ X)ℎ2

(
(<2

ℎ1
+ 2<2

ℎ2
)2UBU (E(BU + E2U )
EE(<

2
ℎ2

)
,

(3.27b)

Δ�2
ℎ2ℎ2

= X)ℎ1

(
(<2

ℎ1
+ 2<2

ℎ2
)2UBU (E(BU + E2U )
EE(<

2
ℎ1

)
+ X)ℎ2

(
3(E23U − E(B3U )

EE(

)
. (3.27c)

The interesting part now is to compare the entries with the trilinear Higgs self-couplings
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3.2. Tadpole Renormalization

Σtad(?2) = + +

Figure 3.4.: Diagrammatic description of the self-energy including tadpole diagrams.

of the fields. These can be written as

_ℎ1ℎ1ℎ1 = 3<2
ℎ1

E(2
3
U + EB3U
EE(

, (3.28a)

_ℎ1ℎ1ℎ2 =
(2<2

ℎ1
+<2

ℎ2
)BU2U (EBU − E(2U )
EE(

, (3.28b)

_ℎ1ℎ2ℎ2 =
(<2

ℎ1
+ 2<2

ℎ2
)BU2U (E2U + E(BU )
EE(

, (3.28c)

_ℎ2ℎ2ℎ2 = 3<2
ℎ2

E23U − E(B3U
EE(

. (3.28d)

With these couplings the following holds:

Δ�2
ℎ1ℎ1

= 8 (−8_ℎ1ℎ1ℎ1)
−8
<2
ℎ1

8X)ℎ1 + 8 (−8_ℎ1ℎ1ℎ2)
−8
<2
ℎ2

8X)ℎ2, (3.29a)

Δ�2
ℎ1ℎ2

= 8 (−8_ℎ1ℎ1ℎ2)
−8
<2
ℎ1

8X)ℎ1 + 8 (−8_ℎ1ℎ2ℎ2)
−8
<2
ℎ2

8X)ℎ2, (3.29b)

Δ�2
ℎ2ℎ2

= 8 (−8_ℎ1ℎ2ℎ2)
−8
<2
ℎ1

8X)ℎ1 + 8 (−8_ℎ2ℎ2ℎ2)
−8
<2
ℎ2

8X)ℎ2 . (3.29c)

In terms of Feynman diagrams this corresponds to the respective tadpole contributions
(times a factor of 8 , at vanishing momentum transfer) to the propagators ofℎ1 andℎ2, which
so far have not been included into the definition of the self-energies. The diagrammatic
expression can also be seen in Fig. 3.3.

With this diagrammatic interpretation in mind, the definition

8Σtad
ℎ8ℎ 9

(?2) ≡ 8Σℎ8ℎ 9 (?2) − 8Δ�2
ℎ8ℎ 9

, (3.30)

can be used so that the renormalized self-energy now reads

Σ̂ℎ8ℎ 9 (?2) = Σtad
ℎ8ℎ 9

(?2) −
(
X<2

ℎ1
0

0 X<2
ℎ2

)
+
X/

†
ℎ8ℎ 9

2

(
?2Xℎ8ℎ 9 − �2

ℎ8ℎ 9

)
+

(
?2Xℎ8ℎ 9 − �2

ℎ8ℎ 9

) X/ℎ8ℎ 9
2

.

(3.31)

This shifting of contributions from the mass counterterm matrix into the self-energy
corresponds to the inclusion of the tadpole diagrams into the self-energy. Thus, the
tadpole-included self-energies are defined diagrammatically as seen in Fig. 3.4.
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3. Renormalization of the CxSM

With this change in the renormalized self-energy, the same procedure as in Sec. 3.1 can be
applied to obtain the following results for the counterterms:

X<2
ℎ8
= Re

(
Σtad
ℎ8ℎ8

(<2
ℎ8
)
)
, (3.32a)

X/ℎ8ℎ8 = −Re
©«
mΣtad

ℎ8ℎ8
(?2)

m?2

�����
?2=<2

ℎ8

ª®®¬ , (3.32b)

X/ℎ8ℎ 9 =
2

<2
ℎ8
−<2

ℎ 9

Re
(
Σtad
ℎ8ℎ 9

(<2
ℎ 9
)
)
(8 ≠ 9). (3.32c)

The case for the field � is simpler. Introducing the shift of the vev parameters in the mass
term �2

�
leads to

�2
� =<2

� + )2
E(

→ <2
� + )2

E(
− )2ΔE(

E2
(︸ ︷︷ ︸

vanishes

. (3.33)

Again the last part vanishes due to the fact that the minimization conditions can be applied.
Since the above relation is now independent of the vev parameter shifts, it follows that the
shifts of the vev parameters do not change the prescription for the mass counterterm X<2

�

with respect to the standard tadpole scheme. Thus, Eq. (3.19) gives already the correct
prescription for X<2

�
in the alternative tadpole scheme. Moreover, when considering the

tree-level coupling constants between the scalars ℎ1, ℎ2 and �, which read

_ℎ1�� =
BU<

2
ℎ1

E(
, (3.34a)

_ℎ2�� =
2U<

2
ℎ2

E(
. (3.34b)

It can be seen that Eq. (3.19) can be written as

X�2
� = X<2

� + 8 (−8_ℎ1��)
−8
<2
ℎ1

8X)ℎ1 + 8 (−8_ℎ2��)
−8
<2
ℎ2

8X)ℎ1 . (3.35)

The additional tadpole contributions again correspond diagrammatically to the inclusion of
tadpole diagrams to the self-energy. Thus, the counterterms of the field� can be expressed
as

X<2
� = Re

(
Σtad� (<2

�)
)
, (3.36)

X/� = −Re ©«
mΣtad

�
(?2)

m?2

�����
?2=<2

�

ª®¬ . (3.37)
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(−8_ℎ8ℎ:��) −8
<2

ℎ:

8X)ℎ: = ℎ8

�

�

ℎ:

X)ℎ:

Figure 3.5.: The additional tadpole contribution to the vertex corrections at NLO after the
shift of the vevs in the alternative tadpole scheme, here : ∈ {1, 2}.

The additional shifts in the vev parameters do not only appear in the mass counterterms,
but they also introduce additional diagram contributions in the calculation of Feynman
amplitudes.

As an example, the tree level diagram ℎ1 → �� is considered (see also Fig. 4.3). The
amplitude of this diagram is in essence the coupling constant _ℎ1��. When moving from
leading order (LO) to NLO the shifts in the vev parameters now have to be included as
well. The coupling constant shifts to

_ℎ1�� =
1

2
(32E(BU + X2E2U ) → _ℎ1�� + 1

2
(32ΔE(BU + X2ΔE2U )

= _ℎ1�� +
X)ℎ1

<2
ℎ1

(
1

2
(32B2U + X222U )

)
+
X)ℎ2

<2
ℎ2

(
1

2
(32BU2U − X2BU2U )

)
≡ _ℎ1�� + Δ_ℎ1�� .

(3.38)

Here the coupling constant expressed with the potential parameters has to be used. After
the vev shift is applied, the tadpole conditions (Eq. (2.8)) are used to express the parameters
through the chosen input parameters. Using the coupling constants

_ℎ1ℎ1�� =
1

2
(32B2U + X222U ), (3.39a)

_ℎ1ℎ2�� =
1

2
(32BU2U − X22UBU ), (3.39b)

the shift Δ_ℎ1�� in the coupling constant can be written as

Δ_ℎ1�� = 8 (−8_ℎ1ℎ1��)
−8
<2
ℎ1

8X)ℎ1 + 8 (−8_ℎ1ℎ2��)
−8
<2
ℎ2

8X)ℎ2, (3.40)

which now corresponds diagrammatically to the diagrams seen in Fig. 3.5. Therefore, the
shifts in the vev parameters introduce vertex corrections at NLO in the form of all possible
tadpole diagrams which can be attached to the vertex.

To summarize this section: in the alternative tadpole scheme the introduction of additional
shifts in the vev parameters leads to the inclusion of tadpole diagrams in various ways:

• Change all self-energies such that they also contain the tadpole contributions:

Σ(?2) → Σtad(?2). (3.41)
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3. Renormalization of the CxSM

AVC = +

Figure 3.6.: Diagrammatic description of the addition of tadpole diagrams to the Feynman
amplitude.

• Add to the virtual vertex corrections all possible tadpole corrections (see also Fig.
3.6):

ANLO → ANLO + Atad. (3.42)

3.3. Fermionic and Bosonic Sector

With the discussion of the renormalization of the scalar sector completed, the counterterms
for the fermionic and bosonic fields are presented. Similar to the scalar fields, the shifts
from the bare quantities to the renormalized quantities plus counterterms can be introduced
as

5 L0 =

√
/L
5
5L ≈

(
1 +

X/L
5

2

)
5L , (3.43a)

5 R0 =

√
/R
5
5R ≈

(
1 +

X/R
5

2

)
5R , (3.43b)

< 5 ,0 =< 5 + X< 5 , (3.43c)

for the generic left- and right-handed fields 5L and 5R, respectively, of a fermion 5 with
mass< 5 , where for simplicity no mixing between different fermion states was assumed.
In a similar manner, the counterterms of the gauge bosons for the fields and masses are
introduced as

, ± ≈
(
1 + X/,

2

)
, ±, (3.44a)

<2
,,0 =<

2
, + X<2

, , (3.44b)(
/0
W0

)
≈

(
1 + X///

2
X//W

2
X/W/

2 1 + X/WW

2

) (
/

W

)
, (3.44c)

<2
/,0 =<

2
/ + X<2

/ , (3.44d)

where the mixing between the / boson and the photon W has to be taken into account.
Moreover, the electromagnetic charge 4 also obtains a counterterm, which can be written
at NLO as

40 = (1 + X/4)4. (3.45)
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3.4. Renormalization of U

The OS scheme can also be applied to the fermion and gauge boson sector to impose
conditions on the renormalized self-energies of the respective fermions and gauge bosons.
However, the additional Lorentz structure or polarization structure, respectively, of the
considered fields plays an important role. Thus, the derivation of the counterterms is more
involved than in the scalar sector. Additionally, the electromagnetic coupling constant 4 is
renormalized through the Thomson limit, i.e. by fixing the value of the constant through
Thomson scattering between an electron and a photon with vanishing photon momentum
[42, 71].

Since the calculations made in this thesis do not depend on the renormalization of the
fermion and gauge boson sector, the derivation of the counterterms for the respective
fields is ommitted here. A detailed discussion can be found in e.g. [71].

3.4. Renormalization of U

After the renormalization of the fields and the corresponding masses, the remaining input
parameters have to be treated carefully as well. One of the chosen input parameters is the
mixing angle U , which rotates the fields � and ( into the mass basis ℎ1 and ℎ2. It can also
be split up as

U0 = U + XU, (3.46)

where the index 0 again describes the unrenormalized bare quantity, and U is the renor-
malized parameter.

The mixing angle, however, is more subtle to renormalize since it is not a quantity that can
be directly observed. There are various possible ways to renormalize U , e.g. the modified
Minimal Subtraction (MS) scheme [42, 68] or the process-dependent scheme (see Sec. 3.5.1),
but they are not considered here. The MS scheme tends to be unstable, in the sense that the
NLO corrections are unacceptably large, whereas for the process-dependent scheme there
are not that many suitable processes in the CxSM model and it has its own limitations as
well, so it is not chosen for the renormalization of U .

In this thesis two renormalization schemes for U are used, the KOSY scheme as well as the
pinched scheme which are described in the following sections.

3.4.1. KOSY Scheme

The KOSY scheme is a renormalization procedure introduced by Kanemura et. al in [75]
and is explained here for the CxSM.

The KOSY scheme starts with the rotation matrix 'U . By introducing the shift in U with
Eq. (3.46), the mixing matrix 'U obtains a shift which can be expressed at NLO as

'U,0 ≈ 'XU'U . (3.47)
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3. Renormalization of the CxSM

The mixing matrix relates the mass eigenstates of the scalar fields to the gauge eigen-
states. Thus, the bare mass eigenstates can be rotated back into gauge eigenstates, then
shifted to renormalized gauge eigenstates and rotated back into mass eigenstates with the
renormalized mixing matrix. The resulting relation is given by(

ℎ1,0
ℎ2,0

)
= 'U,0

(
ℎ0
B0

)
≈ 'XU'U

√
/G

(
ℎ

B

)
=

√
/ $(.

(
ℎ1
ℎ2

)
, (3.48)√

/ $(. ≡ 'XU'U
√
/G'

)
U , (3.49)

where Eq. (3.47) was used. Thematrix/G corresponds to the field strength renormalization
matrix used to renormalize the gauge eigenstates. The matrix can be written at NLO as√

/G ≈ 1 + X/G
2
, (3.50)

1

2
'UX/G'

)
U ≡

(
X� X�

X� X�

)
, (3.51)

with the additional counterterms X� and X� . Here the matrix X/G is assumed to be
symmetric. The field strength renormalization matrix /KOSY now has to match with the
field strength renormalization of the mass basis /ℎℎ (see Eq. (3.7)). At NLO this leads to√

/KOSY = 'XU'U
√
/G'

)
U

≈ 'XU +
1

2
'UX/G'

)
U ≈

(
1 + X� X� + XU
X� − XU 1 + X�

)
!
= 1 + X/ℎℎ

2
.

(3.52)

The off-diagonal elements are the important conditions and result in the equations

X/ℎ1ℎ2

2
= X� + XU,

X/ℎ2ℎ1

2
= X� − XU. (3.53)

Thus, the counterterm for U reads

XU =
X/ℎ1ℎ2 − X/ℎ2ℎ1

4
. (3.54)

With Eq. (3.32) XU can be expressed in terms of self-energies as

XU =
1

2(<2
ℎ1

−<2
ℎ2
)
Re

(
ΣC03
ℎ1ℎ2

(<2
ℎ1
) + ΣC03

ℎ1ℎ2
(<2

ℎ2
)
)
. (3.55)

This equation holds for the alternative tadpole scheme. The same relation also is true for
the standard tadpole scheme, but with normal self-energies instead of tadpole self-energies.

The issue now with this derivation is that the above combination of self-energies is not
gauge-independent. Thus, XU will be gauge-dependent for both the standard and the
alternative tadpole scheme . This is in itself not a problem as long as the overall amplitude
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3.4. Renormalization of U

of a given process and hence the physical observables are gauge-independent. However, as
will be seen in Sec. 4.5, if there is a gauge-dependent counterterm of XU , an overall gauge
dependence will be introduced so that the overall amplitude and, accordingly, physical
observables will be gauge-dependent. This is a problem since physical observables are per
definition gauge-independent.

Upon closer inspection, the gauge problem in the KOSY scheme arises from the assumption
that the matrix X/G has to be symmetric. Since the field strength renormalization matrix
X/ℎℎ in the mass basis is not symmetric, X/G can also be, in general, asymmetric. Dropping
this symmetry assumption leads to an additional degree of freedom and the Eqs. (3.53)
change to

X/ℎ1ℎ2

2
= X� + XU,

X/ℎ2ℎ1

2
= X� − XU, (3.56)

where X� is an additional counterterm, which does not appear in any calculations. These
equations are now under determined and the counterterms XU , X� and X� can be defined
in a way that XU is gauge-independent by shifting all gauge-dependent parts into the other
unphysical counterterms X� and X� .

With this procedure XU becomes gauge-independent and the above mentioned problem
seems to be solved. However, since there is this additional freedom coming from the
dropping of the symmetry requirement on X/G, it is not quite clear how exactly XU should
be defined. Therefore, an additional scheme has to be introduced to exactly define XU in a
gauge-independent way. This is the so called pinched scheme.

3.4.2. Pinched Scheme

The pinched scheme was already implemented in the 2-Higgs-Doublet Model (2HDM)
[73] and the singlet extension of the 2HDM (N2HDM) [74] and the discussion here in the
CxSM follows their implementation.

The pinched scheme is based on the pinch technique [76–80] which can be used to obtain
expressions for gauge-independent self-energies. The pinch technique starts with consid-
ering a certain physical process, e.g. a 2 → 2 scattering process with external fermions.
The overall amplitude Atotal can be split up into different contributions

Atotal = Abox({b}) + Atri({b}) + Aleg({b}) + Aself({b}), (3.57)

with box, triangle, self-energy diagrams as well as external leg corrections, which all by
themselves can be gauge-dependent (where the gauge parameters are abbreviated with {b})
but the combination of them is gauge-independent. Therefore it is possible to shift certain
contributions in such a way that the different contributions are already gauge-independent
by themselves and the relation

Atotal = Âbox + Âtri + Âleg + Âself, (3.58)
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3. Renormalization of the CxSM

holds, where the circumflex signals the different contributions after the pinch technique
was applied. With this approach gauge-independent self-energies can be created. A more
detailed description of the pinch technique is given in App. A.1.

After successfully applying the pinch technique, the pinched self-energies can be defined
by adding the additional contributions to the self-energies from the Pinch technique. This
results in

8Σ
pinch
ℎ8ℎ 9

(?2) = 8Σtad
ℎ8ℎ 9

(?2) + 8Σadd
ℎ8ℎ 9

(?2)

= 8Σtad
ℎ8ℎ 9

(?2)
���
{b=1}

+ −862

32c222w

(
?2 −

<2
ℎ8
+<2

ℎ 9

2

)
$8 9�0(@2,<2

/ ,<
2
/ )

+ −862
16c2

(
?2 −

<2
ℎ8
+<2

ℎ 9

2

)
$8 9�0(@2,<2

, ,<
2
, ) .

(3.59)

The integral �0 and the factor $8 9 as well as Σadd
ℎ8ℎ 9

(?2) are defined in the App. A.1. The
expression b = 1 does not mean that a specific gauge is chosen. The additional terms
together with the tadpole self-energies result in a gauge-independent result which can
be written in that way. Moreover, the cancellation of the gauge-dependent parts only
happens with the inclusion of tadpole contributions, i.e. the pinched self-energies are only
gauge-independent when using tadpole self-energies Σtad. This is the main reason why
the alternative tadpole scheme was introduced.

With the pinched self-energies now a gauge-independent counterterm for U can be defined.
But first, the scale at which the self-energies are evaluated have to be chosen. Two different
scales are used in this thesis:

• Setting the external momenta to the respective OS masses, ?2 =<2
ℎ8
, here called OS

pinched scheme.

• Setting the external momenta to the mean of the masses, ?2 = ?2∗ =
<2

ℎ1
+<2

ℎ2
2 , here

called ?∗ pinched scheme.

The ?∗ pinched scheme is useful, because the additional gauge-independent terms from
the pinch technique vanish.

At the end, when using the pinched self-energies instead of the tadpole self-energies in
Eq. (3.55), the resulting counterterm for U in the ?∗ scheme and the OS pinched scheme,
respectively, reads

XU?∗ =
1

(<2
ℎ1

−<2
ℎ2
)
Re

(
ΣC03
ℎ1ℎ2

(?2∗ )
���
{b=1}

)
, (3.60a)

XUOS =
1

2(<2
ℎ1

−<2
ℎ2
)
Re

(
Σ
pinch
ℎ1ℎ2

(<2
ℎ1
) + Σ

pinch
ℎ1ℎ2

(<2
ℎ2
)
)
. (3.60b)
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Figure 3.7.: The kinematics of the decay processes used in the process-dependent scheme.

It is clear that these definitions for XU are by construction gauge-independent and the
problem with the gauge dependence is solved. Moreover, the UV divergencies in the
additional terms vanish in the OS pinched scheme, whereas in the ?∗ pinched scheme the
additional terms are even canceled totally. Therefore, both schemes have the same UV
behavior for the counterterm of U , as it should be.

3.5. Renormalization of E(

The only remaining input parameter that needs to be renormalized is the scalar singlet
vev E( . The shift of E( in the alternative tadpole scheme is not to be confused with the
renormalization counterterm XE( , which also has to be determined. The vev can be split
up as

E(,0 = E( + XE( , (3.61)

where the index 0 again describes the bare unrenormalized parameter.

The renormalization of E( is not covered by the OS scheme or any other scheme already
implemented and discussed above. Therefore an additional procedure for E( has to be
found. Similar approaches were already made in other works [73, 74]. Here the same
discussion is repeated for the CxSM.

3.5.1. Process-dependent Scheme

For the renormalization of E( the process-dependent scheme is used. In the process-
dependent scheme the input parameter is renormalized through a chosen physical process
so that the value of this parameter can be defined and measured through this process. In
this sense the process-dependent scheme is similar to the OS scheme as it links the model
parameters through the renormalization to experimental results, i.e. the measurement
of a certain process. By using a physical process, which has to be gauge-independent,
the resulting counterterm is gauge-independent. However, certain kinematic constraints
which are needed for the process to be physically allowed (for example in a decay process)
have to be applied for the chosen set of model parameters as well.

To begin with, for the process-dependent scheme a suitable process is chosen. The chosen
process has to depend on the parameter, which is renormalized, at LO in order to derive
an expression for the counterterm of the parameter.
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3. Renormalization of the CxSM

In the process-dependent scheme the counterterm which needs to be calculated is defined
by demanding that the relation,

ΓLO-→./ = ΓNLO
-→./ , (3.62)

between the LO and NLO decay width for - decaying into the final state ./ holds. In
order to use the process-dependent scheme for the renormalization of E( a decay has to
be chosen where E( appears at LO since otherwise the counterterm XE( would not appear
at NLO and Eq. (3.62) cannot be used to solve for XE( . Therefore, only decays involving
scalar particles can be used. In the following, only the decays ℎ1 → �� and ℎ2 → ��

are considered. The general topology of these decays, including the nomenclature for the
kinematics, can be found in Fig. 3.7. Both decays are used in Sec. 4.5.

In order to derive the counterterm of E( , the expressions for the LO and NLO decay width
as well as the occurring counterterms in the NLO result are needed. They are derived
in Sec. 4.5 but are already applied here. Using the Eqs. (4.5) and (4.6) for the processes
ℎ8 → �� to express the decay widths in Eq. (3.62), the relation can be simplified to

0 = Re
( (
ALO
ℎ8→��

) ∗
ANLO
ℎ8→��

)
, (3.63)

where ALO
ℎ8→��

are all contributions to the process ℎ8 → �� at LO and ANLO
ℎ8→��

are all
contributions at NLO. At LO the amplitudes for the two processes only depend on the
corresponding coupling constant and are therefore real and non-zero for valid input
parameters (cf. Sec. 4.4). Thus, Eq. (3.63) further simplifies to

0 = Re
(
ANLO
ℎ8→��

)
. (3.64)

Next, the NLO contribution ANLO
ℎ8→��

can be expressed in terms of vertex corrections
AVC
ℎ8→��

and the vertex counterterm (cf. Sec.4.5). The vertex counterterm can be further
derived from the counterterm Lagrangian and Eq. (3.63) results in

0 = Re
(
ANLO
ℎ8→��

)
= Re

(
AVC
ℎ8→��

)
− _ℎ8��

(
X_ℎ8��

_ℎ8��
+ X/� +

X/ℎ8ℎ8

2
+
_ℎ 9��

_ℎ8��

X/ℎ 9ℎ8

2

)
,

(3.65)

where 8, 9 ∈ {1, 2}, but 8 ≠ 9 . All counterterms appearing in the expression are already
real.

Next, the expression for X_ℎ8�� has to be determined. The coupling constants _ℎ8�� have
already been given in Eq. (3.34) and the corresponding counterterm can be derived. The
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results read

_ℎ1�� =
BU<

2
ℎ1

E(
→ X_ℎ1�� =

X<2
ℎ1

<2
ℎ1

_ℎ1�� − XE(

E(
_ℎ1�� + cot(U)XU_ℎ1��, (3.66a)

_ℎ2�� =
2U<

2
ℎ2

E(
→ X_ℎ2�� =

X<2
ℎ2

<2
ℎ2

_ℎ2�� − XE(

E(
_ℎ2�� − tan(U)XU_ℎ2��, (3.66b)

⇒
X_ℎ8��

_ℎ8��
=
X<2

ℎ8

<2
ℎ8

− XE(

E(
+)8 (U)XU, (3.66c)

)8 (U) ≡
{
cot(U), 8 = 1

− tan(U), 8 = 2
. (3.66d)

Thus, Eq. (3.64) can be solved for E( to obtain the results

XE
ℎ1→��

(
= E(

(
−Re

(
AVC
ℎ1→��

_ℎ1��

)
+
X<2

ℎ1

<2
ℎ1

+ cot(U)XU + X/�

+
X/ℎ1ℎ1

2
+
_ℎ2��

_ℎ1��

X/ℎ2ℎ1

2

)
,

(3.67a)

XE
ℎ2→��

(
= E(

(
−Re

(
AVC
ℎ2→��

_ℎ2��

)
+
X<2

ℎ2

<2
ℎ2

− tan(U)XU + X/�

+
X/ℎ2ℎ2

2
+
_ℎ1��

_ℎ2��

X/ℎ1ℎ2

2

)
,

(3.67b)

for the two processes. The thus defined counterterms are gauge-independent and will lead
to UV-finite results.

The main drawback of the process-dependent scheme is that it can only be used if the
kinematic constraints are fulfilled. For a decay process this means that the sum of the
masses of the outgoing particles is smaller than the mass of the incoming particle, i.e. that
for the usage of the process-dependent scheme one of the additional constraints

<ℎ8 > 2<�, (3.68)

has to be fulfilled by the chosen set of input parameters in addition to the theoretical and
experimental constraints. A possible solution to this is discussed in the next section.

3.5.2. ZEM Scheme

The Zero External Momentum (ZEM) scheme was introduced in [81] to get rid of the
additional kinematic constraint from the process-dependent scheme. In the following it is
discussed for the CxSM model.
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3. Renormalization of the CxSM

The ZEM scheme uses the same approach as the process-dependent scheme, namely
requiring that the LO and NLO results for the decay width of a chosen process are equal.
The counterterm XE( then is derived from the relation (3.62). The key difference to the
process-dependent scheme is that in the ZEM scheme, as the name suggests, all external
momenta are set to zero. More precisely, when the process with the kinematics described
as in Fig. 3.7 is used, the relations

?2IN = ?2OUT1 = ?
2
OUT2 = 0, (3.69)

are required, hence all squared external momenta are not set to their on-shell mass values
but to zero instead. This has the desired effect that the kinematic constraint on the described
decay is eliminated and the process can now be used for the renormalization of E( for all
generated parameter points that pass the applied theoretical and experimental constraints.
No additional kinematic constraint has to be applied on the input parameters. This should,
however, not be confused with setting the masses of the particles, i.e. the input parameters
to zero. Only the terms with squared external momenta in the calculation of the amplitude
are set to zero.

For the ZEM scheme, the same processes are chosen as for the process-dependent scheme
(see Sec. 3.5.1). Thus, the LO contribution of the processes are again real and the starting
point of the derivation of the counterterm for XE( is

0 = Re
(
ANLO
ℎ8→��

({?2 = 0})
)
, (3.70)

where ?2 = 0 means that all squared external momenta are set to zero. The next key
difference to the process-dependent scheme is that the leg corrections of the process at
NLO do not get canceled by the respective leg counterterms, since the leg counterterms
are defined through the OS scheme, meaning that this cancellation only happens when
the squared external momenta are set to the respective on-shell mass values. Therefore,
these contributions have to be included as well (see also App. A.2).

In principle it is possible to consider the idea of altering the counterterms for X< and X/
of the external particles of the chosen decay process in the ZEM scheme such that the
cancellation of leg corrections and leg counterterms takes place at ?2 = 0. But this would
lead to problems with the cancellation of the UV divergences in the fully renormalized
amplitudes, which are then renormalizedwith the normal OS scheme and a XE( counterterm
derived in this way. A more detailed discussion of this can be found in App. A.2.

With all this preparation, the counterterm of E( in the ZEM scheme can be derived. The
NLO contribution in Eq. (3.70) can again be expressed as the vertex correction and vertex
counterterm, but now the leg corrections ALeg have to considered as well. Thus, with the
help of Eq. (A.37), the relation (3.70) can be written as

0 = Re
(
Aℎ8→��

VC
({?2 = 0}) + Aℎ8→��

Leg
({?2 = 0})

)
,

+ _ℎ8��

(
−
X_ℎ8��

_ℎ8��
+ X/� +

X/ℎ8ℎ8

2
+
X<2

ℎ8

<2
ℎ8

+
2X<2

�

<2
�

+
_ℎ 9��

_ℎ8��

<2
ℎ8

<2
ℎ 9

X/ℎ8ℎ 9

2

)
.

(3.71)
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Again, this equation can be solved for the two processes ℎ1 → �� and ℎ2 → �� to obtain
the counterterms

XE
ZEM,ℎ1→��

(
= E(

©«−Re ©«
Aℎ1→��

VC
({?2 = 0}) + Aℎ1→��

Leg
({?2 = 0})

_ℎ1��

ª®¬
+ cot(U)XU − X/� −

2X<2
�

<2
�

−
X/ℎ1ℎ1

2
− cot(U)

X/ℎ1ℎ2

2

) (3.72a)

XE
ZEM,ℎ2→��

(
= E(

©«−Re ©«
Aℎ2→��

VC
({?2 = 0}) + Aℎ2→��

Leg
({?2 = 0})

_ℎ2��

ª®¬
− tan(U)XU − X/� −

2X<2
�

<2
�

−
X/ℎ2ℎ2

2
− tan(U)

X/ℎ2ℎ1

2

)
.

(3.72b)

With this result there are two major questions: Do these counterterms lead to a UV-finite
and gauge-independent amplitude overall? Both questions are quite subtle and need
careful examinations.

First of all, the gauge dependence is addressed. As already mentioned, the overall renor-
malized amplitude should be gauge-independent and with the process-dependent scheme
used for XE( this is achieved. Furthermore, in the process-dependent scheme XE( is by
itself already gauge-independent. If for the E( counterterm now the ZEM scheme is used
and nothing else is changed, the E( counterterm derived by the ZEM scheme also has to
be gauge-independent by itself. Otherwise a gauge dependence in the overall amplitude
would be introduced. Therefore a careful consideration of all contributions to XE( has to
be made.

Looking at Eq. (3.72) different contributions and counterterms have to be examined with
respect to their gauge dependence. First of all, it was found that the combination of
Aℎ8→��

VC
({?2 = 0}) + Aℎ8→��

Leg
({?2 = 0}) is by itself gauge-independent, i.e. the combina-

tion of vertex corrections and leg corrections of the two chosen processes with squared
external momenta set to zero does not introduce a gauge dependence in Eq. (3.72). Next,
the usage of the pinched scheme for XU results in a gauge-independent counterterm of
U . Furthermore, the overall tadpole self-energy of the field � is already by itself gauge-
independent and thus the derived quantities X<2

�
and X/� are gauge-independent.

Thus, the only terms which might introduce a gauge dependence in XE( are

X/ℎ8ℎ8

2
+
_ 9

_8

<2
ℎ8

<2
ℎ 9

X/ℎ8ℎ 9

2
, (3.73)

for the respective processes ℎ8 → ��. It was found that this combination is gauge-
dependent. The ZEM scheme implemented in this way will lead to a gauge-dependent XE(
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3. Renormalization of the CxSM

and to a gauge-dependent overall amplitude of the desired decay process calculated in this
thesis.

Several approaches have been considered to circumvent this problem (for a more detailed
discussion, see App. A.2) but so far only one solution was found, namely changing the
appearing field strength renormalization constants X/ in the Eqs. (3.72) by using pinched
self-energies for their derivation instead of tadpole self-energies. By doing this, the
field strength renormalization constants are already gauge-independent by themselves
and the overall counterterm for XE( is gauge-independent as well. This change in the
X/ℎ8ℎ 9 , however, is only applied to terms appearing in the defining Eqs. (3.72) of the ZEM
counterterms of E( , not anywhere else. Otherwise, a gauge dependence in the overall
amplitude of the renormalized process considered in this thesis might be reintroduced.
Therefore, the resulting counterterms for E( in this modified ZEM scheme read

XE
ZEMGI,ℎ1→��

(
= E(

©«−Re ©«
Aℎ1→��

VC
({?2 = 0}) + Aℎ1→��

Leg
({?2 = 0})

_ℎ1��

ª®¬
+ cot(U)XU − X/� −

2X<2
�

<2
�

−
X/

pinched
ℎ1ℎ1

2
− tan(U)

X/
pinched
ℎ1ℎ2

2

ª®¬
(3.74a)

XE
ZEMGI,ℎ2→��

(
= E(

©«−Re ©«
Aℎ2→��

VC
({?2 = 0}) + Aℎ2→��

Leg
({?2 = 0})

_ℎ2��

ª®¬
− tan(U)XU − X/� −

2X<2
�

<2
�

−
X/

pinched
ℎ2ℎ2

2
− tan(U)

X/
pinched
ℎ2ℎ1

2

ª®¬ .
(3.74b)

It is clear that this solution of the problem is somewhat unsatisfying, as it is a ‘by hand’
solution of the problem only after the problem was discovered. It would be preferable in
the future that an optimized version of the ZEM scheme would be found such that both
the kinematic constraints from the process-dependent scheme and this additional gauge
dependence can be avoided in a more elegant way.
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4. Higgs Decay into Dark Matter

In this chapter the computation of the decay of the 125GeV Higgs boson (ℎ125) into two
dark matter particles � is presented in detail. This process is especially interesting since it
it is probed for at the LHC [40]. Since the generated DM particles are stable and do not
interact with the other SM particles, they would leave the experiment undetected and
therefore result in e.g missing total energy. Thus, the theoretically obtained result can be
compared with current experimental limits. To obtain an even better result the total EW
NLO decay width of the 125GeV Higgs in the CxSM would be required. This calculation,
however would exceed the scope of this thesis but may be calculated in future works.

For the computation of the decay width, first of all the contributing diagrams have to
be derived and then calculated. In the next section the program tools used to calculate
the Feynman diagrams of the process ℎ125 → �� are introduced. The kinematics of the
process and the general formula for the decay width of a given process are are discussed
(Sec. 4.2) and the two different scenarios, with the ℎ125 Higgs boson being either the
lighter or the heavier particle of the two mixing scalars are presented (Sec. 4.3). Then,
the LO calculation (Sec. 4.4) and the NLO calculation (Sec. 4.5) are discussed in detail to
obtain the final analytic result. The numerical analysis of this result is given in Chapter 5.

4.1. Calculation Procedure

In this part the general procedure to obtain the analytic result for the LO and NLO decay
width is discussed. Since the amount of Feynman diagrams in a NLO calculation can
become quite large, computational tools are used to obtain and calculate all contributing
diagrams. A general overview of the used programs is given in Fig. 4.1.

First of all, a model file is needed, which describes the used model with all interactions
and input parameters. There are a number of programs which allow to create a model file.
For this thesis, however, the Mathematica package SARAH was used [82–85]. SARAH
is specifically designed for the task to extend the scalar sector of the SM, both with
supersymmetric (SUSY) and non-super-symmetric models. Using the SM model file as an
input template, all additional symmetries of the scalar potential have to be given and the
additional scalar fields have to be defined. SARAH then calculates all possible interactions
and generates a model file which can then be used by other programs.

With the model file of SARAH, all contributing Feynman diagrams can be obtained. For
this step the Mathematica package FeynArts was used [86]. FeynArts uses the generated
model file as input and generates all Feynman diagrams, which contribute to a chosen
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SARAH FeynArtsModel file FeynCalc
Feynman diagrams

ScannerS BSMPT
Parameter points

LoopTools

Analytic results

Parameter points

Numeric
result

Figure 4.1.: Program chain to calculate the Feynman diagrams and obtain numeric results.

process. The used gauge parameters also have to be set in FeynArts (the model file of
SARAH is provided in the general 'b gauge), but since the overall result at the end was
checked to be gauge-independent no specific gauge was set (otherwise FeynArts would
use Feynman gauge). At the end, FeynArts also translates the generated diagrams into
general amplitudes, which then need further steps to obtain an analytic result.

The next Mathematica package, FeynCalc [87–89], takes the generated amplitudes from
FeynArts and further simplifies them. The integrals in the amplitudes can be reduced to
the Passarino-Veltman basis [90] and possible Lorentz and polarization structures of the
amplitudes can be evaluated. Finally, a complete analytic result is obtained.

The analytic result can also be turned into a numeric result with the help of the Mathemat-
ica package LoopTools [91], where the integrals in the analytic results can be evaluated
numerically. Moreover, LoopTools uses a finite value for the divergent term Δn which
can be set to different values. At the end, the UV-finite result should be independent
of the value for this term. Thus, by choosing different values and checking if the result
changes, the numeric result can be checked for UV-finiteness. The same procedure can
also be applied for the gauge parameters and the numeric result can be checked for gauge
independence.

To obtain numeric results, however, input parameters have to be chosen. They are gener-
ated and checked with the programs ScannerS [37, 39, 44] and BSMPT [92, 93], which
are described in Sec. 5.2. For all generated parameter points the numeric result can then
be calculated and discussed. The presentation of these results is given in Sec. 5.4.
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?IN

?OUT2

?OUT1ℎ125
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Figure 4.2.: Kinematics of the process ℎ125 → ��.

4.2. Kinematics

In this section the kinematics of the process ℎ125 → �� and the general formula for the
decay width are given. In Fig. 4.2 the general description of the external momenta of all
particles in the decay ℎ125 → �� is given. First of all, the process is considered to be
on-shell, i.e. all external momenta obey the relations

?2IN =<2
ℎ125

, ?2OUT1 = ?
2
OUT2 =<

2
�, (4.1)

where <2
ℎ125

is mass squared of the 125GeV Higgs boson. Moreover, since energy-
momentum conservation has to hold, i.e.

?IN = ?OUT1 + ?OUT2, (4.2)

all scalar products of combinations of external momenta can be determined. They read

?IN · ?OUT1 =
<2
ℎ125

2
, (4.3a)

?IN · ?OUT2 =
<2
ℎ125

2
, (4.3b)

?OUT1 · ?OUT2 =
<2
ℎ125

− 2<2
�

2
. (4.3c)

With the general kinematics determined, the question arises how the decay width of a
certain process is determined. The general formula for the decay width up to NLO of a
general process 51 → 5253 can be taken from literature, e.g. [42, 94], and reads

ΓNLO
51→52 53

= (
_(<2

1,<
2
2,<

2
3)

16c<3
1

∑
d.o.f

(
|ALO

51→52 53
|2 + 2Re

[ (
ALO
51→52 53

) ∗
ANLO
51→52 53

] )
, (4.4)

where ALO
51→52 53

denotes the overall amplitude of all Feynman diagrams contributing to the
process at LO andANLO

51→52 53
all Feynman diagrams contributing at NLO.These contributions

have to be summed over all degrees of freedom (d.o.f.), i.e. the different polarization and
chirality states of the external particles (if this is not measured in the experiment), and
multiplied with the given pre-factor, where _ is the Källén-function [95], the<8 are the
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masses of the respective particles 58 and ( is the symmetry factor of the chosen process. In
the case of the process ℎ125 → �� the decay width simplifies to

ΓNLO
ℎ125→��

=
_(<2

ℎ125
,<2

�
,<2

�
)

32c<3
ℎ125

(���ALO
ℎ125→��

���2 + 2Re
( (
ALO
ℎ125→��

) ∗
ANLO
ℎ125→��

) )
, (4.5)

since all external particles are scalars without additional polarization or chirality structure
and the final particles are identical, thus ( = 1

2 .

The LO decay width is the same expression but without the NLO contribution and therefore
reads

ΓLO
ℎ125→��

=
_(<2

ℎ125
,<2

�
,<2

�
)

32c<3
ℎ125

���ALO
ℎ125→��

���2 . (4.6)

4.3. Mass Ordering

Before the actual calculation of the LO and NLO contributions to the decay ℎ125 → ��

can take place, the implementation of the 125GeV Higgs boson into the CxSM has to be
specified.

In the CxSM, depending on the input values, either the lighter or the heavier of the two
mixing scalars, ℎ1 or ℎ2, resembles the 125GeV Higgs boson that behaves SM-like. The
question now is how the fields and their respective masses are ordered in the CxSM. In
general, the mass matrix and the corresponding rotation matrix with the mixing angle U
are chosen such that<ℎ1 is always the lighter mass, i.e. that the relation

<ℎ1 < <ℎ2, (4.7)

holds. Therefore, there are two distinct scenarios, which have to be considered:

• <ℎ1 =<ℎ125 (scenario I):
The lighter of the 2 Higgs particles is the 125GeV Higgs boson and therefore the
process ℎ1 → �� for the calculation of the SM-like Higgs decay into DM particles
has to be considered. Moreover, the process ℎ2 → �� will be chosen for the
renormalization of E( (cf. Sec. 3.5).

• <ℎ2 =<ℎ125 (scenario II):
The heavier of the 2 Higgs particles is the 125GeV Higgs boson and therefore the
process ℎ2 → �� for the calculation of the SM-like Higgs decay into DM particles
has to be considered. Moreover, the process ℎ1 → �� will be chosen for the
renormalization of E( (cf. Sec. 3.5).
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ℎ8

�

�

Figure 4.3.: The only diagram that contributes to the process ℎ8 → �� at LO.

4.4. LO Calculation

With all the preparatory steps from the above sections taken, the calculation of the process
ℎ125 → �� can finally be discussed. First of all, the LO contribution of the process is
calculated. At LO this is fairly simple as only one diagram contributes to the process,
which can be seen in Fig. 4.3. The calculation of the amplitude is also straightforward. The
amplitude simply consists of the respective coupling constant, which can be taken from
Eq. (3.34), and reads

8ALO
ℎ8→��

= −8_ℎ8�� . (4.8)

Thus, using Eq. (4.6), the decay widths for the processes ℎ1 → �� and ℎ2 → �� read

ΓLO
ℎ1→��
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B2U<ℎ125_(<2

ℎ125
,<2

�
,<2

�
)

32cE2
(

, (4.9a)

ΓLO
ℎ2→��

=
22U<ℎ125_(<2

ℎ125
,<2

�
,<2

�
)

32cE2
(

. (4.9b)

In the LO calculation, the overall result is by itself already UV-finite as the divergences only
occur in higher order corrections. Moreover, the result is obviously gauge-independent.

4.5. NLO Calculation

With the LO calculation finished, the NLO calculation can now be discussed. First of all, it
is necessary to obtain all necessary contributions to the overall amplitude at NLO. As can
be seen in Fig. 4.4, in general at NLO, there are vertex corrections, leg corrections, the
vertex counterterm and the leg counterterms which have to be considered. However, since
all external particles are considered to be on-shell, i.e. their squared momenta equals their
squared masses, the leg corrections (ALeg,IN

ℎ8→��
and ALeg,OUT

ℎ8→��
in Fig. 4.4) are canceled by

the leg counterterms (ALegCT,IN
ℎ8→��

and ALegCT,OUT
ℎ8→��

). Therefore, only the vertex corrections
(AVC

ℎ8→��
) and the vertex counterterm (ACT

ℎ8→��
) are of interest.

For the vertex corrections, all possible Feynman diagrams that contribute to the given
process have to be generated and calculated. The corrections for the here discussed
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Figure 4.4.: Generic diagrams contributing to the NLO decay width of ℎ8 → ��.

processes ℎ8 → �� consist of the diagrams in Fig. 4.5. Next, the amplitudes of the
diagrams have to be calculated and summed up. Moreover, the alternative tadpole scheme
is used. Thus, all possible tadpole diagrams, which are given in Fig. 4.6, have to be added to
the vertex corrections as well. This computation was done with the help of the programs
already discussed in Sec. 4.1. At the end an analytical result for the vertex corrections
AVC
ℎ8→��

is obtained.

The second part which needs closer consideration is the contribution of the vertex countert-
erm ACT

ℎ8→��
. It can be derived as follows. Starting from the unrenormalized Lagrangian

L0 with unrenormalized quantities, the Eqs. (3.4) and (3.6) for the fields and Eq. (3.2) for
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Figure 4.5.: All Feynman diagrams contributing to the NLO vertex correction AVC
ℎ8→��

,
where ;, : ∈ {1, 2}.

the coupling constant _ℎ8�� can be inserted,

L0 ∝ − _ℎ8��,0ℎ8,0�0�0 − _ℎ 9��,0ℎ 9,0�0�0
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2
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2
ℎ 9

) (
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2
�

) (
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2
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X/ℎ 9ℎ8

2
ℎ8

) (
� + X/�

2
�

) (
� + X/�

2
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)
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(4.10)

where 8, 9 ∈ {1, 2} but 8 ≠ 9 . Thus, the counterterm Lagrangian LCT can be read of at
NLO (i.e. terms with multiple counterterms are ignored) and is given by

LCT ∝ −ℎ8��_ℎ8��
(
X_ℎ8��

_ℎ8��
+
X/ℎ8ℎ8

2
+ X/� +

_ℎ 9��

_ℎ8��

X/ℎ 9ℎ8

2

)
. (4.11)
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ℎ8
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�

�, (,+ , [

ℎ;

Figure 4.6.: All tadpole contributions that have to be added to the vertex corrections of
the process ℎ8 → �� in the alternative tadpole scheme at NLO, with the index
; = 1, 2. � denotes all fermions in the model, ( the scalars ℎ1, ℎ2, � , as well as
the Goldstone bosons �0 and �±. V denotes the massive gauge bosons / and
, ±, respectively and [ denotes all ghosts [/ and [±.

Here only terms where the fields ℎ8 and two times � occur, are selected. Thus, the vertex
counterterm can be read off the Lagrangian and is given by

ACT
ℎ8→��

= −_ℎ8��
(
X_ℎ8��

_ℎ8��
+ X/� +

X/ℎ8ℎ8

2
+
_ℎ 9��

_ℎ8��

X/ℎ 9ℎ8

2

)
, (4.12)

where 8, 9 ∈ {1, 2} but 8 ≠ 9 . The counterterms for the coupling constants _ℎ8�� have
already been determined in Eq. (3.66). Thus, the overall NLO contributions for the processes
ℎ8 → �� result in

ANLO
ℎ1→��

= AVC
ℎ1→��

− _ℎ1��

(
X<2

ℎ1

<2
ℎ1

− XE(

E(
+ cot(U)XU

+ X/� +
X/ℎ1ℎ1

2
+ cot(U)

<2
ℎ2

<2
ℎ1

X/ℎ2ℎ1

2

)
,

(4.13a)

ANLO
ℎ2→��

= AVC
ℎ2→��

− _ℎ2��

(
X<2

ℎ2

<2
ℎ2

− XE(

E(
+ cot(U)XU

+ X/� +
X/ℎ2ℎ2

2
+ tan(U)

<2
ℎ1

<2
ℎ2

X/ℎ1ℎ2

2

)
.

(4.13b)

With the NLO amplitude determined, the decay width of the respective processes can
then be calculated with the help of Eq. (4.5). The exact analytic result now depends on
the chosen renormalization schemes for the respective counterterms. First of all, only
the alternative tadpole scheme (see Sec. 3.2.2) is used for the counterterms X<2

ℎ8
, X/ℎ8ℎ 9

and X/ℎ8ℎ8 . The usage of the standard tadpole scheme (see Sec. 3.2.1) does not lead to a
gauge-independent overall amplitude. Only the alternative tadpole scheme in combination
with the pinched scheme (see Sec. 3.4.2) results in a gauge-independent counterterm for U
and moreover a gauge-independent result for the amplitude. Furthermore, in this thesis
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4.5. NLO Calculation

the process-dependent scheme (see Sec. 3.5.1) or the ZEM scheme (see Sec. 3.5.2) can be
chosen for the renormalization of E( as well as the ?∗ pinched scheme or the OS pinched
scheme for the renormalization of U . All results are checked for their gauge-dependence
and UV-finiteness analytically as well as numerically. The change in the scheme of XU ,
however, does not change the result in these checks. In both schemes XU is already gauge-
independent by construction and the UV-behavior does not change between the schemes,
as it should be.

The analytical check for gauge dependence is quite straightforward. The decay width
(or equivalently the NLO amplitude, since it is the only term with a potential gauge
dependence) is calculated and all gauge-dependent terms are collected from the overall
result, summed up and checked if the gauge dependence cancels. For both the process-
dependent scheme and the modified ZEM scheme the overall result is gauge-independent.

The analytical check for the UV-finiteness of the result is more involved. The divergent
parts of the given integrals have to be derived and inserted to check if at the end the
overall sum of all divergent parts cancels. For this, the divergent parts of the integrals

Div
(
�0(<2)

)
=<2Δn, (4.14a)

Div
(
�0(?2,<2

1,<
2
2)

)
= Δn, (4.14b)

Div
(
�0(?21, ?

2
2, ?

2
3,<

2
1,<

2
2,<

2
3)

)
= 0, (4.14c)

Div
(
��0(?2,<2

1,<
2
2)

)
= 0, (4.14d)

have been used [71], where �0, �0, and �0 are the respective 1-point, 2-point and 3-
point functions, and ��0 is the derivation of �0 with respect to the momentum ?2. The
expression for Δn can be seen in Eq. (3.1). These equations can be implemented to obtain
the UV-divergent parts of the overall amplitude. Again, this was checked for both the
process-dependent scheme and the ZEM scheme derivation of XE( and in both cases the
overall result for the calculated NLO amplitude from Eq. (4.13) was UV-finite.
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In this chapter the impact of the NLO corrections to the decay width of the process
ℎ125 → ��, calculated in the previous chapter, is analyzed in detail. First, the used
SM input parameters are listed (Sec. 5.1). Next, the generation of viable parameter
points respecting theoretical and experimental constraints is explained (Sec. 5.2) and the
generated parameter points are presented in several distributions (Sec. 5.3). Finally, the
numeric result is calculated for all generated parameter points and further interpreted (
Sec. 5.4).

5.1. Input Parameters

As a first step towards the numerical calculation, the input parameters have to be specified.
Since OS renormalization is used to renormalize the CxSM, the fermion and gauge boson
masses are part of the chosen input parameters. Furthermore, the electric charge 4 is
needed to express the SM vev E together with mass parameters, see Eq. (2.21). All SM
parameters have been taken from [96] and their values are given in Tab. 5.1. For simplicity,
one generation of fermions is used in the calculation. The numerical impact of the fermions
of the first two generations is negligible. The elementary charge can be obtained from the
fine structure constant UEM, which results in

UEM =
1

137.035999084
, (5.1a)

4 =
√
4cUEM = 0.3028221. (5.1b)

The other free parameters of the model are generated and with the help of ScannerS as
described in the next section.

Table 5.1.: All SM parameter values used in the numerical evaluation taken from [96].

SM parameter Value

</ 91.1876GeV
<, 80.379GeV
<ℎ125 125.09GeV
<g 1.777GeV
<1 4.7GeV
<C 172.5GeV
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Table 5.2.: The scanning range used for the generation of parameter points with ScannerS.
Parameter Range

Lower Upper

<B 30GeV 1000GeV
<� 10GeV 62GeV
E( 1GeV 1000GeV
U −1.57 1.57

5.2. Generation of Viable Parameter Points

In order to obtain physical results, viable parameter points are generated. These points
have to obey certain theoretical and experimental constraints, as described in Sec. 2.5. In
order to generate parameter points, the program ScannerS [37, 39, 44] is used. The CxSM
model is already implemented in ScannerS. Points can be generated randomly (up to a
starting seed) within a selected range for all given input parameters. ScannerS then checks
if the model with the sampled input parameters obeys all theoretical and experimental
constraints. Only parameter points that obey all criteria are saved. With this procedure
about 1 × 106 parameter points have been sampled. The ranges for the input parameters
can be seen in Tab. 5.2. The DM mass only ranges up to 62GeV since the decay process
ℎ125 → �� has to be kinematically allowed.

The random selection of points has to be taken with caution. The absence of points
in a certain region may have a physical reason but can also be the result of the random
selection of points. Therefore, to be able to have reasonable results, the amount of generated
parameter points has to be high and the randomization seed for each generation of points
has to differ in order to not generate the same points again.

ScannerS uses a mass ordering for the scalar masses and the mixing angle is defined
accordingly. Therefore, it is suitable to differ between the two scenarios where the 125GeV
Higgs is the lighter (scenario I) or heavier scalar particle (scenario II), as described in Sec.
4.3. In the following, the scalar mass not denoting the 125GeV Higgs mass is written as
<B . Moreover, since only one scan for all mass ranges was made, scenario I will obtain
more parameter points, since here the scalar mass<B can vary from about 125GeV up
to 1000GeV, whereas in scenario II it only varies between 30GeV up to about 125GeV
(see also Tab. 5.2).

Another program called BSMPT [92, 93] is used to further refine the generated param-
eter points. BSMPT can be used to check whether the parameter points obey further
constraints, e.g. if the vacuum is NLO stable, i.e. whether the LO minimum and the NLO
minimum of the Higgs potential at zero temperature coincide. Furthermore, it can be
checked if a strong first order EW phase transition can be obtained with the given input
parameters. The CxSM model is already implemented in BSMPT, but in a more general
form of the model than described here in this thesis. Therefore, the program code of
the model was modified to include the CxSM version considered in this thesis. For this
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the definition of the effective potential and the counterterms had to be altered and the
reading of the input parameters had to be adjusted. With this altered model, all generated
parameter points from ScannerS have been checked with BSMPT. As a result, about 1000
parameter points have been rejected because they are not NLO stable. All other points
passed all constraints from BSMPT, but no parameter point resulted in a strong first order
EW phase transition.

The last constraint applied to the parameter points is the kinematic constraint from the
process-dependent scheme, i.e. that the decay used in the process-dependent scheme is
kinematically allowed (see also Sec. 3.5.1). Therefore, all points that do not obey this
additional kinematic constraint are discarded when using the process-dependent scheme.
In the ZEM scheme, however, this constraint is no longer present and all generated points
are used.

5.3. Distribution of the Generated Parameter Points

As a first observation, the distribution of the generated parameter points is shown by plot-
ting certain input parameters against each other. The correlation between the parameters
imposed by the theoretical and experimental constraints is then visible. Besides the mass
of the 125GeV Higgs boson, there are 4 input parameters,

<B,<�, U, E( , (5.2)

where<B denotes the scalar mass of the non-125GeV Higgs boson. Together with the
two scenarios where the 125GeV Higgs is either the lighter (scenario I) or the heavier
(scenario II) scalar particle, this results in 12 possible plots. Furthermore, the kinematic
constraint from the process-dependent scheme can be applied or not, so overall 24 different
combinations are possible.

To start with, in Fig. 5.1 a few selected correlations are shown between U , E( and<B with
the additional kinematic constraint. Since this constraint from the process-dependent
scheme does not directly relate these parameters, the plots without the constraint are
essentially identical. What can be see in these plots is that first of all, depending on which
mass scenario is considered, the plots differ considerably.

Next, as can be seen in the upper row of the plots in Fig. 5.1, the parameters U and E( seem
to be strongly correlated and U is quite small in scenario I and close to ±c

2 in scenario II.
This is to be expected since all SM couplings to the ℎ125 Higgs boson obtain an additional
2U in scenario I or BU in scenario II. These couplings are very well measured and only small
deviations are allowed. Thus, the additional factor has to be close to 1 and U has to be close
to 0 or ±c

2 , respectively. Moreover, the parameters U and E( are connected through the
decay width of the 125GeV Higgs boson into DM particles. As can be seen in Eq. (4.9),
the LO decay width in scenario I is proportional to

ΓLO
ℎ1→��

∝
B2U

E2
(

. (5.3)
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Figure 5.1.: The input parameters U plotted versus E( in the upper row and<B versus E( in
the lower row, where the red plots on the left side are the scenario where the
125GeV Higgs is the lighter scalar particle and the blue plots on the right the
heavier Higgs scenario. Here the process-dependent scheme constraint is also
applied.

Thus, in order for the LO branching ratio of the 125GeV Higgs into DM particles in the
CxSM not to exceed experimental limits [40], this ratio has to be small. Therefore, if E(
is small, U has to be small. With increasing E( , U can take up bigger values as well. This
behavior can exactly be seen in Fig. 5.1.

In scenario II the LO decay width is proportional to

ΓLO
ℎ2→��

∝
22U

E2
(

. (5.4)

Thus, for the same reasoning as in scenario II, this ratio has to be small. Therefore, if E( is
small, U has to be close to ±c

2 . This behavior can be seen in Fig. 5.1 as well.
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5.3. Distribution of the Generated Parameter Points

The plots in the lower row in Fig. 5.1 show the relation between E( and<B in the two
scenarios. In scenario I, as can be inferred from the plot, small values of E( paired with
large values of<B are excluded, whereas in scenario II only the far left side of the plot is
excluded. The relation in the scenarios can be explained as follows. The two parameters
<B and E( can be related over the potential parameter 32. in scenario I,<B is equal to<ℎ2 .
Furthermore, in this scenario U can be assumed to be close to zero. Thus, with the help of
Eq. (2.20), 32 can be written as

32 =
<2
ℎ125

+<2
B + cos(2U) (<2

B −<2
ℎ125

)
E2
(

U→0−−−−→ 2<2
B

E2
(

. (5.5)

Next, the unitarity constraints from Sec. 2.5.1 are considered. More precisely, using again
the small angle approximation in Eq. (2.20), _ and X2 can be expressed as

_
U→0−−−−→

<2
ℎ1

E2
(

=
<2
ℎ125

E2
(

, (5.6)

X2
U→0−−−−→ 0. (5.7)

With this simplified expressions the fourth constraint in Eq. (2.27) results in����32_ + 32 ± (
3

2
_ − 32

) ���� ≤ 16c

⇒ 32 ≤ 8c.

(5.8)

Here it is used that 32 is positive. Inserting Eq. (5.5) for 32 results in the relation

<B ≤
√
4cE( . (5.9)

Thus, as it can be seen in Fig. 5.1 for scenario I,<B and E( are linearly related. Moreover,
the prefactor given in the relation does indeed coincide with visual ratio given in Fig. 5.1.

The same calculation can be applied to scenario II. In this case, however<B resembles
the mass<ℎ1 and the angle U is close to ±c

2 . However, when both of these changes with
respect to scenario I are applied, the same relation as in Eq. (5.9) is obtained. Therefore,
<B and E( are again linearly related in scenario II. For example, setting<B to the highest
possible value in this scenario, i.e. about 125GeV, E( has to be at least 35GeV. Therefore,
only a small part of the parameter space is constrained by this result. Nevertheless, in Fig.
5.1 it can be seen that the far left side of the plot indeed contains no parameter points in
scenario II.

Fig. 5.2 illustrates the parameter space spanned by<B and<�. Here all plots can be seen
both with and without the additional constraints from the process-dependent scheme.
Since these constraints directly relate the two masses, it is clear that the plots will differ
considerably. In the points of scenario II, i.e. the blue points below 125GeV, the kinematic
constraint on the masses is clearly visible. The upper left triangle is discarded if the
constraint is used. However, the points in scenario I do not differ at all qualitatively. This
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Figure 5.2.: The mass <� plotted versus the other scalar mass <B for <ℎ125 ≡ <ℎ2 (the
blue points on the left) and<ℎ125 ≡ <ℎ1 (the red points on the right). Both
plots with (upper) and without (lower) the additional constraint from the
process-dependent scheme are shown.

is to be expected since in this case the scalar mass<B is heavier than the 125GeV Higgs
boson mass and the additional constraint from the process-dependent scheme does not
have an effect. The dark matter mass<� always has to be 2 times smaller than the 125GeV
Higgs boson mass in order for the decay ℎ125 → �� to be physically allowed.

Furthermore, it is interesting that in Fig. 5.2 in scenario I (red points) the DM mass<�

preferably has a mass value close to half of the 125GeV mass is chosen for the parameter
points, whereas in scenario II (blue points), <� preferably has a value close to half of
the other scalar mass<B or close to half of<ℎ125 . This behavior, as will be seen, results
from DM constraints applied on the DM mass<�. To visualize the DM constraints, a test
run to sample 2 × 105 parameter points has been performed, where the DM constraints
were applied, but the parameter points which failed these constraints were also kept. The
output can be seen in Fig. 5.3, where the points which do not obey the DM constraints
are highlighted in green. Here, it can be clearly seen that the relations observed in Fig.
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5.3. Distribution of the Generated Parameter Points

Figure 5.3.: The masses<� and the other scalar mass<B of the generated parameter points
plotted against each other, where the red points indicate the scenario where
the 125GeV Higgs is the lighter scalar particle and the blue points the other
scenario. The smaller green points are parameter points which would be
rejected by DM constraints. For scenario I, only a fraction of the generated
parameter points are shown for better visibility.

5.2 between the masses indeed are a result of the DM constraints. The reason for these
constraints is the requirement that the relic density obtained in the CxSM must not exceed
the observed value of the relic density. Therefore, the thermal annihilation processes of two
DM particles � into one of the scalar particles ℎ8 must be efficient enough (cf. [97]). This
annihilation is enhanced close to the threshold, so that the DM mass<� is preferably close
to half of the 125GeV mass or the other scalar mass<B . Thus, the mentioned correlations
can be seen in Fig. 5.2. However, there are still some points (although rare) where the
processes involved in the computation of the relic density can be such that the relic density
constraint is respected (cf. scattered points in 5.2 (lower)).
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5.4. Numeric Results and Analysis

In the following, the numerical analysis of the process ℎ125 → �� is performed, and the
NLO decay width is calculated and presented for all generated parameter points. First, the
analytically obtained result in Chapter 4 is also checked numerically in the following sense:
Valid input parameters are inserted into the analytic result for the NLO decay width (Eq.
(4.5)) and LoopTools is used to obtain a numeric result. The output can then be checked
for its UV-finiteness and gauge dependence. LoopTools sets the parameter Δn to a finite
value. The overall result, however, should be independent of the chosen value in order for
the expression to be UV-finite. Therefore by varying Δn within LoopTools and comparing
the different results the UV-finiteness of the given analytic result can be checked. The
same procedure can be used for the check for gauge dependence. If the analytic result still
has gauge parameters in it, they can be set to different values and compared whether the
result changes. Thus, the NLO decay width is also checked in a numerical way and it is
indeed found that the calculated expression is gauge-independent as well as UV-finite.

For all valid generated parameter points, the LO and NLO decay width is calculated (Eqs.
(4.5) and (4.6)). The points are divided in two groups according to which mass ordering they
belong (cf. Sec. 4.3), i.e. whether the 125GeV Higgs is the heavier or lighter scalar particle.
Moreover, for the counterterms XU and XE( , two schemes can be chosen so that in total
four different results can be obtained: the ?∗ pinched scheme with the process-dependent
scheme, the ?∗ pinched scheme with the ZEM scheme, the OS pinched scheme with the
process-dependent scheme, and the OS pinched scheme with the ZEM scheme. In all plots
where the process-dependent scheme is chosen, the additional kinematic constraint from
the scheme is also applied, whereas in the ZEM scheme this is not the case.

An interesting expression that is used in the following is the fraction between LO + NLO
and LO decay width minus 1, which results in

ΔΓ ≡
ΓNLO
ℎ125→��

ΓLO
ℎ125→��

− 1 =

2Re
(
ANLO
ℎ125→��

)
ALO
ℎ125→��

. (5.10)

Here it is used that the LO amplitudeALO
ℎ125→��

is real (see Sec. 4.4). This quantity describes
the relative contribution of the NLO contributions to the overall result with respect to
the LO contributions and therefore measures how much the result for the decay width
changes when going to NLO with respect to the LO result.

To start the numerical analysis, the relative contribution ΔΓ is plotted versus the LO decay
width in Fig. 5.4 for scenario I, i.e. for the processℎ1 → ��. First of all, the LO decay width
of course does not depend on the chosen renormalization scheme. The NLO decay width,
however, and therefore ΔΓ can take different values for different renormalization schemes.
The relative difference of the NLO decay widths between different renormalization schemes
has been calculated and resulted in only a few percent. This result, however, has to be
taken with caution. When the renormalization scheme is changed, the input parameters
have to be properly converted as well. This is achieved by using the renormalization group
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Figure 5.4.: ΔΓ (see Eq. (5.10)), plotted versus the LO decay width for the various renor-
malization schemes. Here only scenario I parameter points are shown, i.e.
ℎ1 → ��. In this and all following plots, pd, ?∗ and OS stand for the process-
dependent, the ?∗ pinched and the OS pinched scheme.

equations (RGEs) [42], which need to be derived. This calculation would be beyond the
scope of this thesis. Thus, only the rough approximation without parameter conversion
was calculated. Moreover, the relative contribution of the NLO decay width to the overall
result is quite small in all cases. Since the relative contribution in all schemes is always
below 10% in scenario I, all schemes can be seen as suitable in the context of a perturbative
approach. Their NLO contributions do not become unacceptably large.

The same plots are also presented for scenario II in Fig. 5.5. The rough approximation,
as mentioned in scenario I, has been calculated here as well and the relative difference
between the renormalization schemes results in a few percent. Furthermore, as can be
seen in Fig. 5.5, the relative contributions ΔΓ in the process-dependent scheme are again
quite small. In the ZEM scheme, however, the relative contribution ΔΓ can go down to
−50% and up to 10%, whereas in the process-dependent scheme, ΔΓ varies between
about −3 to 3 %. Thus, the ZEM scheme can result in relatively large corrections (in terms
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Figure 5.5.: ΔΓ (see Eq. (5.10)), plotted versus the LO decay width for the various renor-
malization schemes. Here only scenario II parameter points are shown, i.e.
ℎ2 → ��.

of absolute values) at NLO. Thus, the numerical stability of the scheme can be doubted.
These large corrections, however, only occur in a small amount of points. Thus, more
generated parameter points would be necessary to come to a conclusion about the NLO
stability of the ZEM scheme in this scenario. All other schemes are suitable schemes in
scenario II, in the sense that they do not obtain unacceptably large NLO corrections.

Moreover, it is interesting that the difference between the renormalization schemes is only
a few percent, whereas the value of the relative contributions ΔΓ strongly differ between
ZEM and process-dependent scheme. In the calculation of the difference between the
schemes, however, only points where the kinematic constraint of the process-dependent
scheme was applied, have been used. Thus, it can be concluded that the ZEM scheme,
in particular, can obtain quite large corrections ΔΓ with parameter points, which do not
obey the kinematic constraint from the process-dependent scheme and are therefore only
available in the ZEM scheme.
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5.4. Numeric Results and Analysis

Figure 5.6.: ΔΓ (see Eq. (5.10)) plotted against the scalar mass<B , where ℎ125 ≡ ℎ2 (red
points) and ℎ125 ≡ ℎ2 (blue points). All different combinations of possible
renormalization schemes are shown. Interesting sections (indicated by the red
band) of the two plots in the second row are also shown in more detail.

Next, it can be seen by comparing the Figs. 5.4 and 5.5 that the majority of parameter
points in scenario II, i.e. ℎ2 → ��, when using the process-dependent scheme, result in a
smaller relative contribution ΔΓ than the parameter points in scenario I. This difference
can be further illustrated by plotting the relative contribution ΔΓ versus the varying mass
<B , as can be seen in Fig. 5.6. Here, several observations are made. First of all, the relative
contributions in scenario II (blue points) are quite small in the process-dependent scheme,
but become comparatively large in the ZEM scheme with respect to scenario I (red points).
Moreover, the relative contribution with points from scenario I results in an interesting
behavior, where several peaks at the bottom of the points can be seen. For this, in the
plots of the ZEM scheme the important regions are also shown in more detail in Fig.
5.6 to visualize this behavior for the ZEM scheme as well. These peaks stem from the
integrals occurring in the NLO result of the decay width. The scalar integrals, e.g. �0 and
�0, have certain kinematic thresholds, which cause these sharp changes, when varying
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Figure 5.7.: ΔΓ (see Eq. (5.10)) plotted versus the scalar mass<B , all other parameters have
been set to fixed values, with U = 0.01, E( = 100GeV and<� = 40GeV. All
possible combinations of renormalization schemes are shown.

the input scalar mass<B . This observation can be illustrated, when plotting the relative
contribution ΔΓ versus the scalar mass<B , but leaving all other input parameters fixed, as
can be seen in Fig. 5.7. The used parameters here, however, are not checked for theoretical
or experimental constraints and are purely used for this illustration of the origin of the
peaks. In Fig. 5.7 all possible renomalization schemes are shown and several peaks occur
in all schemes. Moreover, when switching from the OS pinched scheme to the ?∗ pinched
scheme the peaks shift as well. This is expected, since the self-energies in the two schemes
used for the derivation of XU are evaluated at different scales, depending on which scheme
is used. For example, a peak at around 250GeV can be seen in the OS scheme in Fig 5.7.
This means that the according peak in the ?∗ pinched scheme can be calculated with

GOS = 250GeV, G2OS =
<2
ℎ125

+ G2
?∗

2
, (5.11)

56



5.4. Numeric Results and Analysis

Figure 5.8.: The calculated branching ratios for the decay ℎ125 → �� at NLO versus
LO for all generated parameter points and all renormalization schemes. The
experimental limit is indicated by the dashed line with the uncertainty on the
limit given with the red band (Eq. (5.12)). Red (blue) points correspond to
scenario I (II).

since in the ?∗ pinched scheme the self-energies are evaluated at the mean of the scalar
masses. This can be solved for G?∗ and results in about 330GeV, where indeed a peak
in the ?∗ pinched scheme is visible in Fig. 5.7. They only occur in scenario I, because
most of the SM masses occurring in the calculation (e.g. the, and / boson mass) are of
order 100GeV and these thresholds of the integrals only occur at multiples of the input
masses. Since in scenario I,<B ranges up to 1000GeV in the scans, these high masses can
be reached.

As a final step in the numerical analysis, the obtained NLO result for the decay width of
the process ℎ125 → �� is compared to experimental observations. The observed limit on
the branching ratio of the 125GeV Higgs decay into invisible particles is given by [40]

BR(ℎ125 → invisible) . 0.11+0.04−0.03, (5.12)
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at 95% confidence level. This limit can now be used to further constrain the generated
parameter points. In order to compare results, however, the calculated branching ratio is
needed. Thus, the total decay width of the 125GeV Higgs boson in the CxSM including
NLO EW corrections has to be calculated. This may be achieved in future works, but for
now an approximation is used. The total decay width of the 125GeV Higgs boson in the
SM without EW corrections1 is taken from HDECAY 2 [98, 99] and is given by

ΓSM,tot
ℎ125

= 0.4068 × 10−2GeV. (5.13)

In order to translate this decay width into the here used CxSM set-up it is multiplied with
the appropriate squared angular factor :28 (see Eq. (2.15)), that rescales all SM-like CxSM
Higgs couplings to the SM particles (see Secs. 2.2 and 2.3), where the index 8 is chosen
accordingly to the mass scenario. Moreover, to the translated decay width the additional
decay that is possible in the CxSM, i.e. ℎ125 → ��, is added to obtain the total decay
widths in the CxSM. The NLO value for this decay is added to obtain the approximate NLO
expression for the branching ratio. Furthermore, in scenario II the 125GeV Higgs boson
is the heavier of the two scalar particles (ℎ125 ≡ ℎ2). If the other scalar ℎ1 is light enough,
the decay ℎ2 → ℎ1ℎ1 is also allowed and has to be added to the total decay width.

Thus, the LO and approximate NLO branching ratio of the decay ℎ125 → �� is given by

BRNLO/LO
CxSM (ℎ125 → ��) ≈

ΓNLO/LO
ℎ125→��

:2
8
ΓSM,tot
ℎ125

+ ΓNLO
ℎ125→��

+ X ΓLO
ℎ125→ℎ1ℎ1

, (5.14)

where X is defined as

X =

{
1, <ℎ125 ≥ 2<B

0, <ℎ125 < 2<B

. (5.15)

The factor X ensures that the decay width of the process ℎ125 → ℎ1ℎ1 is only added if it is
kinematically allowed.

This expression is approximate in the sense that the NLO EW corrections are only included
in the Higgs-to-invisible decay but not in the SM-like CxSMHiggs decays into SM particles.
This approximation, however, is valid as long as the EW corrections to these decay widths
are small enough compared to the EW corrections to ℎ125 → �� 3. Moreover, for a better
approximation the NLO corrections to the decay ℎ125 → ℎ1ℎ1 have to be included as well.

In Fig. 5.8 the calculated branching ratios for all generated parameter points can be seen.
The experimental limit on the branching ratio is shown as well. However, the limit is only
1It includes, however, the relevant higher-order QCD corrections that can be taken over from the SM to

the CxSM.
2In HDECAY the�� scheme is used whereas in this thesis other input parameters have been chosen. This

results in a small mismatch, but since an approximation in the calculation here is already applied, this
can be neglected.

3From Ref. [100], where for the 2HDM and the N2HDM the EW corrections have been calculated for all
the allowed parameter sets and in different renormalization schemes, it can be concluded that the EW
corrections to the decay widths of the SM-like Higgs into SM particles amount up to a few percent only.
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indicated for the NLO result, since the parameter points are generated with respect to the
limit at LO. Thus, all LO results already fulfill this constraint.

Almost all parameter points result in a smaller value at NLO. Only about 0.2% of the
generated points result in a higher branching ratio than the experimental limit. The highest
obtained branching ratio, however is around 0.121 and therefore still lies well within the
experimental uncertainty. The relative change of the BR at NLO with respect to LO has
been calculated and rises only up to 7-8%. Thus, the NLO contributions to the branching
ratio are too small to further constrain the model. Moreover, it is interesting to see that
the points from scenario II result in smaller branching ratios, especially when using the
ZEM scheme. This is to be expected, since many points in that scenario obtain negative
relative NLO contributions to the decay width, see e.g. Fig. 5.5.

To conclude the numerical analysis: Including the NLO corrections to the decay width of
the process ℎ125 → �� does not further constrain the parameter space of the model with
respect to current experimental limits. The calculated NLO branching ratios of all generated
parameter points are within experimental bounds. Calculating the EW corrections to all
decays of the SM-like CxSM Higgs boson into SM particles will improve the obtained
result. Tighter experimental constraints, however, are needed to further constrain the
CxSM model and may be obtained in the upcoming LHC run [41].
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6. Conclusion

In this Master thesis, in the framework of the CxSM, the EW corrections to the decay
process ℎ125 → �� of the SM-like 125GeV Higgs boson into two DM particles have
been calculated and discussed. Despite the enormous success of the SM, there are still
many unanswered questions in particle physics. The question about the nature of DM,
in particular, has no suitable answer in form of a potential DM candidate within the SM.
Therefore, BSM theories including a possible DM candidate are explored, with the CxSM
being one of those theories. It is based on the extension of the SM by a complex singlet
field, and in the version treated in this thesis exhibits one scalar particle representing the
DM particle. Furthermore, the decay process of the 125GeV Higgs into invisible particles
is already probed at the LHC and experimental limits can be compared with theoretical
precision results.

First, the CxSM model was presented. The scalar sector was thoroughly introduced and all
differences with respect to the SM where mentioned. With the additional singlet and vev
parameter in the model, minimization conditions of the scalar minimum were discussed. A
set of parameters was presented that is mostly based on physical parameters. Additionally,
the relevant theoretical and experimental constraints on the model were discussed.

After the description of the model, the renormalization of the CxSM was presented in great
detail in the next chapter. A brief introduction into the general aspects of renormalization
and regularization was given and the general OS scheme approach was introduced for
the scalar fields. The importance of the treatment of tadpole contributions was clarified
and two schemes were introduced to specify how the tadpole contributions have to be
handled. With the standard tadpole scheme, however, no gauge-independent overall
result could be achieved. Therefore, the alternative tadpole scheme, which was able to
obtain gauge-independent results, was introduced, similar to earlier works. Next, the
renormalization of the mixing angle U was covered. Here, two schemes were used, the
KOSY scheme and the pinched scheme. The KOSY scheme would also lead to a gauge-
dependent result, whereas the pinched scheme in combination with the alternative tadpole
scheme would lead to an overall gauge-independent result. The last parameter to be
renormalized was E( , where the process-dependent scheme was used. In this scheme per
definition a gauge-independent counterterm of E( is obtained. In order to get rid of the
additional kinematic constraints introduced by the process-dependent scheme, another
scheme was implemented. The ZEM scheme does not introduce additional kinematic
constraints, but will lead to gauge-dependent overall results. If modified accordingly it
also allows to obtain an overall gauge-independent result.

After specifying the renormalization of the CxSM, the EW corrections to the decay process
ℎ125 → �� of the 125GeVHiggs boson into two DM particles were calculated at NLO.The
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6. Conclusion

program tools used for the computation of the Feynman amplitudes as well as all relevant
formulas were mentioned. The two scenarios for the mass-ordering of the scalar particles
were introduced, i.e. whether the 125GeV Higgs boson is the heavier or the lighter of
the two scalar particles. Finally, the NLO calculation was presented and the relevant
Feynman diagrams contributing to the LO and NLO processes were shown and computed.
Some analytic tests were made, i.e. whether the overall result was gauge-independent and
UV-finite.

The analytic result obtained for the LO and NLO decay widths of the process ℎ125 → ��

furthermore was evaluated numerically. For this task the program package LoopTools was
used and the gauge independence and UV-finiteness of the result could also be checked
numerically. For further analysis, the input parameters had to be specified. Roughly
1 Million parameter points were generated and checked with ScannerS and BSMPT,
whether they obey the above mentioned theoretical and experimental constraints. The
resulting correlation between the different input parameters was also visualized. Next,
the decay width at LO and NLO was calculated for all generated parameter points and
all different combinations of possible renormalization schemes were used. The obtained
numerical results were presented and the differences between the renormalization schemes
were discussed. Barring the uncertainty of the random generation of parameter points
it can be concluded that all schemes lead to a numerically stable result in the sense that
no unacceptably large corrections are obtained at NLO. The ZEM scheme can result in
relatively large corrections, but only in a few of the generated points. Thus, to conclude
the NLO stability in this regard, more generated points are needed to give a final answer.
Furthermore, the resulting branching ratio for the decay processℎ125 → ��was compared
to current experimental limits both at LO and NLO. All generated parameter points,
however were not excluded by them, taking into account the current experimental limits.

In order to improve on the obtained results, the EW corrections to the total decay width of
the 125GeV Higgs boson in the CxSM at NLO can be computed by calculating the so far
unknown EW corrections to the decay processes of the SM-like CxSMHiggs boson into SM
particles. The improved result for the NLO EW branching ratio of the process ℎ125 → ��

can then be compared to the current experimental limits. Furthermore, the amount of
generated parameter points can be further increased to obtain even better statistics and
to look for points with a strong first order EW phase transition with BSMPT. Moreover,
the ZEM scheme can be further improved to more elegantly obtain a gauge-independent
result.
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A. Appendix

A.1. The Pinch Technique in the CxSM

In order for the pinched scheme (see Sec. 3.4.2) to result in a gauge-independent coun-
terterm of U , a gauge-independent form of the self-energies of the fields ℎ8, 8 ∈ {1, 2}, has
to be obtained in an unambiguous way. This can be achieved with the pinch technique
[76–80], which is described in the following for the CxSM. Similar derivations for other
models have already been made and can be seen e.g. in [73, 74].

A short introduction into the general idea of the pinch technique is given, before the
calculation for the CxSM is discussed. At first, a process has to be chosen from where
the pinched self-energies can be extracted. The particles, in our case the scalars ℎ8 , of
whom the self-energies are to be pinched, have to be already present as internal particles
at LO so that the self-energies will contribute at NLO. Therefore, a suitable process has to
be chosen. Here the process `+`− → 1̄1 is considered, the annihilation of muons into a
bottom-anti-bottom quark pair.

Next, the general approach is that the overall amplitude of that process is gauge-independent,
i.e. that

Atotal = Abox({b}) + Atri({b}) + Aleg({b}) + Aself({b}), (A.1)

holds, with the respective box Abox, triangle Atri, self-energy Aself diagrams as well as
the external leg corrections Aleg and all occurring gauge parameters abbreviated with {b}.
Since the overall amplitude is gauge-independent, the gauge dependence of the respective
contributions have to cancel in total. Therefore, it is possible to rewrite them such that
they can be attributed to other contributions, i.e. that the relation can be rewritten as

Atotal = Âbox + Âtri + Âleg + Âself, (A.2)

with adjusted contributions signaled by the hat, which are no longer gauge-dependent.
Thus, gauge-independent self-energies can be generated.

The procedure in the pinch technique is now to rewrite the contributions from box and
triangle diagrams as well as external leg contributions such that they are given in terms of
self-energy contributions. This is achieved by ’pinching’ out fermion propagators. More
precisely, starting with a slashed loop momentum /: between fermion spinors in any of
the calculation of the mentioned amplitudes, the momentum can be rewritten as

/: = /: + /? − /? +< −< = (−1(: + ?) − (−1(?), (A.3)
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where (−1(?) is the inverse fermion propagator with momentum ? (up to a factor 8),
defined as

(−1(?) ≡ /? −<. (A.4)

Now the identities

(−1(?)D (?) = 0, (A.5a)
(−1(−?)E (?) = 0, (A.5b)

with the respective fermion spinors D and E , can be used so that the second propagator
in Eq. (A.3) vanishes, whereas the first propagator cancels out with the inherent prop-
agator of the considered amplitude. The fermion propagator thus is ’pinched’ out. An
example calculation is given later. This procedure has to be carried out consistently for
all slashed loop momenta, which will result in gauge-independent pinched contributions.
Moreover, the additional chirality structure from interactions with / and, bosons further
complicates the calculation.

Before the actual calculation can start, some useful definitions have to be mentioned. First
of all, with the definition of

$8 9 ≡ :8: 9 , (A.6)

all couplings in the CxSM between scalar particles and SM particles can be described as

6-.ℎ8 = 6
SM
-.�:8, (A.7a)

6-.ℎ8ℎ 9 = 6
SM
-.��$8 9 , (A.7b)

where 6SM
-.�

and 6SM
-.��

are the respective coupling constants between the SM particles -
and . and one or two SM Higgs particles and :8 is given in Eq. (2.15). Thus, using these
expressions the SM Feynman rules can be taken, cf. e.g. Ref. [43]. Next the chirality
projection operators are written as

%R/L =
1 ± W5
2

, (A.8)

with the Dirac matrix W5. In the following, also the notation∫
:

≡
∫

d4: (A.9)

is used, to denote the loop integrals. Here, the integrals are in 4 dimensions and are so
far not yet regulated. The pinch technique can be applied before any regularization takes
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place. Next the integral definitions

8

16c2
�0(<2) ≡

∫
:

1

:2 −<2
, (A.10a)

8

16c2
�0(?2,<2

1,<
2
2) ≡

∫
:

1

(:2 −<2
1) ((: + ?)2 −<

2
2)
, (A.10b)

8

16c2
U+ ≡

∫
:

1

(:2 −<2
+
) (:2 − b+<2

+
)
, (A.10c)

8

16c2
V+1+2 (?2) ≡

∫
:

1

(:2 −<2
+1
) (:2 − b+1<2

+1
) ((: + ?)2 −<2

+2
)
, (A.10d)

8

16c2
V+1b+2+2

(?2) ≡
∫
:

1

(:2 −<2
+1
) (:2 − b+1<2

+1
) ((: + ?)2 − b+2<2

+2
)
, (A.10e)

are useful, with b+ being the gauge parameter of the corresponding gauge boson + .
Moreover, the integral relations

�0(b+<2
+ ) = �0(<2

+ ) − _+<2
+U+ , (A.11a)

�0(?2, b+1<2
+1
,<2

+2
) = �0(?2,<2

+1
,<2

+2
) − _+1<2

+1
V+1+2 (?2), (A.11b)

_+ = 1 − b+ , (A.11c)

as well as the integral simplifications∫
:

: (: + 2@)
(:2 −<2

+
) (:2 − b+<2

+
) ((: + @)2 − b+<2

+
)
=

8

16c2

(
(b+<2

+ − @2)V+b++ (@2) +U+ ) ,
(A.12a)∫

:

: (: + @)
(:2 −<2

+
) (:2 − b+<2

+
) ((: + @)2 −<2

+
) ((: + @)2 − b+<2

+
)
=

8

16c2
1

_+<
2
+

( (
<2
+ − @

2

2

)
V++ (@2) −

(
b+<

2
+ − @

2

2

)
V+b++ (@2)

)
,

(A.12b)

have been used in the derivation of the pinch contributions. Furthermore, the relations

1

(:2 −<2
+
) (:2 − b+<2

+
)
=

1

_+<
2
+

(
1

:2 −<2
+

− 1

:2 − b+<2
+

)
, (A.13)

∑
8=1,2

$88

@2 −<2
ℎ8

=
∑
8, 9=1,2

(
@2 −

<2
ℎ8
+<2

ℎ9

2

)
$2
8 9

(@2 −<2
ℎ8
) (@2 −<ℎ2

9
)
, (A.14)

can be applied in the calculation. With all the definitions and relations given, the actual
calculation can be described.
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Figure A.1.: All box diagrams with / bosons that need to be considered in the pinch
technique for the CxSM, where the �0 is the Goldstone boson of / .
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Figure A.2.: All box diagrams with, ± bosons that need to be considered in the pinch
technique for the CxSM, where the �± are the Goldstone bosons of, ±.

A.1.1. Box Diagrams

First, all contributing box diagrams are considered, they can be seen in Figs. A.1 and A.2.
No diagrams containing photons are listed, since the overall contribution of all photon box
diagrams cancels. Moreover, no box diagrams containing Higgs particles are considered,
since the pinch results of these diagrams do not contribute to the self-energies of the
scalars ℎ8 . They do not result in contributions to the scalar self-energies. Thus, only the
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`+

`−

1̄

1
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�0
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: − ?1 : − A1

Figure A.3.: The kinematics in the box diagram used for the example calculation.

9 diagrams, given in Figs. A.1 and A.2, contribute to the pinch technique for the box
diagrams. The pinching for the first diagram (see also Fig. A.3) is demonstrated in the
following.

Before the presentation of the calculation the abbreviations

�L/R ≡
(
−1
2
%L/R + B2w

)
, �1L/R ≡

(
−1
2
%L/R + 1

3
B2w

)
, (A.15)

are introduced, which are part of the coupling between the / boson and the muons or 1
quarks, respectively, the index on � indicating the quark coupling. Moreover, kinematics
are used as seen in Fig. A.3 and the additional color factors of the quarks are ignored, since
they are at the end counted to the Higgs-quark coupling and therefore do not contribute
to the self-energy. Thus, the overall amplitude reads

8A/�0,1
box

=

∫
:

Ē (?1)
86

2w
W `�L8( (: − ?1)

−<`

E
W5D (?2) (A.16a)

D̄ (A2)
−<1

E
W58( (: − A1)

86

2w
Wa�1LE (A1)

8

(: − @)2 − b/<2
/

8

:2 −<2
/

(
−6`a + _/

:`:a

:2 − b/<2
/

)
_+∼

∫
:

−_/62<`<1

22wE
2

Ē (?1)/:�L( (: − ?1)W5D (?2)D̄ (A2)W5( (: − A1)/:�1LE (A1)

1

((: − @)2 − b/<2
/
) (:2 −<2

/
) (:2 − b/<2

/
)

pinched∼
∫
:

−_/62<`<1

22wE
2

Ē (?1)�RW5D (?2)D̄ (A2)W5�1LE (A1)

1

((: − @)2 − b/<2
/
) (:2 −<2

/
) (:2 − b/<2

/
)

=
62<`<1_/

22wE
2

8

16c2
V/b/ (@2) (Ē (?1)�RW5D (?2)D̄ (A2)W5�1LE (A1)), (A.16b)

where in the pinching step Eqs. (A.3) and (A.5) where used and only parts with no
remaining fermion propagator were kept. Furthermore, in the last step the transformation
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Figure A.4.: The pinched result rewritten in terms of self-energies compared to the dia-
grammatic expression.

: → −: was made, which does not change anything except for the sign in the denominator.
Combined with the other box diagrams with one / boson and one �0 Goldstone boson
(see Fig. A.1 (b), (c) and (d)) the terms between the spinors simplify to unity up to an
additional prefactor. The overall pinched amplitude results in

8A/�0

box,pinched =
62<`<1_/

22wE
2

8

64c2
V/b/ (@2)Ē (?1)D (?2)D̄ (A2)E (A1). (A.17)

Using the identity 22U + B2U = 1 and (−8)2 = −1 the result can be rewritten as

8A/�0

box,pinched =
−862<`<1_/

64c222w

1

64c2
V/b/ (@2)Ē (?1)

−8<`

E
D (?2) (22U + B2U )2D̄ (A2)

−8<1

E
E (A1)

=
∑
8, 9=1,2

(
8Γ`

−`+ℎ8 8

@2 −<2
ℎ8

[
(@2 −<2

ℎ8
) (@2 −<2

ℎ 9
) 86

2_/

64c222w
V/b/ (@2)$8 9

]
8

@2 −<2
ℎ 9

8Γ1̄1ℎ 9

)
, (A.18)

with the respective 8Γ terms describing the couplings between the external fermions and
the Higgs particles, written as

8Γ`
−`+ℎ8 = Ē (?1)

−8<`

E
:8D (?2), (A.19a)

8Γ1̄1ℎ 9 = D̄ (A2)
−8<1

E
: 9E (A1). (A.19b)

Now the result is written as a self-energy contribution (compare with Fig. A.4) and the
pinched contribution to the self-energies of ℎ8 can be read of as

8Σadd,/�0 box
ℎ8ℎ 9

= (@2 −<2
ℎ8
) (@2 −<2

ℎ 9
) 86

2_/

64c222w
V/b/ (@2)$8 9 . (A.20)

The other box diagrams are calculated analogously. The diagrams, however, with two
gauge bosons are more involved. In these cases it might be useful to look at additional
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symmetries in the integrals, i.e. use the relation∫
:

:`

(:2 −<2
+
) (:2 − b+<2

+
) ((: + @)2 −<2

+
) ((: + @)2 −<2

+
)
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−−−−−−−→
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+
) ((: + @)2 −<2

+
) ((: + @)2 −<2

+
)
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:`

(:2 −<2
+
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+
) ((: + @)2 −<2

+
) ((: + @)2 −<2

+
)

= −1
2

∫
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@`

(:2 −<2
+
) (:2 − b+<2

+
) ((: + @)2 −<2

+
) ((: + @)2 −<2

+
)
,

(A.21)

after combining the results of both diagrams for the respective gauge boson.

At the end, the sum of all contributions from the box diagrams results in

8Σadd,box
ℎ8ℎ 9

= (@2 −<2
ℎ8
) (@2 −<2

ℎ 9
)
862_/$8 9

6422wc2

V// (@2) + V/b// (@2)
2

+ (@2 −<2
ℎ8
) (@2 −<2

ℎ 9
)
862_,$8 9

32c2
V,, (@2) + V,b,, (@2)

2
.

(A.22)

A.1.2. External Leg Corrections

The derivation of the pinch contributions for the external leg corrections is similar to the
derivation for the box diagrams. All contributing diagrams can be seen in Fig. A.5. A total
of 12 diagrams has to be considered. However, a subtle problem arises, namely that in all
leg corrections a fermion propagator ( (?) with external momentum ? appears. Setting the
momentum on-shell results in a divergence in the propagator. Since the pinch technique is
to be applied before the actual regularization and renormalization, this creates a problem.
But as it turns out, by carefully pinching out the fermion propagators, the pinched result
contains no divergences at the end. To derive this contribution a careful handling of the
divergent terms has to be applied. In principle, an additional shift in the momenta could
be introduced to set the external particles slightly off-shell, apply the pinch technique
and then set this shift to zero [101]. This avoids the problem of the divergent terms and
a proper solution can be found. However, a more practical approach is to re-write all
slashed loop momenta with Eq. (A.3), but not use the identities in Eq. (A.5). Then, all
appearing fermion propagators and inverse propagators between two fermion spinors
have to be simplified. Then, all divergent parts are canceled in the relevant pinched parts,
the identities (A.5) can be again applied to obtain a final result. This is in the end the same
procedure as shifting the momenta, since in both methods the straightforward usage of
Eq. (A.5) is at first prohibited so that the divergent terms can be treated.
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Figure A.5.: All external leg corrections that need to be considered in the pinch technique
for the CxSM, where + ∈ {,,/,W}.

If the calculation of the pinched parts is then executed properly, the overall result reads

8Σ
add,leg
ℎ8ℎ 9

=
−85_W42

72c2
$8 9

(
@2 −

<2
ℎ8
+<2

ℎ 9

2

)
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2
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<2
ℎ8
+<2

ℎ 9

2

)
U/

(
1 − 8

3
B2w + 40

9
B4w

)
.

(A.23)

Here an additional factor 1
2 to the leg correction from the LSZ reduction has to be consid-

ered.

A.1.3. Triangle Diagrams

The last contributions that have to be considered are the triangle diagrams. They are quite
straightforward to calculate, similar to the box diagrams. All diagrams can be seen in
the Figs. A.6, A.7 and A.8, in total 16 diagrams. However, now the couplings between
Higgs particles and gauge bosons, as well as Higgs particles, gauge bosons and goldstone
bosons have to be considered. They can introduce additional momentum contributions,
which also have to be pinched out. Therefore gauge-independent contributions to the
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Figure A.6.: All triangle diagrams with, ± bosons, which need to be considered in the
pinch technique for the CxSM.

self-energies arise. Moreover, the integral reductions in Eq. (A.12) might be helpful to
simplify the results. At the end, the overall result of the triangle pinch contributions reads
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(A.24)
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Figure A.7.: All triangle diagrams with photons, which need to be considered in the pinch
technique for the CxSM.
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Figure A.8.: All triangle diagrams with / bosons, which need to be considered in the pinch
technique for the CxSM.
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A.1.4. Final Result

After finishing all calculations, the final result can be put together by summing up all
contributions. Thus, the overall pinch contributions to the self-energies of the ℎ8 particles
read
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This result can be compared with other works, e.g. [73, 74], but the different structure of
the models has to be taken into account. Nevertheless, with this in mind the results are
similar.

The gauge-dependent part of the self-energies of ℎ8 has also been calculated and exactly
cancels with the gauge-dependent parts of the additional contributions from the pinched
technique. This however, only happens with the inclusion of tadpoles to the self-energies.
Thus, the pinched self-energies as defined in Eq. (3.59) are indeed gauge-independent.
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A.2. More on the ZEM Scheme

In this part of the appendix the ZEM scheme is discussed in detail, to see how the gauge
dependence of the corresponding counterterm of E( arises.

To start with, the generic NLO amplitude of the decay process ℎ8 → �� is derived. The
diagrams that contribute to the process at NLO are shown in Fig. 4.4. The leg corrections
can be written as,
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The leg counterterms as well as the vertex counterterm are given as
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The vertex counterterm ACT
ℎ8→��

has been derived in Sec. 4.5, whereas the expression for
the leg counterterms can be taken from literature, e.g. [42].
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The total sum of all contributions results in,
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where the external momenta are abbreviated with {?}. This is the most general result
without choosing a specific renormalization scheme or specifying the external momenta.
The limits for the momenta are discussed next. Moreover, since in the following the
alternative tadpole scheme is always used, the tadpole contributions are implicitly added
to the vertex corrections.
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A.2.1. OS Limit

As a brief cross check, the OS conditions for the external momenta are used. Thus, the
external squared momenta are set to the corresponding masses and the relations,
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can be used (compare with the definition of the counterterms, e.g. Eqs. (3.32) and (3.19)).
Therefore the overall amplitude can be simplified to
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This means that only the vertex corrections and the vertex counterterm contribute, which
is to be expected since the leg corrections should be canceled by the leg counterterms.
Thus, since the overall amplitude is gauge-independent (see Sec. 4.5), AVC

ℎ8→��
({?2 =<2})

and ACT
ℎ8→��

are gauge-independent in combination.

With the expressions for the counterterms of the couplings constants _ℎ8��, determined in
Eq. (3.66), the overall amplitude is given by
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(A.35)

where )8 (U) is defined in Eq. (3.66). Next, the gauge dependence of the different contribu-
tions is discussed. The self-energy for � is by itself already gauge-independent. Therefore,
all derived quantities are gauge-independent as well, e.g. X/� and X<2

�
. Moreover, the

mass counterterms X<2
ℎ8

are also gauge-independent but the field strength renormalization
constants X/ℎ8ℎ 9 are, in general, gauge-dependent.
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If now the pinched self-energies are used for the renormalization of U , the resulting
counterterm XU is gauge-independent as well. If the process-dependent scheme is chosen
for the renormalization of E( , the corresponding counterterm XE( is also gauge-independent.
Since the overall amplitude was already checked to be gauge-independent, this means that
the combination
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is gauge-independent.

A.2.2. ZEM Limit

In the last subsection it was shown that a gauge-independent counterterm of E( leads to
a gauge-independent overall result with the external momenta set to the corresponding
masses. Thus, a new renormalization scheme for E( has to result in a gauge-independent
counterterm as well in order for the overall result to be gauge-independent. Therefore, a
gauge-independent counterterm of E( has to be derived in the ZEM scheme.

To derive the counterterm of E( in the ZEM scheme, a different limit is taken, namely
?2 → 0. Therefore, the overall amplitude used in the derivation of E( can be written as
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The leg correction now do not get canceled by the corresponding counterterms as it was
the case in the OS scheme, because here the external momenta are set to zero, whereas
the counterterms are defined with the momenta set to the OS masses.

The combination of AVC
ℎ8→��

({?2 = 0}) and ALeg
ℎ8→��

({?2 = 0}) has been found to be
gauge-independent. Thus, the gauge dependence of the counterterms in combination has
to cancel as well. More precisely the terms
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have to be in total gauge-independent to obtain a gauge-independent counterterm of E( ,
since all other counterterms are already gauge-independent by themselves (if the pinched
scheme is used for XU). However, it was found that this combination is gauge-dependent.
Therefore, the resulting counterterm for E( in the ZEM scheme will be gauge-dependent
defined in this way.

Another approach would be to use the KOSY-Scheme for XU ,

XU =
X/ℎ1ℎ2 − X/ℎ2ℎ1

4
(+X� if /� is not symmetric) , (A.39)

which leads to a gauge-dependent U counterterm. This additional gauge-dependence could
cancel the gauge dependence in the ZEM scheme. Thus, the terms
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have to be gauge-independent, but this was also not found to be the case. Therefore this
method does not lead to a gauge-independent counterterm of E( either. Furthermore it
would be inconsistent to use different schemes for XU in different places.

It can also be checked whether the usage of the KOSY scheme everywhere in the renor-
malized amplitude would lead to a gauge-independent amplitude. Thus, as a test, XE( is
defined with the ZEM scheme via the process ℎ2 → ��. This means that Eq. (A.37) is set
to zero and solved for XE( . The obtained result is
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This expression for XE( can now be used to renormalize the process ℎ1 → �� amplitude
and to check if a gauge-independent result can be obtained. Thus, the result from Eq.
(A.34) is used since the overall amplitude at the end should resemble a physical process, i.e.
with external momenta set to the masses of the external particles. Inserting the expression
for XEZEM

(
results in
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Inserting the derived relations results in
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Since in the normal process-dependent scheme XE( is gauge-independent, the combination
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has to be gauge-independent (cf. to Eq. (A.36)). The other occurring mass counterterms
X<2

ℎ1
and X<2

�
, as well as X/� are already gauge-independent. Thus, the remaining terms

with a possible overall gauge dependence are

XU (cot(U) + tan(U)) + 1

2
X/ℎ2ℎ2 +

X/ℎ2ℎ1

2
tan(U). (A.45)

If the pinched scheme is used to obtain a gauge-independent XU , the remaining term
is not gauge-independent as already seen above. If the KOSY scheme is used for XU ,
the gauge dependence of this combination was checked, but it was also found to not be
gauge-independent.

To conclude, the ZEM scheme results in a gauge-dependent counterterm for E( unless
in the definition of XE( the pinched self-energies used for the definition of the X/ℎ8ℎ 9 are
applied as described in Sec. 3.5.2.

In principle the definition of the counterterms of X<2 and X/ could be altered for the fields
ℎ8 and� such that in the ZEM scheme the leg contributions would again be canceled by the
counterterms, i.e. that the counterterms would be defined with respect to the limit ?2 → 0
instead of ?2 → <2. However, the UV divergences of the self-energies and thus of the
derived counterterms such as X<2 and X/ depend on the external momentum. Altering
the definition with respect to the limit of setting the squared momenta to zero, the overall
UV divergence of the counterterm of E( is changed and the overall cancellation of UV
divergences in the fully renormalized amplitude can no longer be guaranteed. Therefore
this idea also does not lead to a suitable solution of a gauge-independent ZEM counterterm
for E( .
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