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1. Introduction

With the discovery of the Higgs boson in 2012 by the Large Hadron Collider experiments

ATLAS [1] and CMS [2], the Standard Model (SM) of particle physics was completed. Even

though the SM explains the today known fundamental building blocks of matter and the

fundamental forces that act between them (with the exception of gravity), there are still

some problems which it cannot solve. Problems such as the hierarchy problem, the baryon

asymmetry of the universe and the observed Dark Matter (DM) relic density cannot be

explained by the SM.

The hierarchy problem addresses the question why the mass of the Higgs boson is of

the order of the electroweak scale even in the presence of large energy scales, like the

Planck scale up to which the SM can in principle be valid. In the SM it can be shown that

corrections to the mass of the Higgs boson at 𝑚ℎ = 125.09 GeV [3] are quadratic with

respect to the energy scale and can therefore give large contributions to its mass, if the SM

is valid up to the Planck scale. Although this problem can be solved by fine tuning the SM

parameters, it shifts the problem to the question why such a fine tuning of parameters is

necessary in the first place and if there is a more natural way to keep the mass low at high

energy scales, given e.g. by symmetry arguments. A prominent SM extension that solves

the hierarchy problem is e.g. given by supersymmetry (For reviews and introduction,

see e.g. [4, 5]), a symmetry between fermions and bosons, where each SM particle has a

supersymmetric counterpart particle which differs by half unit in spin.

The observed baryon asymmetry of the universe (BAU) asks the question as to why

there is more matter than antimatter in the universe. If matter and antimatter were in

thermal equilibrium at the beginning of the universe why is there now more matter

than antimatter [6]. The value of the currently observed BAU is given by the PLANCK

collaboration at [7]

𝜂 =
𝑛𝑏 − 𝑛𝑏
𝑛𝛾

= 6.1 · 10
−10 . (1.1)

This baryon asymmetry can be generated dynamically through electroweak baryogenesis

(EWBG), provided the three Sakharov conditions [8] are fulfilled. These are

• baryon number violating processes,

• charge (C) and charge-parity (CP) symmetry violation and

• interactions out of thermal equilibrium.

Even though the SM allows for C and CP violating processes, the CP violation is not large

enough to explain the currently observed BAU measured by PLANCK. Further, to fulfill

1



1. Introduction

the third Sakharov condition, a departure from thermal equilibrium is required. In the

case of EWBG this departure from thermal equilibrium can only be caused by a strong

first order electroweak phase transition (SFOEWPT) [9]. To enable an SFOEWPT in the

SM, the Higgs boson would need to have a mass between 70-80 GeV [10, 11], which is in

disagreement with the current measurement. Therefore, if the BAU is generated via the

mechanism of electroweak symmetry breaking there is a need for beyond-the-SM (BSM)

physics.

Numerous astrophysical and cosmological observations point towards the existence of

matter that is not directly visible but interacts gravitationally. Phenomena such as the

rotation curves of stars in galaxies [12–14], gravitational lensing effects of the bullet

cluster [15] and temperature variations in the Cosmic Microwave Background (CMB) can

be explained by the existence of DM.

In this thesis the open question for the nature of DM is investigated. For this, a model

called CP in the Dark [16] will be investigated. This model introduces an extension of the

scalar sector of the SM with two complex scalar doublets and a real scalar singlet. Not

only does it provide a stable DM candidate but also adds novel additional CP violation in

the dark sector necessary for the generation of the BAU through EWBG. The upside of

having the additional CP violation purely in the dark sector is that constraints from the

electric dipole moment do not need to be considered [17, 18]. The parameter space of CP
in the Dark has already been thoroughly analyzed in the case where the DM abundance is

generated thermally via the mechanism called freeze-out [16]. In this mechanism the DM

particles start in thermal equilibrium with the SM particle bath at the beginning of the

universe. At some point during the expansion and therefore cooling down of the universe,

the DM particles decouple from the SM bath and through DM pair annihilations are able

to lead to today’s observed relic density measured by PLANCK [7]

Ωobsℎ
2 = 0.120 ± 0.001 . (1.2)

However, when only considering freeze-out the number of parameter points that can fully

account for the observed relic density, while simultaneously fulfilling the most relevant

theoretical and experimental constraints, is limited. The goal of this thesis is to introduce

a second mechanism which is able to produce DM thermally into CP in the Dark, called
freeze-in. In freeze-in the DM particles are not in thermal equilibrium with the SM, but

instead start with no initial abundance. The DM particles get produced either via the

decays of SM particles or through SM pair annihilations. This allows to fill the gap between

the relic density generated via freeze-out and the experimental value given in Eq. (1.2).

The main part of this thesis is the development of a code that is able to calculate the

relic density generated via freeze-in for CP in the Dark. For the relic density generated

via freeze-out, the code MicrOMEGAs [19] will be used. Further, the conditions necessary to

create a scenario in CP in the Dark in which both mechanisms (freeze-out and freeze-in)

contribute to the same relic density will be determined. A scan of the parameter region in

which both mechanisms are possible will be done and its phenomenological implications

will be investigated. In this scan the same constraints as in the original paper [16] will be

2



applied with updated experimental data. This will be done using the code ScannerS [20,

21] and the code developed in this thesis.

The structure of this thesis will be as follows. In Chapter 2, the theoretical founda-

tion of this thesis will be established. Section 2.1 introduces the SM and Sec. 2.2 the

model CP in the Dark. The main evidences for DM and how it can be searched for will be

discussed in Secs. 2.3 and 2.4, respectively. Chapter 3 will set up the mathematical and

phenomenological framework to understand thermal DM production via freeze-out and

freeze-in. In this framework, Chapter 4 will show the possibility of freeze-in in CP in the
Dark. Chapter 5 lists and discusses the relevant experimental and theoretical constraints

taken into account to generate a viable set of parameter points for the numerical analysis.

In Chapter 6 a detailed description of the developed code to calculate the relic density

generated via freeze-in will be given. The results of this thesis will be presented in Chapter

7. Conclusions are given in Chapter 8.
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2. Theoretical Background

Section 2.1 will establish the terminology and notation used to describe models in particles

physics by giving a short summary of the SM. In Sec. 2.2 the introduction of CP in the
Dark will be done. The three main evidences for DM will be presented in Sec. 2.3. Possible

methods of detecting DM will be discussed on Sec. 2.4.

2.1. The Standard Model of Particle Physics

The SM is currently the best description of all the discovered fundamental particles and

forces except gravity. These forces are the strong interaction, the weak interaction and

the electromagnetic interaction and are associated with the local invariance of the gauge

groups 𝑆𝑈 (3)𝐶 , 𝑆𝑈 (2)𝐿 and𝑈 (1)𝑌 [22].

The theoretical framework used to describe the SM is quantum field theory in which

excitations of these fields represent particles. Local gauge invariance of the gauge groups

introduces gauge fields into the SM, whose excitations result in gauge bosons which are

the mediators of the above mentioned interactions.

Gluons 𝐺𝑎𝜇 , that result from the local invariance of 𝑆𝑈 (3)𝐶 mediate the strong interaction.

The gauge bosons 𝐵𝜇 and𝑊
𝜇

1,2,3
, resulting from the 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 groups, represent the

mediators of the electroweak interaction.

All particles carry quantum numbers and have specific transformation properties un-

der the gauge groups that determine how they interact with each other through gauge

bosons. The fermions consisting of six quarks and six leptons have non-zero isospin

and hypercharge quantum numbers and are therefore subject to the electroweak force.

However, the former also carry a colour charge and thus, can interact via the strong force.

To maintain the chiral symmetries, the Lagrangian of the SM does not allow an inclusion

of bilinear mass terms for neither fermions nor gauge bosons. In order to avoid that, Brout,

Engler and Higgs proposed a mechanism that gives masses to these particles without

violating the symmetries of the SM [23, 24].

The so called Higgs mechanism introduces a complex doublet field Φ which is invari-

ant under 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 . This field has a potential 𝑉 (Φ) of the form

𝑉 (Φ) = 𝜇2ΦΦ† + 𝜆(ΦΦ†)2 , (2.1)
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2. Theoretical Background

with 𝜇2 < 0. Minimizing the potential with

𝜕𝑉

𝜕Φ
!

= 0 (2.2)

leads to the Vacuum Expectation Value (VEV) given by

𝑣 =

√︂
−𝜇2

𝜆
≈ 246.22 GeV . (2.3)

The ground state with non-zero VEV spontaneously breaks the 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 symmetry

down to the electromagnetic 𝑈 (1)𝑒𝑚 whose gauge boson is the mediator of the electro-

magnetic force - the photon 𝐴𝜇 .

Furthermore, the Goldstone theorem [25] states that the difference between the dimension

of the symmetry before and after being broken gives the number of generated massless

pseudo Goldstone bosons. In the case of the SM, the number is 4-1=3, namely 𝐺0
and 𝐺±.

These bosons appear as degrees of freedom in the theory. In the physical unitary gauge,

however, they get absorbed into the mass eigenstates of to the weak gauge bosons𝑊 ±

and 𝑍 giving rise to their respective longitudinal modes.

After spontaneous symmetry breaking (SSB), the Higgs boson gives mass to the fermions

through the Yukawa sector

L𝑌𝑢𝑘𝑎𝑤𝑎 = −𝐿𝐿𝑌𝑙Φ𝑙𝑅 −𝑄𝐿𝑌𝑑Φ𝑑𝑅 − 𝑄̃𝐿𝑌𝑢Φ𝑢𝑅 + ℎ.𝑐. . (2.4)

Here, 𝐿𝐿 (𝑄𝐿) are the left-handed lepton (quark) doublets, 𝑙𝑅 the right-handed leptons, 𝑢𝑅
(𝑑𝑅) the right-handed up-type (down-type) quarks and 𝑌𝑙,𝑑,𝑢 are general complex 3 × 3

matrices.

2.2. CP in the Dark

The model CP in the Dark not only introduces a DM candidate but also additional CP

violation to accommodate for the observed BAU. It is the minimal model to achieve this

via an extension of the scalar sector of the SM with the complex 𝑆𝑈 (2)𝐿 doublets Φ1 and

Φ2 and a real singlet scalar field Φ𝑠 [16]. Moreover, it imposes a Z2 symmetry on its fields

in the form of

Φ1 → Φ1 , Φ2 → −Φ2 , Φ𝑠 → −Φ𝑠 . (2.5)

With this symmetry the most general scalar potential invariant under 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌
reads

𝑉 =𝑚2

11
|Φ1 |2 +𝑚2

22
|Φ2 |2 +

1

2

𝑚2

𝑆Φ
2

𝑆 +
(
𝐴Φ†

1
Φ2Φ𝑆 + ℎ.𝑐.

)
+ 1

2

𝜆1 |Φ1 |4 +
1

2

𝜆2 |Φ2 |4 + 𝜆3 |Φ1 |2 |Φ2 |2 + 𝜆4 |Φ†
1
Φ2 |2

+ 1

2

𝜆5

[(
Φ†

1
Φ2

)
2

+ ℎ.𝑐.
]
+ 1

4

𝜆6Φ
4

𝑆 +
1

2

𝜆7 |Φ1 |2Φ2

𝑆 +
1

2

𝜆8 |Φ2 |2Φ2

𝑆 . (2.6)
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The parameters𝑚11,𝑚22,𝑚𝑆 , 𝜆1−4 and 𝜆6−8 are real due to the hermicity of the potential.

The couplings 𝜆5 and 𝐴 are complex in general. However, here the basis freedom to

redefine doublets is used to absorb the complex phase of 𝜆5 to make it real.

All fermion fields are considered neutral under the Z2 symmetry. As a result of that

only Φ1 couples to fermions in an identical way as the SM doublet Φ in Eq. (2.4). This

ensures that no tree-level, flavour-changing currents (FCNC) are allowed. Consider now

SSB in which only Φ1 acquires a non-zero VEV,

⟨Φ1⟩ =
(

0

𝑣√
2

)
, (2.7)

where the brackets denote the vacuum state of Φ1. Because all fermion and gauge boson

masses are generated by Φ1 the value of 𝑣 has to be equal to the SM one in Eq. (2.3). From

the minimisation conditions

𝜕𝑉

𝜕Φ𝑎

���
Φ𝑖=⟨Φ𝑖 ⟩

= 0 , 𝑎, 𝑖 ∈ {1, 2, 𝑆} , (2.8)

it follows that

𝑚2

11
+ 1

2

𝜆1𝑣
2 = 0 . (2.9)

After electroweak symmetry breaking the doublets can be written in terms of their com-

ponent fields as

Φ1 =

(
𝐺+

1√
2

(
𝑣 + ℎ + 𝑖𝐺0

) ) , Φ2 =

(
𝐻+

1√
2

(𝜌 + 𝑖𝜂)

)
. (2.10)

Here ℎ is the SM-like Higgs boson, 𝐺+ and𝐺0
the charged and neutral Goldstone bosons

and 𝐻+ the charged scalar. These are mass eigenstates with the masses given by

𝑚2

ℎ
=𝜆1𝑣

2 ,

𝑚2

𝐺+ =𝑚
2

𝐺0
= 0 and (2.11)

𝑚2

𝐻+ =𝑚
2

22
+ 1

2

𝜆3𝑣
2 .

Since the value of the Higgs mass is measured to be𝑚ℎ = 125.09 GeV [26, 27], Eq. (2.9)

fixes the quartic coupling to 𝜆1 ≈ 0.258. The other neutral fields 𝜌 and 𝜂 mix with the

singlet Φ𝑠 to generate the mass eigenstates ℎ1, ℎ2 and ℎ3 by the rotation matrix 𝑅

©­«
ℎ1

ℎ2

ℎ3

ª®¬ = 𝑅
©­«
𝜌

𝜂

Φ𝑠

ª®¬ . (2.12)

This orthogonal matrix is parameterized by the angles 𝛼1, 𝛼2 and 𝛼3 with 𝛼𝑖 ∈
[
−𝜋

2
, 𝜋

2

]
so

that

𝑅 =
©­«

𝑐𝛼1
𝑐𝛼2

𝑠𝛼1
𝑐𝛼2

𝑠𝛼2

−(𝑐𝛼1
𝑠𝛼2
𝑠𝛼3
+ 𝑠𝛼1

𝑐𝛼3
) 𝑐𝛼1

𝑐𝛼3
− 𝑠𝛼1

𝑠𝛼2
𝑠𝛼3

𝑐𝛼2
𝑠𝛼3

−𝑐𝛼1
𝑠𝛼2
𝑐𝛼3
+ 𝑠𝛼1

𝑠𝛼3
−(𝑐𝛼1

𝑠𝛼3
+ 𝑠𝛼1

𝑠𝛼2
𝑐𝛼3
) 𝑐𝛼2

𝑐𝛼3

ª®¬ , (2.13)
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2. Theoretical Background

where the notation 𝑠𝑖𝑛(𝛼𝑖) ≡ 𝑠𝛼1
and 𝑐𝑜𝑠 (𝛼𝑖) ≡ 𝑐𝛼1

was used. The mass matrix of these

three scalars reads

𝑀2

𝑁 =
©­«
𝑚2

22
+ 1

2
𝜆345𝑣

2
0 −Im(𝐴)𝑣

0 𝑚2

22
+ 1

2
𝜆345𝑣

2
Re(𝐴)𝑣

−Im(𝐴)𝑣 Re(𝐴)𝑣 𝑚2

𝑆
+ 1

2
𝜆7𝑣

2

ª®¬ , (2.14)

with 𝜆345 = 𝜆3 + 𝜆4 − 𝜆5 and 𝜆345 = 𝜆3 + 𝜆4 + 𝜆5. It can be diagonalized via the rotation

matrix to give the mass eigenvalues

𝑅𝑀𝑁𝑅
𝑇 = diag(𝑚2

ℎ1

,𝑚2

ℎ2

,𝑚2

ℎ3

) (2.15)

and are chosen such that

𝑚ℎ1
≤ 𝑚ℎ2

≤ 𝑚ℎ3
. (2.16)

Since the particles 𝐻± and ℎ1,2,3 emerge from Φ2 and Φ𝑆 they have an odd Z2 symmetry

and therefore carry a "dark charge" of -1 which is preserved in all interactions. In this

thesis such particles will be referred to as Dark Sector (DS) particles. The lightest neutral

state of these particles, ℎ1, will be the stable DM candidate in this model.

To see how this model provides additional CP violation consider the coupling 𝑍ℎ𝑖ℎ 𝑗
which is obtained from��𝐷𝜇Φ2

��2 ⊃ 𝑔

𝑐𝑜𝑠𝜃𝑊

(
𝑅𝑖 𝑗𝑅 𝑗𝑖 − 𝑅𝑖𝑖𝑅 𝑗 𝑗

)
𝑍𝜇

(
ℎ𝑖𝜕

𝜇ℎ 𝑗 − ℎ 𝑗 𝜕𝜇ℎ𝑖
)
. (2.17)

Here, 𝐷𝜇 is the covariant derivative, 𝑔 the 𝑆𝑈 (2)𝐿 coupling constant and 𝜃𝑊 the Weinberg

angle.

This means that decays of the form 𝑍 → ℎ𝑖ℎ 𝑗 and ℎ𝑖 → 𝑍ℎ 𝑗 are simultaneously pos-

sible. One can try to figure out which CP quantum numbers the ℎ𝑖 ’s have by looking at

these decays. Start with 𝑍 → ℎ1ℎ2 and, without loss of generality, assign a negative CP

eigenvalue to ℎ1 and a positive one to ℎ2. Doing the same with ℎ1ℎ3 final states leads to a

positive CP eigenvalue for ℎ3. However, now the process 𝑍 → ℎ2ℎ3 would be forbidden

which is in contradiction with Eq. (2.17). This means the implicit assumption made here,

that the ℎ𝑖 ’s have definite CP numbers was wrong. They are neither CP-even nor CP-odd

but they are mixed CP states. The vertices in Eq. (2.17) can contribute at one-loop order to

CP violating processes such as 𝑍 → 𝑍𝑍 and 𝑍 →𝑊 +𝑊 − [16].

2.3. Evidence for DM

As of today there are several observations and data that can be resolved by introducing

DM. DM in this context does not necessarily need to be described by new BSM particles.

Theories such as modified gravity [28] and primordial black holes [29] are other possible

explanations of the phenomena that will be presented in this section.
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Figure 2.1.: Rotation curve velocity of galaxy NGC 6503 dependent on the distance from

its center. The corresponding contributions from gas (dotted) and disk (dashed)

are shown as well as the needed DM halo contribution (dash-dotted) to be

compatible with the observed data [30].

2.3.1. Rotation Curves of Galaxies

One the biggest evidences towards the existence of DM, are the rotation curves of stars

in different galaxies [12–14]. Observations of these galaxies revealed that the rotational

velocities of stars in the outer parts of several galaxies are larger than expected. Models of

the rotation curves of galaxies have to take into account the amount and distribution of

gas and baryons as well as the shape of the bulge and the stellar disk. Under consideration

of these factors the rotational curves with respect to the radius from the galactic center can

be calculated. However, Fig. (2.1) shows that after taking all of these effects into account,

the rotation curve velocities are well below the observed value, especially towards the

outer parts of the disk. Only when assuming an additional DM halo around the galaxy,

the observed data can be matched to the model.

2.3.2. Gravitational Lensing

Another important observation are the gravitational lensing effects of the bullet cluster

[15]. This cluster has emerged from the collision of previously two separate clusters.

During the collision of two clusters, galaxies can be viewed as collisionless particles while

the X-ray emitting plasma between the galaxies can be viewed as a fluid that experiences

9



2. Theoretical Background

Figure 2.2.: Gravitational lensing effects in the bullet cluster. The heat map shows the

density of the X-ray plasma fluid. The green lines show the lensing parameter

𝜅 with the value of the outer contour being 𝜅 = 0.16 and increasing in steps of

0.07 inwards [15].

pressure when passing through each other. This leads to a separation between the plasma,

which has been slowed down by the exerted pressure, and the galaxies, which moved

ahead of the plasma. In a setup with no DM, the main gravitational lensing effects would

trace the visible X-ray plasma. With collisionless DM, however, the lensing shifts towards

regions of high DM density. This region is expected to coincide with the position of the

galaxies. Figure (2.2) shows the strength of gravitational lensing throughout the bullet

cluster via the parameter 𝜅 . It shows that the largest values of 𝜅 and therefore gravitational

lensing are located outside of the plasma bulk and at the positions of two separate galaxy

concentrations. As already mentioned, this is can only occur if DM is involved.

2.3.3. Temperature Fluctuations in the CMB

The CMB consists of photons which decoupled from the thermal bath of the universe once

they had no scattering partners. This was at ∼ 300000 − 400000 years after the big bang,

when free electrons began to be bound with protons to form hydrogen atoms, resulting

in a sphere of last scattering. Since then, these photons have been moving freely in the

universe. Due to the expansion of the universe their temperature kept decreasing reaching

the measured value of today [31],

𝑇0 = (2.72548 ± 0.00057)K . (2.18)

This value shows variations of around 𝛿𝑇 /𝑇0 ≲ 10
−5

on the sphere of last scattering. The

study of these variations can give a clearer picture of how the early universe looked like

and what it consisted of. A convenient way to describe the temperature fluctuations on

the sphere of last scattering is via the spherical harmonics 𝑌𝑙𝑚 in terms of the azimuthal

10



2.3. Evidence for DM

and polar angles, 𝜙 and 𝜃 , respectively, [32]

𝛿𝑇 (𝜃, 𝜙)
𝑇0

≡ 𝑇 (𝜃, 𝜙) −𝑇0

𝑇0

=

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎𝑙𝑚𝑌𝑙𝑚 (𝜃, 𝜙) . (2.19)

The spherical harmonics form an orthonormal basis with respect to the integral over the

solid angle 𝑑Ω = 𝑑𝜙𝑑cos𝜃 , i.e.∫
𝑑Ω𝑌𝑙𝑚 (𝜃, 𝜙)𝑌 ∗𝑘𝑛 (𝜃, 𝜙) = 𝛿𝑙𝑘𝛿𝑚𝑛 . (2.20)

To analyze temperature fluctuations, the relevant measure is the variance of the tempera-

ture distribution

1

4𝜋

∫
𝑑Ω

(
𝛿𝑇 (𝜃, 𝜙)
𝑇0

)
2

=
1

4𝜋

∫
𝑑Ω

[∑︁
𝑙,𝑚

𝑎𝑙𝑚𝑌𝑙𝑚 (𝜃, 𝜙)
] [∑︁

𝑘,𝑛

𝑎∗
𝑘𝑛
𝑌 ∗
𝑘𝑛
(𝜃, 𝜙)

]
=

1

4𝜋

∑︁
𝑙,𝑚,𝑘,𝑛

𝑎𝑙𝑚𝑎
∗
𝑘𝑛
𝛿𝑙𝑘𝛿𝑚𝑛 =

1

4𝜋

∑︁
𝑙𝑚

|𝑎𝑙𝑚 |2 . (2.21)

The index𝑚 describes the angular momentum in one specific direction. However, since

the sphere of last scattering does have any special direction, it implies that the coefficients

𝑎𝑙𝑚 do not depend on the value of𝑚. This means that the sum over𝑚 gives 2𝑙 + 1 identical

terms. With this the average of the |𝑎𝑙𝑚 |2 over𝑚 will be defined as the observed power

spectrum

𝐶𝑙 ≡
1

2𝑙 + 1

∑︁
𝑚=−𝑙
|𝑎𝑙𝑚 |2 . (2.22)

Inserting into Eq. (2.21) results in

1

4𝜋

∫
𝑑Ω

(
𝛿𝑇 (𝜃, 𝜙)
𝑇0

)
2

=

∞∑︁
𝑙=0

2𝑙 + 1

4𝜋
𝐶𝑙 . (2.23)

By measuring the temperature fluctuations, 𝐶𝑙 can be obtained for different values of 𝑙 .

The measured power spectrum by PLANCK can be seen in Fig. (2.3). Since the average

over 𝑚 is taken, statistical fluctuations cancel out. However, for small 𝑙 there are less

independent orientations that can be measured, which lead to the large error bars shown.

The peaks, which can be seen in the spectrum, are mainly generated through acoustic

oscillations. These acoustic oscillations occur in the baryon-photon fluid at the time of

photon decoupling. During this time, regions with a large accumulation of DM form

gravitational wells, which pull the baryon-photon fluid inside it resulting in a compression

of the fluid. At the same time the relativistic photons exert a pressure that counteracts the

gravitational pull, which results in a rarefaction of the fluid. These counteracting forces

create oscillations in the baryon-photon fluid and lead to temperature fluctuations in the

photon spectrum during decoupling. The odd numbered peaks in the power spectrum cor-

respond to the decoupling of photons during a compression phase, while even numbered

peaks correspond to a decoupling during a rarefaction phase.
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2. Theoretical Background

Figure 2.3.: Power spectrum of the CMB as measured by PLANCK [33].

The first peak corresponds to the time of last scattering where the fluid compressed

once. Determining its position gives information about the curvature of the universe.

The second peak corresponds to one compression and one rarefaction of the fluid. A

large relative baryon content in the baryon-photon fluid would lead to an increase in

amplitude of the compression peaks and at the same time to a decrease of the rarefaction

peaks. Therefore, by measuring the ratio between the first and the second peak the baryon

content of the universe can be obtained. The height of the third peak (2 compressions, 1

rarefaction) determines the amount of DM in the universe. Since, DM does not interact

with photons, it only contributes to the strength of the compression peaks. Therefore, a

large third peak is a sign of a sizeable DM component in the universe.

To fit the data points given in Fig. (2.3), a model with 6 independent cosmological parame-

ters is used under the assumption of a flat universe. This model is referred to as the "base

ΛCDM", where the parameters are the Hubble constant 𝐻0, the baryon Ω𝑏ℎ
2
and DM Ω𝑐ℎ

2

densities, the matter fluctuation amplitude 𝜎8, the spectral index 𝑛𝑠 and the optical depth

𝜏 [7]. Choosing the best fit parameters results in the observed relic density given in Eq.

(1.2).

2.4. Detection of DM

Depending on the type of DM, different mass regions need to probed via direct or indirect

detection experiments. In particle physics the possible DM candidates can be subdivided

into two main categories - thermally and non-thermally produced DM. In this thesis the

12
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focus will lie on Weakly Interacting Massive Particles (WIMPs) and Feebly Interacting

Massive Particles (FIMPs). Such types of DM are expected to be in the mass range of 1-1000

GeV and are produced thermally. On the other hand, non-thermally produced particles can

range in mass from 10
−22

eV to a few keV. Such particles are called Axion-Like Particles

(ALPs) and were originally introduced to solve the strong CP problem [34].

In this section only detection experiments with respect to the WIMP paradigm will be

presented. Experiments which are exclusively searching for ALPs like the Axion Dark

Matter eXperiment (ADMX) [35], the Any Light Particle Search (ALPS) [36] and the CERN

Axion Solar Telescope (CAST) [37] will not be discussed.

2.4.1. Indirect Detection

Indirect detection experiments search for SM particles which are produced via the anni-

hilation of DM particles. This is done by looking at places in the universe with a large

gravitational potential so that a large accumulation of DM is expected. One such exper-

iment is done by the FERMI-LAT collaboration. Their analysis shows a photon excess

coming from the center of the milky way galaxy [38]. This excess can be accounted for

by DM annihilation into charged particles which then either decay or annihilate with

other particles into photons. However, experiments of this sort do not give conclusive

bounds for DM annihilation cross sections, since the same excess can be explained by a

millisecond pulsar population [39].

2.4.2. Direct Detection

The goal of direct detection experiments is to detect collisions of DM particles with atomic

nuclei. The differential cross section for the collision of a DM particle with a nucleon is

given by [40] (
𝑑𝜎

𝑑𝐸R

)
𝑆𝐼

=
𝑚𝑁

2𝜇2

𝑁
𝑣2

(
𝜎SI

0
𝐹 2

SI
(𝐸R) + 𝜎SD

0
𝐹 2

SD
(𝐸R)

)
, (2.24)

with the recoil energy 𝐸𝑅 of the nucleon in the non-relativistic limit

𝐸R =
𝜇2

𝑁
𝑣2(1 − cos𝜃 )
𝑚𝑁

. (2.25)

Further, 𝜇𝑁 =𝑚𝑁𝑚𝜒/(𝑚𝑁 +𝑚𝜒 ) with the nucleon mass and DM mass𝑚𝑁 and𝑚𝜒 , respec-

tively, the relative velocity 𝑣 between the nucleon and the DM particle and the scattering

angle 𝜃 between the nucleon and the DM particle. The differential cross section consists of

two terms on the r.h.s., the spin-independent term denoted by SI and the spin-dependent

term denoted by SD with the corresponding cross sections 𝜎0 and nucleon form factors

𝐹 2
. By calculating these cross sections via the coupling of the DM candidate to the con-

stituents of the proton and neutron a prediction can be made on the expected direct

detection cross section. Experiments, such as the XENON1T [41] and LUX-ZEPLIN (LZ) [42],

search for such DM-nucleon collision events in large chambers filled with Xenon. By

calculating the expected collision rate between DM and Xenon for the DM relic density
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2. Theoretical Background

Figure 2.4.: Current exclusion limits of direct detection experiments. Regions above the

lines are excluded by the corresponding experiments [42]. The green and

yellow bands are the 1𝜎 and 2𝜎 sensitivity bands of the LZ limit.

given in Eq. (1.2), they can rule out certain regions in the plane of the DM-nucleon cross

section and the DMmass if there are no collisions detected. Figure (2.4) shows the currently

excluded regions of the SI cross section over the DMmass by several direct detection exper-

iments. Currently, the strongest bound on the SI direct detection cross section is placed by

the LZ experiment with a minimum value of 𝜎SI = 6.5 ·10
−48

cm
2
at aWIMPmass of 30 GeV.

There is, however, a problem future direct detection experiments will have to face. If

the precision of these experiments keeps increasing they will begin to measure collisions

between the nucleon and neutrinos coming from the sun, the atmosphere and supernovae.

Such collisions would give a large background noise making it very difficult to differentiate

between the background generated by neutrino collisions and possible DM collisions. This

bound of when neutrino collisions start to become relevant is given by the neutrino floor

[43] and is approximately 2 orders of magnitude below the current LZ bound.

2.4.3. Collider Searches

Collider searches try to detect DM by producing it at particle accelerators. The difficulty

in finding DM particles at colliders is that DM particles do not decay and that they pass

through the detectors due to their weak interactionwith the SM. Because of this, production

channels in which exactly two DM particles are produced cannot be distinguished from the

event of two colliding particles just missing each other. Therefore, the only way to detect

DM at colliders is through processes in which additional SM particles get produced and

the missing momentum is analyzed. An example of such a process at an electron-positron
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(𝑒+𝑒−) collider could be

𝑒+𝑒− → 𝜒 𝜒𝛾 , (2.26)

where 𝜒 is the DM particle. Reconstructing the four-momentum of the photon 𝛾 , in this

example, allows for a reconstruction of the four-momentum of the DM particles and there-

fore providing information about the mass and coupling to the SM of the DM candidate.

In addition to that, the ATLAS detector obtains a branching ratio for the Higgs boson into

invisible particles with an expected limit of BR(ℎ → inv.) = 0.103 [44]. This puts an upper

limit on the coupling between the Higgs boson and possible DM candidates if they are

below half the Higgs boson mass.
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3. Mechanisms of Thermal DM Generation

This chapter gives a theoretical overview of two different types of thermal DM generation

mechanisms. Sec. 3.1 deals with the phenomenology and relic density calculation via the

freeze-out mechanism. The same will be done in Sec. 3.2 with the second mechanism,

called freeze-in, and compared with the former. At last, in Sec. 3.3 the scenario of two DM

candidates will be discussed.

3.1. Freeze-out

One of the possible mechanisms of generating WIMPs thermally is freeze-out. In this case

the DM particles and SM particles start out in thermal equilibrium at the beginning of

the universe. Furthermore the SM and DM particles interact with each other to stay in

thermal equilibrium while also being able to annihilate. This means, that through the

process below the same amount of DM is being created as annihilated

𝐷𝑀𝐷𝑀 ←→ 𝑆𝑀 𝑆𝑀 , (3.1)

where 𝐷𝑀 and 𝑆𝑀 denote a DM and a SM particle, respectively. During the cooling of the

universe all particles lose their kinetic energy. As a result, the heavy SM particles cannot

be produced anymore. They start to decouple from the thermal bath and decay into lighter

SM particles. At some point these lighter SM particles will not have enough energy to

produce the heavy DM through the process (3.1). The DM however, will keep annihilating

into the SM until a freeze-out temperature 𝑇𝑓 is reached. This temperature is determined

by the condition

Γ(𝑇𝑓 )
!

= 𝐻 (𝑇𝑓 ) . (3.2)

Here Γ is the interaction rate of the annihilation process and𝐻 the Hubble expansion. This

relation states that at a certain temperature the individual DM particles are too far apart

from each other to interact and therefore to annihilate efficiently. Furthermore, to make

the DM stable their decay into the SM has to be either forbidden or heavily suppressed.

3.1.1. One Particle Freeze-out

The evolution of the DM density from thermal equilibrium to present day, including

freeze-out, for a single DM candidate 𝜒 is described by the Boltzmann Equation [32, 45]

¤𝑛(𝑡) = −3𝐻 (𝑡)𝑛(𝑡) − ⟨𝜎𝑣⟩𝜒 𝜒 (𝑛(𝑡)2 − 𝑛2

eq
) , (3.3)
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with 𝑛(𝑡) being the particle density of the DM candidate at time 𝑡 and 𝑛eq its equilibrium

density defined as

𝑛eq = 𝑔

∫
𝑑3𝑝

(2𝜋)3 𝑓 (𝐸)

= 𝑔

∫
𝑑3𝑝

(2𝜋)3
1

𝑒𝐸/𝑇 ± 1

. (3.4)

Here 𝑔 are the internal degrees of freedom for a given particle and the integrand is the

equilibrium distributions for fermions (+1) and bosons (-1) as function of the energy 𝐸 of

the particle. The Thermally Averaged Cross section (TAC) ⟨𝜎𝑣⟩𝜒 𝜒 of two incoming DM

particles with four momenta 𝑝1/2 is defined as

⟨𝜎𝑣⟩𝜒 𝜒 =
∫
𝑑3𝑝1𝑑

3𝑝2𝑓1(𝐸1) 𝑓2(𝐸2)𝜎𝜒 𝜒𝑣12∫
𝑑3𝑝1𝑑

3𝑝2𝑓1(𝐸1) 𝑓2(𝐸2)
≡ 𝐴
𝐷

(3.5)

It is important to note that the cross section 𝜎𝜒 𝜒 is a sum over all possible SM final states

𝑘 and 𝑙 , with

𝜎𝜒 𝜒 =
∑︁
𝑘,𝑙

𝜎𝜒 𝜒,𝑘𝑙 . (3.6)

Denoted by 𝑣12 is the relative velocity between the incoming DM particles,

𝑣12 =

√︃
(𝑝1𝑝2)2 −𝑚2

1
𝑚2

2

𝐸1𝐸2

, (3.7)

with the masses𝑚1 =𝑚2 =𝑚𝜒 and 𝐸1/2 the energies of the incoming DM particles.

At the freeze-out temperature the DM is assumed to be non-relativistic such that 𝑓 can

be approximated in the limit 𝑇 ≪ 𝑚𝜒 both for fermions and bosons by the Maxwell-

Boltzmann distribution

𝑓 = 𝑒−𝐸/𝑇 . (3.8)

Inserting Eq. (3.8) into the numerator 𝐴 of Eq. (3.5) and rewriting the integrals over the

three momenta p1 and p2 by using the energy momentum relation (𝑖 = 1, 2)

p2

𝑖 = 𝐸
2

𝑖 −𝑚2

𝑖 , (3.9)

one obtains

𝐴 =

∫
𝑑3𝑝1𝑑

3𝑝2𝜎𝜒 𝜒𝑣12𝑒
−(𝐸1+𝐸2)/𝑇

=8𝜋2

∫
𝑑𝐸1𝑑𝐸2𝑑𝑐𝑜𝑠𝜃𝐸1𝐸2 |p1 | |p2 |𝜎𝜒 𝜒𝑣12𝑒

−(𝐸1+𝐸2)/𝑇 , (3.10)

with 𝜃 being the angle between the two incoming DM particles. Following the prescription

used in [45] a change of variables is performed as

𝐸+ ≡𝐸1 + 𝐸2 ,

𝐸− ≡𝐸1 − 𝐸2 , (3.11)

𝑠 ≡(𝑝1 + 𝑝2)2 = 2𝑚2

𝜒 + 2𝐸1𝐸2 − 2|p1 | |p2 |𝑐𝑜𝑠𝜃 ,
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such that

𝑑𝐸1𝑑𝐸2𝑑𝑐𝑜𝑠𝜃 →
𝑑𝐸+𝑑𝐸−𝑑𝑠

4|p1 | |p2 |
(3.12)

and the integration region {𝐸1, 𝐸2 ≥ 𝑚𝜒 ;−1 ≤ 𝑐𝑜𝑠𝜃 ≤ 1} transforms into

𝑠 ≥(𝑚1 +𝑚2)2 = 4𝑚2

𝜒 ,

𝐸+ ≥
√
𝑠 , (3.13)

2𝑝12

√︂
𝐸2

+ − 𝑠
𝑠
≥
���𝐸− − 𝐸+ (𝑚1 −𝑚2)

𝑠

��� .

Here,

𝑝12 =

√︁
(𝑠 − (𝑚1 +𝑚2)2) (𝑠 − (𝑚1 −𝑚2)2)

2

√
𝑠

, (3.14)

denotes the center of mass momentum of the 2-DM particle system. Together with

𝐸1𝐸2𝑣12 = 𝑝12

√
𝑠 Eq. (3.10) becomes

𝐴 = 2𝜋2

∫
𝑑𝐸+𝑑𝐸−𝑑𝑠 𝑝12

√
𝑠𝜎𝜒 𝜒𝑒

−𝐸+/𝑇 . (3.15)

Integrating over 𝐸− and then 𝐸+ gives

𝐴 = 8𝜋2𝑇

∫
𝑑𝑠 𝑝2

12

√
𝑠𝜎𝜒 𝜒𝐾1

(√
𝑠

𝑇

)
. (3.16)

Here 𝐾1 is the modified Bessel function of the second kind.

Simplifying the denominator of Eq. (3.5) is more straight forward

𝐷 =(4𝜋)2
∫

𝑑𝑝1𝑑𝑝2𝑝
2

1
𝑝2

2
𝑒−(𝐸1+𝐸2)/𝑇

=(4𝜋)2
∫

𝑑𝐸1𝑑𝐸2𝐸1𝐸2

√︃
𝐸2

1
−𝑚2

1

√︃
𝐸2

2
−𝑚2

2
𝑒−(𝐸1+𝐸2)/𝑇

=

(
4𝜋

∫ ∞

𝑚

𝑑𝐸𝐸
√
𝐸2 −𝑚2𝑒−𝐸/𝑇

)
2

=

(
4𝜋𝑚2𝑇𝐾2

(𝑚
𝑇

))
2

. (3.17)

Plugging Eqs. (3.16) and (3.17) back into Eq. (3.5) simplifies the TAC to

⟨𝜎𝑣⟩𝜒 𝜒 =

∫ ∞
4𝑚2

𝜒
𝑑𝑠
√
𝑠 (𝑠 − 4𝑚2

𝜒 )𝐾1(
√
𝑠/𝑇 )𝜎𝜒 𝜒

8𝑚4

𝜒𝑇𝐾
2

2
(𝑚𝜒/𝑇 )

. (3.18)

Going back to Eq. (3.3) it is clear from the right hand side that ¤𝑛(𝑡) depends on two terms.

The first term describes the drop off in particle density due to the expansion of the universe,

while the other one is responsible for the drop off in density due to DM pair annihilation.

Because the expansion term is independent of the model parameters it is not the crucial
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3. Mechanisms of Thermal DM Generation

feature describing the final relic abundance. To get rid of it, a change of variables into the

yield 𝑌 is performed

𝑌 =
𝑛

𝑠′
, (3.19)

with the entropy density 𝑠′. Assuming constant entropy 𝑆′ = 𝑎3𝑠′ (here 𝑎 is the scale factor)
the relation below is obtained

¤𝑌 =
¤𝑛
𝑠′
+ 3𝑠′

¤𝑎
𝑎

𝑛

𝑠′2
=
¤𝑛
𝑠′
+ 3𝐻

𝑛

𝑠′
, (3.20)

where 𝐻 = ¤𝑎
𝑎
is the Hubble expansion and

𝑑𝑆

𝑑𝑡
= 3𝑎2 ¤𝑎𝑠′ + 𝑎3 ¤𝑠′ = 0 , (3.21)

was used. Plugging Eq. (3.20) into Eq.(3.3) gives

¤𝑌 = −𝑠′⟨𝜎𝑣⟩𝜒 𝜒 (𝑌 2 − 𝑌 2

eq
) . (3.22)

Defining 𝑥 =𝑚𝜒/𝑇 in order to switch to a temperature dependence the l.h.s. of Eq. (3.22)

becomes

𝑑𝑌

𝑑𝑥

𝑑𝑥

𝑑𝑡
=
𝑑𝑌

𝑑𝑥

(
−𝑥
𝑇
¤𝑇
)
=
𝑑𝑌

𝑑𝑥

(
−𝑥
𝑇

𝑑𝑠′

𝑑𝑡

𝑑𝑇

𝑑𝑠′

)
=
𝑑𝑌

𝑑𝑥

(
3𝐻𝑠′

𝑥

𝑇

𝑑𝑇

𝑑𝑠′

)
. (3.23)

Using the Friedmann equation in the early radiation dominated universe, which reads

𝐻 2 =
8𝜋𝐺𝜌

3

, (3.24)

together with the entropy density and energy density 𝜌 dependent on the effective degrees

of freedom ℎeff with respect to the entropy and on the effective degrees of freedom 𝑔eff

with respect to energy as [46]

𝑠′ = ℎeff (𝑇 )
2𝜋2

45

𝑇 3 , 𝜌 = 𝑔eff (𝑇 )
𝜋2

30

𝑇 4 , (3.25)

Eq. (3.23) can be rewritten as

𝑑𝑌

𝑑𝑥
= −

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2
⟨𝜎𝑣⟩𝜒 𝜒 (𝑌 2 − 𝑌 2

eq
) . (3.26)

Here 𝐺 is the gravitational constant and 𝑔
1/2
∗ is defined as

𝑔
1/2
∗ =

ℎeff√
𝑔eff

(
1 + 𝑇

3ℎeff

𝑑ℎeff

𝑑𝑇

)
. (3.27)

The equilibrium yield 𝑌eq in the non-relativistic limit is then given by

𝑌eq =
𝑛𝑒𝑞

𝑠′
=

1

𝑠′
𝑔

(2𝜋)3
∫

𝑑3𝑝 𝑒−𝐸/𝑇 =
1

𝑠′
𝑔

2𝜋2

∫
𝑑𝐸𝐸

√︃
𝐸2 −𝑚2

𝜒𝑒
−𝐸/𝑇

=
1

𝑠′
𝑔

2𝜋2
𝑚2

𝜒𝑇𝐾2

(𝑚𝜒

𝑇

)
=

45𝑥2

4𝜋4ℎeff (𝑚𝜒/𝑥)
𝑔𝐾2(𝑥) . (3.28)
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3.1. Freeze-out

By integrating Eq. (3.26) from the beginning of the universe 𝑥 = 0 with the initial condition

𝑌 (0) = 𝑌eq(0) to the current temperature 𝑇0 of the CMB with 𝑥0 =𝑚𝜒/𝑇0 to obtain 𝑌0 of

today, the relic density can be calculated via

Ω𝜒 =
𝜌𝜒,0

𝜌c

=
𝑚𝜒𝑛0

𝜌c

=
𝑚𝜒𝑠0𝑌0

𝜌c

. (3.29)

Here, 𝑠0 is the entropy density of today and 𝜌c = 3𝐻 2/8𝜋𝐺 the critical density which

separates an expanding from a collapsing universe. To match the definition in Eq. (1.2) for

the observed relic density, Eq. (3.29) is multiplied by the dimensionless constant

ℎ2 =

(
𝐻

100
km

s Mpc

)
2

. (3.30)

Inserting the corresponding numerical values gives

Ω𝜒ℎ
2 =𝑚𝜒𝑠0𝑌0

8𝜋𝐺

3𝐻 2
ℎ2 ≈ 2.742 · 10

8
𝑚𝜒

GeV

𝑌0 . (3.31)

3.1.2. Freeze-out in a Singlet Extension of the SM

To illustrate how Eq. (3.26) behaves for different TACs, consider the extension of the SM

by a real singlet field Φ𝑆 , which is the DM candidate. Requiring that the Lagrangian is

invariant under the Z2 symmetry

Φ→ Φ , Φ𝑆 → −Φ𝑆 , (3.32)

the most general renormalizable scalar potential reads

𝑉 = 𝜇2Φ†Φ + 𝜆
(
Φ†Φ

)
2

+ 𝜇2

𝑆Φ
2

𝑆 + 𝜆𝑆Φ
4

𝑆 + 𝜆3Φ
†ΦΦ2

𝑆 . (3.33)

Here, Φ is the SM scalar doublet with the corresponding parameters 𝜇 and 𝜆 which give

the VEV in Eq. (2.3) and 𝜇𝑆 , 𝜆𝑆 as well as 𝜆3 are the free, real parameters of this model.

Assuming that Φ𝑆 has a VEV that is zero, the relevant interactions for freeze-out and the

mass term for Φ𝑆 after SSB are

𝑉 ⊃ 1

2

(2𝜇2

𝑆 − 𝜆3𝑣)Φ2

𝑆 + 𝜆3𝑣 ℎΦ
2

𝑆 +
𝜆3

2

ℎ2Φ2

𝑠 , (3.34)

where ℎ is the Higgs field. The mass of the DM candidate is therefore given by

𝑚𝑆 =

√︃
2𝜇2

𝑆
− 𝜆3𝑣 . (3.35)

The interaction terms given by the second and third terms in Eq. (3.34) allow for annihila-

tions of Φ𝑆 into the SM particle pairs via the channels shown in Fig. (3.1). Such models are

called Higgs portal models due to their connection to the SM via a Higgs mediator. This

results in the annihilation cross section being proportional to 𝜆2

3
, independent of the final
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3. Mechanisms of Thermal DM Generation

Figure 3.1.: Feynman diagrams of possible annihilation channels between Φ𝑆 and the SM.
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Figure 3.2.: Freeze-out via the Φ𝑆Φ𝑆 → 𝑏𝑏 channel for𝑚𝑆 = 100 GeV. The colored curves

show the evolution of the yield for different portal couplings 𝜆3. The black

curve shows the equilibrium yield 𝑌eq.

states.

It is clear from Eq. (3.18), that the TAC is proportional to the cross section (denoted

by 𝜎𝜒 𝜒 in Eq. (3.18)) and therefore also to 𝜆2

3
. Figure (3.2) shows how 𝑌 (𝑥) evolves for

different values of 𝜆3 and as result different TACs. Here, only the annihilation channel

Φ𝑆Φ𝑆 → 𝑏𝑏 is considered. It shows that for larger values of 𝜆3 the yield reaches a smaller

constant value 𝑌0 and therefore via Eq. (3.31) a smaller relic density. This can be explained

by the fact, that the TAC is a measure of how strongly the SM and DM bath are coupled to

each other through the process (3.1). A large coupling allows for a better interaction rate.

As a result of that, the condition (3.2) is fulfilled at a smaller temperature which translates

into a larger 𝑥 .
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3.1. Freeze-out

3.1.3. Multi Particle Freeze out

Equation (3.3) describes the simplest case in which the considered model has only one DS

particle which is also the DM candidate. Many considered BSM models, however, have at

least two or more DS particles in which the lightest of them is the DM candidate. In such

cases an extension of Eq. (3.3) is necessary. Co-annihilation channels, scattering off the

thermal background and decays have to be considered for each DS particle 𝜒𝑖 .

This section will closely follow the derivation by J. Edsjö and P. Gondolo [47] for the

evolution of the density 𝑛𝑖 of the DS particles 𝜒𝑖 . Extending Eq. (3.3) with the above

mentioned processes gives

¤𝑛𝑖 (𝑡) + 3𝐻 (𝑡)𝑛𝑖 (𝑡) = −
∑︁
𝑗

⟨𝜎𝑣⟩𝑖 𝑗 (𝑛𝑖𝑛 𝑗 − 𝑛𝑖,𝑒𝑞𝑛 𝑗,𝑒𝑞)

−
∑︁
𝑗≠𝑖

[⟨𝜎𝑣⟩𝑋,𝑖 𝑗 (𝑛𝑖𝑛𝑋 − 𝑛𝑖,𝑒𝑞𝑛𝑋,𝑒𝑞) − ⟨𝜎𝑣⟩𝑋,𝑗𝑖 (𝑛 𝑗𝑛𝑋 − 𝑛 𝑗,𝑒𝑞𝑛𝑋,𝑒𝑞)]

−
∑︁
𝑗≠𝑖

[Γ𝑖 𝑗 (𝑛𝑖 − 𝑛𝑖,𝑒𝑞) − Γ𝑗𝑖 (𝑛 𝑗 − 𝑛 𝑗,𝑒𝑞)] . (3.36)

Equation (3.36) is a set of coupled differential equations describing the evolution of the

density for each DS particle. The first term on the r.h.s. represents again the annihilation

of two DS particles into the SM bath 𝑋

𝜒𝑖 𝜒 𝑗 → 𝑋 , (3.37)

with the corresponding thermally averaged cross section denoted by ⟨𝜎𝑣⟩𝑖 𝑗 . Notice that
this time the particle density of 𝜒𝑖 is not only influenced by the annihilation with another

𝜒𝑖 but also other DS particles 𝜒 𝑗 with 𝑖 ≠ 𝑗 . Such processes are called co-annihilation. The

second term describes the scattering off the thermal background in the case that 𝑖 = 𝑗 and

conversions for 𝑖 ≠ 𝑗

𝜒𝑖𝑋 → 𝜒 𝑗𝑋 , (3.38)

with the corresponding thermally averaged cross section denoted by ⟨𝜎𝑣⟩𝑋,𝑖 𝑗 . Here, how-
ever, the state with 𝑖 = 𝑗 is left out in the summation because it does not change the

number of particles 𝜒𝑖 . Two terms have to be considered in this case. The first represents

the conversion from a particle 𝜒𝑖 into all possible particles 𝜒 𝑗 . While the second term

represents the reverse process, namely the conversion of all 𝜒 𝑗 particles into 𝜒𝑖 . Lastly,

the third term takes the decays of the DS particles into consideration

𝜒𝑖 → 𝜒 𝑗𝑋 , (3.39)

with the corresponding decay width denoted by Γ𝑖 𝑗 . Again, two terms are necessary to

account for possible decays in both directions. The sum over 𝑖 = 𝑗 is not needed for the

same reason as for the previous term in addition to being kinematically forbidden.

Solving the differential equations (3.36) directly would take a large amount of computing

power and therefore computing time. Here, however, an insight can be used to simplify
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3. Mechanisms of Thermal DM Generation

Eq. (3.36). Assuming that all the masses of the DS particles are different there has to be a

lightest one, 𝜒1, with mass𝑚1 which represents the DM particle. This means that all the

heavier particles eventually decay into 𝜒1 via the process (3.39). As a result the final DM

density 𝑛 is just the sum over all 𝑁 DS particle densities

𝑛 =

𝑁∑︁
𝑖

𝑛𝑖 . (3.40)

By summing over 𝑖 the second and third term in Eq. (3.36) cancel due to their symmetry

in 𝑖 ↔ 𝑗 resulting in

¤𝑛(𝑡) + 3𝐻 (𝑡)𝑛(𝑡) = −
𝑁∑︁
𝑖, 𝑗=1

⟨𝜎𝑣⟩𝑖 𝑗 (𝑛𝑖𝑛 𝑗 − 𝑛𝑖,𝑒𝑞𝑛 𝑗,𝑒𝑞) . (3.41)

Considering that freeze-out occurs during the radiation dominated universe in which the

SM particles are still relativistic while the DS particles are not, the density of the latter

will be much lower because of the suppression factor coming from Eq. (3.8). This leads to

a much larger scattering rate of 𝜎𝑋,𝑖 𝑗 relative to the annihilation rate of 𝜎𝑖 𝑗 causing the 𝜒𝑖
densities to stay in thermal equilibrium even when they start to decouple from the thermal

bath before freeze-out. Specifically, the ratios between the individual particle densities

and the total density are equal to their equilibrium values

𝑛𝑖

𝑛
≃
𝑛𝑖,𝑒𝑞

𝑛eq

. (3.42)

Equation (3.41) then becomes

¤𝑛(𝑡) + 3𝐻 (𝑡)𝑛(𝑡) = −⟨𝜎𝑣⟩eff (𝑛2 − 𝑛2

eq
) , (3.43)

with

⟨𝜎𝑣⟩eff =

𝑁∑︁
𝑖, 𝑗=1

⟨𝜎𝑣⟩𝑖 𝑗
𝑛𝑖,𝑒𝑞𝑛 𝑗,𝑒𝑞

𝑛2

eq

. (3.44)

From here the same steps as in the previous section are applied to obtain the Boltzmann

equation in terms of 𝑥 and 𝑌 (cf. Eq. (3.26))

𝑑𝑌

𝑑𝑥
= −

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2
⟨𝜎𝑣⟩eff (𝑌 2 − 𝑌 2

eq
) . (3.45)

The TAC is given by

⟨𝜎𝑣⟩eff =

∑𝑁
𝑖,𝑗=1

𝑔𝑖𝑔 𝑗
∫ ∞
(𝑚𝑖+𝑚 𝑗 )2

𝑑𝑠
√
𝑠𝑝2

𝑖 𝑗𝜎𝑖 𝑗 (𝑠)𝐾1

(√
𝑠𝑥

𝑚1

)
2𝑇

(∑𝑁
𝑖=1
𝑔𝑖𝑚

2

𝑖
𝐾2

(
𝑚𝑖

𝑚1

𝑥

))
2

(3.46)

and the equilibrium density by

𝑌eq =
∑︁
𝑖

𝑌eq,𝑖 =
45𝑥2

4𝜋4ℎeff (𝑥)

𝑁∑︁
𝑖=1

𝑔𝑖

(
𝑚𝑖

𝑚1

)
2

𝐾2

(𝑚𝑖

𝑚
𝑥

)
. (3.47)
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3.1. Freeze-out

The integrand of the numerator in Eq. (3.46) is the same as in Eq. (3.16) except for the

additional sum over all possible initial states 𝜒𝑖 𝜒 𝑗 with their respective internal degrees of

freedom𝑔𝑖/ 𝑗 . For the denominator the same is true but with Eq. (3.17) as the reference point.

Similar to the single DS particle case, the relic density decreases with a bigger TAC.

However, in the multi DS particle scenario there are now more processes contributing

to the TAC. A closer investigation of Eq. (3.46) reveals which initial states 𝜒𝑖 𝜒 𝑗 give the

highest contribution to the final relic abundance. The first step is to approximate the

Bessel functions for 𝑥 →∞ by [48]

𝐾𝑛 (𝑥) ∼
√︂
𝜋

2𝑥
𝑒−𝑥

[
1 + 4𝑛2 − 1

8𝑥
+ (4𝑛

2 − 1) (4𝑛2 − 9)
2!(8𝑥)2 + ...

]
. (3.48)

Already for 𝑥 = 10 the difference between the approximation and the exact function

becomes negligible. Typical freeze-out temperatures are at 𝑥 =𝑚1/𝑇 ≈ 25, justifying this

approximation. The important part of Eq. (3.48) is the exponential dependence which

represents the Boltzmann suppression factor. This means that when integrating over 𝑠 in

the numerator of Eq. (3.46) the highest contribution of all initial states is at their rest mass.

Another consequence is that contributions of initial states whose rest mass is significantly

higher than 2𝑚1 are suppressed by the exponential factor. A rough estimate gives

𝐾1

(
(𝑚𝑖+𝑚 𝑗 )𝑥

𝑚1

)
𝐾1

(
2𝑚1𝑥
𝑚1

) ∝ 𝑒−
𝑥
𝑚

1

(𝑚𝑖+𝑚 𝑗−2𝑚1) . (3.49)

To get a sense of how strong this suppression is consider the initial state 𝜒1𝜒2 with

𝑚2 = 1.5 ·𝑚1 and 𝑥 = 25. Equation (3.49) returns a value of approximately 4 · 10
−6
. This

means that by the time the freeze-out of DM occurs co-annihilations with 𝜒2 will be almost

irrelevant. In other words: to obtain efficient co-annihilation channels the masses of the

DS particles have to be close to the lightest one.

Another way to make sense of this conclusion is by thinking of the phenomenology

behind it. Again, consider only two DS particles 𝜒1 and 𝜒2 whose masses are far apart

and where 𝜒1 is the DM candidate. At the beginning of the universe everything is in

equilibrium via the process (3.37) and its reverse. When the universe starts to cool down

the heavier particles 𝜒2 start to decouple from the thermal bath. They now have a much

higher density than they would have had if they remained in thermal equilibrium. It would

be reasonable to expect that co-annihilations with 𝜒1 get enhanced and therefore reduce

the relic density. However, the processes (3.38) and (3.39) convert all the 𝜒2 particles into

𝜒1’s at a rate many orders of magnitude larger than co-annihilations can take place, pulling

them back into thermal equilibrium. One might expect that the density of 𝜒1 shoots up

because of these processes. This is not the case though, because 𝜒1 is still in thermal

equilibrium with the SM. As soon as the density of 𝜒1 gets larger than its equilibrium

value, the process

𝜒1𝜒1 → 𝑋 (3.50)
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3. Mechanisms of Thermal DM Generation

gets enhanced and brings it back into equilibrium. Therefore, when the masses are far

apart, neither the decays and conversions of 𝜒2 into 𝜒1 are relevant for the final relic

density, nor the co-annihilations.

In the case that the masses of the two particles are close to each other the same steps can

be followed. The difference this time is that now shortly after 𝜒2 decouples 𝜒1 starts to

decouple from the thermal bath as well. Which means that the processes (3.50) is already

heavily suppressed and 𝜒1 has not enough time to give the additional density it gains from

𝜒2 due to decays and conversions back to the thermal bath and keeps it instead. This leads

to an increase of the relic density. At the same time, conversions are not as favored in one

direction as they were in the previous case. As a consequence the density of 𝜒2 does not

go back into thermal equilibrium as quickly and allows for co-annihilations to take place

for a significant period of time. This leads to the reduction of the relic density in contrast

to the increase from decays and conversions. Depending on how large the co-annihilation

cross section is this will finally lead to either an increase or decrease of the relic density.

The condition for a decrease in relic density due to co-annihilation reads

⟨𝜎𝑣⟩eff > ⟨𝜎𝑣⟩11 . (3.51)

Upon further investigation of Eq. (3.46) one might notice that the largest contribution in

the numerator of the TAC is not only determined by the Boltzmann suppression factor

(𝐾1

(√
𝑠𝑥/𝑚1

)
) but also by the annihilation cross section 𝜎𝑖 𝑗 . This can lead to a scenario

where the annihilation of 𝜒2 pairs into the SM will be the main contributor to the final relic

density. Phenomenologically speaking this means that 𝜒2 can freeze out at a much later

time than 𝜒1 despite being the heavier of the two, i.e. if 𝜎22 ≫ 𝜎11 and𝑚𝜒1
≈𝑚𝜒2

. Since

𝜒1 freezes out earlier and is not able to decay into 𝜒2 it would be reasonable to expect that

its density is the main contributor to the final relic density. However, this is not the case

as already stated above. When the 𝜒1 particles decouple from the bath their density will

be much larger than the density of 𝜒2 which leads to an enhancement of the conversion

process

𝜒1𝑋 → 𝜒2𝑋 . (3.52)

This process pulls the 𝜒1 density back to its equilibrium value until 𝜒2 itself starts to

freeze-out. Due to the decays of 𝜒2 particles into 𝜒1 particles, the density of the former

determines the final DM relic density.

3.2. Freeze-in

The problem with freeze-out is that when the coupling to the SM gets very small the DM

annihilations are not efficient enough to produce the current relic density. In this regime of

very weakly interacting massive particles, also called Feebly Interacting Massive Particles

(FIMPs) another mechanism can take place - the so called freeze-in. In contrast to freeze-

out the DM particles do not start in thermal equilibrium with the SM but with no initial

abundance. Which means that process (3.1) favors the direction of DM production from

SM particles instead of annihilation of DM particles into SM particles. This production
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Figure 3.3.: Freeze-in via the Φ𝑆Φ𝑆 → 𝑏𝑏 channel for𝑚𝑆 = 100 GeV. The colored curves

show the evolution of the yield for different portal couplings 𝜆3. The black

curve shows the equilibrium yield 𝑌eq.

happens until the condition in Eq. (3.2) applies and the SM coupling to the DM is too small

to accommodate for the expansion of the universe.

The calculation of the relic density via freeze-in is in general more involved than for

freeze-out. Due to the fact that during freeze-in the DM particles are not in thermal

equilibrium with the SM particles, the newly produced heavy DM particles have in general

less kinetic energy than at equilibrium and Eq. (3.8) does not necessarily apply [49, 50].

One has to make sure that newly produced DM particles are in kinetic equilibrium with

the thermal bath. Processes like (3.38) with 𝑖 = 𝑗 need to have interaction rates large

enough to keep the DM candidate in kinetic equilibrium. Because freeze-in begins at the

reheating temperature of the universe and ends at 𝑥 ≈ 2 − 5 [51], the DM particles are

relativistic throughout most of the process so that the approximation in Eq. (3.42) can not

be applied. This means that Eq. (3.41) has to be used to calculate the freeze-in for multiple

DS particles. In terms of 𝑌 and 𝑥 the Boltzmann equation becomes

𝑑𝑌

𝑑𝑥
=

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2

𝑁∑︁
𝑖, 𝑗=1

⟨𝜎𝑣⟩𝑖 𝑗 (𝑌𝑖,𝑒𝑞𝑌𝑗,𝑒𝑞 − 𝑌𝑖𝑌𝑗 ) . (3.53)

It is important to note that the equation only works if the DS particles are in kinetic

equilibrium with the SM. Figure (3.3) shows the relation between the coupling 𝜆3 from the

potential (3.33) and the evolution of 𝑌 . As for to freeze-out a higher value of 𝜆3 results in

a larger TAC. In contrast to freeze-out though, a larger TAC results in a larger yield (and

therefore relic density), because the annihilation of SM particles into DM is more efficient.

27



3. Mechanisms of Thermal DM Generation

Another possible process that can contribute to the final relic density in the freeze-in

scenario are decays of SM particles into the DS. In such cases Eq. (3.53) has to be extended

by a decay rate Γ𝑋→𝑖 𝑗 . In this thesis such processes will not be considered due to the large

masses of the DS particles that will be considered in CP in the Dark.

3.3. Two DM Candidates

The previous sections focused on models in which all the particles in the DS eventually

decay into the DM candidate. However it is possible to introduce additional DM candi-

dates by imposing more symmetries. One way to accomplish this is by introducing two

symmetries Z2 and Z
′
2
and extending the scalar sector of the SM by two real singlets 𝜒

and𝜓 with the following transformation properties under Z2,

𝑋 → 𝑋 , 𝜒 → −𝜒 , 𝜓 → 𝜓 , (3.54)

and under Z′
2

𝑋 → 𝑋 , 𝜒 → 𝜒 , 𝜓 → −𝜓 , (3.55)

where 𝑋 denotes the SM particles. In such a case both of the singlets are stable DM

candidates. To compute the relic density two coupled Boltzmann equations for both

particles have to be solved

𝑑𝑌𝜒

𝑑𝑥
= −

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2

[
⟨𝜎𝑣⟩𝜒 𝜒𝑋 (𝑌 2

𝜒 − 𝑌 2

𝜒,𝑒𝑞) + ⟨𝜎𝑣⟩𝜒 𝜒𝜓𝜓

(
𝑌 2

𝜒 −
𝑌 2

𝜓

𝑌 2

𝜓,𝑒𝑞

𝑌 2

𝜒,𝑒𝑞

)]
, (3.56)

𝑑𝑌𝜓

𝑑𝑥
= −

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2

[
⟨𝜎𝑣⟩𝜓𝜓𝑋 (𝑌 2

𝜓
− 𝑌 2

𝜓,𝑒𝑞
) − ⟨𝜎𝑣⟩𝜒 𝜒𝜓𝜓

(
𝑌 2

𝜒 −
𝑌 2

𝜓

𝑌 2

𝜓,𝑒𝑞

𝑌 2

𝜒,𝑒𝑞

)]
, (3.57)

where ⟨𝜎𝑣⟩𝜒 𝜒𝑋 and ⟨𝜎𝑣⟩𝜓𝜓𝑋 is the TAC for the annihilation of two 𝜒 and𝜓 particles into the

SM bath, respectively. The TAC ⟨𝜎𝑣⟩𝜒 𝜒𝜓𝜓 represents the annihilation process 𝜒 𝜒 → 𝜓𝜓 .

In this case the relic density is given by

Ωℎ2 = (Ω𝜒 + Ω𝜓 )ℎ2 = 2.742 · 10
8

( 𝑚𝜒

GeV

𝑌0,𝜒 +
𝑚𝜓

GeV

𝑌0,𝜓

)
. (3.58)

With𝑌0,𝜒 and𝑌0,𝜓 being the yields at the current CMB temperature for 𝜒 and𝜓 , respectively.

The first term on the r.h.s. of each equation corresponds to the already discussed con-

nection to the SM bath. On the other hand the second term in both equations introduces

an interaction between 𝜒 and𝜓 via pair annihilation and creation. The term is identical

in both equations apart from the opposite signs which correspond to annihilation and

creation of the particles. Another important aspect is the additional enhancement factor

𝑌 2

𝜓
=

𝑌 2

𝜓

𝑌 2

𝜓,eq

. (3.59)
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3.3. Two DM Candidates

Consider the scenario in which both 𝜒 and 𝜓 go through the freeze-out process and

𝑚𝜓 > 𝑚𝜒 . They both start in thermal equilibrium, therefore 𝑌𝜓 = 1. At some point𝜓 starts

to freeze-out and it moves from thermal equilibrium to a constant 𝑌𝜓 value before 𝜒 begins

to freeze-out. The equilibrium yield of𝜓 , however, will keep dropping hence increasing

𝑌𝜓 . This enhancement factor is a measure of how much bigger the density of the particle

is compared to its equilibrium value. Because the SM is always in thermal equilibrium

during freeze-out the corresponding terms do not have such enhancement factors.
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4. Freeze-in in CP in the Dark

This chapter starts of by determining the conditions for freeze-in for the model CP in the
Dark in Sec. (4.1). In Sec. (4.2) the implications of the freeze-in scenario will be investigated.

The corresponding Boltzmann equations for such a scenario will be derived in Sec. (4.3).

4.1. Freeze-in Conditions

In Ref. [16] it is shown that freeze-out is possible in CP in the Dark for numerous allowed

parameter points. Therefore, this chapter will take closer a look at the possibility of

freeze-in in CP in the Dark.

In the previous chapter the two DM generation mechanisms were discussed indepen-

dently of each other. However, in CP in the Dark, it is possible to have both of these

mechanisms contributing to the same final relic density. Under the right conditions it

can happen that some DS particles freeze out while others freeze in. In this chapter such

processes will be analyzed and their viable parameter regions will be discussed.

The first step is to look at the coupling strengths between the DS particles and the SM

particles. For the particles that freeze out, the coupling strength has to be at least of order

10
−3
, while for the particles which freeze in it has to be a maximum of 10

−10
[51]. In order to

achieve such a low coupling, the rotation matrix in Eq. (2.13) has to be chosen in such way

that one of the ℎ𝑖 decouples from the 𝑍 and𝑊 bosons otherwise the 𝑆𝑈 (2) gauge coupling
is too large for freeze-in to occur since it is proportional to 𝑔/cos𝜃𝑊 ≈ 0.74 ≫ 10

−10
.

First, consider the decoupling of ℎ1. Here, the absolute value of the couplings for the

vertices 𝑍ℎ1ℎ2 and 𝑍ℎ1ℎ3 have to be minimized. Inserting the definition of the rotation

matrix into Eq. (2.17) and simplifying gives��𝐷𝜇Φ2

��2 ∋ −𝑔
𝑐𝑜𝑠𝜃𝑊

𝑐𝑎2
𝑐𝑎3
𝑍𝜇 (ℎ1𝜕

𝜇ℎ2 − ℎ2𝜕
𝜇ℎ1) for 𝑖 = 1, 𝑗 = 2 and (4.1)��𝐷𝜇Φ2

��2 ∋ 𝑔

𝑐𝑜𝑠𝜃𝑊
𝑐𝑎2
𝑠𝑎3
𝑍𝜇 (ℎ1𝜕

𝜇ℎ3 − ℎ3𝜕
𝜇ℎ1) for 𝑖 = 1, 𝑗 = 3 . (4.2)

This means that the couplings go to zero for 𝛼2 → 𝜋
2
and the rotation matrix becomes

𝑅 =
©­«

0 0 1

−𝑠𝛼1+𝛼3
𝑐𝛼1+𝛼3

0

−𝑐𝛼1+𝛼3
−𝑠𝛼1+𝛼3

0

ª®¬ . (4.3)
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4. Freeze-in in CP in the Dark

Now inserting into Eq. (2.12) it becomes clear why the states decouple in this regime

ℎ1 =Φ𝑠 ,

ℎ2 = − 𝑠𝛼1+𝛼3
𝜌 + 𝑐𝛼1+𝛼3

𝜂 , (4.4)

ℎ3 = − 𝑐𝛼1+𝛼3
𝜌 − 𝑠𝛼1+𝛼3

𝜂 .

The fields of the 𝑆𝑈 (2) doublet 𝜌 and 𝜂 do not contribute to the ℎ1 mass eigenstate. This

means that it no longer has any interaction with𝑊 or 𝑍 bosons. The whole weak coupling

strength that ℎ1 could have had, has been rotated into ℎ2 and ℎ3. Another consequence of

such a rotation is that the model loses its additional CP violation. Since decays of the type

𝑍 → ℎ1ℎ2/3 are now forbidden, the mass eigenstates can be assigned definite CP quantum

numbers. More consequences of such a rotation will be discussed in the next section.

The gauge coupling is not the only one that has to be kept small. The other couplings

to the SM (Φ1) have to be checked as well. By looking at Eq. (2.6), only 𝜆3−5, 𝜆7 and 𝐴

come into question. Here, 𝜆3−5 can be disregarded since they only describe the couplings

between the dark 𝑆𝑈 (2) doublet and the SM. This means that only 𝜆7 and 𝐴 have to be

kept small for freeze-in, since they are the couplings between the singlet field and the SM

doublet.

Decoupling ℎ1 via Eq. (4.3) is of course an arbitrary choice and one could instead de-

couple ℎ2 or ℎ3. By setting 𝛼2 = 0 and 𝛼3 =
𝜋
2
the rotation matrix gives

𝑅 =
©­«
𝑐𝛼1

𝑠𝛼1
0

0 0 1

𝑠𝛼1
−𝑐𝛼1

0

ª®¬ . (4.5)

In this case ℎ2 becomes the singlet particle while ℎ1 and ℎ3 stem from the mixing of the

doublet fields. The same can be done with 𝛼2 = 0 and 𝛼3 = 0 to make the ℎ3 the singlet

particle. However, the analysis will be the same as with ℎ1 as the singlet particle and the

couplings are therefore constrained in the same way. The rotation matrix just determines

which mass eigenstates are part of the 𝑆𝑈 (2) doublet and which one is the singlet. This

also shows that a scenario in which all the DS particles freeze-in is not possible because

the 𝑆𝑈 (2) coupling strength can only be rotated to different particles but not reduced

overall.

In this thesis the focus will be on ℎ1 being the singlet because in this case only one

of the angle parameters has to be fixed leaving more parameter space open to be scanned.

4.2. Implications of the Decoupling Limit

The Higgs sector of CP in the Dark needs 13 parameters to be fully described. In this thesis,

they are chosen to be

𝑣, 𝑚2

ℎ
, 𝑚2

22
, 𝑚2

𝑆 , 𝑚ℎ1
, 𝑚ℎ2

, 𝑚𝐻±, 𝛼1, 𝛼2, 𝛼3, 𝜆2, 𝜆6, 𝜆8 . (4.6)
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4.3. Boltzmann Equations

From these the rest of the parameters can be calculated via the relations given in Appendix

A.1. As already mentioned in the previous section, 𝜆7 and 𝐴 have to be kept small in order

for ℎ1 to able to freeze-in. Inserting 𝛼2 =
𝜋
2
into Eqs. (A.5-A.7) results in

𝜆7 =
2(𝑚2

ℎ1

−𝑚2

𝑆
)

𝑣2
and 𝐴 = 0 . (4.7)

Therefore, the condition for a small 𝜆7 is that𝑚
2

ℎ1

≈ 𝑚2

𝑆
, which corresponds to a small

coupling to the Higgs boson. The second result from Eq. (4.7) has a larger consequence.

The parameter 𝐴 determines the coupling strength for decays of the form ℎ2/3 → ℎℎ1.

Setting it to zero forbids such decays. Now all decay channels of the DS particles which

freeze-out into ℎ1 are blocked. This means, that the lightest particle among the ones

that freeze-out is also a DM candidate. By setting 𝐴 = 0 the theory obtains a higher

symmetry. Looking at the potential of the model in Eq. (2.6) it becomes clear that setting

this parameter to zero is the same as imposing a second Z2 symmetry. The limit 𝛼2 =
𝜋
2

imposes the following transformation behaviour under Z2

𝑋 → 𝑋 , Φ𝑆 → −Φ𝑆 , Φ2 → Φ2 , (4.8)

and Z′
2

𝑋 → 𝑋 , Φ𝑆 → Φ𝑆 , Φ2 → −Φ2 , (4.9)

where 𝑋 is some SM particle. Even more, by looking at Eqs. (A.1) and (A.4) it follows that

𝑚ℎ3
=𝑚ℎ2

, which results in the degeneracy of the particles ℎ2 and ℎ3 with the consequence

of making them the two DM candidates in the freeze-out sector. From this degeneracy,

together with 𝛼 = 𝜋/2, it follows that 𝜆5 = 0. Due to this, all coupling strengths between

ℎ2/3 and the SM are identical (see Appendix A.2), meaning that they obtain the same yield

via freeze-out.

To reiterate, the goal was to find a region in the parameter space in which freeze-in

is possible. It turns out that for one particle (in this case ℎ1) it is possible if 𝛼2 = 𝜋
2
,

otherwise the 𝑆𝑈 (2) gauge couplings become too strong. However, fixing this angle leads

to a higher symmetry with two additional DM candidates. This results in a scenario in

which ℎ1 goes through the freeze-in process, while ℎ2/3 and 𝐻
±
freeze-out. The equations

to calculate the relic density of such a system will be discussed in the next section.

4.3. Boltzmann Equations

As already discussed in Sec. (3.3) the scenario with two DM candidates involves solving

two coupled differential equations, which read [52, 53]

𝑑𝑌1

𝑑𝑥
=

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2

[
⟨𝜎𝑣⟩11𝑋 (𝑌 2

1,eq
− 𝑌 2

1
) +

∑︁
𝑖

⟨𝜎𝑣⟩11𝑖𝑖

(
𝑌 2

𝑖

𝑌 2

𝑖,eq

𝑌 2

1,eq
− 𝑌 2

1

)]
, (4.10)

𝑑𝑌f

𝑑𝑥
= −

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2

[
⟨𝜎𝑣⟩eff (𝑌 2

f
− 𝑌 2

f,eq
) −

∑︁
𝑖

⟨𝜎𝑣⟩11𝑖𝑖

(
𝑌 2

1
−
𝑌 2

𝑖

𝑌 2

𝑖,eq

𝑌 2

1,eq

)]
. (4.11)
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4. Freeze-in in CP in the Dark

The first equation determines the density of ℎ1 via freeze-in. Here, ⟨𝜎𝑣⟩11𝑋 is the TAC for

2→ 2 processes between ℎ1 and the SM, where the sum over all possible SM final states is

implicit. Furthermore, ⟨𝜎𝑣⟩11𝑖𝑖 is the TAC for annihilation of two ℎ1s into two DS particles

of the thermal bath. The second equation describes the freeze-out of the other DS particles

where f denotes the whole DS bath and 𝑖 the individual particles. In this case Eq. (3.45)

was used for the first term, where ⟨𝜎𝑣⟩eff is given by Eq. (3.46).

Eqs. (4.10) and (4.11) can be simplified by assuming that the density of ℎ1 is much lower

than its equilibrium value. This approximation holds for freeze-in since ℎ1 starts with

no initial abundance and remains below the equilibrium density throughout the whole

process. As a result of that, terms proportional to 𝑌 2

1
can be neglected. On top of that

the approximation used in Eq. (3.42) can be reused for the enhancement factors in both

equations such that

𝑌 2

𝑖

𝑌 2

𝑖,eq

=
𝑌 2

f

𝑌f,eq

≡ 𝑌 2

f
. (4.12)

Applying these approximations gives

𝑑𝑌1

𝑑𝑥
=

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2

[
⟨𝜎𝑣⟩11𝑋𝑌

2

1,eq
+ ⟨𝜎𝑣⟩11f

𝑌 2

f

𝑌 2

f,eq

𝑌 2

1,eq

]
, (4.13)

𝑑𝑌f

𝑑𝑥
= −

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2

[
⟨𝜎𝑣⟩eff (𝑌 2

f
− 𝑌 2

f,eq
) + ⟨𝜎𝑣⟩11f

𝑌 2

f

𝑌 2

f,eq

𝑌 2

1,eq

]
, (4.14)

where ∑︁
𝑖

⟨𝜎𝑣⟩11𝑖𝑖 = ⟨𝜎𝑣⟩11f . (4.15)

To obtain the relic density, the coupled differential equations (4.13) and (4.14) have to be

solved. However, by looking at Figs. (3.2) and (3.3) it becomes clear that freeze-out and

freeze-in occur at different times during the evolution of the universe. Typical freeze-

out temperatures 𝑇FO, which do not result in an over abundance of the relic density,

are at 𝑥FO = 𝑚/𝑇FO ≈ 23 − 28 [54]. While freeze-in typically ends at temperatures 𝑇FI

of 𝑥FI = 𝑚/𝑇Fi ≈ 2 − 5 [51]. In the case considered here, the freeze-out and freeze-in

temperatures with respect to the DM masses are at

𝑥FO =
𝑚ℎ

2/3

𝑇FO

, (4.16)

𝑥FI =
𝑚ℎ1

𝑇FI

. (4.17)

Suppose that𝑚ℎ
2/3 ≈𝑚ℎ1

, this implies that throughout the whole freeze-in process of ℎ1,

ℎ2/3 are in thermal equilibrium and therefore 𝑌
2

f
= 1.

If, however, the masses of ℎ1 and ℎ2/3 are far apart such that the temperatures of freeze-out
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4.3. Boltzmann Equations

and freeze-in overlap, the enhancement factor becomes non-unity during freeze-in. The

needed mass ratio between the DM candidates can be obtained via the condition 𝑇FO

!

= 𝑇FI

and Eqs. (4.16) and (4.17) to

𝑚ℎ
2/3

𝑚ℎ1

≈ 4.6 − 14 , (4.18)

for the typical freeze-out and freeze-in temperatures mentioned above. On the other hand,

such high mass ratios lead to a small TAC as can be seen in the numerator of Eq. (3.18).

This counteracts the enhancement, such that it does not contribute in this regime. As a

consequence the enhancement factors can be neglected, independent of when freeze-out

occurs.

Another point, is that due to the difference in coupling strengths between freeze-out

and freeze-in, it follows that ⟨𝜎𝑣⟩11f ≪ ⟨𝜎𝑣⟩eff . Therefore, ⟨𝜎𝑣⟩11f can be neglected in Eq.

(4.14). This means that Eqs. (4.13) and (4.14) decouple to

𝑑𝑌1

𝑑𝑥
=

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2
[⟨𝜎𝑣⟩11𝑋 + ⟨𝜎𝑣⟩11f ] 𝑌 2

1,eq
, (4.19)

𝑑𝑌f

𝑑𝑥
= −

√︂
𝜋

45𝐺

𝑔
1/2
∗ 𝑚𝜒

𝑥2
⟨𝜎𝑣⟩eff (𝑌 2

f
− 𝑌 2

f,eq
) , (4.20)

Notice, that conversion processes of the type

ℎ𝑖𝑋 →ℎ1𝑋 and (4.21)

ℎ𝑖ℎ 𝑗 →ℎ𝑘ℎ1 , (4.22)

do not need to be included because all of them have a vertex of the type 𝑋ℎ1ℎ2/3, which is

zero when 𝛼2 = 𝜋/2 (see Appendix A.2).
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5. Applied Constraints

To reiterate, the goal is to find a viable scenario in which the DM particle ℎ1 obtains its relic

density via freeze-in, while the other DM particlesℎ2 andℎ3, including the co-annihilations

with𝐻±, obtain their relic density via freeze-out. In order to get viable parameter scenarios,

scans are performed in the parameter space of the model and only those parameter points

are kept that fulfill the most relevant theoretical and experimental constraints, besides the

constraints from the relic density. The code ScannerS [20, 21] allows to perform parameter

scans in the parameter space of the model and to check each parameter point for the

following requirements:

• The correct value of the observed mass of the Higgs boson has to be obtained and the

correct electroweak symmetry breaking needs to occur. This is ensured by requiring

that 𝑣 = 246.22 GeV in Eq. (2.10) and that the parameters fulfill Eq. (2.9) and the first

relation given in Eq. (2.11).

• Tree-level pertubative unitarity needs to be fulfilled for all 2→ 2 scalar scattering

processes. ScannerS therefore demands that for every eigenvalue of the scalar

tree-level 2→ 2 scattering matrix𝑀𝑖
2→2

the following condition is fulfilled [55]��𝑀𝑖
2→2

�� ≤ 8𝜋 . (5.1)

• The strength of the quartic couplings of the CP in the Dark potential given in Eq.

(2.6) cannot be chosen arbitrarily. They have to be chosen such that the potential

fulfills the theoretical requirement Boundedness From Below (BFB). This means that

for arbitrarily large values of the scalar fields the potential always tends to +∞ in

every direction. For CP in the Dark the BFB condition is fulfilled if the couplings

𝜆1−8 lie within the region given by [56]

Ω1 ∪ Ω2 , (5.2)

where

Ω1 =

{
𝜆1, 𝜆2, 𝜆6 > 0;

√︁
𝜆1𝜆6 + 𝜆7 > 0;

√︁
𝜆2𝜆6 + 𝜆8 > 0;

√︁
𝜆1𝜆2 + 𝜆3 + 𝐷 > 0; 𝜆7 +

√︄
𝜆1

𝜆2

𝜆8 ≥ 0

}
, (5.3)

Ω2 =

{
𝜆1, 𝜆2, 𝜆6 > 0;

√︁
𝜆2𝜆6 ≥ 𝜆8 > −

√︁
𝜆2𝜆6;

√︁
𝜆1𝜆6 > −𝜆7 >

√︄
𝜆1

𝜆2

𝜆8;√︃
(𝜆2

7
− 𝜆1𝜆6) (𝜆2

8
− 𝜆2𝜆6) > 𝜆7𝜆8 − (𝐷 + 𝜆3)𝜆6

}
(5.4)
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5. Applied Constraints

and

𝐷 = min(𝜆4 − |𝜆5 | , 0) . (5.5)

The first condition from Ω1 and Ω2 restricts the free parameters 𝜆2 and 𝜆6 from (4.6)

to be positive. However, the free parameter 𝜆8 is allowed to obtain negative values.

• The electroweak precision constraints S, T and U from Peskin-Takeuchi [57] on the

scalar sector are also considered via the fit given in Ref. [58].

• ScannerS is linked to the codes HiggsBounds[59–62] and HiggsSignals [63, 64],

which check for experimental constraints from LEP, Tevatron and LHC for extended

scalar sectors. More precisely, these codes put constraints on additional Higgs

particles predicted by any extended scalar sector model. HiggsBounds does this by

comparing collision cross sections predicted by the additional Higgs particles of

the model with the experimental exclusion limits of such collision cross sections

obtained by LEP, Tevatron and LHC. HiggsSignals calculates the signal rates of the

SM-like Higgs within the model and compares them with the signal rates of the

measured Higgs boson from Tevatron and LHC. CP in the Dark introduces only one

Higgs particle ℎ, whose tree-level interactions and vertices are identical to the SM

Higgs boson. In addition to that,𝑚ℎ1
(and due to the mass ordering,𝑚ℎ

2/3 as well) is

chosen to be larger than 70 GeV and therefore larger than half the Higgs boson mass.

This ensures that decays of the type ℎ → ℎ𝑖ℎ𝑖 do not occur and the decay widths of

the Higgs boson remain identical to the SM values up to electroweak corrections

with the exception of the diphoton decay. The diphoton decay will be treated in

greater detail in Sec. 7.3.

• Since 𝐻± does not couple to fermions its interactions are not constrained by 𝐵-

physics bounds. Furthermore, the LEP bound of𝑚𝐻± > 90 GeV due to decays of 𝐻±

into fermions also does not need to be considered for the aforementioned reason.

However, the mass of𝐻± is chosen to be larger than the masses of ℎ2 and ℎ3 to avoid

a charged DM candidate.

• The constraints coming from electric dipole moments [17, 18] do not need to be

considered since all scalars, apart from the Higgs particleℎ, do not couple to fermions.

• To obtain the relic density from freeze-out the code MicrOMEGAs 5.3.41 [19, 49] is

used. ScannerS imposes that the relic density calculated by MicrOMEGAs does not

exceed

Ωmodelℎ
2 ≤ Ωobsℎ

2 + 2𝛿 , (5.6)

where 𝛿 is the uncertainty given in Eq. (1.2). To make sure that MicrOMEGAs does

not include ℎ1 in the thermal bath for its calculation it is moved to the list of feebly

interactive particles via the internal function defThermalset. The freeze-in relic

density will be calculated using a separate code developed in this thesis which is

explained in detail in Chapter 6.

• In addition to the relic density, MicrOMEGAs also calculates the DM-nucleon scattering

cross section. ScannerS uses this cross section to apply the DM-nucleon direct
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min. max.

𝑚ℎ 125.09 GeV 125.09 GeV

𝑚ℎ1
70 GeV 1000 GeV

𝑚ℎ2
70 GeV 1000 GeV

𝑚𝐻± 70 GeV 1000 GeV

𝛼1 𝜋/2 𝜋/2
𝛼2 −𝜋/2 𝜋/2
𝛼3 −𝜋/2 𝜋/2
𝜆2 0 9

𝜆6 0 17

𝜆8 −10
−10

10
−10

𝑚2

22
0 GeV

2
10

6
GeV

2

𝑚2

𝑆
𝑚2

ℎ1

− 3 · 10
−7

GeV
2 𝑚2

ℎ1

+ 3 · 10
−7

GeV
2

Table 5.1.: ScannerS input parameter ranges for the free parameters of the model.

detection limits given by XENON1T [41]. This cross section is used to check for the

direct detection constraints from the LZ experiment [42].

The parameter scan ranges of the free parameters chosen in (4.6) are listed in Tab. 5.1.

All the DS particle masses are chosen such that the decays ℎ → ℎ𝑖ℎ𝑖 are kinematically

forbidden. The scalar mixing angle 𝛼1 = 𝜋/2 ensures that ℎ1 freezes in (see Sec. 4.1),

while 𝛼2 and 𝛼3 can vary between −𝜋/2 and 𝜋/2. The couplings 𝜆2 and 𝜆6 are chosen

at random in the intervals [0,9] and [0,17], respectively. The interval of the coupling 𝜆8,

which represents the coupling between the DS particles which freeze-out and the freeze-in

particle ℎ1, has to be chosen carefully. It has to be small enough, such that choosing a

random 𝜆8 does not produce a relic density overabundance via the second term of Eq.

(4.19), while simultaneously being large enough to be able to generate the observed relic

density in Eq. (1.2). It is found that the interval

[
−10

−10, 10
−10

]
fulfills this condition. Since

𝜆7 describes the coupling between the SM and ℎ1 it has to fulfill the same condition as 𝜆8

otherwise the first term of Eq. (4.19) will lead to an overabundance. However, 𝜆7 is not a

free parameter, but is obtained from the free parameters via Eq. (4.7). This means that in

order to obtain a small 𝜆7 coupling,𝑚
2

𝑆
has to be chosen such that𝑚2

𝑆
≈𝑚2

ℎ1

. Therefore,

𝑚2

𝑆
is chosen to vary around𝑚2

ℎ1

in the interval

[
𝑚2

ℎ1

− 3 · 10
−7

GeV
2,𝑚2

ℎ1

+ 3 · 10
−7

GeV
2

]
.

The parameter𝑚2

22
is chosen randomly between 0 GeV

2
and 10

6
GeV

2
.
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6. Calculation of the Freeze-in Relic
Density

The calculation of the freeze-in relic density is done via a code developed in this thesis

using the computer algebra program Mathematica 12.00 [65]. To generate the tree-level

diagrams needed for the 2→ 2 annihilation processes the package FeynArts [66] is used.

With the package FeynRules [67] the model CP in the Dark is implemented into FeynArts.

The diagrams are converted into algebraic expressions and simplified via the package

FeynCalc [68].

The structure of the code can be subdivided into four separate steps. The first step

is the generation of all tree-level 2→ 2 annihilation processes relevant for freeze-in and

the calculation of their squared amplitude. In the second step these squared amplitudes are

integrated over the phase space to obtain their cross sections. With these cross sections

the TACs are calculated via Eq. (3.18) in the third step. In the last step the Boltzmann

equation given in Eq. (4.19) is solved to obtain the yield 𝑌0 and with Eq. (3.31) the relic

density generated via freeze-in.

6.1. Functions and Lists of the Code

The most important lists of the developed code are the following

• SM - the particle content of the SM with three identifiers for each particle

– the FeynArts ID, for example F[3,{1}] for the up-quark,

– an algebraic expression for the mass, i.e. 𝑀𝑈

– and a string ID, i.e. "u", which is capitalized for the anti-particle.

• DS - the particle content for the DS with the same identifiers as the SM.

• FISMamp - an empty list which is will be used to save the SM processes contributing

to freeze-in, for example ”ℎ1ℎ1→ 𝑍𝑍 ”.

• FIDSamp - almost the same as the SM list above but with DS particles in the final

states.

• amp2lib - a library that saves squared amplitudes and assigns them a unique key.

The auxiliary functions used are
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6. Calculation of the Freeze-in Relic Density

• createamp[process_] - returns the amplitude for a given process ”𝑋𝑌 → 𝑉𝑍 ”. The

diagrams for this amplitude are generated via FeynArts and put into an algebraic

expression with FeynCalc.

• amp22[process_] - returns the algebraic expression of a tree level squared amplitude

for a given 2 → 2 process. To save calculation time the squared amplitude is not

calculated by directly multiplying the amplitude𝐴 (generated by FeynArts/FeynCalc)

with its conjugate 𝐴∗. Instead 𝐴 is broken down into the individual elements 𝑎𝑖
made up of the expressions of the possible diagrams which contribute to the inserted

process. For each element𝑎𝑖 the contributions to the squared amplitude are calculated

bymultiplicationwith another𝑎 𝑗 . If𝑎𝑖 = 𝑎 𝑗 the contribution to the squared amplitude

is |𝑎𝑖 |2. On the other hand, if 𝑎𝑖 ≠ 𝑎 𝑗 the contribution becomes 2Re(𝑎𝑖𝑎∗𝑗 ). Each
individual contribution is summed over their possible spins, polarizations and colors.

Terms involving four momenta are written in terms of the Mandelstam variables

𝑠 and 𝑡 to allow for later integration over these variables. All contributions are

summed up to give the total squared amplitude. The squared amplitude is multiplied

by the correct spin, polarization and color factors. This approach gives compact tree-

level squared amplitudes while simultaneously saving calculation time for processes

with a large number of diagrams.

• calccrs[amp2_,mi_,mj_,mk_,ml_] - returns the cross section for the expression of

a squared amplitude amp2 with initial state masses𝑚𝑖/ 𝑗 and final state masses𝑚𝑘/𝑙
as defined in [69] in terms of the Mandelstam variable 𝑠 . It is sufficient to give the

expressions for the masses used in the SM/DS particle lists. Here the numerical

values of the parameters obtained by ScannerS are substituted into the expression of

amp2 to save calculation time. The individual terms of the expression are integrated

in parallel over the Mandelstam variable 𝑡 to save more calculation time and are

then summed up to give the cross section of amp2.

• geff[T_] - returns the effective degrees of freedom for the energy density at the

thermal bath temperature T [GeV]. This is done by taking the data points given

in Ref. [46] for 𝑔eff (𝑇 ) and linearly interpolating between them. For temperatures

larger than the maximum temperature of the data set, the maximum value of 106.75

is assumed.

• heff[T_] - returns the effective degrees of freedom for the entropy density at the

thermal bath temperature T [GeV]. The same approach is done as with geff[T_].

• g12[T_] - returns the value of the function defined in Eq. (3.27) at temperature T

[GeV].

• generatepoints[n_,lower_,upper_] - generates n random logarithmically distributed

points between the lower and upper bound. The endpoints are always included in

the sample.
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6.2. Relic Density Calculation Algorithm

6.2. Relic Density Calculation Algorithm

To calculate the freeze-in relic density via Eq. (4.19), first all the amplitudes that contribute

to the TACs ⟨𝜎𝑣⟩11𝑋 and ⟨𝜎𝑣⟩11f have to be generated. The function

relevantamps[]

uses the particle content of the SM and the DS to calculate all the possible amplitudes.

Here, it is important to note that not the whole SM is considered but only the 𝑍 ,𝑊 and

Higgs bosons as well as the top quark. This is due to the fact that all the amplitudes

contributing to the final relic density either have a Higgs boson in the 𝑠-channel or (in

the case of non fermionic initial/final states) a four point vertex between a DM particle

pair and the SM particle pair. Since the coupling to the Higgs boson scales with the mass

of the particles, only the four heaviest ones will be considered as the final state particles.

By iterating over the SM and DS particle lists and inserting them as the final states into

the function createamp, with the fixed initial state ℎ1ℎ1, all possible 2→ 2 annihilation

processes for freeze-in are generated. The processes that give non zero amplitudes are

then saved in FISMamp for SM final states and FIDSamp for DS final states. Important to

note is that only the name of the process (e.g. ”ℎ1ℎ1→ 𝑍ℎ”) is saved not the amplitude

itself.
1

In the next step the function

loadscannerSdata[index_]

is called, which takes the parameter point at position index from ScannerS with all its

constraints applied and assigns the randomly generated values to the model parameters.

From here the main computational part of the calculation begins. The function

createcrs[]

takes the list of all relevant 2→ 2 processes that contribute to freeze-in saved FISMamp

and FIDSamp and goes through each element. When running the code for the first time

it calculates for each process the squared amplitude via the function amp22 and saves it

in the library amp2lib with the name of process as the key. This library is then saved as

.mx file such that the squared amplitudes can be accessed at any time. This means that

when running this function multiple times, it first checks in amp2lib whether or not the

squared amplitude has already been calculated and if it was, it just takes the algebraic

expression from the library amp2lib. On the other hand, if it has not been calculated it calls

1
Additionally, one might wonder why ℎ1 is in the initial state in all of these processes, if freeze-in describes

the production of ℎ1 and is therefore expected to be in the final state. In the derivation of Eq. (3.3) it can

be shown that both directions of the process 𝜒 𝜒 ↔ 𝑆𝑀 𝑆𝑀 can be described by a single TAC in which

the DM particles are in the initial state. Since Eq. (3.3) is used as a basis for all later derivations, this also

applies to freeze-in.
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6. Calculation of the Freeze-in Relic Density

the function amp22 to calculate the squared amplitude and then saves it in the library with

a unique key. Next, it plugs the squared amplitude into calccrs with the corresponding

initial and final state masses to obtain the cross sections depending on 𝑠 . Each cross section

relevant for freeze-in is saved into the list FISMcrs for SM final states or FIDScrs for DS

final states.

The cross sections are then used to calculate the TACs for each process with the function

calctac[].

It uses the definition given in Eq. (3.18) for its calculation. First, 200 points are gen-

erated between 10
−4

and 10 via the generatepoints function. These are the values of

𝑥 = 𝑚ℎ1
/𝑇 for which the TAC will be calculated. For each of these 200 𝑥 values the

corresponding TAC is calculated numerically for every cross section determined in the

previous step. To make sure that the integration region is well defined and real valued, the

lower integration bound is chosen to be the squared rest mass of the heavier state between

the initial and final state particles. The integration of Eq. (3.18) over 𝑠 is done numerically

using the Mathematica function NIntegrate for all 200 𝑥 values using the Trapezoidal

integration method. This is again done in parallel for all cross sections. The numerical

values of the TACs for each 𝑥 are saved in a list. To obtain a function of the TAC which is

defined at every 𝑥 , the 200 𝑥 values and their corresponding TAC values are interpolated

linearly. Increasing the number of randomly generated 𝑥 increases the accuracy of the

result by a maximum of ∼ 1%, while increasing the computation time significantly.

The last thing remaining, is to solve the Boltzmann equation in Eq. (4.19). For this,

all the TACs with SM final states are added up into one function. The same is done for

the TACs of the DS. The Boltzmann equation is then solved from 𝑥 = 10
−4

to 𝑥 = 10 with

the initial condition 𝑌1(10
−4) = 0. This is done numerically using the explicit Runge Kutta

method with the stiffness switching option of the Mathematica function NDSolveValue.

The lower bound is chosen to give stable numerical results when solving the Boltzmann

equation, while simultaneously saving computation time. Choosing a lower bound 1 order

of magnitude lower does not change the result of the relic density, but increases computa-

tion time. However, choosing a lower bound which is larger by 1 order of magnitude leads

to different results depending on the exact lower bound, making it numerically unstable.

Although freeze-in ends at 𝑥 ≈ 2 − 5 [51] the upper bound is chosen to be 𝑥 = 10 to make

sure 𝑌1 reaches a constant value. The relic density contribution of ℎ1 is then given by

Ω1ℎ
2 = 2.742 · 10

8
𝑚ℎ1

GeV

𝑌1(10) . (6.1)

The freeze-out relic density is calculated using the code micrOMEGAs.

The whole calculation is based on the non-relativistic approximation of the density distri-

bution in Eq. (3.4). However, Fig. (6.1) shows the difference in relic density between using

the Maxwell-Boltzmann distribution and the Fermi-Dirac/Bose-Einstein statistics for a

real singlet scalar Higgs portal model. For masses of the DM candidate larger than half
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6.2. Relic Density Calculation Algorithm

Figure 6.1.: Relic density generated via freeze-in over the mass of a singlet scalar DM

candidate. The red line depicts the calculation with a Maxwell-Boltzmann

(MB) distribution and the black line with a Fermi-Dirac/Bose-Einstein (FD/BE)

distribution. The plot is taken from [49].

the Higgs boson mass they differ by a factor of two, while below they are identical. Since

the freeze-in particle of CP in the Dark ℎ1 is also a real singlet where the only connection

to the SM is via a Higgs portal and four points vertices, this additional factor of 2 is also

considered in the calculation of the freeze-in relic density.
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7. Results

In this chapter the numerical analysis on the investigations of this thesis will be presented.

In Sec. 7.1 an analysis on the distribution of the relic density generated via freeze-in and

freeze-out will be done. Section 7.2 discusses the consequences of the direct detection

constraints on the viable parameter region. To investigate the influence of having an

additional charged scalar in the model on the diphoton decay of the SM-like Higgs boson,

Sec. 7.3 will compare its branching ratio with the SM value in the parameter space. To

explain the features investigated in the previous sections, Sec. 7.4 will take a closer look at

the part of the parameter space in which the relic density is mostly generated via freeze-out.

In the following, unless stated differently, 𝛼2 will always be chosen equal to 𝜋/2 such that

the generation of the relic density is also possible via freeze-in.

7.1. Relic density

Figures 7.1 and 7.2 show the distribution of the parameter points which fulfill all constraints

discussed in Ch. 5, where for the direct detection limit the limits given by XENON1T are

taken into account. They are displayed in the plane of the full relic density

Ωfullℎ
2 ≡ Ωfℎ

2 + Ω1ℎ
2 , (7.1)

where Ωfℎ
2
(Ω1ℎ

2
) is the relic density generated via freeze-out (freeze-in) and of the

masses𝑚ℎ1
and𝑚ℎ

2/3 , respectively. The color coding shows the ratio between the relic

density generated via freeze-in and the measured value given by Eq. (1.2). A value close

to 1 corresponds to freeze-in being the main contributor to the full relic density, while

small values mean that freeze-out is the main contributor. Throughout the whole mass

spectrum of the scanned region it is possible to obtain the observed relic density. However,

the parameter points which are able to generate the observed relic density are mostly

dominated by the freeze-in mechanism. In the sample of 𝑁=23487 parameter points, 1 of

the freeze-out-dominated points is able to generate the observed relic density within the

5𝜎 bound of Eq. (1.2), while for the freeze-in-dominated points 412 are able to generate

Ωobsℎ
2
within this bound. Here freeze-out (freeze-in) dominated points refer to the points

in which freeze-out (freeze-in) contributes at least 95% to the full relic density in Eq.

(7.1). In general, points that are close to the observed relic density for different masses

are mostly dominated by freeze-in production. This can also be seen in Fig. 7.3, where

the allowed parameter points are displayed in the plane of the full relic density and the

ratio between the relic density generated via freeze-in and via freeze-out. A ration of

Ω1ℎ
2/Ωfℎ

2 > 1 means that freeze-in contributes more than 50% to the full relic density,

while for Ω1ℎ
2/Ωfℎ

2 < 1 freeze-out contributes more than 50% to the full relic density.

Here, the correlation between the freeze-in contribution and the full relic density becomes
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7. Results

Figure 7.1.: Parameter points which pass the ScannerS and relic density constraints in

the plane of the full relic density Ωfullℎ
2
and the mass of the freeze-in DM

candidate 𝑚ℎ1
. The color coding shows the ratio between the relic density

generated via freeze-in Ω1 and the observed relic density Ωobs.

more apparent. For most of the valid points, a large freeze-in contribution is necessary to

obtain a large relic density as can be seen by the bulk of parameter points at Ωfullℎ
2 ≈ 0.12

and Ω1ℎ
2/Ωfℎ

2 > 1. Another important observation is the color gradient close to the

Ωfullℎ
2 = Ωobsℎ

2 ≈ 0.12 value. It shows that points for which freeze-out starts to become

more dominant, i.e. decreasing Ω1ℎ
2/Ωfℎ

2
, freeze-in is still crucial to obtain the full relic

density. In other words, with the appropriate coupling strength, freeze-in is able to fill the

gap between the relic density generated by freeze-out and the observed relic density.

7.2. Direct Detection

Figure 7.4 displays the effective spin-independent (SI) direct detection DM-Xenon cross

section 𝜎Xenon · 𝑓𝜒 𝜒 versus the mass of the freeze-out DM candidate𝑚ℎ
2/3 for parameter

points which pass all the constraints. The color coding shows the value of the full relic

density. The SI cross section is re-scaled with the normalized relic density to adjust for the

underabundance of the freeze-out relic density,

𝜎Xenon · 𝑓𝜒 𝜒 ≡ 𝜎Xenon

Ωfℎ
2

Ωobsℎ
2
. (7.2)

In order understand this, remark that in the experiment only the direct detection cross

section between the freeze-out DM candidates ℎ2/3 and Xenon is considered and not

between Xenon andℎ1. Due to the low couplings required for freeze-in, the direct detection

cross section of ℎ1-Xenon is many orders of magnitude smaller than the one of ℎ2/3-Xenon
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7.2. Direct Detection

Figure 7.2.: Same as Fig. 7.1 but with the mass of the freeze-out DM candidates𝑚ℎ
2/3 on

the x-axis.

Figure 7.3.: Parameter points which pass the ScannerS and relic density constraints in the

plane of the full relic density and the ratio of the relic density generated via

freeze-in to the relic density generated via freeze-out. The color coding shows

the ratio between the relic density generated via freeze-in and the observed

relic density.
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7. Results

Figure 7.4.: The effective SI direct detection cross section over the DM mass𝑚ℎ
2/3 for all

points which pass the ScannerS and relic density constraints. The color coding

shows the full relic density. The orange line represents the exclusion limit

given by XENON1T [41] and the black line the neutrino floor [43].

and can therefore be neglected. As required by ScannerS, all points are below the XENON1T

exclusion bound [41] . Additionally, the majority of the points are above the neutrino floor

boundary represented by the black line. However, as already discussed in Sec. 2.4.2, the

currently best bound on DM-Xenon direct detection is given by the LZ experiment [42].

By applying this additional bound Fig. 7.5 is obtained, where the LZ limit is represented by

the red line. This still leaves a large amount of points in the region between the LZ limit

and the neutrino floor, which can be tested by future DM direct detection experiments.

In the following plots in this chapter the LZ bound is always considered. Further, points

which are able to generate the observed relic density are spread throughout the whole

allowed region. This implies that given the right freeze-in parameters it is possible to

obtain the observed relic density for every allowed SI direct detection cross section. Figure

7.6 confirms this, by plotting the SI direct detection cross section over the full relic density.

It shows that in the effective direct detection cross section range of 2.3 · 10
−10 − 10

−15

pb the full relic density can be generated. As found in the previous section, most of the

points which generate the full relic density are dominated by the freeze-in relic density as

indicated by the color coding.

7.3. Diphoton Branching Ratio

The presence of an additional charged scalar in the model, i.e. 𝐻±, changes the decay
width of the SM-like Higgs boson into two photons. Along with the loops of the𝑊 boson
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7.3. Diphoton Branching Ratio

Figure 7.5.: Same as Fig. 7.4 but with the additional LZ bound [42] represented by the red

line. The gray points are not allowed due to this bound.

Figure 7.6.: The effective SI direct detection cross section over the full relic density for

all points which pass all constraints including the LZ limit. The color coding

shows the ratio between the relic density generated via freeze-in and the

observed relic density.
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and charged fermions, it introduces an additional 𝐻± loop into the decay width. Thus, the

diphoton decay width of the SM-like Higgs boson ℎ at leading order is given by [16]

Γ(ℎ → 𝛾𝛾) =
𝐺F𝛼

2𝑚3

ℎ

128

√
2𝜋3

�����∑︁
f

𝑁c,f𝑄f𝐴1/2

(
4𝑚2

f

𝑚2

ℎ

)
+𝐴1

(
4𝑚2

𝑊

𝑚2

ℎ

)
+ 𝜆3𝑣

2

2𝑚2

𝐻±
𝐴0

(
4𝑚2

𝐻±

𝑚2

ℎ

)�����2 ,

(7.3)

where 𝐺𝐹 is the Fermi constant, 𝛼 the fine-structure constant, 𝑁c,f the color degrees of

freedom of the fermion f, 𝑄f its charge and 𝐴0, 𝐴1/2 and 𝐴1 the form factors for spin 0, 1/2,

1 particles, respectively. Their explicit form can be found in [70].
1

In Fig. 7.7 the branching ratio of the SM-like Higgs boson of the model normalized

to the corresponding SM value is plotted for all allowed parameter points as a function

of the charged Higgs mass 𝑚𝐻± . The blue points fulfill all constraints (including the

LZ-bound) while the green ones are overabundant when including freeze-in. Additionally,

the current 2𝜎 bounds on the normalized diphoton branching ratio by ATLAS [71] were

applied
2
,

BR(ℎ → 𝛾𝛾)
BR

SM(ℎ → 𝛾𝛾)
= 1.04

+0.10

−0.09
, (7.4)

which results in the lower bound of ∼ 0.95.
3
Both types of points (the blue and the green

ones) follow the same distribution. This means that the additional relic density gener-

ated via freeze-in does not influence the normalized diphoton branching ratio. This is

expected since Eq. (7.3) does not depend on the parameters 𝜆7 and 𝜆8 which are relevant

for freeze-in. However, due to the additional constraints obtained by setting 𝛼2 = 𝜋/2, the
allowed parameter space changes when compared with the one, in which all DS particles

freeze out. This can be seen by comparing Fig. 7.7 with Fig. 7.8, which is taken from

Ref. [16] and which is based on a parameter sample where 𝛼2 is not forced to be equal

to 𝜋/2. The parameter space in the regime where all DS particles freeze out is much less

constraint and therefore has a larger viable parameter space. This allows for points above

∼ 1.01, which in the case of additional freeze-in would be excluded due to BFB and direct

detection constraints because of setting 𝛼2 = 𝜋/2. Because of this, there is an observable

that allows to differentiate between freeze-in and freeze-out, the rate into photons, given

by 𝜎prod(ℎ) · BR(ℎ → 𝛾𝛾), where 𝜎prod(ℎ) denotes the LHC production cross section of the

SM-like Higgs boson and BR(ℎ → 𝛾𝛾) its branching ratio into photons. Note, that since

the production cross section in this model does not change w.r.t. the SM value, the rate is

simply given by the branching ratio into photons. A measurement of normalized diphoton

branching values above ∼ 1.01 would rule out the freeze-in option. For points allowing for

freeze-in, where hence 𝛼2 = 𝜋/2, it is possible to generate the observed relic density for

every allowed normalized diphoton branching ratio. This can be seen in Fig. 7.9, where the

parameter points are displayed in the plane of the ratio between the diphoton branching

ratio of the SM-like Higgs boson normalized to its corresponding SM value and the full relic

1
Note that the total width necessary for the computation of the branching ratio changes with respect to

the SM total width only through the decay width into photons.

2
This ATLAS constraint is also included in all previous and future plots.

3
The bounds by CMS [72] were not considered since they would rule out the entire parameter space.
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7.3. Diphoton Branching Ratio
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Figure 7.7.: Branching ratio of the SM-like Higgs boson ℎ into two photons normalized to

the corresponding SM value versus the mass of the charged scalar,𝑚𝐻± . The

blue points pass all constraints including the LZ-bound. The green points fail

the relic density constraint after taking freeze-in into account.

density. Again, most points that are able to achieve the observed relic density are freeze-in

dominated as can be seen by the color bar. It can furthermore be observed that the freeze-

out dominated points, that achieve the measured relic density, are not randomly distributed

across the allowed branching ratios but are near the normalized diphoton branching ratio

value of 1. This can nicely be inferred when plotting the relic density generated via freeze-

out versus the diphoton branching ratio to its corresponding SM value, cf. Fig. 7.10. It can

be seen that points achieving the full relic density through freeze-out have BR values close

to the SM value. In contrast, for freeze-in dominated points achieving the observed relic

density, the diphoton branching ratio can take values across the whole allowed value range.

Summarizing the discussion of this section it can be concluded: If it turns out that with

future increased experimental precision the measured normalized diphoton branching

ratio is found to be below one and if additionally it is assumed that the model is able to

generate the full observed relic density, then the observed relic density is dominantly

generated via freeze-in. This also gives insight in the parameter space region in which

freeze-out is dominant as will be discussed in the next section.
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7. Results

Figure 7.8.: Branching ratio of the SM-like Higgs boson ℎ into two photons normalized to

the corresponding SM value versus the mass of the charged scalar,𝑚𝐻± . The

points pass all ScannerS constraints, however, here all DS particles freeze out.

The plot is taken from [16].

Figure 7.9.: Branching ratio of the SM-like Higgs boson ℎ into two photons normalized

to the corresponding SM value versus the full relic density. The parameter

points pass all constraints including the LZ bound. The color coding shows

the ratio between the relic density generated via freeze-in and the observed

relic density.
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7.4. Freeze-out Domination

0.95 0.96 0.97 0.98 0.99 1.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

BR(h→γγ)/BRSM(h→γγ)

Ω
f
h
2

Figure 7.10.: Relic density generated via freeze-out versus the branching ratio of the SM-

like Higgs boson ℎ into two photons normalized to the corresponding SM

value. The points pass all constraints.

7.4. Freeze-out Domination

Asmentioned in the previous section there seems to be a specific parameter region in which

freeze-out is dominant. The first step in finding out where this region in the parameter

space lies, is by looking at Eq. (7.3) for the diphoton decay width and determining when

it becomes close to the SM value. This is the case for small 𝜆3 couplings since then the

additional contribution from the loop of the charged Higgs 𝐻± becomes negligible and

only the two SM contributions to the diphoton decay width remain. Since freeze-out

achieving the measured relic density value comes along with photonic decay widths close

to the SM value, one of the conditions for a large freeze-out contribution is a small 𝜆3

which translates via Eq. (A.2) into the condition𝑚2

𝐻± ≈𝑚
2

22
.
4
The fact that 𝜆3 has to be

small is an expected result since the coupling of the freeze-out DS particles (ℎ2/3 and 𝐻
±
)

to the SM particles involve Higgs portals and four-point vertices, whose couplings to the

freeze-out particles are proportional to 𝜆3, as can be seen by Eqs. (A.10), (A.12), (A.15) and

(A.17). Equations (A.10) and (A.15) also give the second condition for a high freeze-out

contribution, namely that 𝜆4 = −𝜆3. Setting 𝛼2 = 𝜋/2, as required in the sample, in Eq.

(A.3) gives

𝜆4 =
(𝑚2

ℎ2

+𝑚2

ℎ3

− 2𝑚2

𝐻±)
𝑣2

= 2

𝑚2

ℎ
2/3
−𝑚2

𝐻±

𝑣2
. (7.5)

4
One might think that a large value of𝑚𝐻± also leads to a negligible loop contribution. However, when

plugging in the definition of 𝜆3 from Eq. (A.2) the prefactor 𝜆3𝑣
2/2𝑚𝐻± becomes 1 −𝑚2

22
/𝑚2

𝐻± . This

leads to the condition𝑚2

22
≈𝑚2

𝐻± for a small 𝐻± loop contribution, which is identical to the one needed

for small 𝜆3.
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Figure 7.11.: Relic density generated via freeze-out over the absolute value of 𝜆3 (left) and

𝜆3 + 𝜆4 (right). The points pass all constraints.

Therefore, if 𝜆3 is small, the requirement for a small 𝜆4 is that𝑚ℎ
2/3 ≈𝑚𝐻± . The correlations

between the freeze-out relic density and the absolute values of the couplings 𝜆3 and 𝜆3 +𝜆4

are illustrated in Fig. 7.11. Here, the points which fulfill all constraints are plotted in the

plane of the relic density generated via freeze-out and the absolute value of |𝜆3 | (left) and
|𝜆3 + 𝜆4 | (right). The plots show that low values of |𝜆3 | and |𝜆3 + 𝜆4 | are not sufficient to

guarantee a high freeze-out relic density. Even if both of these couplings are close to

0 a large portion of the points are still below the observed relic density. This is due to

the couplings to the gauge bosons given in Eqs. (A.20), (A.23), (A.29) and (A.30). These

couplings are independent of the free model parameters and therefore constant. This

means that even if 𝜆3 = 𝜆4 = 0 the annihilation channels through the gauge bosons are still

strong enough to provide efficient DM annihilation and hence a low freeze-out relic density.

The third condition to obtain a large freeze-out relic density becomes apparent in Fig.

7.12. Here the relic density generated via freeze-out is plotted over the maximum between

|𝜆3 | and |𝜆3 + 𝜆4 | for points which fulfill all constraints. The color gradient shows that a

large mass of ℎ2/3 leads to a large relic density at every possible Max( |𝜆3 | , |𝜆3 + 𝜆4 |)-value.
Going back to the definition of the TAC in Eq. (3.18) one can see why this is the case.

The TAC is inversely proportional to the mass (even after integration over 𝑠) of the DM

particle [51], which means that a large mass leads to a small TAC and therefore a large

relic density. This leads to the three conditions for a large freeze-out relic density. They

are a small 𝜆3, a small 𝜆3 +𝜆4 and a large𝑚ℎ
2/3 . If these conditions are not fulfilled freeze-in

is needed to generate the observed relic density.
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7.4. Freeze-out Domination

Figure 7.12.: Relic density generated via freeze-out over the maximum between |𝜆3 | and
|𝜆3 + 𝜆4 |. The points pass all constraints.
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8. Conclusions

In this thesis, the possible DM generation mechanisms within the model CP in the Dark,
freeze-in and freeze-out, were studied and their phenomenological implications were

investigated. A code was developed to calculate the relic density via freeze-in. Even

though the SM has a great success story, it leaves many questions unanswered in the field

of particle physics. One of these questions is the nature of DM. The SM fails to provide a

suitable DM candidate which is in agreement with the experimental data. This leads to

the study of BSM theories which are able to provide one or more possible DM candidates,

with CP in the Dark being one of those. CP in the Dark extends the scalar sector of the SM

by an additional dark (Z2-odd) complex doublet field and a dark real singlet field. These

fields introduce five DS particles into the model which are the three neutral scalars ℎ𝑖
(𝑖 ∈ {1, 2, 3}), with the mass hierarchy𝑚ℎ1

≤ 𝑚ℎ2
≤ 𝑚ℎ3

, and two charged scalars 𝐻±.

In Chapter 2, the model CP in the Dark was presented. The already mentioned DS particles

were introduced and the CP violating properties of the model were shown. Since the

additional CP violation only appears in the dark sector, constraints from electric dipole

moments do need to be considered. Further, the three main experimental evidences for

DM were presented and different methods of DM detection were discussed.

In the next chapter, an introduction of two mechanisms which thermally produce DM,

namely freeze-out and freeze-in, were presented. The DM candidate in the first mecha-

nism starts out in thermal equilibrium with the SM at the beginning of the universe and

decouples from the SM bath at some point during its evolution to finally result in the

currently observed relic density. A thorough derivation on how to obtain the relic density

starting from the Boltzmann equations was given. The phenomenological aspect behind

the differential equations describing freeze-out was discussed in detail. This was also done

for the second mechanism freeze-in and compared with freeze-out. Lastly, the case of two

DM candidates was discussed.

Since it already has been in shown in [16] that freeze-out is compatible with a large

viable parameter space in CP in the Dark, Chapter 4 looked into the possibility of freeze-

in in this model. There, it was shown that if the mixing angles, which diagonalize the

Higgs mass matrix fulfill certain conditions, then the model produces three DM candidates

among which two induce the relic density through freeze-out and one through freeze-in.

The implications of this condition on the parameters space and the features of the model

were discussed. Next, the Boltzmann equations for the particles that freeze-out and the

particles that freeze-in were derived. These equations are used to calculate the relic density

throughout the thesis.
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8. Conclusions

In the next chapter all relevant experimental and theoretical constraints to obtain a viable

parameter space were given. These constraints are checked via the code ScannerS and

the code for the computation of the relic density through freeze-in, developed in this

thesis. Freeze-out is checked through the link of ScannerS to MicrOMEGAs. Further, the

scan intervals of the free parameters of the model were given.

The developed code, written in Mathematica, was described in detail in Chapter 6. This

description includes the packages that were used, the lists and functions of the code and a

thorough explanation of the algorithm that was used to calculate the relic density gener-

ated via freeze-in. The important assumption, which allows for a fast computation time, is

that all particles follow a Maxwell-Boltzmann distribution. To adjust for the difference

in relic density between using the Fermi-Dirac/Bose-Einstein and Maxwell-Boltzmann

distribution, the results generated via the code are multiplied by a factor of 2, determined

in Ref. [49].

In Chapter 7, the numerical analysis of this thesis was presented. In Sec. 7.1 it was

shown that throughout the whole mass spectrum of the DM candidates the parameter

sample can induce the observed relic density due to the freeze-in mechanism. Although

the observed relic density can be obtained through a freeze-out dominated contribution,

the parameter space in which freeze-in has a dominant contribution is much larger. The

parameter space was investigated with respect to direct detection constraints in Sec. 7.2.

Here, it was shown that parameter points are found which are below the direct detec-

tion limit set by the LZ experiment, while being above the neutrino floor. The observed

relic density can be generated for parameter samples corresponding to a direct detection

cross section which lies in the range of 2.3 · 10
−10 − 10

−15
pb. In Sec. 7.3 the influence

of an additional charged Higgs on the diphoton branching ratio of the SM-like Higgs

boson was analyzed. It was shown that by imposing the mixing-angle condition necessary

for freeze-in, a clear difference in the parameter space of the diphoton branching ratio

of the SM-like Higgs boson normalized to the corresponding SM value emerges when

compared to a scenario where this condition is not applied such that all DS particles

freeze-out. This results in the fact that a measurement of the normalized diphoton branch-

ing ratio above ∼ 1.01 rules out the freeze-in option. In the scenario where freeze-in

is possible, this thesis was able to show that for a normalized diphoton branching ratio

below one freeze-in is necessary to generate the full observed relic density. To understand

why freeze-out of the particles ℎ2/3 and 𝐻
±
is able to generate the relic density only in

the specific parameter region where the normalized diphoton branching ratio is close to

one, Sec. 7.4 determined the conditions needed to obtain a large relic density via freeze-out.

In summary, CP in the Dark is able to generate the observed relic density via two mecha-

nisms, namely freeze-in and freeze-out. The parameter region in which freeze-in is the

main contributor to the observed relic density is much larger than the one for freeze-out. A

possible next step would be to extend the model CP in the Dark such that it does not lose its

CP violation property in the freeze-in scenario and therefore allows for the possibility of

an SFOEWPT to explain the BAU while being able to generate the observed relic density.
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A. Appendix

A.1. CP in the Dark Parameter Relations

CP in the Dark has 13 free parameters which define the model. The other 7 parameters

can be obtained via the relations

𝑚2

ℎ3

= −
𝑚2

ℎ2

𝑅21𝑅22 +𝑚2

ℎ1

𝑅11𝑅12

𝑅31𝑅32

, (A.1)

𝜆3 =2

𝑚2

𝐻± −𝑚
2

22

𝑣2
, (A.2)
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(𝑚2

ℎ2

+𝑚2
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23
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where the matrix elements 𝑅𝑖 𝑗 (𝑖, 𝑗 = 1, 2, 3) of the neutral Higgs mixing matrix have been

given in Eq. (2.13).

A.2. CP in the Dark Coupling Strengths in the Decoupling Limit

The coupling strengths 𝜆 between the DS and the SM particles, as well as the DS self-

interactions, in the limit 𝛼2 = 𝜋/2 are given in terms of the CP in the Dark parameters and

the electric coupling 𝑒 as well as the Weinberg angle 𝜃𝑊 (𝑖, 𝑗 = 1, 2, 3)

𝜆(ℎ,ℎ1, ℎ1) = − 𝑖𝑣𝜆7 (A.8)

𝜆(ℎ,ℎ1, ℎ2) =𝜆(ℎ,ℎ1, ℎ3) = 0 (A.9)

𝜆(ℎ,ℎ2, ℎ2) =𝜆(ℎ,ℎ3, ℎ3) = −𝑖𝑣 (𝜆3 + 𝜆4) (A.10)

𝜆(ℎ,ℎ2, ℎ3) =0 (A.11)

𝜆(ℎ, 𝐻+, 𝐻−) = − 𝑖𝑣𝜆3 (A.12)

𝜆(ℎ,ℎ, ℎ1, ℎ1) = − 𝑖𝜆7 (A.13)

𝜆(ℎ,ℎ, ℎ1, ℎ2) =𝜆(ℎ,ℎ, ℎ1, ℎ3) = 0 (A.14)

𝜆(ℎ,ℎ, ℎ2, ℎ2) =𝜆(ℎ,ℎ, ℎ3, ℎ3) = −𝑖 (𝜆3 + 𝜆4) (A.15)

𝜆(ℎ,ℎ, ℎ2, ℎ3) =0 (A.16)

𝜆(ℎ,ℎ, 𝐻+, 𝐻−) = − 𝑖𝜆3 (A.17)

𝜆(𝑍,ℎ𝑖, ℎ𝑖) =0 (A.18)

𝜆(𝑍,ℎ1, ℎ2) =𝜆(𝑍,ℎ1, ℎ3) = 0 (A.19)

𝜆(𝑍,ℎ2, ℎ3) = −
𝑒

2cos𝜃𝑊 sin𝜃𝑊
(A.20)

𝜆(𝑍, 𝑍, ℎ𝑖, ℎ 𝑗 ) =0 , (𝑖 ≠ 𝑗) (A.21)

𝜆(𝑍, 𝑍, ℎ1, ℎ1) =0 (A.22)

𝜆(𝑍, 𝑍, ℎ2, ℎ2) =𝜆(𝑍, 𝑍, ℎ3, ℎ3) = 𝑖
𝑒2

2cos
2𝜃𝑊 sin

2𝜃𝑊
(A.23)

𝜆(𝑊 +, ℎ1, 𝐻
−) =0 (A.24)

𝜆(𝑊 +, ℎ2, 𝐻
−) = − 𝑒 cos(𝛼1 + 𝛼3) + 𝑖sin(𝛼1 + 𝛼3)

2sin𝜃𝑊
(A.25)

𝜆(𝑊 +, ℎ3, 𝐻
−) = − 𝑒 𝑖cos(𝛼1 + 𝛼3) − sin(𝛼1 + 𝛼3)

2sin𝜃𝑊
(A.26)

𝜆(𝑊 +,𝑊 −, ℎ1, ℎ𝑖) =0 (A.27)

𝜆(𝑊 +,𝑊 −, ℎ2, ℎ3) =0 (A.28)

𝜆(𝑊 +,𝑊 −, ℎ2, ℎ2) =𝜆(𝑊,𝑊 ,ℎ3, ℎ3) = 𝑖
𝑒2

2sin
2𝜃𝑊

(A.29)

𝜆(𝑊 +,𝑊 −, 𝐻+, 𝐻−) =𝑖 𝑒2

2sin
2𝜃𝑊

(A.30)

(A.31)
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𝜆(ℎ1, ℎ1, ℎ1, ℎ1) = − 3𝑖𝜆6 (A.32)

𝜆(ℎ2, ℎ2, ℎ2, ℎ2) =𝜆(ℎ3, ℎ3, ℎ3, ℎ3) = −3𝑖𝜆2 (A.33)

𝜆(ℎ1, ℎ1, ℎ2, ℎ2) =𝜆(ℎ1, ℎ1, ℎ3, ℎ3) = −𝑖𝜆8 (A.34)

𝜆(ℎ2, ℎ2, ℎ3, ℎ3) = − 𝑖𝜆2 (A.35)

𝜆(ℎ𝑖, ℎ 𝑗 , ℎ𝑘 , ℎ𝑙 ) =0 , (𝑖 ≠ 𝑗, 𝑘, 𝑙) (A.36)

𝜆(𝐻+, 𝐻−, ℎ1, ℎ1) = − 𝑖𝜆8 (A.37)

𝜆(𝐻+, 𝐻−, ℎ2, ℎ2) =𝜆(𝐻+, 𝐻−, ℎ3, ℎ3) = −𝑖𝜆2 (A.38)

𝜆(𝐻+, 𝐻−, ℎ𝑖, ℎ 𝑗 ) =0 , (𝑖 ≠ 𝑗) (A.39)
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