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1. Introduction

Since the discovery of the Higgs Boson in 2012 [1, 2] has added the last missing part
to the Standard Model (SM) of Particle Physics, the search for dark matter (DM) has
become one of the most pressing puzzles. There are many evidences of DM, ranging from
gravitational effects on astrophysical scales and the large-scale structure of the Universe
to the measurement of baryon acoustic oscillations in the cosmic microwave background
radiation [3], which revealed that the relic abundance of DM in the Universe is about
26% [4–6]. But only few is known on the nature of DM.

The SM contains three candidates for DM: the electron, muon and tau neutrinos. How-
ever, SM neutrinos as the main component of DM are in contradiction with cosmological
observations of structure formation [7]. A popular candidate for DM that can reproduce
structure formation as well as the observed relic abundance is the so-called weakly interact-
ing massive particle (WIMP) with a mass of O(100) GeV and an interaction cross section
with SM particles comparable to that of the weak force.

In order obtain a WIMP as DM candidate, we need to extend the SM. Since the SM is
in excellent agreement with experimental measurements, physics beyond the SM (BSM) is
strongly constrained in order to match the observations within experimental uncertainties.
One of the most restrictive constraints on BSM models is the ρ parameter, which indicates
the relative strength of neutral and charged-current interactions in processes with four
fermions and zero momentum transfer [8]. In the SM, the ρ parameter equals to one at
tree level. When adding only SU(2) doublets or singlets the ρ parameter remains unity at
tree-level. Thus, one of the simplest WIMP models is the scalar singlet DM scenario [9–11]
which extends the SM by a real singlet field. The additional singlet is uncharged under
the SM gauge groups and stabilised by a Z2 symmetry. Therefore, it forms a dark sector
providing one neutral CP-even DM candidate. This model has already been extensively
studied, see e.g. [12–15]. Another well-studied model for WIMP DM is the so-called inert
doublet model (IDM) [16–19], an extension of the SM by a dark Higgs doublet. Similar to
the dark singlet extension, the additional doublet in the IDM is protected by a Z2 symmetry
and forms a dark sector containing one charged and two neutral fields, one CP-even and
one CP-odd.

In the Next-to-Two-Higgs-Doublet Model (N2HDM) [20–23], which extends the scalar sec-
tor of the SM by one doublet and one real singlet, both of these approaches can be realised
as different phases of electroweak symmetry breaking (EWSB) based on one common scalar
sector. This model introduces two Z2 symmetries, one of which can stabilise the additional
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2 1. Introduction

doublet, while the other stabilises the additional singlet. In the absence of soft breaking
each of these Z2 symmetries can give rise to a dark sector if it is not spontaneously broken
by EWSB.

In this work, we compare the N2HDM phases with singlet [21] and doublet DM. We call the
phase with singlet DM the dark singlet phase (DSP), which corresponds to a Two-Higgs-
Doublet Model (2HDM) [24–26] with a Higgs portal to the dark sector. In our analysis,
we focus on the case with couplings to fermions as in a type I 2HDM. In contrast to usual
2HDM studies, we further require the spontaneously broken Z2 symmetry to not also be
softly broken [27]. The inert doublet phase (IDP) denotes the doublet DM phase as in the
IDM. However, the additional scalar singlet can mix with the 125 GeV state and enriches
the visible phenomenology by one additional CP-even Higgs boson. In order to study both
phases, we implement each phase as a model class in the ScannerS framework [28] and
perform an extensive scan in the parameter space.

This work is structured as follows. In Chapter 2, we begin with an introduction to the
N2HDM. In Chapter 3, we discuss the IDP and DSP in detail including the diagonalisation
of the scalar sector and the effective couplings to SM particles for each phase. Chapter 4
is dedicated to the constraints applied on the parameters of each phase or dependent
quantities in order to ensure that a generated parameter point agrees with theoretical
requirements and experimental measurements. The tools used to generate the samples
as well as the parameter scans performed in the two N2HDM phases are described in
Chapter 5. In Chapter 6, we finally present the phenomenological analysis regarding the
predictions of the properties of the 125 GeV Higgs boson and the ways to distinguish
between the IDP and DSP provided that a second Higgs boson is observed. Furthermore,
we study the impact of recent exclusion bounds from DM direct detection on the visible
and dark sector of each model. Our conclusion is presented in Chapter 7.



2. The Next-to-Two-Higgs-Doublet Model

The N2HDM [20–23] is an extension of the SM, which consists of one additional complex
SU(2)L doublet with hypercharge +1 and one real, hypercharge zero SU(2)L singlet. In
the following, we summarise the implications of this extension for the scalar Lagrangian
LScalar (Section 2.1) and the Yukawa Lagrangian LYukawa (Section 2.2).

2.1. The Scalar Lagrangian
The scalar Lagrangian describes the Higgs-Higgs and Higgs-gauge boson interactions and
reads

Lscalar = (DµΦi)
†(DµΦi) + (∂µΦS)(∂µΦS)− Vscalar (2.1)

with the doublets Φi (i ∈ {1, 2}) and the singlet ΦS . The electroweak covariant derivative
is given by

Dµ = ∂µ + ig
σa

2
W a
µ + ig′

Y

2
Bµ , (2.2)

where W a
µ (a ∈ {1, 2, 3}) and Bµ are the SU(2)L and U(1)Y gauge fields with the corre-

sponding gauge couplings g and g′, respectively. The Pauli matrices σa and the hypercharge
Y are, combined with the factor of 1/2, the generators of the respective groups. The most
general scalar potential of the N2HDM is constructed from all possible combinations of the
fields Φ1,Φ2,ΦS in such a way that the potential remains renormalisable. In this work,
we only consider the CP-conserving version of the model and additionally impose two Z2

symmetries, which are described below. The resulting scalar potential reads

VScalar = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12

(
Φ†1Φ2 + h.c.

)
+
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2

+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +
λ5

2

((
Φ†1Φ2

)2
+ h.c.

)
(2.3)

+
1

2
m2
sΦ

2
S +

λ6

8
Φ4
S +

λ7

2
Φ†1Φ1Φ2

S +
λ8

2
Φ†2Φ2Φ2

S ,

containing eight real, dimensionless and four real mass parameters, resulting in a total of
twelve real parameters. The first Z2 symmetry we imposed,

Z(1)
2 : Φ1 → −Φ1, Φ2 → Φ2, ΦS → ΦS , (2.4)

3



4 2. The Next-to-Two-Higgs-Doublet Model

is the generalisation of the usual Z2 symmetry of the 2HDM [24–26] to the N2HDM. This
symmetry is softly broken for non-zero m2

12. The second Z2 symmetry,

Z(2)
2 : Φ1 → Φ1, Φ2 → Φ2, ΦS → −ΦS , (2.5)

is not explicitly broken. If the Z2 symmetries are not spontaneously broken, each of them
can give rise to one or more DM candidates after EWSB.

The field configuration after EWSB can be parametrised in terms of the charged complex
fields φ+

i (i ∈ {1, 2}), the neutral CP-even fields ρI (I ∈ {1, 2, s}) and the neutral CP-odd
fields ηi as follows

Φ1 =

 φ+
1

1√
2

(v1 + ρ1 + i η1)

 , Φ2 =

 φ+
2

1√
2

(v2 + ρ2 + i η2)

 , ΦS = vs + ρs . (2.6)

Requiring the vacuum expectation values (VEVs)

〈Φi〉 =

(
0
vi√

2

)
and 〈ΦS〉 = vs , (2.7)

which break the SU(2)L×U(1)Y down to U(1)EM , to be stationary points of the potential
leads to three stationary conditions〈

dV

dv1

〉
= 0 ⇒ v2m

2
12 − v1m

2
11 =

1

2
v1

(
v2

1λ1 + v2
2 (λ3 + λ4 + λ5) + v2

sλ7

)
, (2.8a)〈

dV

dv2

〉
= 0 ⇒ v1m

2
12 − v2m

2
22 =

1

2
v2

(
v2

1 (λ3 + λ4 + λ5) + v2
2λ2 + v2

sλ8

)
, (2.8b)〈

dV

dvs

〉
= 0 ⇒ −vsm2

s =
1

2
vs
(
v2

1λ7 + v2
2λ8 + v2

sλ6

)
. (2.8c)

These will be used to trade the parameters m2
11,m

2
22 and m2

s for the VEVs v1, v2 and vs.
Considering the CP and charge conserving possible VEV configurations, we distinguish
four cases:

The Broken Phase in which both doublets and the singlet acquire non-zero VEVs and,
therefore, both Z2 symmetries are spontaneously broken by EWSB. This case has been
studied in [23].

The Inert Doublet Phase in which only one of the doublets (either Φ1 or Φ2) and the
singlet acquire non-vanishing VEVs. This phase is the N2HDM equivalent to the Inert
Doublet Model of the 2HDM [16–19]. From the Equations (2.8a) and (2.8b) follows that

(v1 = 0⇔ v2 = 0) ∨m2
12 = 0 . (2.9)

Therefore, this case is only possible if Z(1)
2 (2.4) is exactly preserved by choosing m2

12 = 0.
In this phase, DM candidates arise from the inert doublet. This case is discussed in
Section 3.1.

The Dark Singlet Phase in which both doublets but not the singlet acquire VEVs. Here,
Z(2)

2 (2.5) is unbroken and leads to a DM candidate originating from the singlet. This
phase is essentially a 2HDM plus a dark real singlet [9–11] and will be discussed further in
Section 3.2.

The SM-Like Phase in which neither the singlet nor the additional doublet acquires a
VEV. Similar to the IDP, this case is only possible if the Z(1)

2 soft-breaking term vanishes.
Both Z2 symmetries remain unbroken and only one doublet couples to SM particles while
the other doublet and the singlet form two dark sectors. Since this phase does not provide
much interesting collider phenomenology, it is not further discussed in this work.



2.2. The Yukawa Lagrangian 5

Depending on the phase, the fields with the same quantum numbers mix with each other.
In order to diagonalise the mass matrices of the three neutral CP-even, the two neutral
CP-odd and the two charged scalar fields

Mρ
ij =

∂2VScalar

∂ρi∂ρj
, Mη

lm =
∂2VScalar

∂ηl∂ηm
, M±lm =

∂2VScalar

∂φ+
l ∂φ

−
m
, (2.10)

where i, j ∈ {1, 2, s} and l,m ∈ {1, 2}, we introduce two mixing matrices R and U that
rotate from the basis of gauge eigenstates into the basis of mass eigenstates as followsH1

H2

H3

 = R

ρ1

ρ2

ρs

 ,

(
G0

A

)
= U

(
η1

η2

)
,

(
G±

H±

)
= U

(
φ±1
φ±2

)
. (2.11)

The Hi (i ∈ {1, 2, 3}) are the neutral CP-even mass eigenstates. A is the neutral CP-odd
andH± are the charged mass eigenstates. G0 and G± are the neutral and charged would-be
Goldstone bosons that provide the gauge bosons with their longitudinal component.

2.2. The Yukawa Lagrangian

The interactions of fermions and Higgs fields are described in the Yukawa Lagrangian,
which reads in the N2HDM, as in the 2HDM [29],

LYukawa = −Q̄TLYU,iΦ̃iUR − Q̄TLYD,iΦiDR − L̄TLYL,iΦiER + h.c., (2.12)

with the three-dimensional Yukawa coupling matrices YΨ,i for the respective fermion triplet
Ψ ∈

{
UL, DL, EL, NL

}
and the Higgs doublet Φi (i ∈ {1, 2}). The left-handed fermions

are grouped into the doublets

QL =

(
UL
DL

)
=

(
(uL, cL, tL)T

(dL, sL, bL)T

)
, LL =

(
NL

EL

)
=

(
(νe,L, νµ,L, ντ,L)T

(eL, µL, τL)T

)
, (2.13)

and the right-handed fermion into the singlets

UR = (uR, cR, tR)T , DR = (dR, sR, bR)T , ER = (eR, µR, τR)T . (2.14)

The short-hand term Φ̃k stands for εijΦ∗k (k ∈ {1, 2}), where εij is the totally antisymmetric
tensor in two dimensions with

εij =

(
0 1
−1 0

)
. (2.15)

In general, this allows flavour-changing neutral currents (FCNCs) at tree-level, because
the Yukawa matrices are not necessarily diagonal in flavour space. Since FCNCs are not
observed experimentally, they must be prevented in the theory, e.g., by imposing Z2 sym-
metries which force fermions of the same quantum numbers to only couple to one of the two
Higgs doublets [30]1. For a model with two SU(2)L doublets, there are four possibilities
to realise such symmetries. In this work, we focus on the following one:

Type I 2HDM Imposing Φ1 → −Φ1 (analogously to Eq. (2.4)) to the Yukawa sector, forces
all quarks and leptons to couple only to the second Higgs doublet Φ2, and not the first
doublet Φ1.

1An alternative approach where FCNCs are naturally suppressed is the concept of minimal flavour viola-
tion [31–34].





3. The Dark Phases of the
Next-to-Two-Higgs-Doublet Model

After EWSB, there are three phases in the N2HDM that provide one or more DM candi-
dates, as introduced in Section 2.1. The IDP, in which Z(1)

2 , Eq. (2.4), is non-broken and
thus gives rise to three possible DM candidates; the DSP, where Z(2)

2 , Eq. (2.5), is exact
and which provides one neutral CP-even DM candidate; and the SM-like phase, where both
Z2 symmetries remain unbroken. In this work, we focus on the IDP and the DSP, which
are described in detail in Section 3.1 and 3.2, respectively.

3.1. The Inert Doublet Phase

In the IDP, only one of the two doublets acquires a non-vanishing VEV whilst the other
doublet decouples from the SM particles. This configuration is only possible in the Z(1)

2 -
conserving case of the potential for m2

12 = 0. This gives rise to a conserved darkness
parity that prevents the scalars of the inert doublet from decaying into SM particles and,
therefore, the lightest of these dark scalars is a candidate for DM.

In the following, we diagonalise the scalar sector (Section 3.1.1) and reparametrise the
potential in terms of physical parameters (Section 3.1.2). In Section 3.1.3, we summarise
the resulting couplings of the mass eigenstates to SM particles. The triple-Higgs couplings
are given in Appendix A.2.

3.1.1. Diagonalisation of the Scalar Sector

In this work, we assume without loss of generality the second doublet to be the SM-like
doublet by choosing the following configuration of the VEVs after EWSB

〈Φ1〉 =

(
0
0

)
, 〈Φ2〉 =

1√
2

(
0
v

)
, 〈ΦS〉 = vs , (3.1)

where v is the electroweak VEV with v ≈ 246 GeV and the singlet VEV vs is non-zero.
This configuration provides the masses of fermions and gauge bosons as in the SM, while
allowing for a mixing of the two neutral CP-even scalars ρ2 and ρs. We parametrise this
mixing in the mass eigenstates Hi (i ∈ {1, 2}) in terms of the mixing angle α by introducing

7



8 3. The Dark Phases of the Next-to-Two-Higgs-Doublet Model

the following mixing matrix

R =

0 cosα sinα
0 − sinα cosα
1 0 0

 . (3.2)

By convention, we order the Hi by ascending mass

m2
H1

< m2
H2

(3.3)

and choose the third mass eigenstate H3 to be the dark scalar HD. The neutral CP-odd
and the charged sector are diagonalised by the usual 2HDM mixing matrix

U =

(
cosβ sinβ
− sinβ cosβ

)
. (3.4)

Since v1 = 0 and v2 = v, sinβ = 1 and cosβ = 0 and, therefore,

G0 = η2 , AD = −η1 , (3.5)
G± = Φ±2 , H±D = −Φ±1 . (3.6)

3.1.2. Parametrisation of the Potential in Terms of Physical Parameters

Exploiting the minimum conditions in Equations (2.8a)-(2.8c) and requiring the mass ma-
trices to be diagonalised by the corresponding rotation matrices (3.2) and (3.4) allow the
parameters of the potential to be expressed in terms of masses, VEVs and one mixing angle.
The explicit parameter transformation is given in Appendix A.1. We call the parametrisa-
tion in terms of masses, VEVs and the mixing angle the physical parametrisation and the
parametrisation in Eq. (2.3) with m2

12 = 0 the Lagrangian parametrisation. The parameter
sets of each basis are

Lagrangian: m2
11 , m

2
22 , m

2
s , λ1 − λ8 , (3.7)

Physical: m2
11 , v , vs , mH1 , mH2 , mHD , mAD , mH±D

, (3.8)
α , λ1 , λ7 .

The parameters m2
11, λ1 and λ7 appear in both bases, because the Lagrangian contains a

total of eleven real independent parameters, but there are only eight VEVs, masses and
mixing angles. Therefore, these three parameters cannot be expressed in terms of physical
parameters.

3.1.3. Higgs Couplings to SM Particles

Concerning the couplings to SM particles, we distinguish the visible sector consisting of
the two neutral CP-even fields H1 and H2 (Section 3.1.3.1) and the dark sector including
the three scalars HD, AD and H±D (Section 3.1.3.2). In the following, we give effective
couplings

c(Hi(p)) =
λ

(p)
i

λ
(p)
SM

(3.9)

of the scalar Hi (i ∈ {1, 2}) to a set of SM particles p normalised to the SM value, provided
that there is a corresponding coupling in the SM. λ stands for the Feynman rule of the
corresponding vertex and the division is taken to cancel identical tensor structures.
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3.1.3.1. The Visible Sector

The visible sector of the IDP corresponds to the SM extended by a real singlet. Therefore,
the effective couplings of H1 and H2 to a pair of fermions or a pair of gauge bosons is given
by the Ri,2 element of the mixing matrix in Eq. (3.2). These fulfil the sum rule

2∑
i=1

c2(Hif̄f) =
2∑
i=1

c2(HiV V ) = 1 . (3.10)

Therefore, the couplings of theHi cannot exceed the corresponding SM value. Furthermore,
no FCNCs can occur since only the second doublet couples to fermions.

3.1.3.2. The Dark Sector

All couplings of the dark scalars H±D , HD and AD to a pair of fermions or a pair of gauge
bosons vanish because of the preserved Z(1)

2 symmetry. However, two dark scalars can
couple to a single vector boson, which allows – together with the triple-Higgs couplings
HiHDHD, HiADAD andHiH

±
DH

∓
D – to distinguish the IDP from a simple singlet extension

of the SM. This type of coupling is dependent on the momenta of the scalars and there
is no SM equivalent with which it could be normalised. We adopt the convention used in
the Higgs Hunter’s Guide [25], in which the momentum pHD of HD is incoming, and the
momenta pAD and pH±D

of the scalars AD or H±D are outgoing. The resulting Feynman
rules are

λµ(HD, AD, Z) = −
√
g2 + g′2

2
(pAD + pHD)µ , (3.11)

λµ(HD, H
±
D ,W

∓) = ∓ ig
2

(
pH±D

+ pHD

)µ
. (3.12)

The Feynman rules for the vertices ADH±DW
∓, H±DH

∓
DZ and H±DH

∓
Dγ are the same as in

the 2HDM and can be found in [25].

3.2. The Dark Singlet Phase
In the DSP, both doublets acquire non-zero VEVs but the singlet VEV vanishes, which
leaves Z(2)

2 , Eq. (2.5), unbroken. Thus, there is no mixing of ρs with the other scalar CP-
even fields ρ1 and ρ2. This and the fact that the singlet does not couple to SM particles
makes ρs a DM candidate.

In the following, we describe the diagonalisation of the scalar sector in Section 3.2.1 and
the reparametrisation of the potential in terms of physical parameters in Section 3.2.2.
Then, we summarise the couplings to SM particles for a type I 2HDM and the triple-Higgs
couplings in Section 3.2.3.

3.2.1. Diagonalisation of the Scalar Sector

Since the singlet does not acquire a VEV, we choose the usual configuration of the minima
from the 2HDM

〈Φ1〉 =
1√
2

(
0
v1

)
, 〈Φ2〉 =

1√
2

(
0
v2

)
, 〈ΦS〉 = 0 , (3.13)

where v1 = v cosβ and v2 = v sinβ with the electroweak VEV v ≈ 246 GeV. For compati-
bility with the 2HDM, we choose the following scalar mixing matrix

R =

− sinα cosα 0
cosα sinα 0

0 0 1

 , (3.14)
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Table 3.1.: Effective Yukawa and gauge boson couplings of the CP-even Higgs bosons Hi

(i ∈ {1, 2}) in the DSP normalised to the SM value, assuming a type I 2HDM
[26].

c(Hif̄f) c(HiV V )

H1 cosα/ sinβ − sin (α− β)
H2 sinα/ sinβ cos (α− β)

where we use the mass ordering

m2
H1

< m2
H2
. (3.15)

H3 is taken as dark scalarHD. The mixing matrix in Eq. (3.4) is used for the diagonalisation
of the charged and neutral CP-odd sectors, which yields

G0 = η1 cosβ + η2 sinβ , A = −η1 sinβ + η2 cosβ , (3.16)
G± = Φ±1 cosβ + Φ±2 sinβ , H± = −Φ±1 sinβ + Φ±2 cosβ . (3.17)

3.2.2. Parametrisation of the Potential in Terms of Physical Parameters

Analogously to Section 3.1, we use Eqs. (2.8a)-(2.8c) to trade m2
11 and m2

22 for v and
tanβ = v2

v1
. Requiring the mixing matrices in Eqs. (3.4) and (3.14) to diagonalise the mass

matrices allows to express m2
s and λ1-λ5 in terms of the masses and the mixing angle α.

The explicit transformation of the parameters can be found in Appendix B.1. Since the
parameter set of VEVs, masses and mixing angles, also called physical parametrisation,
only consists of eight parameters but the Lagrangian consists of twelve real parameters,
four Lagrangian parameters cannot be expressed in terms of physical parameters. Thus,
the two sets of parametrisations read

Lagrangian: m2
11 , m

2
22 , m

2
12 , m

2
s , λ1 − λ8 , (3.18)

Physical: v , tanβ , m2
12 , mH1 , mH2 , mHD , mA , mH± , (3.19)

α , λ6 − λ8 .

3.2.3. Higgs Couplings

Since the singlet field ρs neither couples to SM particles nor mixes with the other CP-even
scalar fields ρ1 and ρ2, the couplings of H1 and H2 to SM particles do not differ from the
2HDM and can be found in Table 3.1.

The only additional couplings compared to the 2HDM are the triple-Higgs couplings
HiHDHD (i ∈ {1, 2}), which allow the decay of the light and heavy CP-even Higgs boson
into DM if kinematically allowed, or vice versa the annihilation of two dark Higgs bosons
into one light or heavy Higgs boson. The coupling for this interaction is given by

g(HiHDHD) =
∂L

∂Hi∂HD∂HD
= λ7v cosβ · Ri1 + λ8v sinβ · Ri2 , (3.20)

where Rij is the ij element of the mixing matrix in Eq. (3.14).



4. Theoretical and Experimental
Constraints

In order to decide whether a point of the IDP or the DSP with a given set of parameters is
physical – i.e. that it agrees with theoretical requirements and experimental measurements
– we impose certain conditions on the parameters of the potential or dependent quantities.

In Section 4.1, we begin with a description of the constraints resulting from the requirement
for stability of the physical vacuum. Next, we specify the conditions applied to ensure com-
pliance with perturbative unitarity at tree level. To ensure consistency with the discovery
of a Higgs boson at the Large Hadron Collider (LHC) in 2012 [1,2], we demand that one of
the CP-even Higgs bosons has a mass of 125.09 GeV [35]. In addition, we require its signal
strengths to lie within the experimental bounds as described in Section 4.3. Since no addi-
tional Higgs bosons have been detected so far, we verify the agreement with experimental
exclusion bounds from the Large Electron-Positron Collider (LEP), the Tevatron and the
LHC using HiggsBounds 4.3.1 [36] and check for compliance with electroweak precision
measurements as described in Section 4.4. In the DSP, we apply additional flavour con-
straints due to the direct coupling of the charged Higgs boson to fermions, see Section 4.5.
We note that flavour constraints do not apply to the IDP, since the charged Higgs bo-
son in this model does not couple to fermions. Concerning the dark sectors, we apply
bounds resulting from cosmological DM observations and direct detection measurements
as described in Section 4.6.

4.1. Vacuum Stability
Because of the rich vacuum structure of the N2HDM, a CP- and charge-conserving vacuum
of the potential is not necessarily stable. To provide a stable vacuum, we check that the
potential is bounded from below (Section 4.1.1) and that it does not decay into a deeper
minimum as described in Section 4.1.2.

4.1.1. Conditions for the Potential to be Bounded from Below

In order to ensure that the potential has a global minimum at finite field values, we rely
on the condition that the potential must be bounded from below, i.e. that it is positive for
large field values. The necessary and sufficient conditions for the potential to be bounded
from below have been derived in [37]. These restrict the parameters to the region

Ω1 ∪ Ω2 (4.1)

11
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in parameter space, with

Ω1 =

{
λ1, λ2, λ6 > 0; λ7 +

√
λ1λ6 > 0; λ8 +

√
λ2λ6 > 0;

D +
√
λ1λ2 > 0; λ7 + λ8

√
λ1

λ2
≥ 0

}
,

(4.2)

Ω2 =

{
λ1, λ2, λ6 > 0;

√
λ2λ6 ≥ λ8 > −

√
λ2λ6; −λ8

√
λ1

λ2
≥ λ7 > −

√
λ1λ6;

Dλ6 > λ7λ8 −
√

(λ2
7 − λ1λ6)(λ2

8 − λ2λ6)

}
,

(4.3)

where the discriminant D is given by

D =

{
λ3 for λ4 ≥ |λ5| ,
λ3 + λ4 − |λ5| for λ4 < |λ5| .

(4.4)

4.1.2. Vacuum Decay and Global Minimum Conditions

Provided that the vacuum of the scalar potential is not the global minimum, it is possible
that the vacuum tunnels into the deeper global minimum [38, 39]. Since the universe has
already existed for more than 13 billion years, and none of the consequences of such a
tunnelling have been observed, one condition for a potential parameter configuration is
that its physical vacuum does not tunnel into a deeper minimum. This condition is met
if the physical vacuum is the global minimum of the scalar potential. In general, it does
not need to be the global minimum as long as the tunnelling time to a deeper minimum
is larger than the age of the universe. However, as the calculation of the tunnelling time
goes beyond the scope of this work, we do not consider metastable vacua, but rely on the
stricter criterion that the minimum must be the global one.

To determine whether the vacuum is the global minimum, we follow the procedure of
[23, 40], where the necessary conditions have already been derived for m2

12 6= 0. The case
of m2

12 = 0 leads to great simplifications, which we present in the following. First of all,
we determine all possible minima of the scalar potential (see Eq. (2.3)) by setting up the
stationary conditions for the most general field configuration

Φ1 =
1√
2

(
ϕ1 + i · ϕ2

ρ1 + i · η1

)
, Φ2 =

1√
2

(
ϕ3 + i · ϕ4

ρ2 + i · η2

)
, ΦS = ρs , (4.5)

and the corresponding static field configuration

〈Φ1〉 =
1√
2

(
0
v1

)
, 〈Φ2〉 =

1√
2

(
vcb

v2 + i · vcp

)
, 〈ΦS〉 = vs , (4.6)

where vcb and vcp are the charge and CP breaking VEVs, respectively. Any other possi-
ble static field configuration of the N2HDM can be projected onto Eq. (4.6) by a gauge
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transformation. The seven resulting non-trivial stationary conditions are〈
dV

dϕ1

〉
= 0⇔ 0 = v1 v2 vcb (λ4 + λ5) , (4.7a)〈

dV

dϕ2

〉
= 0⇔ 0 = v1 vcb vcp (−λ4 + λ5) , (4.7b)〈

dV

dϕ3

〉
= 0⇔ −vcbm2

22 =
1

2
vcb
(
v2

1λ3 + v2
2λ2 + v2

cbλ2 + v2
cpλ2 + v2

sλ8

)
, (4.7c)〈

dV

dρ1

〉
= 0⇔ −v1m

2
11 =

1

2
v1

(
v2

1λ1 + v2
2λ345 + v2

cbλ3 + v2
cpλ34−5 + v2

sλ7

)
, (4.7d)〈

dV

dρ2

〉
= 0⇔ −v2m

2
22 =

1

2
v2

(
v2

1λ345 + v2
2λ2 + v2

cbλ2 + v2
cpλ2 + v2

sλ8

)
, (4.7e)〈

dV

dη1

〉
= 0⇔ 0 = v1 v2 vcp λ5 , (4.7f)〈

dV

dη2

〉
= 0⇔ −vcpm2

22 =
1

2
vcp
(
v2

1λ34−5 + v2
2λ2 + v2

cbλ2 + v2
cpλ2 + v2

sλ8

)
, (4.7g)〈

dV

dρs

〉
= 0⇔ − vsm2

s =
1

2
vs
(
v2

1λ7 + v2
2λ8 + v2

cbλ8 + v2
cpλ8 + v2

sλ6

)
, (4.7h)

where we introduce the following shorthand terms for the combinations of the λi

λ345 = λ3 + λ4 + λ5 , (4.8a)
λ34−5 = λ3 + λ4 − λ5 . (4.8b)

The conditions (4.7a), (4.7b) and (4.7f) lead to three special cases. If we assume different
combinations of non-zero v1, v2, vcb and vcp, we obtain

(4.7a) v1, v2, vcb 6= 0
==========⇒ λ4 + λ5 = 0 , (4.9)

(4.7b)
v1, vcb, vcp 6= 0

==========⇒ λ4 − λ5 = 0 , (4.10)

(4.7f)
v1, v2, vcp 6= 0

==========⇒ λ5 = 0 . (4.11)

An additional case forcing λ4 = λ5 = 0 is obtained by assuming all four VEVs to be non-
vanishing. Since this is only a special case of Eq. (4.10), this case does not further constrain
the parameter space and therefore does not need to be considered separately. Except for
the three cases (4.9)-(4.11), which are summarised in Table 4.1, v1, v2 and vcb, v1, vcb
and vcp as well as v1, v2 and vcp cannot be simultaneously non-zero. All other possible
configurations are listed in Tables 4.2 and 4.3. Next, the formulae of the scalar potential
for all of these cases are derived in terms of the Lagrangian parameters. In addition, the
fact that all VEVs are real-valued leads to positivity conditions of the squared VEVs, which
determine whether the corresponding case exists for a certain set of Lagrangian parameters.
To determine whether the vacuum is the global minimum, we compare its value of the
scalar potential to the values of all occurring stationary points. We do not check whether
the respective cases are minima, maxima or saddle points. A detailed description of the
procedure can be found in Appendix C.

4.2. Tree-Level Perturbative Unitarity
Perturbative unitarity at tree level is an important constraint for the parameter space
region resulting from S-matrix unitarity [41]. For the considered models, we use the general
numerical approach described in [28] to calculate all scalar quartic interaction amplitudes
and construct the 2 → 2 scattering matrix. Unitarity of the scattering matrix is ensured
by imposing an upper bound of 8π on the eigenvalues.
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Table 4.1.: Special cases of vanishing (0) and non-vanishing (1) VEVs. The cases (s)IIa
only exist if λ5 = 0, (s)IIb if λ5 = −λ4 and (s)IVb if λ5 = λ4.

Case IIa IIb IVb sIIa sIIb sIVb

v1 1 1 1 1 1 1
v2 1 1 0 1 1 0
vcp 1 0 1 1 0 1
vcb 0 1 1 0 1 1
vs 0 0 0 1 1 1

Table 4.2.: Overview over possible cases of vanishing (0) or non-vanishing (1) VEVs for
vs = 0. The cases IIa+b and IVb only exist for certain parameter configurations
and are therefore shown in Table 4.1. Case nomenclature according to [23].

Case I IIIa IIIb IIIc IVa IVc IVd Va Vb Vc Vd

v1 1 0 0 0 1 1 1 0 0 0 0
v2 1 0 0 0 0 0 0 1 1 1 1
vcp 0 1 1 0 0 1 0 0 1 1 0
vcb 0 1 0 1 0 0 1 0 1 0 1

Table 4.3.: Possible cases of vanishing (0) and non-vanishing (1) VEVs with vs 6= 0. Analo-
gously to Table 4.2, the cases sIIa+b and sIVb only exist for certain parameter
configurations and are shown in Table 4.1.

Case sI sIIIa sIIIb sIIIc sIVa sIVc sIVd sVa sVb sVc sVd s

v1 1 0 0 0 1 1 1 0 0 0 0 0
v2 1 0 0 0 0 0 0 1 1 1 1 0
vcp 0 1 1 0 0 1 0 0 1 1 0 0
vcb 0 1 0 1 0 0 1 0 1 0 1 0
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4.3. Signal Strengths of the h125

Considering the LHC data on the Higgs boson, it is necessary to meet the signal strength
of the h125 resulting from the combination of production and decay. We use the definitions
from [42] for µF and µV , which are the Higgs boson production cross sections normalised
to the SM. The first one,

µF =
σ(ggH) + σ(bbH)

σSM(ggH) + σSM(bbH)
, (4.12)

entails the sum of cross sections of the gluon fusion (ggH) and b-quark fusion (bbH)
production channels normalised to the corresponding SM value. The included quantum-
chromodynamics (QCD) corrections are described in Section 5.2.1. The second one is given
by

µV =
σ(VBF)

σSM(VBF)
=

σ(VH)

σSM(VH)
= c2(HiV V ) , (4.13)

where σ(VBF) (σ(VH)) is the production cross sections of the considered model via vector-
boson fusion (vector-boson associated production) and σSM(VBF) (σSM(VH)) is the cor-
responding SM value. QCD corrections cancel in the normalisation.

For each decay channel XX with X ∈ {γ, Z, W±, b, τ} the signal strength is given by

µXX = µF
BR(h125 → XX)

(BR(h125 → XX))SM
. (4.14)

In order to agree with the experiment, we demand that each of the six quantities
µF
µV

, µγγ , µZZ , µWW , µbb , µττ , (4.15)

is within ±(2× 1σ) of the respective experimental fit value [42].

4.4. Electroweak Precision Measurements
One of the most restrictive constraints on models beyond the SM is the ρ parameter. In
the SM it is given by

ρ =
m2
W

m2
Z · cos2 θW

, (4.16)

where θW is the weak mixing angle and mW and mZ are the masses of the gauge bosons
W± and Z0, respectively, and indicates the relative strength of neutral and charged-current
interactions in processes with four fermions and zero momentum transfer [8]. Therefore,
it equals to one at tree-level. When adding only SU(2) doublets with hypercharge ±1

2
or SU(2) singlets with zero hypercharge the ρ parameter remains unity at tree-level. At
one-loop level, however, vacuum-polarization effects occur that lead to deviations from the
SM value since in BSM theories additional fields couple to the W± or Z0 boson. These
effects of BSM physics can be parametrised in terms of the so-called oblique parameters
S, T and U [43]. We compute these parameters according to [44, 45] and demand a 2σ
compatibility with the SM fit [46].

4.5. B-Physics Measurements
The presence of a non-dark charged Higgs boson in the DSP introduces a charged current,
which can be revealed in the decay rates of K, D and B mesons. The most important
constraint in this context comes from the rare decay B → Xsγ. In this context, we apply
the combined limits on mH± and tanβ from [47, 48]. Furthermore, the charged Higgs
boson contributes virtually to the one-loop process Z → bb̄. Here, we apply the constraint
from [49] on the observable Rb.
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4.6. Dark Matter Relic Density and Direct Detection

The main motivation for the investigated models is to provide appropriate candidates
for DM. In order to determine whether the DM candidate for given set of parameters is
suitable, we demand compatibility with measurements of the relic density and DM direct
detection.

The latest measurements of the relic density of cold DM Ωc in the Universe originate from
the Planck observatory [4–6], a space telescope that mapped anisotropies in the cosmic
microwave background radiation. We verify agreement by demanding the relic density to
lie within or below the 2× 1σ band of the experimental fit value

Ωch
2 = 0.1186± 0.0020 . (4.17)

This excludes all parameter points that would lead to an over-abundance of DM in the
Universe. Points that correspond to a lower value of the relic density than the value
resulting from the Planck measurements remain viable, because the deficit in DM could be
filled by a DM candidate arising from a different sector.

Regarding DM direct detection, we take into account the latest results provided by the
XENON1T observatory, a dual phase (liquid-gas) xenon time projection chamber, dated
November 2017 [50]. Since no DM nucleon scattering has been detected so far, an ex-
clusion curve for the scattering cross section is obtained as a function of the mass of the
dark particle. We fit a function

fn(x) =
n+1∑
i=0

an
xn−1

, (4.18)

with x = MLDP/GeV and n = 6 as shown in Figure 4.1, to the 90% C.L. exclusion bound
on the spin-independent WIMP-nucleon cross section given in [50]. MLDP is the mass of
the lightest dark particle in a particular model. We use the resulting function,

σmax(MLDP)

[cm2]
= 1.3048×10−48 MLDP

GeV
+ 1.3794×10−48

− 2.0759×10−45 GeV

MLDP
+ 3.8581×10−43

(
GeV

MLDP

)2

− 1.9211×10−41

(
GeV

MLDP

)3

+ 4.5806×10−40

(
GeV

MLDP

)4

− 4.9704×10−39

(
GeV

MLDP

)5

+ 2.1467×10−38

(
GeV

MLDP

)6

,

(4.19)

to verify compatibility with constraints from direct detection. The XENON1T bound relies on
a relic density equal to Eq. (4.17). Since we allow for smaller relic densities, the impact of
the DM abundance on direct detection measurements is taken into account by considering
a normalised scattering cross section σ̂DM−N which is given by

σ̂DM-N = σDM-N ·
Ωch

2

(Ωch2)exp
, (4.20)

where σDM-N and Ωch
2 are the values calculated for a given parameter set. In consequence,

we demand that

σ̂DM-N ≤ σmax(MLDP) . (4.21)
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Figure 4.1.: Exclusion curve for the DM nucleon scattering cross section. The data points
(black cross) are extracted from [50] and represent the 90% C.L. exclusion
bound on the WIMP-nucleon cross section. The solid lines show the fit func-
tions fn (see Eq. (4.18)) for different n.





5. Scans of the Parameter Space

To compare the IDP and the DSP of the N2HDM, we perform random scans of the pa-
rameter space and calculate dependent quantities. The used tools are described in Section
5.1. In Section 5.2, we specify the features of the generated samples for both phases.

5.1. Description of the Used Tools

For the generation of parameter sets and the application of theoretical and experimen-
tal constraints, we use the ScannerS framework [28], which is presented in Section 5.1.1.
MicrOMEGAs 4.3.5 [51–53] (see Section 5.1.2) is used for the calculation of quantities re-
lated to the dark sector of each N2HDM phase.

5.1.1. ScannerS

ScannerS is a tool dedicated to perform scans of the parameter space of models with an
extended scalar sector. Its approach is to avoid non-linear equations by using the VEVs,
the masses of the Higgs bosons and the mixing matrix elements (e. g., the parameters sets
(3.8) and (3.19) for the IDP and DSP, respectively) to scan over instead of the Lagrangian
parameters (e. g., parameter sets (3.7) and (3.18)). For each parameter point that is gen-
erated ScannerS performs the following procedure [28]. First of all, uniformly distributed
random values for the VEVs are chosen based on the symmetry-breaking pattern of the
model. The requirement that the generated VEVs must be stationary points of the po-
tential leads to a set of stationary conditions that allow to trade a subset of Lagrangian
parameters for the VEVs. Next, the stationary points are demanded to be minima of the
potential by assuming non-negative mass squares. The resulting quadratic derivative con-
ditions link the remaining Lagrangian parameters to the physical masses and the matrix
elements of the tree-level scalar mixing matrix. The latter are generated uniformly with
respect to the Haar measure [54]. The independent parameters of the model are determined
by solving the system of linear equations composed of the stationary and minimum con-
ditions for fixed VEVs and mixing matrix elements. Then, uniformly distributed random
values are generated for these parameters and the dependent parameters are calculated.
Based on the complete set of parameters, ScannerS allows to test various conditions. In
this context, all limits specified by the user are checked. Furthermore, the program includes
a model-independent routine to test tree-level perturbative unitarity on a numerical basis,
whereas the check for the potential to be bounded from below and the global minimum
conditions must be defined when implementing the respective model. Constraints from null

19
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searches for additional Higgs bosons at collider experiments are applied via an interface to
HiggsBounds 4.3. Further constraints such as compliance with the signal strengths of the
observed Higgs boson or limits from B physics are defined by the user.

5.1.2. MicrOMEGAs

The MicrOMEGAs framework [51–53] calculates the relic density as well as the rates for
direct and indirect DM detection of a generic particle physics model involving cold DM.
The underlying assumption is that the lightest DM candidate is stable due to a discrete
symmetry, such as one of the Z2 symmetries introduced in Eqs. (2.4) and (2.5), which gives
rise to a dark parity. This parity is even for all standard and additional visible particles
and odd for the DM candidates. The implementation of a new model in micrOMEGAs is
done by providing the CalcHEP [55] files that specify the basic quantities and all necessary
relations. The generation of the required CalcHEP files is provided by SARAH [56].

5.2. The Samples of Parameter Points
In this section, we describe the steps taken to generate a large number of physical parameter
sets for the respective models. Therefore, we present the implementations for ScannerS
and micrOMEGAs in Section 5.2.1 and specify the applied ranges for the input parameters
in Section 5.2.2.

5.2.1. Basics of Sample Generation

For the investigation of the IDP and the DSP, we implement each model as separate
ScannerS model class. For both models, the constraints arising from tree-level unitarity
are applied via the built-in method, whereas the vacuum-stability constraints are imple-
mented as described in the Sections 4.1.1 and 4.1.2 . The check for compliance with the
measured signal strengths of the h125 and the electroweak precision measurements are
implemented as indicated in Sections 4.3 and 4.4, respectively. The cross sections for
the production channels ggH and bbH are obtained via the ScannerS interface to SusHi
1.6.0 [57] at next-to-next-to-leading-order (NNLO) QCD. The branching ratios of the
Higgs bosons, which are input parameters for the HiggsBounds routine, are calculated by
interfacing N2HDECAY [23], which is a modified version of HDECAY 6.51 [58–60]. N2HDEDAY
calculates the Higgs boson branching ratios for the broken phase and the DSP including
all QCD corrections available in HDECAY. We have extended the existing code to the IDP
by adding the couplings specific for this phase (see Section 3.1). Electroweak corrections
are not included in the parameter scans or the analysis as they are not available for the
investigated models. The B-physics constraints applying to the DSP are taken over from
the ScannerS implementation of the 2HDM since they only depend on the charged Higgs
boson. Constraints from the measurement of the relic density and DM direct detection
are not applied in ScannerS but these quantities are calculated separately via micrOMEGAs.
Therefore, we implement both models in SARAH 4.12 and use its CalcHep interface to gen-
erate the model files for micrOMEGAs. In this routine, SARAH also provides a C++ code which
we modify in such a way that it reads the values of the Lagrangian parameters of a given
ScannerS point and calculates the corresponding relic density and nucleon scattering cross
section.

5.2.2. Scan Ranges

In the IDP and the DSP, we use the parameter sets of Eqs. (3.8) and (3.19) as input
parameters. For compatibility with the SM, we fix the VEV v to

v =
1√√
2GF

, (5.1)
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where GF is the Fermi coupling constant [5]. In addition, we demand one of the CP-even
Higgs bosons to have a mass of

mh125 = 125.09 GeV . (5.2)

The masses of the other Higgs bosons are allowed in the ranges

30 GeV ≤ mHl , mHD , mA(D)
, mH±D

< 1 TeV , (5.3)

80 GeV ≤ mH± < 1 TeV , (5.4)

where mHl denotes the second CP-even Higgs boson that can be either lighter or heavier
than the h125. Although charged DM as lightest dark particle is generally considered
excluded, we keep the possibility of H±D being lighter than HD and AD in order to verify
this statement in the IDP. However, we exclude Higgs bosons with masses in the ±5 GeV
interval around mh125 – except if the Higgs boson belongs to the dark sector – to avoid
considering the superposition and interference effects of a degenerate Higgs signal. In the
IDP, we vary vs in the range

1 GeV ≤ vs < 1.5 TeV , (5.5)

whereas in the DSP we allow for

0.1 ≤ tanβ < 35 . (5.6)

Since the lower bound in tanβ is below the threshold obtained by the constraint from B →
Xsγ, it has no influence on the physical parameter points. The mixing matrix elements
generated by ScannerS are transformed in order to match with Eqs. (3.2) and (3.14) for
the IDP and the DSP, respectively. Therefore the mixing angles of both phases are in the
range

−π
2
≤ α < π

2
. (5.7)

In the IDP, we additionally need three of the Lagrangian parameters in order to obtain
the full set of eleven parameters. These are the mass parameter m2

11, for which we allow
for

−106 GeV2 ≤ m2
11 ≤ 106 GeV2 , (5.8)

and the dimensionless parameters λ1 and λ7. The latter are constrained by the conditions
for the potential to be bounded from below (see Section 4.1.1) and the requirement for uni-
tarity of the 2→ 2 scattering matrix described in Section 4.2. Therefore, the dimensionless
parameters are generated in the intervals specified in Table 5.11. Since the limits from both
constraints are stronger than the given minimum and maximum values, the given ranges do
not further constrain the parameter space. In the DSP, the full set of parameters consists
of twelve parameters, because in general the Z(1)

2 soft-breaking parameter m2
12 is not set

to zero, as required in the IDP. However, we also force

m2
12 = 0 (5.9)

in the DSP, as this facilitates comparing both models on the basis of the same number of
free parameters. The dimensionless parameters λ6 − λ8 are allowed in the same ranges as
in the IDP (see Table 5.1).

1The limits on the dependent parameters are applied to save computing time, because these bounds
are checked in first place. Thereby we avoid unnecessary further calculations if the point is excluded
anyway by the constraints from tree-level perturbative unitarity or the requirement for the potential to
be bounded from below.
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Table 5.1.: Minimum and maximum values for the dimensionless parameters λ1−8. These
limits are applied regardless of the parameters being dependent or independent.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

min 0 0 −17 −17 −10 0 −26 −26
max 10 10 17 17 10 17 26 26



6. Phenomenological Results

In this chapter, we present the results of the parameter scans described in Chapter 5. In
Sections 6.1-6.3, we scrutinise all points that are in agreement with theoretical requirements
(see Sections 4.1-4.2) and constraints from collider experiments (see Sections 4.3-4.5) as
well as the cosmological value of the relic density of DM (see Section 4.6). In Section 6.1
we begin by analysing the properties of the h125 and discuss how physical parameter points
of our two N2HDM phases can deviate from SM expectations. In Section 6.2 we study the
mass distributions of the additional scalars occurring in our N2HDM phases and compare
these to similar models. In Section 6.3, we investigate the predictions for the measurement
of an additional Higgs boson at collider experiments. We discuss the predicted cross sections
and point out how to distinguish our phases through observation of a second Higgs boson.
In the last section (6.4), we study the subset of points also fulfilling limits that arise from
direct detection of DM (see Section 4.6) in order to investigate the impact of DM direct
detection limits on the previously discussed quantities.

6.1. Properties of the h125

In this section, we study the phenomenology of the h125 in terms of its admixtures. We
define the singlet admixture Σi of the Higgs boson Hi in the IDP by

ΣIDP
i := R2

i3 . (6.1)

In the DSP, we define the doublet admixture ∆i

∆DSP
i :=

( Ri2
tanβ

−Ri1
)2

, (6.2)

since the CP-even Higgs bosons are given by

Hi =
Ri2
sinβ

HSM −
( Ri2

tanβ
−Ri1

)
ρ1 , (6.3)

with HSM = cosβ ρ1 + sinβ ρ2. In the following, the singlet admixture of the h125 in
the IDP is simply referred to as Σ and the doublet admixture of the h125 in the DSP is
simply referred to as ∆. In Section 6.1.1, we compare the two phases by means of the h125

couplings and discuss the influence of the respective admixtures. In Section 6.1.2, we focus
on the signal strengths that can be measured at collider experiments.

23
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Figure 6.1.: Squared effective coupling of the h125 to a pair of vector bosons as a function
of the squared effective coupling to a pair of fermions in the IDP (a) and the
DSP (b). The dashed line corresponds to c2(h125V V ) = c2(h125ff) and the
white triangle denotes the SM value. The colour code indicates the singlet or
doublet admixture in the respective phase.

6.1.1. Couplings to SM Particles

The effective couplings of the h125 normalised to the SM value are given in Sections 3.1.3.1
and 3.2.3 for the IDP and DSP, respectively. We note, that in each of the phases, the effec-
tive coupling is the same for up-type and down-type quarks as well as for leptons. Figure 6.1
shows the distribution of the physical parameter points in terms of the couplings of h125 to
a pair of vector bosons and a pair of fermions for the IDP (a) and the DSP (b). The colour
code indicates the corresponding maximum singlet or doublet admixture corresponding to
a certain coupling in the IDP or DSP, respectively.

In the IDP, the relation between these couplings is simply a straight line, because both
depend on one common factor. The range of the couplings squared is constrained at the
upper end by the sum rule given in Eq. (3.10) and at the lower end by the experimentally
observed signal strengths of the h125. The latter also constrains the maximum singlet
admixture. Only values up to Σ ≈ 22% are allowed, corresponding to effective couplings
to SM particles of c2(h125V V ) = c2(h125ff) ≈ 0.78, because the singlet admixture fulfils
the relation

Σ = 1− c2(h125ff) = 1− c2(h125V V ) . (6.4)

Therefore, it decreases if the couplings tend to the SM value.

In the DSP, however, the relation between the coupling to vector bosons and the coupling
to fermions is more complex, because the couplings do not only depend on the mixing angle
α but also on β. Considering the couplings to fermions, this allows for a broader range
that includes values above the SM value up to c2(h125ff) ≈ 1.29 . The upper and lower
limits are obtained from the experimentally observed signal strengths of the h125. Since
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the couplings of the CP-even Higgs bosons fulfil the sum rule

2∑
i=1

c2(HiV V ) = 1 , (6.5)

the coupling of the h125 to vector bosons cannot exceed the SM value. Its lower limit is
caused by the requirement to fulfil the experimentally measured signal strengths of the
vector boson decay channels ZZ and W+W− (see Section 6.1.2). The gap we observe
at c2(h125ff) ≈ c2(h125V V ) is due to trigonometric relations. Regarding the doublet
admixture, small values correspond by construction to a SM-like coupling to vector bosons
whereas the coupling decreases with increasing doublet admixture, because of the relation

∆ =
1− c2(h125V V )

sin2 β
. (6.6)

The requirements on the signal strengths of the h125 allow for a doublet admixture of up
to ∆ ≈ 30%. The coupling to fermions, on the other hand, does not show a significant
dependency on the doublet admixture.

Comparing the two phases, we observe that the coupling to vector bosons hardly allows a
discrimination. Both phases allow approximately the same coupling range and show similar
characteristics regarding the impact of the singlet or doublet admixture on c2(h125V V ). In
contrast to the IDP, however, the DSP provides a larger spectrum in terms of the coupling
of h125 to fermions by allowing slightly smaller values, but also values well above the SM
value.

6.1.2. Signal Strengths at Collider Experiments

In order to investigate the observable properties of the h125, we use the six quantities

µF
µV

, µγγ , µZZ , µWW , µbb , µττ , (6.7)

defined in Eqs. (4.12)-(4.14). Since both phases preserve custodial symmetry, we note that
the signal strengths µWW and µZZ are equal and thus define

µV V := µWW = µZZ . (6.8)

Regarding the experimental limits on both quantities, we combine the 2× 1σ lower bound
from µZZ and the 2× 1σ upper bound from µWW to one constraint on µV V :

0.79 < µV V < 1.48 . (6.9)

In addition, we observe that the experimental limits on the signal strength µττ are not
sufficiently precise to constrain our phases, and therefore do not show this quantity1.

Starting with the IDP, we show the four remaining signal strengths in Figure 6.2. We
observe in Figure 6.2a, that this phase is constrained by the lower limit µV V , whereas
the upper limit is given by the fact, that neither the couplings to vector bosons nor the
couplings to fermions can exceed the SM value. Experimental limits on µbb do not further
constrain the parameter space. Analogously to the couplings shown in Figure 6.1a, the
relation between the fermion and the vector boson related signal strengths is a straight
line. Likewise, low values of the singlet admixture correspond to signal strengths values
close to the SM value and increasing values in Σ correspond to decreasing values in the

1Note that the experimental limits on µbb are more constraining than the ones on µττ only because of an
under fluctuation in the 7− 8TeV LHC data [35].
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Figure 6.2.: Signal strengths of the h125 in the IDP normalised to the SM. (a) shows the
signal strength for a pair of bottom quarks as a function of the vector-boson
signal strength. In (b), the ratio of production through (ggH+bbH) and
VBF is shown as a function of the photon signal strength. The colour code
indicates the maximum singlet admixture to the h125. The dashed lines show
the experimental limits from [42] and the white triangle denotes the SM value.
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Figure 6.3.: Signal strengths of the h125 in the DSP normalised to the SM. (a) shows the
signal strength for a pair of bottom quarks as a function of the vector-boson
signal strength. In (b), the ratio of production through (ggH+bbH) and
VBF is shown as a function of the photon signal strength. The colour code
indicates the maximum doublet admixture to the h125. The dashed lines show
the experimental limits from [42] and the white triangle denotes the SM value.

signal strengths µbb and µV V . Figure 6.2b shows the distribution of points in the µV
µF
−µγγ

plane. We find that the parameter space of the IDP is not constrained by the experimental
limits on µV

µF
since the dependency of both quantities on the mixing angle α cancels in the

normalisation and, therefore, the fraction µV
µF

equals to one by construction. However, the
phase is constrained by both lower and upper limits in µγγ . In this channel an enhancement
compared to the SM is possible, because of the one-loop contribution of the dark charged
Higgs bosons – see Appendix A.2 for the triple-Higgs couplings. In the whole range of µγγ
the singlet admixture lies within 0%2 to 22% and, therefore, a more precise measurement
of the photon signal strength does not allow to constrain the singlet admixture.

Figure 6.3 shows the distribution of the points of the DSP in the signal-strength planes.
As for the couplings, this phase provides a larger spectrum compared to the IDP. The
lower bound on µV V , see Figure 6.3a, is set by its experimental limit whereas the upper
bound is obtained through the maximum coupling to vector bosons given by the SM value.
However, the vector-boson signal strength can exceed the corresponding SM value in com-
bination with an enhanced coupling to fermions such as the top quark which provides the
dominant contribution to the ggH production channel. This corresponds to the region
(µbb > 1) ∧ (µV V > 1). In the µbb direction the lower bound originates from a search
for additional Higgs bosons3. The upper bound results from the 2 × 1σ upper limit of
the experimental measurements of µbb. The lower bound in µV V above µbb ≈ 1.1 is con-

2In Figure 6.2 smaller singlet admixtures are hidden behind points with larger singlet admixture.
3For each Higgs boson of the model, the HiggsBounds routine determines the most sensitive experimental
search. In the region above µV

µF
≈ 1.3, the most sensitive search for the h125 is a CMS analysis in

the channel pp VBF−−−→ H → WW [61] that excludes parameter points with c2(h125V V )BR(h125 →
W+W−)/BRSM(h125 →W+W−) & 0.9.
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strained by measurements of the photonic signal strength. An enhanced signal strength in
the bb̄ decay channel corresponds to an enhanced coupling to all fermions and, therefore,
an increase in the t-loop contribution to h125 → γγ. Since this contribution interferes
destructively with the dominant W -loop contribution, the overall signal strength in the
γγ channel decreases and is ruled out by the experimental lower limit. In order to be
compatible with the lower limit of the photon signal strength, a parameter point with an
enhanced coupling to fermions cannot have a simultaneously reduced coupling to vector
bosons. Therefore, physical points with an enhanced µbb must also show an enhancement
in µV V . Regarding the doublet admixture, we observe – analogously to the couplings in
Figure 6.1b – that small doublet admixtures correspond by construction to vector boson
signal strengths close to the SM value. This tendency is not reflected in the direction of the
fermion signal strength. However, we observe doublet admixtures of up to ∆ ≈ 28% for
µbb above 0.9 and only ∆ ≈ 18% below. Figure 6.3b shows the distribution of points in the
µV
µF
− µγγ plane. We observe that the parameter space is constraint by the experimental

lower bound of the photonic signal strength. The upper limit is µγγ ≈ 1.02. However,
the majority of points is well below µγγ = 1 and we do not observe any points at the SM
value of µVµF = µγγ = 1. This is a known feature of 2HDMs with m2

12 = 0 [27]. In order to
explain this behaviour, we consider the main contributions to the decay channel into γγ
that are the two SM contributions via t and W± loops as well as the BSM contribution
via H± loops. Regarding the SM contributions, the t-loop contribution, which interferes
destructively with the W±-loop contribution, can be enhanced due to the allowed fermion
coupling range of up to c2(Hff) ≈ 1.3 whereas the W± loop cannot since the maximum
value of the effective coupling c2(HV V ) is unity. Furthermore, the BSM contribution can,
in general, interfere constructively or destructively with the SM contribution, depending
on the sign of the triple-Higgs coupling HiH

+H−. This coupling depends on the mass of
the charged Higgs boson and – for the general DSP – on m2

12. The charged Higgs boson
loop contributes increasingly destructive with increasing mH± whereas its interference be-
comes constructive for large m2

12. This compensation of large charged Higgs boson masses
is not possible in our model, because we set m2

12 = 0. In order to get within −5% (−9%)
of the SM value in µγγ , we require mH± . 95 GeV (120 GeV). Regarding the ratio of
the contributions to Higgs boson production, deviations from the SM value of µVµF = 1 are
possible with increasing doublet admixture. These are limited from below by the experi-
mental upper limit of µbb. Values above µV

µF
≈ 1.3 correspond to the excluded region in the

µbb − µV V plane at small µbb (see Figure 6.3a) and are therefore rejected by [61].

In conclusion, the DSP allows considerable room for deviations from the SM signal strengths
in terms of diminished as well as enhanced signal rates in all but the photonic channel. In
this decay channel, the SM value is only allowed for small charged Higgs boson masses.
In contrary, the IDP does not allow for enhancements compared to the SM in any of the
signal strengths but µγγ . The latter can take any value compatible with the experimental
fit.

6.2. Mass Distributions of the Additional Scalars
In this section, we address the phenomenology of the additional Higgs bosons present in our
phases. We begin by discussing the IDP that provides one additional visible Higgs boson.
We note that its mass covers the whole input range of 30 GeV− 1 TeV. The corresponding
dark sector consists of three scalars, the lightest of which is the DM candidate. The
relation between the masses of these dark Higgs bosons is studied in Section 6.2.1. The
DSP provides only one dark scalar whose physically allowed mass ranges from 30 GeV to
1 TeV. The corresponding visible sector is enlarged by one CP-even, one CP-odd and one
charged Higgs boson. The distributions of the physically allowed masses of the visible
Higgs bosons is studied in Section 6.2.2.
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6.2.1. Mass Splittings of the Dark Scalars in the Inert Doublet Phase

In this section, we discuss the mass characteristics of the three dark scalars in the IDP.
We note that constraints from searches for additional Higgs bosons do not apply to the
dark sector of the IDP since these searches rely on decays into pairs of SM particles but
HD, AD and H±D do not decay into pairs of SM particles4. The allowed mass ranges for
the dark scalars are

30 GeV ≤ mHD ,mAD < 1 TeV , (6.10a)
46 GeV ≤ mH±D

< 1 TeV . (6.10b)

The upper and lower bounds for the neutral scalars as well as the upper bound of the mass
of the dark charged Higgs boson are given by the input scan ranges, whereas the lower
bound in mH±D

results from the requirement 2mH±D
> mZ . Off-shell decays of the Z boson

into charged dark Higgs bosons are negligible because the charged dark Higgs boson is
either stable or its decays H±D → W± + HD/AD are phase-space suppressed. According
to [62], we define the splittings between the masses of the charged and CP-odd Higgs bosons
with respect to the mass of the CP-even Higgs boson

δ1 = mH±D
−mHD , (6.11)

δ2 = mAD −mHD . (6.12)

We observe that these splittings, see Figure 6.4, manifest in a characteristic shape. The
legs formed by the physical parameters points lie essentially in two regions, one in which
the mass splitting between the charged and the CP-even Higgs boson is less than 110 GeV
(vertical legs) and the other in which the difference between the masses of the charged and
the CP-odd Higgs boson is smaller than 70 GeV (diagonal legs). These legs meet where
the mass splittings of all three dark Higgs bosons are less than 200 GeV. This relation is

4Searches for decays of a heavy dark Higgs boson into a lighter one and a vector boson are not included
in HiggsBounds 4.3, but will be supported from HiggsBounds 5 onwards.
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well-known from the IDM [62] and originates from constraints of electroweak precision mea-
surements because two of the dark scalars can couple to a single gauge boson and, therefore,
contribute to the oblique parameters S and T . This means that in the IDP only parameter
points are allowed for which either AD (H±D) has a mass withinmHD±110 GeV (70 GeV) or
both have masses withinmHD±200 GeV. For large masses of the dark CP-even Higgs boson
(mHD & 900 GeV), only parameter points that provide (|δ1| < 200 GeV)∧(|δ2| < 200 GeV)
are in agreement with electroweak precision measurements.

6.2.2. Mass Ranges of the Visible Scalars in the Dark Singlet Phase

Regarding the masses of the additional visible scalars in the DSP, we observe the following
ranges

30 GeV ≤ mHl ,mA < 700 GeV , (6.13a)

80 GeV ≤ mH± < 700 GeV . (6.13b)

While the lower limit on the masses is given by the input scan ranges, the upper limit
arises from the fact, that for m2

12 = 0 these masses only depend on λ1 − λ5, the mixing
angle α and tanβ. The constraints on λ1− λ5 by tree-level perturbative unitarity and the
requirement for the potential to be bounded from below result in upper bounds for the
masses of the Higgs bosons, see [27]. We observe in Figure 6.5 that the upper bound in the
charged Higgs boson mass results in a lower bound in tanβ. This lower bound in tanβ,
which decreases with increasing mH± arises due to exclusion limits from measurements of
the rare decay B → Xsγ [47, 48]. The minimum value in our sample is tanβ ≈ 1.1 .

6.3. Distinguishing the Dark Phases Through the Properties
of the Additional Higgs Bosons

In this section, we investigate how to distinguish between our two phases based on the
assumption that an additional Higgs boson is discovered at the LHC. One of the first
properties being determined is whether the discovered Higgs boson is a charged or a neutral
state. The DSP would allow for both possibilities. On the contrary, the charged Higgs
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Figure 6.6.: Inclusive production and decay cross section for the decay channel Hl → ZZ
as a function of the Hl mass. The IDP is shown in blue and the DSP in
orange. The dashed black line corresponds to the cross section of a Higgs
boson with SM-like couplings. The gap at 125 GeV is due to the window we
exclude around mh125 (see Section 5.2.2).

boson in the IDP can only be produced in pairs and does not couple to fermions. Since
this would be extremely difficult to measure, the discovery of a charged Higgs boson would
rule out the IDP. Considering the discovered Higgs boson to be neutral, the state could
either be CP-even, CP-odd or mixed. The latter is not possible in neither of our N2HDM
phases and is thus not further discussed. The discovery of a CP-odd Higgs boson at collider
experiments is not compatible with the IDP due to the same reasons as the discovery of
a charged Higgs boson. However, both phases allow an additional visible CP-even Higgs
boson Hl. In the following, we discuss how to distinguish between the two phases based
on the respective predictions for the Hl properties. In order to discuss which kind of
observations could or could not be explained by our phases, we investigate the inclusive
production and decay rates for decays into various SM particles. The production cross
section

σ(pp→ Hl) = σ(ggH) + σ(bbH) (6.14)

is calculated via SusHi at NNLO QCD for a center-of-mass energy of 13 TeV using the
effective fermion couplings of the respective phase. We neglect the minor contributions
from vector boson fusion and associated production, because neither of our phases allow
an enhancement in the coupling to vector bosons. The branching ratios are calculated via
N2HDECAY.

First, we discuss the decay channel in ZZ whose production is shown in Figure 6.6 as a
function of the Hl mass in the IDP and DSP in comparison to the SM-like reference. Due
to the sum rule of the effective couplings

2∑
i=1

c2(HiV V ) = 1 , (6.15)

neither of our phases allows for an enhanced gauge-boson coupling of the CP-even Higgs
bosons compared to the SM. In addition, we require a large percentage of the gauge-boson
coupling for h125 to agree with experimental observations in the ZZ and W+W− final
states. This only allows for c2(HlV V ) . 0.27 in the DSP and c2(HlV V ) . 0.22 in the
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Figure 6.7.: Inclusive production and decay cross section for the decay channel Hl → ττ as
a function of the Hl mass. The dashed black line corresponds to the cross sec-
tion predicted for a Higgs boson with SM-like couplings. The gap at 125 GeV
is due to the window we exclude around mh125 .

IDP. In order to compensate small gauge-boson couplings either an increased production or
a reduced total width of the Hl is required. Increasing the production requires increasing
the coupling of Hl to top quarks, whereas reducing the total width requires a reduction of,
e.g. Γ(Hl → bb̄). Since c2(Htt̄) = c2(Hbb̄) holds in both of our phases, any enhancement
in the production would be compensated by an increase of the total width and vice versa.
In conclusion, neither of the phases allows a cross section in the channel pp → Hl → ZZ
above the corresponding SM reference. In this channel, a discrimination between the two
phases is hardly feasible because both show a very similar behaviour. Only a discovery of
a Higgs boson with a mass above mHl = 700 GeV would clearly rule out the DSP, since it
does not provide a CP-even Higgs boson in this mass range.

Regarding the leptonic decay channels of Hl, we examine the predictions for the τ τ̄ decay
channel shown in Figure 6.7. As mentioned in the above paragraph, the maximum value of
the squared coupling of the Hl to vector bosons in the IDP is 0.22 . Due to c2(HiV V ) =
c2(Hiff̄), the rate of pp→ Hl → τ τ̄ in the IDP is always well below the SM reference for
the same Higgs boson mass. In contrary, the sum rule applying to the fermion couplings
in the DSP is

2∑
i=1

c2(Hiff̄) =
1

sin2 β
. (6.16)

which – in combination with the lower limit in tanβ (see Section 6.2.2) – allows for param-
eter points with c2(Hlff̄) up to 1 . This allows the production via ggH to be comparable
to the SM reference. A reduction of the branching ratio into ZZ allows for a considerably
enhanced branching ratio into a pair of τ leptons and, therefore, an enhancement in the
inclusive cross section compared to the SM reference. Hence, the discovery of a Higgs
boson in the τ τ̄ channel allows a discrimination of the two phases. For a Higgs boson
mass below 63 GeV the IDP provides larger rates in the τ τ̄ channel than the DSP. This
is due to a combination of constraints on the signal strengths of the h125 and limits from
HiggsBounds. In the range 63 GeV < mHl < 125 GeV, the DSP allows for inclusive cross
sections of an order of magnitude higher than the dark doublet phase. Above mh125 , the
cross section in the IDP drops – similar to the SM reference – due to the opening of decays
into W+W− and, therefore, an additional Higgs boson would not be observable in the τ τ̄
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Figure 6.8.: Inclusive production and decay cross section for the decay channel Hl → γγ
as a function of the Hl mass. The dashed black line corresponds to the cross
section for a Higgs boson with SM-like couplings. The gap at 125 GeV is due
to the window we exclude around mh125 .

channel. In the DSP, however, the rates remain high up to mHl ≈ 350 GeV, where the
decay into a pair of top quarks becomes dominant.

We conclude this part of the analysis by studying the decay channel Hl → γγ whose
inclusive cross section is shown in Figure 6.8. The production cross section is again limited
by the maximum value of c2(Hlff̄) in the respective phase whereas the branching ratio
contains the loop contributions ofW bosons, t quarks and the charged Higgs bosons. Thus,
in the IDP the production cross section is reduced compared to the SM reference whereas
the DSP allows for a Hl production cross section comparable to the SM reference. In the
IDP, the SM contributions from W and t loops are modified by the effective couplings,
which is the same factor for both contributions. As stated above, the maximum value
the effective coupling can take is c2(HlV V ) = c2(Hlff̄) = 0.22 . The charged-Higgs
contribution can interfere constructively with the SM contributions which allows for an
enhancement of the photonic rate. However, the low production cross section and small SM
contributions cannot be compensated by the BSM contribution and therefore the inclusive
production and decay cross section in the IDP does not exceed the SM reference. In
the DSP, the W -loop contribution is suppressed because of c2(HlV V ) . 0.27. Since
this restriction does not apply to fermions, the squared fermion coupling c2(Hlff̄) can
reach values of up to ≤ 1 and, therefore, the t-loop contribution can become dominant.
In combination with sufficiently large top couplings and a reduced total width due to a
decrease in Γ(Hl → ZZ/W+W−), the DSP allows for a considerable enhancement in
the pp → Hl → γγ inclusive cross section compared to the SM reference. In the region
mHl < 125 GeV – similarly to the τ τ̄ channel – the inclusive cross sections of both phases
are smaller than the SM reference. However, in this channel, the cross sections for both
phases are of the same order of magnitude. For heavierHl, the cross section pp→ Hl → γγ
for the IDP is predicted to drop, whereas the one for the DSP remains at the same level
up to mHl ≈ 2mt, where the decay channel into two on-shell top quarks opens.

In summary, it is difficult to distinguish between the two phases solely on the basis of
inclusive cross sections. However, a discovery of a second Higgs boson with a mass above
700 GeV – regardless of the decay channel – would exclude the DSP. Nor could the discovery
of a very light Higgs boson (mH . 60 GeV) in the channel τ τ̄ be explained by the DSP.
Similarly, the discovery of a Higgs boson with a mass of more than 200 GeV and a rate of
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Figure 6.9.: Normalised spin-independent dark-matter-nucleon-scattering cross section ac-
cording to Eq. (4.20) plotted over the mass of lightest dark particle in the
respective phase. The red line corresponds to the exclusion bound from the
XENON1T observatory [50].

about 10 fb in the γγ channel or 100 fb in the ττ channel would put the IDP under strain.

6.4. The Impact of Dark Matter Direct Detection Constraints

Since the above considerations include all constraints except those resulting from the direct
detection of DM, this section analyses how these additional constraints (see Section 4.6)
affect the parameter space of our two phases. We start in Section 6.4.1 by analysing the
distribution of parameter points in the plane of the DM nucleon cross section and the mass
of the lightest dark particle. In Section 6.4.2, we discuss the impact of the DM direct
detection exclusion bound on the quantities of the visible sector discussed in Sections 6.1-
6.3 and finally examine the allowed ranges of the DM masses and the relic density predicted
by the IDP and DSP, see Section 6.4.3.

6.4.1. Dark Matter Nucleon Cross Sections

In Figure 6.9 the distribution of the whole samples of the two phases is shown in the plane
of the DM nucleon cross section and the mass of the lightest dark particle. In the IDP (a),
we observe two distinct regions that contain the majority of points. The region with larger
DM nucleon cross sections (σ̂ & 1×10−8 pb) corresponds to points with the charged Higgs
boson as lightest dark particle. The lower region (σ̂ . 1×10−8 pb) is populated with points
whose lightest dark particle is HD or AD. Since the DSP (b) only provides one CP-even
DM candidate, the distribution of parameter points resembles the ones in the IDP with HD

or AD as lightest dark particle. We observe that the exclusion bound from the XENON1T
experiment [50] rules out a vast majority of points in both phases. In the DSP, 0.83% of
the sample is compatible with the exclusion bound. In the IDP only 0.73% are compatible,
because parameter points with H±D as lightest dark particle generally correspond to larger
scattering cross sections than points with HD or AD as lightest dark particle. Thus, all
of the parameter points with H±D as lightest dark particle are ruled out by the XENON1T
exclusion bound.
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Figure 6.10.: Signal strengths of the h125 in the IDP normalised to the SM as in Figure 6.2.
The colour-coded points are those that fulfil the direct detection constraints,
the entire sample is shaded in grey. The dashed lines show the experimental
limits from [42] and the white triangle denotes the SM value.

6.4.2. The Impact on the Visible Sector

Since the visible and dark sectors of both phases are only linked via the triple and quartic
Higgs couplings, we would expect no significant impact of DM direct detection constraints
on the visible sector. In order to check this assumption, we take a second look at the signal
strengths of the h125. Figures 6.10 and 6.11 show the distribution of parameter points of
the IDP and DSP, respectively, which are compatible with the direct detection constraints.
To compare with Figures 6.2 and 6.3, the distributions of the entire samples are shown
in grey. In the IDP, we observe that in the µbb-µV V plane the distribution of parameter
points compatible with the direct detection constraints lies exactly above the distribution
of the entire sample. In the µV

µF
-µγγ plane, we observe the same effect in the range of

µγγ ≤ 1. Above µγγ = 1 there are fewer points, nevertheless values up to µγγ ≈ 1.5 are
reached. We suspect that this is simply the result of lower statistics. However, this must
be further studied in future work. We further note that the allowed range for the singlet
admixture remains the same as in the entire sample. In the DSP, we equally observe that
the distribution of parameter points fulfilling direct detection constraints is mostly similar
to that of the entire sample. However, there are a few relatively empty regions in the
µbb-µV V and in the µV

µF
-µγγ plane. This is most likely due to statistical effects and has to

be further investigated in future work. Regarding the inclusive production and decay cross
sections of Hl, we similarly observe no different distributions than in the Figures 6.6-6.8.
We thus conclude that DM direct detection bounds do not have a significant impact on
the visible sector.

6.4.3. The Impact on the Dark Sector

We observe from the distributions in Figure 6.9, that in both phases very light DM candi-
dates are excluded by direct detection constraints. The allowed mass ranges for the three
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Figure 6.11.: Signal strengths of the h125 in the DSP normalised to the SM as in Figure 6.3.
The colour-coded points are those that fulfil the direct detection constraints,
the entire sample is shaded in grey. The dashed lines show the experimental
limits from [42] and the white triangle denotes the SM value.

DM candidates in the IDP are

61 GeV ≤ mHD ,mAD < 1 TeV , (6.17a)
78 GeV ≤ mH±D

< 1 TeV . (6.17b)

As shown in Figure 6.12, the direct detection constraints exclude the charged Higgs boson
as lightest dark particle. For δ2 > 0, δ1 is strictly positive, i.e. if the CP-odd dark Higgs
boson is heavier than the CP-even one, the charged dark Higgs boson cannot be lighter
than HD without being excluded by DM direct detection. Similarly, if AD is lighter than
HD, |δ1| must always be smaller than |δ2| for the charged dark Higgs boson not to be the
lightest dark particle. Otherwise, the statements in section 6.2.1 remain valid. In the DSP,
dark Higgs bosons in the mass range

65 GeV ≤ mHD < 1 TeV (6.18)

can be realised.

Finally, we investigate how successfully the two phases can reproduce the observed relic
density. We therefore plot the relic densities realised in our two phases over the mass of the
respective lightest dark particle, see Figure 6.13. We observe that both phases generally
allow for relic densities of O(10−8) up to O(102). In the IDP, the cosmological value is
achieved for either DM masses below 110 GeV or above 720 GeV. The DSP allows to realise
the cosmological value in the whole mass range 30 GeV ≤ mLDP ≤ 1 TeV. Regarding the
subset of parameter points that fulfil DM direct detection constraints, Figure 6.13a shows
that the maximum DM relic density realised in the IDP is an order of magnitude below
the cosmological value. Therefore, in the range 30 GeV ≤ mLDP ≤ 1 TeV the IDP by
itself is not sufficient to explain the observed abundance of DM, but another source of DM
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Figure 6.13.: Distribution of the DM relic density as a function of the mass of the lightest
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ing the direct detection constraints, where the colour code corresponds to the
density of parameter points. The grey points correspond to the entire sample.
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would be necessary. In the DSP, see Figure 6.13b, we observe parameter points with relic
density values both above and below the cosmological value. While parameter points with
a DM relic density above the cosmological value are not physical, because they lead to an
abundance of DM, the DSP can also provide scenarios that reproduce the observed relic
density.



7. Conclusion

In this work we compared two of the simplest extensions of the SM providing a WIMP
as DM candidate, namely doublet and singlet DM. We selected the N2HDM because it
allows both approaches to be implemented as two different phases of EWSB based on one
common scalar sector. The IDP and the DSP both provide one additional neutral CP-even
Higgs boson that can mix with the 125 GeV state. The IDP further provides three dark
Higgs bosons – one neutral CP-even, one neutral CP-odd and one charged state. The
DSP only provides one neutral CP-even DM candidate, whereas the neutral CP-odd and
charged states are part of the visible sector. In this work, we focus on the Z2-conserving
potential and couplings to fermions as in a type I 2HDM.

In order to investigate the two phases, we performed an extensive parameter scan of each
phase using the ScannerS framework. We implemented each phase as a ScannerS model
class and applied all relevant theoretical and experimental constraints. This includes checks
for vacuum stability and tree-level perturbative unitarity as well as collider constraints
applying to the 125 GeV or the other visible states of the respective phase. In the DSP,
due to presence of a non-dark charged Higgs boson, we included additional constraints
from B-physics measurements. Constraints on the dark sectors are not applied within the
ScannerS framework but the relic density as well as the nucleon-scattering cross section are
calculated separately using micrOMEGAs. Based on this procedure, we generated samples
with physical parameter points that allow to study the properties of the visible and dark
sectors of each phase.

Regarding the visible sector, we scrutinised the phenomenology of the 125 GeV state in
each phase in terms of its couplings to SM particles and its signal strengths at collider
experiments normalised to the respective SM values. We observed that the squared cou-
plings of the h125 in the IDP to both vector bosons and fermions are modified compared
to the SM with one common factor in the range 0.78 up to unity. This is reflected directly
in the signal strengths. Only in the γγ channel, the IDP allows for significantly enhanced
signal strengths compared to the SM . On the contrary, the DSP allows for considerably
more room for deviations from the SM in terms of diminished as well as enhanced signal
strengths in all but the photonic decay channel. We conclude that more precise measure-
ments, especially in the photonic and fermionic decay channels, would allow to constrain
the parameter space of the two phases. We further investigated how to distinguish be-
tween the two phases assuming that one additional Higgs boson is discovered at collider
experiments. The DSP is compatible with the discovery of a charged or a neutral Higgs
boson, whereas the IDP would be ruled out by the discovery of a charged state, because the

39
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charged Higgs boson is DM. Nor could the IDP explain the discovery of a neutral CP-odd
Higgs boson, while the DSP could. However, both phases allow for an additional neutral
CP-even state to be discovered. We observed that the DSP only allows for masses of the
additional Higgs boson of up to 700 GeV. Therefore, the discovery of a heavier Higgs boson
would rule out this phase. In order to further examine which kind of observations could or
could not be explained by the IDP or DSP, we investigated the inclusive production and
decay rates for decays into a pair of SM particles. The ZZ decay channel does not allow
to discriminate between the two phases. In the channels τ τ̄ and γγ, on the contrary, the
discovery of a Higgs boson with a mass above 200 GeV could be easily explained only by the
DSP. In the IDP, the inclusive cross sections are too small in order to be measurable at the
LHC. The discovery of a Higgs boson with a mass below 63 GeV in the τ τ̄ channels could
be explained by the IDP but would put the DSP under strain. Otherwise, it is difficult to
distinguish between the two phases solely on the basis of inclusive cross sections.

In addition, we studied the properties of the dark sector and the impact of DM constraints
on both the visible and dark sector of each phase. In the visible sector, we compared the
distribution of points compatible with direct detection constraints to those of the whole
sample. However, the statistics are too low to establish definitively whether there is an
impact on the visible sector or not. Regarding the dark sector of the IDP, we found that the
charged dark state is ruled out as lightest dark particle due to direct detection constraints.
Furthermore, we showed that the IDP by itself is not sufficient to explain the observed
DM relic abundance. The DSP, in contrary, allows for DM candidates with masses above
200 GeV that can provide the observed relic abundance.

Future work should aim at increasing the statistics in order to further investigate the
impact of DM direct detection constraints on the visible and dark sectors of each phase.
Furthermore, it would be interesting to study the different behaviour of the IDP and the
DSP in terms of the inclusive production and decay cross section of the second visible
CP-even Higgs boson in the τ τ̄ channel at masses below 63 GeV. Besides, it would be
worth considering the two phases in the light of new constraints through the upcoming
HiggsBounds 5, especially regarding invisible decays such as Xi

D → Xj
D + Z/W± in the

IDP.



A. Appendix: Inert Doublet Phase

In this chapter, we give further information on the IDP. In Section A.1, we present the
formulae for the transformation from the Lagrangian to the physical parameter set. In
Section A.2, we provide formulae for the triple-Higgs couplings.

A.1. Explicit Parameter Transformations

In this section, we derive the formulae that allow to convert from the Lagrangian parameter
set of Eq. (3.7) to the physical parameter set of Eq. (3.8). First, we use the stationary
conditions for the VEVs (see Eqs. (2.8a)-(2.8c)) in order to trade two of the mass parameters
of the Lagrangian for the VEVs as follows

m2
22

(2.8b)
= − 1

2

(
v2λ2 + v2

sλ8

)
, (A.1a)

m2
S

(2.8c)
= − 1

2

(
v2
sλ6 + v2λ8

)
. (A.1b)

For the diagonalisation of the neutral CP-even sector, we use the mixing matrix given in
Eq. (3.2). This yields the following relations between the masses of the neutral CP-even
Higgs bosons and a subset of Lagrangian parameters:

m2
H1

= v2 cos2 αλ2 + v2
s sin2 αλ6 + 2vvs sinα cosαλ8 , (A.2a)

m2
H2

= v2 sin2 αλ2 + v2
s cos2 αλ6 − 2vvs sinα cosαλ8 , (A.2b)

m2
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=
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2
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11 + v2(λ3 + λ4 + λ5) + v2
sλ7) . (A.2c)

We further use the mixing matrix

U (3.4)
=

(
0 1
−1 0

)
, (A.3)

to diagonalise the charged and neutral CP-odd sectors, which yields

m2
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=
1

2
(2m2

11 + v2(λ3 + λ4 − λ5) + v2
sλ7) , (A.4a)

m2
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Equations (A.2a)-(A.2c), (A.4a)-(A.4b) and the requirement for the neutral CP-even mass
matrix to be diagonal allow to express six of the dimensionless parameters of the Lagrangian
in terms of the physical masses, the mixing angle α and the VEVs v and vs as follows
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)
, (A.5a)

λ3 =
1

v2

(
2
(
m2
H±D
−m2

11

)
− v2

s λ7

)
, (A.5b)

λ4 =
1

v2

(
m2
AD

+m2
HD
− 2 ·m2

H±
)
, (A.5c)

λ5 =
1

v2

(
m2
HD
−m2

AD

)
, (A.5d)

λ6 =
1

v2
s

(∑
i

m2
Hi · R2

i3

)
, (A.5e)

λ8 =
1

vvs

(∑
i

m2
Hi · Ri2 · Ri3

)
, (A.5f)

where Rij is the i, j element of the mixing matrix in Eq. (3.2). The parameters m2
11, λ1

and λ7 cannot be expressed through physical parameters and thus remain independent
parameters in the physical parameter set of the IDP.

A.2. Triple-Higgs Couplings

In this section we give the formulae for the triple-Higgs couplings g(XiXjXk) in the IDP.
A coupling g(XiXjXk) is defined as

g(XiXjXk) =
∂3L

∂Xi∂Xj∂Xk
, (A.6)

with Xi/j/k ∈
{
H1, H2, HD, AD, H

±
D

}
. In the following, the indices i, j can take unique

values of {1, 2} and denote one of the visible CP-even Higgs bosons H1 or H2, respectively.
All couplings with an odd number of dark Higgs bosons vanish due to the conserved dark
parity. The non-zero triple-Higgs couplings are the following:
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B. Appendix: Dark Singlet Phase

In this chapter, we give further information on the DSP. In Section B.1, we present the
formulae for the transformation from the Lagrangian to the physical parameter set. In Sec-
tion B.2, we provide formulae for the triple-Higgs couplings. In the following, we consider
the softly-Z2-broken potential. For generality, all formulae for the Z2-conserving potential
can easily be determined by setting m2

12 = 0.

B.1. Explicit Parameter Transformations
In this section, we derive the formulae that allow to convert from the Lagrangian parameter
set of Eq. (3.18) to the physical parameter set of Eq. (3.19). First, we use the stationary
conditions for the VEVs (see Eqs (2.8a)-(2.8c)) in order to trade two of the mass parameters
of the Lagrangian for the VEVs as follows
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For the diagonalisation of the neutral CP-even sector, we use the mixing matrix given in
Eq. (3.14). This yields the following relations between the masses of the neutral CP-even
Higgs bosons and a subset of Lagrangian parameters:
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We further use the mixing matrix in Eq. (3.4) to diagonalise the charged and neutral
CP-odd sectors, which yields

m2
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, (B.3a)
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Equations (B.2a)-(B.2c), (B.3a)-(B.3b) and the requirement for the neutral CP-even mass
matrix to be diagonal allow to express six of the dimensionless parameters of the Lagrangian
in terms of the physical masses, the mixing angle α, the VEV v and tanβ as follows
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where Rij is the i, j element of the mixing matrix in Eq. (3.14). The parameters λ6, λ7

and λ8 cannot be expressed through physical parameters and thus remain independent
parameters in the physical parameter set of the DSP.

B.2. Triple-Higgs Couplings

In this section we give the formulae for the triple-Higgs couplings g(XiXjXk) in the DSP.
The definition of the coupling g(XiXjXk) is given in Eq. (A.6) with Xi/j/k ∈ {H1, H2, HD,
A,H±}. In the following, the indices i, j can take unique values of {1, 2} and denote one of
the visible CP-even Higgs bosons H1 or H2, respectively. All couplings with an odd number
of HD vanish due to the conserved dark parity. The non-zero triple-Higgs couplings are
the following:
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i1λ345

)]
, (B.5)

g(HiHjHj) = v
[
cβ
(
3Ri1R2

j1λ1 + (3Ri2Rj1Rj2 +Ri1)λ345

)
+ vsβ

(
3Ri2R2

j2λ2 + (3Ri1Rj1Rj2 +Ri2)λ345

) ]
,

(B.6)

g(HiAA) = v
[
cβ
(
cβsβRi2 (λ2 − 2λ5) + c2

βRi1λ34−5

)
+ sβ

(
cβsβRi2 (λ1 − 2λ5) + s2

βRi2λ34−5

) ]
,

(B.7)

g(HiH
+H−) = v

[
cβ
(
s2
βRi1λ1 + c2

βRi1λ3 − cβsβRi2 (λ4 + λ5)
)

+ sβ
(
c2
βRi2λ2 + s2

βRi2λ3 − cβsβRi1 (λ4 + λ5)
) ]
,

(B.8)

g(HiHDHD) = v [cβRi,1λ7 + sβRi,2λ8] . (B.9)



C. Global Minimum Conditions for the
Z2-Conserving Potential

In this chapter, we present the conditions for a stationary point of the Z2-conserving
potential to be a global minimum of the potential. First, we identify all possible solutions
of the stationary conditions for the C- and CP-conserving VEVs v1, v2 and vs as well as
the charge-breaking VEV vcb and the CP-breaking VEV vcp, as described in Section 4.1.2.
In Sections C.1 and C.2, we derive the value of the scalar potential for each of the cases
listed in Tables 4.2 and 4.3, respectively. The special cases, i.e. the cases that only exist
for specific choices of Lagrangian parameters listed in Table 4.1, are considered separately
in Section C.3. The definition of the most general static field configuration, see Eq. (4.6),
is such that the VEVs are real parameters. Therefore, we state the positivity conditions
for the squared VEVs, which are the conditions for the solution to satisfy this requirement,
together with the corresponding stationary values of the scalar potential. In order to
shorten the expressions, we introduce the following short-hand term:

Λijkl = λiλj − λkλl . (C.1)

We summarise our findings in Section C.4.

C.1. 2HDM-Like Stationary Points
In this section, we derive the stationary values and positivity conditions for the cases with
vs = 0, see Table 4.2.

C.1.1. Case I

We consider v1, v2 6= 0 while vcb = vcp = 0. The stationary value of this CP- and charge-
conserving case is

V (I) =

(
m2

11

)2
λ2 +

(
m2

22

)2
λ1 − 2m2

11m
2
22x

2Λxx12

, (C.2)

with x = λ3 + λ4 + λ5. The conditions for this solution to exist are

0 < v2
1 =

2
(
m2

11λ2 −m2
22x
)

Λxx12

, (C.3a)

0 < v2
2 =

2
(
−m2

11x+m2
22λ1

)
Λxx12

. (C.3b)
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C.1.2. Case III

Case III considers v1 = v2 = 0 involving three sub-cases with either

vcb 6= 0, vcp 6= 0 , (C.4a)
vcp 6= 0, vcb = 0 , (C.4b)
vcb = 0, vcp 6= 0 . (C.4c)

All three CP- and / or charge-breaking cases lead to the same stationary value

V (IIIabc) = −
(
m2

22

)2
2λ2

. (C.5)

Simplifying the positivity conditions of the squared VEVs results in:

0 < −2m2
22

λ2
. (C.6)

Since the conditions for the potential to be bounded from below (see Section 4.1.1) requires
λ2 > 0, m2

22 < 0 is required for the solution to exist.

C.1.3. Case IV

Case IV includes all cases with v1 6= 0, v2 = 0 and different combinations of zero and
non-zero vcb and vcp. For the case IVa, where vcb = vcp = 0, the positivity condition is

0 < v2
1 =− 2m2

11

λ1
. (C.7)

In combination with λ1 > 0, which results from the conditions for the potential to be
bounded from below, this implies m2

11 < 0. The stationary value of the scalar potential for
case IVa is given by

V (IVa) =−
(
m2

11

)2
2λ1

. (C.8)

The cases IVc (vcp 6= 0) and IVd (vcb 6= 0) only exist if

0 < v2
1 =

2
(
−m2

11λ2 +m2
22x
)

Λ12
xx

, (C.9a)

0 < v2
i =

2
(
m2

11x−m2
22λ1

)
Λ12
xx

(C.9b)

are fulfilled, where vi = vcp for the case IVc and vi = vcb for the case IVd. The short-hand
term x denotes

x =

{
λ34−5

λ3

(IVc) ,
(IVd) . (C.10)

The corresponding stationary value of the scalar potential is

V (IVc/d) =

(
m2

11

)2
λ2 +

(
m2

22

)2
λ1 − 2m2

11m
2
22x

2Λxx12

. (C.11)
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C.1.4. Case V

Case V covers all sub-cases with v1 = 0, v2 6= 0 and different combinations of zero and
non-zero vcb and vcp. The positivity conditions of all four cases yield

0 < −2m2
22

λ2
. (C.12)

Analogously to case III, the cases Va-d are only solutions of the stationary conditions if
m2

22 < 0. All four sub-cases lead to the same stationary value

V (Vabcd) = −
(
m2

22

)2
2λ2

. (C.13)

C.2. Stationary Points With a Non-Zero Singlet Vacuum Ex-
pectation Value

In this section, we derive the stationary values and positivity conditions for the cases with
vs 6= 0, see Table 4.3.

C.2.1. Case sI

Analogously to case I, case sI covers the CP- and charge-conserving case with v1, v2 6= 0
and non-vanishing singlet VEV. In order for cases I to exist, the positivity conditions

0 < v2
1 =

2
(
m2

11Λ88
26 −m2

22Λ78
x6 −m2

sΛ
x8
27

)
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

, (C.14a)

0 < v2
2 =

2
(
−m2

11Λ78
x6 +m2

22Λ77
16 −m2

sΛ
x7
18

)
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

, (C.14b)

0 < v2
s =

2
(
−m2

11Λx8
27 −m2

22Λx7
18 +m2

sΛ
xx
12

)
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

, (C.14c)

where x denotes λ3 +λ4 +λ5, must be fulfilled. The corresponding stationary value of the
scalar potential is given by

V (sI) =

(
m2

11

)2
Λ88

26 +
(
m2

22

)2
Λ77

16 +
(
m2
s

)2
Λxx12

2
(
−λ1Λ88

26 + xΛ78
x6 + λ7Λx8

27

)
− m2

11m
2
22Λ78

x6 +m2
s

(
m2

11Λx8
27 +m2

22Λx7
18

)
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

.

(C.15)

C.2.2. Case sIII

Case sIII is the analogy to case III with vs 6= 0, i.e. we have v1 = v2 = 0 with the three
sub-cases

vcb 6= 0, vcp 6= 0 , (C.16a)
vcp 6= 0, vcb = 0 , (C.16b)
vcb = 0, vcp 6= 0 . (C.16c)

Each of the three sub-cases results in the following positivity conditions

0 < v2
cp + v2

cb =
2
(
m2

22λ6 −m2
sλ8

)
Λ88

26

, (C.17a)

0 < v2
s =

2
(
−m2

22λ8 +m2
sλ2

)
Λ88

26

. (C.17b)
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The stationary value of the scalar potential corresponding to all three cases reads

V (sIIIabc) =

(
m2

22

)2
λ6 +

(
m2
s

)2
λ2 − 2m2

22m
2
sλ8

2Λ88
26

. (C.18)

C.2.3. Case sIV

Case sIVa, where only v1 and vs do not vanish, exists when fulfilling the following positivity
conditions

0 < v2
1 =

2
(
m2

11λ6 −m2
sλ7

)
Λ77

16

, (C.19a)

0 < v2
s =

2
(
−m2

11λ7 +m2
sλ1

)
Λ77

16

. (C.19b)

Furthermore, it yields the following stationary value of the scalar potential

V (sIVa) =

(
m2

11

)2
λ6 +

(
m2
s

)2
λ1 −m2

11m
2
sλ7

2Λ77
16

. (C.20)

In the cases sIVc and sIVd, where additionally to v1 6= 0 and vs 6= 0 also vcp 6= 0 or vcb 6= 0,
respectively, the positivity conditions are

0 < v2
1 =

2
(
m2

11Λ88
26 −m2

22Λ78
x6 −m2

sΛ
x8
27

)
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

, (C.21a)

0 < v2
s =

2
(
m2

11Λ27
x8 +m2

22Λ18
x7 +m2

sΛ
xx
12

)
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

, (C.21b)

0 < v2
i =− 2

(
m2

11Λ78
x6 −m2

22Λ77
16 +m2

sΛ
x7
18

)
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

, (C.21c)

where

x =

{
λ34−5

λ3

(sIVc) ,
(sIVd) . (C.22)

The corresponding stationary value of the scalar potential is

V (sIVcd) =

(
m2

11

)2
Λ88

26 +
(
m2

22

)2
Λ77

16 +
(
m2
s

)2
Λxx12

2
(
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

)
+
m2

11m
2
22Λx6

78 +m2
s

(
m2

22Λ18
x7 +m2

11Λ27
x8

)
xΛ78

x6 + λ7Λx8
27 − λ1Λ88

26

.

(C.23)

C.2.4. Case sV

Case sV covers the sub-cases with v1 = 0 v2 6= 0, vs 6= 0 and different combinations of zero
or non-zero vcp and vcb. In order to be a valid solution of the stationary conditions, each
of these cases has to fulfil the following positivity conditions

0 < v2
2 + v2

cp + v2
cb =

2
(
m2

22λ6 −m2
sλ8

)
Λ88

26

, (C.24a)

0 < v2
s =
−2
(
m2

22λ8 −m2
sλ2

)
Λ88

26

. (C.24b)

The stationary value of the potential corresponding to sVa-d reads

V (sVabcd) =

(
m2
s

)2
λ2 +

(
m2

22

)2
λ6 −m2

22m
2
sλ8

2Λ88
26

. (C.25)
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Table C.1.: VEV configurations for the solutions (C.30)-(C.31c) of the special cases λ5 = 0,
λ5 = −λ4 and λ5 = λ4.

Case vi vj Condition

IIa v2 vcp λ5 = 0
IIb v2 vcb λ5 = −λ4

IVb vcp vcb λ5 = λ4

C.2.5. Case s

The case s describes the situation where all VEVs are zero, except for vs. The condition
for this case to be a solution of the stationary conditions is

0 < v2
s =− 2m2

s

λ6
. (C.26)

Since λ6 is required to be positive due to boundedness from below, this case only exists for
m2
s < 0. The corresponding stationary value of the potential is

V (s) =−
(
m2
s

)2
2λ6

. (C.27)

C.3. Special Cases
For particular choices of Lagrangian parameters, additional cases become possible. In this
section, we derive the stationary values of the potential and the positivity conditions for
the cases listed in Table 4.1.

Regarding the cases with vanishing singlet VEV, choosing λ5 to be zero, allows for case IIa,
where v1, v2, vcp 6= 0. Choosing λ5 = −λ4 allows for v1, v2 and vcp to be simultaneously
non-zero (case IIb). If λ5 = λ4, case IVb is allowed, i.e. the case of v1, vcp and vcb
being simultaneously non-zero. All three cases are covered with the following positivity
conditions

0 < v2
i + v2

j =− 2m2
11x− 2m2

22λ1

Λxx12

, (C.28a)

0 < v2
1 =− −2m2

11λ2 + 2m2
22x

Λxx12

, (C.28b)

where vi and vj are chosen according to table C.1. x is introduced as a short-hand term
for

x =

{
λ3 + λ4

λ3

(IIa) ,
(IIb and IVb) . (C.29)

The three configurations yield a scalar-potential value of

V (II) =

(
m2

11

)2
λ2 − 2m2

11m
2
22x+

(
m2

22

)2
λ1

2Λxx12

. (C.30)

Considering a non-zero singlet VEV implies the following positivity conditions

0 < v2
i + v2

j =
2
(
m2

11Λx6
78 +m2

22Λ77
16 +m2

sΛ
18
x7

)(
λ7Λx8

27 + xΛ78
x6 − λ1Λ88

26

) , (C.31a)

0 < v2
1 =

2
(
m2

11Λ88
26 +m2

22Λx6
78 +m2

sΛ
27
x8

)(
λ7Λx8

27 + xΛ78
x6 − λ1Λ88

26

) , (C.31b)

0 < v2
s =

2
(
m2
sΛ

xx
12 +m2

11Λ27
x8 +m2

22Λ18
x7

)(
λ7Λx8

27 + xΛ78
x6 − λ1Λ88

26

) , (C.31c)
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with x analogously to the cases IIa, IIb and IVb (see Eq. (C.29)). The corresponding
stationary value of the scalar potential reads

V (II) =

(
m2

11

)2
Λ88

26 +
(
m2

22

)2
Λ77

16 +
(
m2
s

)2
Λxx12

2
(
λ7Λx8

27 + xΛ78
x6 − λ1Λ88

26

) (C.32)

− m2
11m

2
22Λ78

x6 +m2
s

(
m2

11Λx8
27 +m2

22Λx7
18

)
λ7Λx8

27 + xΛ78
x6 − λ1Λ88

26

. (C.33)

C.4. Summary

We observe that certain cases share the same positivity conditions and potential values.
The results of case V equal those of case III. Likewise, the results of case sV equal those of
case sIII. We further note that the cases (s)IVc and (s)IVd extend case (s)I, because they
only differ in the variable x as follows

x =


λ3 + λ4 + λ5

λ3 + λ4 − λ5

λ3

(I) ,
(IVc) ,
(IVd) .

(C.34)

The special cases (s)IIb and (s)IVb yield the same results as the case (s)IVd and special
case (s)IIa equals to the cases (s)I and (s)IVc, because λ345 = λ34−5 for λ5 = 0. Therefore,
these cases do not further constrain the parameter space. In conclusion, there are five
2HDM-like cases (I, III, IVa, IVc and IVd) and six cases with non-vanishing singlet VEV
(sI, sIII, sIVa, sIVc, sIVd and s) that differ in their results and need to be considered
separately in order to determine whether the physical vacuum of the potential is the global
one.
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Glossary

2HDM Two-Higgs-Doublet Model. 2, 4, 5, 8–10, 28, 39

bbH Higgs production via b-quark fusion. 15, 20, 26, 27, 31

BSM Physics beyond the Standard Model. 1, 15, 28, 33

DM Dark matter. 1, 2, 4, 7, 9–11, 16, 17, 20, 21, 23, 28, 34–40

DSP Dark singlet phase of the Next-to-Two-Higgs-Doublet Model. 2, 7, 9–11, 15, 19–21,
23–25, 27, 28, 30–40, 43, 44

EWSB Electroweak symmetry breaking. 1, 2, 4, 7, 39

FCNC Flavour-changing neutral currents. 5, 9

ggH Higgs production via gluon fusion. 15, 20, 26, 27, 31, 32

IDM Inert Two-Higgs-Doublet Model. 1, 30

IDP Inert doublet phase of the Next-to-Two-Higgs-Doublet Model. 2, 4, 7, 9, 11, 19–21,
23–37, 39–42

LEP Large Electron-Positron Collider. 11

LHC Large Hadron Collider. 11, 15, 25, 30, 40

N2HDM Next-to-Two-Higgs-Doublet Model. 1–5, 7, 11, 12, 19, 23, 31, 39

NNLO Next-to-next-to-leading order. 20, 31

QCD Quantum chromodynamics. 15, 20, 31

SM Standard Model of Particle Physics. 1–4, 7–10, 15, 20, 23–29, 31–33, 35, 36, 39, 40

VBF Higgs production via vector boson fusion. 15, 26, 27

VEV Vacuum expectation value. 4, 7–10, 12–14, 19, 20, 41–47, 49, 50

VH Vector-boson associated Higgs-boson production. 15

WIMP Weakly interacting massive particle. 1, 39
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