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1. Introduction

The idea of formulating physical laws describing nature in an effective rather than a fun-
damental way was already present in the ancient Greece. With the discovery of advanced
mathematical and experimental tools modern physics is able to hypothesize and falsify
microscopic theories as well as to perform the classical limit, if appropriate, and give a
connection to physical phenomena at macroscopic scales. In this manner the scattering of
two objects can be described by classical mechanics rather than quantum mechanics (QM)
if their de Broglie wavelength λ = ~/p, where p is the momentum and ~ ≈ eV ·µm the
Planck constant, is much smaller than their spatial size. One advantage of the classical
limit is not only due to simpler mathematics in the effective description, but also due to
the breakdown of QM in this kinematic regime. For example, when describing an electron
radiating a low-energy photon in QM, the expansion of the probability function in the
coupling constant e suffers from a logarithmic divergence indicating a breakdown of the
description. It was shown in Ref. [1] that this divergence can be avoided by a classical
expansion in e ω/me because the electron massme is much larger than the radiated energyω.

Quantum field theory (QFT) emerges from the ideas of quantum mechanics, field theory
and special relativity. It does include quantum corrections within a perturbative quantiza-
tion of the fields and contains the classical limit corresponding to the zeroth order in this
expansion. The Standard Model of particle physics (SM) is a gauge theory which describes
many experimental results with tremendous precision and is one of the most precisely
tested theories. However, the SM is not able to predict the correct relic abundance of Dark
Matter particles Ωh2 ≈ 0.12 [2], nor does it explain the baryon asymmetry observed in
the universe. There are also theoretical reasons for physics beyond the SM (BSM) such
as theorists hope to formulate a theory of everything, that is to combine gravity with
electroweak and strong interactions, the hierarchy problem or the strong Charge-Parity
(CP) problem. Thus, the SM can also be seen as an effective description of nature which
works under certain conditions only, namely at low interaction energies.
Effective field theories (EFT) assume that one of these conditions is the presence of a
mass hierarchy in the theory. This makes an expansion of observables in the ratio be-
tween masses and momenta of heavy and light states possible. Although it appears to be
analogous to the classical limit of QM, EFTs are still QFTs which are renormalizable at
each order in perturbation theory (which is called non-renormalizability). The SM itself
has many mass hierarchies spanning from a few keV (ignoring neutrino masses) up to
O(100GeV). This is why EFT techniques were already successfully applied and developed
in the context of high precision experiments studying the SM properties at very different
scales. Hence, EFTs are very powerful and well understood tools for the search of new
physics (NP) if further mass hierarchies are involved.
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1. Introduction

With the discovery of a scalar resonance h with massmh ≈ 125GeV [3, 4] at the Large
Hadron Collider (LHC) the last missing piece of the SM and the first elementary scalar
particle was found. Six years after the Higgs boson discovery,mh turned into a precision
observable with an experimental uncertainty of a few hundred MeV [2]. This strengthens
the question whether further scalar fields may be realized in nature as they are a necessity
in many BSM models. However, the presence of null-results in LHC BSM searches yield
strong constraints on the masses of e.g. additional colored particles of up to a few TeV
[5]. This implies large quantum corrections onmh in BSM models where the Higgs mass
is not a free parameter. Indeed, it was shown in Ref. [6] that conventional fixed order
computations ofmh in the Minimal Supersymmetric Standard Model (MSSM) suffer from
large logarithms and an EFT computation is more precise if the BSM mass scale is above
1TeV. Thus, for any BSM model with a large mass gap between the new BSM scale and the
electroweak scale, an EFT matching procedure between the SM scalar sector and the scalar
sector of the BSM model under consideration must be applied in order to decrease the
theoretical uncertainty in the prediction ofmh . Since experimental bounds on uncolored
BSM particles are often still below the TeV scale, it could happen thatmh must be computed
along with further light scalar states within an EFT which is not the SM but a model with
an extended Higgs sector.
Supersymmetric models have an extended Higgs sector compared to the SM as well as addi-
tional colored particles. Furthermore, they also yield relations between the scalar and other
sectors of the theory, which otherwise would be independent in a non-supersymmetric
EFT. Thus, the matching of supersymmetric theories with large mass hierarchies onto
low-energy EFTs is competitive to ordinary high precision calculations ofmh . Matchings
can also significantly reduce the parameter space of the EFTs, which gives a further pos-
sibility to distinguish between BSM models with different heavy states, even if only the
experimental signatures from light particles are in reach. These advantages have already
been studied for the simplest supersymmetric models in the past [7–10]. However, there
are aspects which were only partially addressed in the literature. On the one hand, the
simplest models still have open questions which can be answered in non-minimal models.
On the other hand, there are too many -if not infinite- realizations of non-minimal models
with an increasing complexity in computation. In addition, there are many possibilities to
accommodate different mass hierarchies, i.e. it is possible to construct different low-energy
EFTs of one specific theory. This makes it relatively time consuming to study non-minimal
models, since there are no automation mechanisms available for performing a precise
matching of scalar sectors containing more than one Higgs doublet. However, spectrum
generators such as SARAH/SPheno [11–14] compute mass spectra at fixed order for a
large class of BSM models even at two-loop level. Hence, it is a natural step to extend
these tools, such that they are able to perform an EFT matching between models at higher
scales. This Master thesis covers the theoretical grounds needed for such a matching
between two arbitrary scalar sectors at the one-loop level as well as the implementation
in SARAH/SPheno.

The thesis is organized as follows. Chapter 1 introduces the concept of effective field theo-
ries as well as the notation and motivations of the SM and its supersymmetric extensions.
Chapter 2 describes the implementation in SARAH/SPheno and gives a detailed example
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1.1. Effective Field Theories

of a toy model matching. Chapter 3 and 4 contain supersymmetric applications of the
matching procedure. Conclusions are presented in chapter 5.

1.1. Effective Field Theories

Effective Field Theories have a long tradition and many applications in different fields of
particle physics. In the following, we will give a modern example of an EFT, based on Ref.
[15], before formulating general statements.

1.1.1. Example: B decays

Quarks are subject to strong interactions and can form unstable hadronic states such as
mesons, composed of a quark-antiquark pair, and can decay into virtual SM vector bosons.
The vector bosons can then further decay into a pair of leptons, for example. Fig. 1.1a
shows the decay of a B+ meson, composed of a b̄ and a u quark, into a tau τ+ and a tau
neutrino ντ through aW + exchange. The physically relevant scales for this process are the
scale of Quantum Chromodynamics (QCD) ΛQCD at which hadrons begin to form and the
quark/meson masses, which describe the hard process. Since the mass of theW + boson is
much larger than these scalesmW ≈ 90GeV � 0.2GeV ≈ ΛQCD as well as the external
momenta (p2 �m2

W ), one can expand theW + boson propagator

дµν

p2 −m2
W

= −
дµν

m2
W

(
1 + O(

p2

m2
W

)

)
, (1.1)

were дµν is the Minkowski metric. The first term in this expansion is seen as an local
effective vertex. The corresponding Feynman graph is shown in Fig. 1.1b. According to
the rules of perturbation theory, this vertex is generated by an operator containing four
fermion fields

LEFT ⊃
Cbuτν

m2
W

(b̄LγµuL)(τ
+
L γ

µνL) , (1.2)

where the gamma matrices γµ have been contracted with the help of дµν and noW -bosons
are present inLEFT at all. TheWilson coefficientCbuτν has to be determined by performing
the calculation in Fig. 1.1a using the momentum expansion. This procedure is called
matching.
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1. Introduction

p

W +

b̄

u

τ+

ντ

(a) ∝ 1
p2−m2

W

b̄

u

τ+

ντ

(b) ∝ − 1
m2
W

Figure 1.1.: Decay of a B+ meson into a tau and a tau neutrino computed at tree level in
the (a) SM (b) effective description, where theW + boson has been integrated
out.

Since the calculation with the full Lagrangian containing theW boson field is not that
difficult, one may ask about the advantage of the matching and using LEFT instead. To
address this question, we consider the hadronic B0 decay into a D− and a π+ meson in
Fig. 1.2a in the full theory. The hard process of the decay, involving theW + boson is very
similar to the leptonic decay. Thus, one can again shrink the heavy propagator to a local
point interaction described by an effective Lagrangian, see Fig. 1.2b. Since the final state is
now also colored, QCD corrections are important. Fig. 1.3a shows such a correction in
the full theory with an addition internal gluon line. The diagram may be computed with
the use of dimensional regularization (DREG) which introduces the renormalization scale
Q . Although without physical relevance in the first place, Q should be of the order of the
physical process under consideration e.g. the mass of the decaying particle. All physical
parameters дj(Qi) of the theory measured at scales Qi need to be evolved to the scale Q of
the experiment using renormalization group equations (RGE). Thus, in the full theory the
one loop matrix element involves very different scales

M
full, (1)
b→cdu

∝ αs(Q) log
m2

b
(Q)

m2
W (Q)

(1.3)

wheremb(mb) ≈ 4.2GeV is the bottom mass, αs is the strong coupling constant and an on-
shellb-quarkp2 ≈m2

b
(Q) has been used. This rather large logarithm indicates a breakdown

of the perturbative expansion. To perform a meaningful expansion, the different scales
need to be separated, which is done using the EFT. At the scaleQmatch ≈mW , the coefficient
C
(1)
bcdu

(Qmatch) is calculated at one-loop by equating the one-loop EFT diagram Fig. 1.3b with

the full calculation Fig. 1.3a expanded in p2

m2
W
. In the next step, the result of the one-loop

matched coupling is run down to Q ≈ O(mb) using the RGEs of LEFT . The calculation
based on LEFT does not contain any large logarithm

M
EFT, (1)
b→cdu

∝ Cbcdu(Q) log
mb(Q)

Q
. (1.4)

One may wonder if there are large logarithms ∝ log Qmatch
mb

present at the matching scale.
Indeed, in each of the one-loop diagrams of Figs. 1.3a and 1.3b such a log arises. However,
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1.1. Effective Field Theories

b c

d d

u

d

W +

B0

π+

D−

(a) The full process on the meson level

b̄

d̄

u

c̄

(b) The hard subprocess in the EFT.

Figure 1.2.: The decay B0 → π+D−.

d̄

u

b̄ c̄

Wд

(a) NLO contrib. to Fig. 1.2a in the full theory

d̄

u

b̄ c̄

д

(b) EFT NLO contrib. to Fig. 1.2b

Figure 1.3.: The b → cud transition at NLO QCD in the full theory (a) and the EFT (b).

we will later give a general argument stating that the two theories must yield the same
results in the infra-red (IR) limit i.e. if p2,m2

b
→ 0. Thus, all large logarithms must cancel

when equating the two diagrams because those are only due to the mass gap betweenmb

and Qmatch (but notmW and Qmatch , which are of the same size). Furthermore, one should
stress that the ultra-violet (UV) behavior is not necessarily the same in both descriptions,
as LEFT introduces new counter terms for the effective four fermion operators at each
order in perturbation theory.
A different way of understanding how the scales have been separated is by writing the
large log as

log
mb

mW
= log

mb

Q︸ ︷︷ ︸
long distance

+ log
Q

mW︸  ︷︷  ︸
short distance

, (1.5)

where the first term corresponds to long distance contributions, canceling in the matching
but later entering the calculation of hadronic matrix elements at Q ≈mb in the EFT. The
second term corresponds to short distance physics absorbed in the Wilson coefficients at
the matching scale Q ≈mW .

We have seen that an EFT description can improve the calculation of an SM process
involving different scales. However, also NP may contribute to the considered processes.
For example, theW + boson in Fig. 1.1a may be replaced by a new charged scalar field
like it is predicted in many BSM models. In a usual bottom-up approach the prediction
of CSM

buτν
is compared with the experiment. The remaining parameter space for the BSM

model under consideration can then be deduced by performing a matching. However,
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1. Introduction

care has to be taken if general statements from global fits on a large set of coefficients are
made. Without performing a matching of the corresponding operators to a UV complete
model, the Wilson coefficients are treated as independent. This is usually not the case in
UV complete models, as they incorporate more symmetries than the SM and thus can give
correlations between certain coefficients. This will be shown in the last chapter of this
thesis.

1.1.2. The Appelquist Carazzone Theorem

The observations of the previous example have been formulated for general cases in 1977
by Appelquist and Carazzone [16]. The decoupling theorem states that

Any renormalizable QFT described by LH+L = LH + LL with heavy LH

and light LL fields turns for small external momenta into a theory composed
of light fields only, LEFT = LL + L

(5)
L + L

(6)
L , including additional non-

renormalizable operators L(n>4)
L .

There exists an on-shell renormalization scheme such that Lren
L ≡ Lren

EFT .

The crucial point is that the non-renormalizable operators L(n>4) are suppressed by the
massesm−n

H of the heavy fields. Thus, formH → ∞, the higher-dimensional operators
decouple from the theory without influencing physical low-energy observables.

The low-energy effective theory, described byLEFT(mL), of any renormalizable
theory ,described byLL+H (mH ,mL), must be renormalizable in the decoupling
limitmH → ∞.

Although the original theorem was given within an on-shell renormalization scheme,
it was shown that also the MS scheme in fact obeys the decoupling theorem [17]. In
particular, this is only possible if non-local contributions, which mix heavy and light fields,
are included in the matching. The consequence for a diagrammatic calculation is that
diagrams involving internal heavy as well as internal light propagators have to be included.
Section 1.1.4 will introduce various methods on how to derive LEFT from LL+H .
Since supersymmetric theories are of particular interest in this thesis, we want to stress
that also a supersymmetric version of the decoupling theorem [18] exists.

As a result of the decoupling theorem, one can impose the matching condition for all
one-particle-irreducible (1PI) correlation functions of the full theory and the EFT

Γfull
i (p2)

���
p2=0

= ΓEFT
i (p2)

��
p2=0
. (1.6)

Since the EFT is a renormalizable theory formH → 0, also the renormalization condition
which ensures a proper canonically normalized kinetic term has to be matched

∂p2 Γ
full
i (p2)

���
p2=0

= ∂p2 Γ
EFT
i (p2)

��
p2=0
. (1.7)

6



1.1. Effective Field Theories

The IR safety of the decoupling theorem ensures that all p2 dependent parts (which are in
addition potentially IR divergent) in the matching conditions Eqs. (1.6) and (1.7) cancel, i.e.
the low-momenta regions of the two theories are identical. Those contributions which are
not canceled in the matching conditions are called threshold corrections. They connect the
UV behaviour of the full theory to the parameters of the EFT.
Accordingly, a concrete matching needs to disentangle all non-local (p2-dependent) parts
of the full theory (which correspond to the 1PIs in the EFT) from the local (p2-independent)
parts, which are absorbed into the Wilson coefficients. Chapter 2 gives the details how
this can be achieved in a generic way at one-loop order.

1.1.3. (Non-)Decoupling in the Scalar Sector

There are a few subtle situations where heavy particles do not decouple. A case of non-
decoupling is for example, ifmH → ∞ would break a symmetry of the low-energy theory,
making it inconsistent.
For instance, consider a toy-model composed of a heavy scalar Φ and a light scalar φ, both
charged under the same Z2 symmetry:

LUV =
∑

S=Φ,φ

(
1

2
∂µS∂

µS −
1

2
m2

S S
2 − λS S

4

)
−m2

Φφ Φφ − λΦφ Φ
2φ2, mΦ �mφ . (1.8)

The result of the decoupling should yield a single scalar φ4 theory

LEFT =
1

2
∂µφ∂

µφ −
1

2
m2

φ φ
2 − λEFT φ

4 (1.9)

which is also Z2 invariant. A proper decoupling requiresmΦφ �mΦ, since large mixing
destroys the picture of a well separated mass hierarchy. Thus, we set mΦφ = 0 in the
following. At tree level, it follows from Eq. (1.6) that λEFT ≡ λφ whereas at one-loop order
one expects corrections of the form

δλφ ∝
1

16π2
λ2Φφ log

m2
Φ

Q2
(1.10)

which does not decouple because φ4 is a renormalizable operator. One could argue that
there is still a renormalization scheme where λφ is chosen such that all threshold correc-
tions from the heavy field are absorbed into its tree-level value. However, we will see that
in supersymmetric theories, the quartic couplings are governed by the gauge structure of
the theory and thus they do not have this freedom.

In the following we distinguish between two cases where the Z2 symmetry is broken by
the vacuum expectation value (VEV) of

(i) the heavy field 〈Φ〉 = vΦ or

(ii) the light field 〈φ〉 = vφ ,

7



1. Introduction

so that the symmetry breaking is either of the order

(i) m2
Φ ∝ v2

ΦλΦ or

(ii) m2
φ ∝ v2

φλφ .

In both cases the Z2 breaking introduces effective trilinear couplings proportional to a
quartic coupling times a VEV. We examine each case separately:

(i) 〈Φ〉 = vΦ, 〈φ〉 = 0
The effective trilinear coupling yields a new tree-level contribution to the quartic
coupling λEFT through an internalΦ propagator, similar to Fig. 1.1a. The contribution

is proportional to
v2
Φ
λ2
Φφ

m2
Φ

. However, it is vΦ ∝ O(mΦ) and thus the contribution to
λEFT does not decouple but keeps constant in the decoupling limit.
Another issue is that the mass eigenvalue, which is supposed to be lightm2

light =m2
φ+

v2
ΦλΦφ , leads to a fine-tuning condition between the tree-level parametersmφ andvΦ.

However, the actual problem arises at the one-loop level, where Z2-breaking terms
for the light field are radiatively generated by diagrams like the one shown in Fig. 1.4.

By dimensional arguments, the contribution from the diagram in Fig. 1.4 is ∝
v3
Φ
λ3
Φφ

m2
Φ

which also does not necessarily decouple because vΦ andmΦ are correlated. Thus
LEFT would suffer from diverging (or large) trilinear couplings in the decoupling
limit, which cannot be compensated (fine-tuned) as there is no such tree-level vertex.
Hence, the low-energy theory cannot be described by LEFT .

Φ

Φ

Φ
φ

φ

φ

Figure 1.4.: Radiatively generated Z2-breaking operator. Since there are no other scales

involved, the diagram must scale as ∝
v3
Φ
λ3
Φφ

m2
Φ

leaving a mass parameter of
O(mΦ) in the EFT. The doubled lines denote heavy propagators.

(ii) 〈Φ〉 = 0, 〈φ〉 = vφ
If the light scalar obtains a VEV vφ ∝ O(mφ) clearly all new Z2-breaking contribu-
tions from the heavy scalar are suppressed by v2φ/m2

Φ
→ 0 and vanish the decoupling

limit. This is precisely because there is not connection between the Z2-breaking
scale vφ (which is supposed to be a good symmetry of LEFT ) and the decoupling
scalemΦ.

8



1.1. Effective Field Theories

We conclude, that it is of particular importance at which scale the (soft) symmetry breaking
occurs and if there are potential contributions to mass parameters in the low-energy
Lagrangian. Care has to be taken if the breaking scale coincides with the decoupling
scale and inconsistencies occur if the symmetry of the tentative low-energy Lagrangian is
broken at the decoupling scale.

1.1.4. Integrating out Heavy Degrees of Freedom

This paragraph introduces various methods for constructing a low-energy Lagrangian from
a theory with a significant mass hierarchy. We discuss the advantages and disadvantages
of the different techniques and argue why we have chosen the diagrammatic method for
our calculation.

1.1.4.1. Covariant Derivative Expansion

The path integral formalism, introduced in QFT by Feynman [19], connects an n-point
correlation function with the generating functional Z [J ], which is a functional integral
over all field configurations Φ

Z [J ] =
∫
DΦ eiS[Φ, J ], (1.11)

where S =
∫
d4x L + J Φ is the action and J is an external current. The idea is to isolate

the heavy field configurations DΦ = DΦheavy ·DΦlight and integrate out all heavy degrees of
freedom Φheavy in a gauge-covariant way. The integration is done perturbatively which
is why the technique is also called covariant derivative expansion (CDE). The result is an
effective generating functional where the integration over an effective action Seff containing
light degrees of freedom takes place.
A generic approach to perform the construction of Seff using CDE techniques was given in
Ref. [20]. However, it was shown in Refs. [21, 22] that this general ansatz does not work
if the heavy fields couple linearly to light fields. Hence, no mixed loops containing both,
heavy and light propagator lines are accounted for.
Ref. [23] showed that CDE techniques can in principle take care of mixed loops, although
the modifications on the standard procedures are quite involved and difficult to generalize.
Indeed, there are also diagrams like Fig. 1.5a which have no mixed loops but a linear heavy-
light-light coupling involved. This type of diagram is called one-particle-reducible (1PR)
and is complementary to the 1PI diagram. 1PR diagrams are important for a matching and
generated at one loop by 1PIs connected to a tree-level vertex through a heavy propagator
line.

1.1.4.2. The Coleman-Weinberg Potential

Another possibility to compute Seff was given in 1973 by Coleman, Weinberg [24] and
Jackiw [25]. The result is a closed form of the one-loop effective potential ∆V (1), which is
the summation over all one-loop 1PI graphs in the limit of n → ∞ external scalars and
vanishing external momenta. Effective operators containing ϕ1, ... ,ϕm scalar fields are
thus given by the derivative ∂

m∆V (1)

∂ϕ1 ... ∂ϕm
.

9
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Φ

φ

φ

φ

φ

φ

φ

mφ �mΦ

(a) Example of a diagram not covered by nei-
ther standard CDE techniques nor the ef-
fective potential approach.

φ

φ

φ

φ

φ

φ

(b) The same diagram as (a) where the
crossed dot indicates a vertex insertion
from a tree-level matched vertex leading,
to a 1PI diagram accounted for in the
CDE.

Figure 1.5.: Two examples for (a) one-particle-reducible (1PR) and (b) a one-particle-
irreducible diagram in the full theory and the EFT, respectively.

Today the effective potential is known up to three-loop order for a general QFT [26],
which makes it an appealing candidate for a generic matching. However, with the effective
potential method one can only account for the first matching condition Eq. (1.6), but not for
the second one, because it is only the generator of all 1PI diagrams. Thus, wave function
renormalization constants have to be determined in a separate calculation. In addition,
the effective potential would need further modifications in order to also account for 1PR
diagrams.

1.1.4.3. Diagrammatic Method

Computing Feynman graphs has a long tradition in particle physics and involves many
standard techniques such as dimensional regularization (dimensional reduction, respec-
tively), Passarino-Veltman reduction, Feynman parameters etc. Although this machinery
might look much more involved than e.g. the effective potential approach, it is well known
and already automatized at the one-loop order with computer tools such as FeynArts
[27] and FormCalc [28]. Furthermore, it is straightforward to disentangle the contribu-
tions of one-loop corrections from light, mixed light-heavy, and heavy particles in the loop.

We summarize our comparison in Table 1.1, where the ability to include the different pieces
necessary for a complete matching are marked for the effective potential, the CDE and the
diagrammatic method. The comparison was made with the focus on the implementation of
the approach into a generic spectrum generator. We conclude that under this assumption
the diagrammatic method fits best for our purposes.

1.2. The Standard Model of Particle Physics

This section introduces notations and definitions concerning the SM as well as describes the
mechanism of spontaneous symmetry breaking in the electroweak sector, i.e. electroweak

10



1.2. The Standard Model of Particle Physics

Eff. Pot. CDE Diagrammatic

1PI X X X

1PR ? ? X

WFR × ? X

mixed loops X ? X

Table 1.1.: Comparison between the three considered matching methods: the effective
potential (eff. pot.), the covariant derivative expansion (CDE) and a calculation
of Feynman diagrams. The abbreviations indicate the inclusion of the following
diagrams: 1PI = one-particle-irreducibles, 1PR = one-particle-reducibles, WFR
= loops on external legs, mixed loops = loops containing heavy and light fields.
Entries marked with ”X” are suited while those with a ”×” do miss the feature
completely. The ”?” means, that it is technically possible but not (yet) suitable
for a generic implementation.

symmetry breaking (EWSB). As an example, the generation of gauge boson masses is
discussed, while the fermion sector is introduced in the gauge basis only.

1.2.1. Notation and Definitions

The SM is a gauge theory with the gauge group GSM = SU (3) × SU (2) × U (1), the
corresponding gauge fields and gauge couplings д1,2,3 are listed in Table 1.2 whereas
matter fields are listed in Table 1.3. In addition to the gauge symmetries, the SM has many
approximate global symmetries starting from a U (3)5 in the family space of the matter
fields. These global symmetries are broken by the hierarchy in the 3x3 Yukawa matrices
Yl ,d ,u which couple fermions to the Higgs field responsible for their mass generation.
Further tree-level input parameters of the SM are found in the Higgs potential which
connects the mass parameter µ and the quartic Higgs self-coupling λ through EWSB to
the Higgs massmh and its VEV v.
The Lagrangian of the SM in unitarity gauge with suppressed generation, color and isospin
indices reads

LSM =
(
DµH

) †
(DµH) − µ2H †H −

1

2
λ2 |H †H |2

−
1

4
дµνд

µν −
1

4
WµνW

µν −
1

4
BµνB

µν

+ i l̄ /Dl + i ē /De + i q̄ /Dq + i ū /Du + i d̄ /Dd

− Yd q H d − Yu q H
†u − Yl l H e ,

(1.12)
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1. Introduction

where the covariant derivative Dµ is determined by the gauge structure listed in Table 1.2

Dµ = ∂µ − iд1YBµ − i
д2 σi
2

W i
µ + i

д3 λa
2

дaµ (1.13)

with the Hypercharge operator Y and the Pauli (Gell-Mann) matrices τ i (λa). The SU (2)
doublets are

H = (G+,H0)T , q = (uL,dL)
T and l = (νL, lL)

T , (1.14)

whereas d ≡ d̄R , u ≡ ūR and e = ēR are the right handed SU (2) singlets. There are no
right handed neutrino singlets νR . Thus, there is no possibility to construct Dirac mass
terms for neutrinos, whereas quark and lepton masses are generated through the Yukawa
couplings in the third line of Eq. (1.12) through EWSB.
The covariant derivative in Eq. (1.12) depends on the quantum numbers of the matter fields
it is acting on. The charges under the SM gauge groups are listed in Table 1.3. If a field
is a singlet, denoted by a 1, under the symmetry group, the corresponding term in Dµ

vanishes.

Field Gauge Group Coupling Name

B U (1) д1 hypercharge

W SU (2) д2 isospin

д SU (3) д3 color

Table 1.2.: Gauge fields in the Standard Model. Lorentz, isospin and color indices are
suppressed.

Field Spin Generations U (1) ⊗ SU (2) ⊗ SU (3)

H 0 1 (12 , 2, 1)

q 1
2 3 (16 , 2, 3)

l 1
2 3 (−1

2 , 2, 1)

d 1
2 3 (13 , 1, 3)

u 1
2 3 (−2

3 , 1, 3)

e 1
2 3 (1, 1, 1)

Table 1.3.: Matter field content in the Standard Model.
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1.2. The Standard Model of Particle Physics

1.2.2. Electroweak Symmetry Breaking in the SM

Gauge boson mass terms are forbidden when enforcing local invariance of the SM symme-
try groups. This is in conflict with the massive vector bosons observed at particle colliders.
The Higgs mechanism [29–31] does not only allow for gauge invariant mass generation,
it also connects the masses of the gauge bosons to the size of symmetry breaking of the
Higgs boson vacuum. This connection makes the SM a predictive model and is one of the
key features responsible for its enormous success.
We start by decomposing the neutral Higgs component into its real and imaginary part. If
µ2 < 0, the real part of H gets a non-zero vacuum expectation value (VEV)

〈H 〉 =
1
√
2

©«
0

v

ª®¬ . (1.15)

Expanding H around v yields

H =
©«
G+

H0

ª®¬ =
©«

G+

v+h+iG0
√
2

ª®¬ (1.16)

where h is the SM Higgs field and G0,± are the Goldstone modes which provide longitu-
dinal degrees of freedom for the massive vector bosons.
The minimum condition of the Higgs potential V (H), given in the first line of Eq. (1.12),
yields a relation between the Higgs massmh , its VEV and the quartic self-coupling

∂V (H)

∂H

����
H=〈H 〉

= µ2 〈H 〉† + λ(〈H 〉† 〈H 〉) 〈H 〉† = 0

⇔ 〈H 〉† 〈H 〉 ≡
v2

2
= −

µ2

λ

⇒ V

(
H0 ≈

v+ h
√
2

)
⊃

1

2
v2 λh2 +

λ

8
h4 +

λv

2
h3,

(1.17)

such that we obtain the tree-level relation

m2
h = v2λ. (1.18)

To calculate the gauge boson masses at tree-level, we consider the covariant derivative
acting on the real part of the H0 Higgs component after EWSB

DµH ⊃

(
∂µ − i

д2σi
2

W i
µ − i

д1
2
Bµ

) ©«
0

v+h
√
2

ª®¬
=

©«
0
∂µh
√
2

ª®¬ − i
(v+ h)

2

©«
д2√
2

(
W 1

µ − iW 2
µ

)
1√
2

(
д1B

µ − д2W
µ
3

) ª®¬ ,
(1.19)
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which leads to the definition of the chargedW bosons

W ±
µ =

W 1
µ ∓ iW 2

µ
√
2

. (1.20)

The fieldsW3 and B are rotated into the mass basis by the weak mixing angle θw ,

©«
Zµ

Aµ

ª®¬ =
©«
cosθw − sinθw

sinθw cosθw

ª®¬ ©«
W 3

µ

Bµ

ª®¬
=

1√
д21 + д22

©«
д2W

3
µ − д1Bµ

д2Wµ + д1Bµ

ª®¬ .
(1.21)

By squaring Eq. (1.19), we find mass terms for the rotated gauge fields Z and theW ± while
A is interpreted as the massless photon

(DµH)†
(
DµH

)
⊃ L

Gauдe
Mass =

(д2v
2

) 2︸  ︷︷  ︸
M2
W

W +
µ W −µ + v2

д21 + д22
8︸      ︷︷      ︸

1
2M

2
Z

ZµZ
µ . (1.22)

Using the definition of the electric charge

e ≡ д2 sinθw = д1 cosθw =
д1д2√
д21 + д22

(1.23)

it follows from Eq. (1.22) that

M2
W

M2
Z cos2 θw

= 1 ≡ ρ . (1.24)

The ρ parameter is one of the most precisely known observables of the SM [2]

1 − ρexp = (−3.9 ± 1.9) · 10−4 (1.25)

and thus a common quantity used in the search for NP. The reason for ρ ≈ 1 is a global
SU (2) × SU (2) custodial symmetry [32] which is broken by д1 , 0. In general, any BSM
model should respect this symmetry at tree-level to avoid large deviations from one. The
ρ parameter receives additional quantum corrections in the SM as well as BSM models
that have a sector that couples to the SM gauge sector. Since the ρ parameter is precisely
measured, those loop corrections must be taken into account

ρNLO =
1

1 −∆ρ
, ∆ρ =

Π(1),T
Z (0)

m2
Z

−
Π(1),T
W (0)

m2
W

, (1.26)

where Π(1), T
W ,Z are the transverse one-loopW and Z boson self-energies in the SM or BSM.

The custodial symmetry is also broken by Yd , Yu i.e. the mass difference of for example
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1.2. The Standard Model of Particle Physics

the top and bottom quark entering the self-energies. The one-loop correction of any
non-degenerate SU (2) doublet with massesm1 andm2 reads [2]

∆ρ ∝m2
1 +m2

2 −
4m2

1m
2
2

m2
1 −m2

2

log
m2

1

m2
2

≥ (m1 −m2)
2 . (1.27)

Since the custodial symmetry is broken by dimensionless parameters, it is not necessarily
connected to a certain breaking scale but only to the degree of mass non-degeneracy of the
doublet components. In case of any BSM model containing non-degenerate SU (2) doublet
components, the contribution to the ρ-parameter does not decouple asm1 → ∞ but only
ifm1 →m2.

1.2.3. The Standard Model as an Effective Theory

As already mentioned in the introductory example, a bottom-up approach parametrizes the
effects of not-too-heavy and not-too-light new physics by non-renormalizable operators
which are suppressed by the new mass scalemBSM. Under the assumption that the SM
is the correct EFT (no further light particles to be found at colliders), one can construct
all possible higher dimensional operators from SM fields that are Lorentz invariant and
respect the symmetries of the SM. Because of the power suppression, an expansion of the
form

LEFT =LSM +
∞∑

n=1

L
(n+4)
Eff , (1.28)

L
(n)
Eff =

∑
i

αi
mn

BSM
O(n) (1.29)

where αi are dimensionless couplings, is appropriate. The leading contributions come from
dimension n = 5, 6, ... operators. At dimension five level, there is only one such operator,
responsible for neutrino Majorana masses, the Weinberg operator. At dimension six,
there are already more than 50 independent operators [33, 34] (and even more if lepton
flavour conservation is relaxed), one of them

O6 =
c6

m2
BSM

|H †H |3 (1.30)

built from the Higgs doublet only.

After spontaneous symmetry breaking (SSB) the operator O6 contributes with

LEFT
SM ⊃

©«
λ

2
+

O6︷   ︸︸   ︷
15 c6 v2

8m2
BSM

ª®®®®®¬︸             ︷︷             ︸
λEFT

h4 (1.31)
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to the quartic Higgs coupling of the effective Lagrangian, which gives a shift to the SM
Higgs massmh in Eq. (1.18). However, the SM has no prediction for the Higgs mass, because
λ as a free parameter is not connected to any other known observable than the Higgs
mass and the Higgs self-couplings. Thus, the shift to the Higgs mass can be considered as
unphysical, since one can compensate it by choosing λ → λ − 15 c6 v2

4m2
BSM

.
A top-down approach may connect λ (and thus mh) to other parts of the Lagrangian,
giving the possibility to falsify the model because λ is already fixed. In addition, this
can also happen through threshold corrections which are not suppressed by v/mBSM but
non-decoupling terms.
Supposed that the fundamental theory is renormalizable, it follows from the decoupling
theorem, that the higher dimensional operators become unimportant at a certain scale. The
question arises, at which scale the v/mBSM terms are no longer relevant for a precise Higgs
mass calculation. The impact of dimension six terms, compared to ordinary threshold
corrections (not suppressed by the heavy scale), on the Higgs mass in a matching of the SM
to the MSSM was studied in Ref. [35]. It was found that for 500GeV < mBSM < 1000GeV,
a two-loop matching of c6 yields corrections onmh in the sub-GeV range, which rapidly
drop for mBSM > 1TeV. Since the focus of this thesis is set on BSM scenarios with
mBSM > 1TeV, we will neglect all v/mBSM contributions during the matching. This is in
agreement with setting

p2 =m2
SM particle ∝ v2 → ϵ2match → 0 (1.32)

all SM particles on-shell and massless during the matching procedure. The artificial
parameter ϵmatch is later used to isolate IR divergences. In analogy to the argumentation
in Section 1.1.1, all IR divergent parts ∝ log ϵmatch

Qmatch
must cancel in the matching condition.

After carefully isolating all IR terms, one can also set them to zero without computing and
canceling them against the corresponding diagrams in the EFT.

1.3. The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is often motivated to stabilize a
rather light Higgs mass [36] required for EWSB in the presence of heavy UV-physics, at
latest playing a role at the scale of quantum gravitymPlanck ≈ 1018 GeV. However, it can
also provide solutions for other problems like a Dark Matter (DM) candidate or unification
of the gauge couplings in a grand unified theory (GUT). In addition, local supersymmetry
(SUSY) is a popular link between gauge theories and gravity and sets directions for reduc-
ing the variety of soft-SUSY-breaking possibilities. Thus, even if the Higgs mass may again
appear unnatural in case of a large SUSY breaking scale mSUSY � mZ , there are good
reasons for continuing to study quasi-natural or even unnatural SUSY [9]. There are also
attempts to recover naturalness in the heavy SUSY scenario with a relaxion mechanism
[37].
Since there is a broad literature on SUSY introductions available [38–41], we will only focus
on the notations and conventions used in this thesis to describe the MSSM at tree-level.
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1.3. The Minimal Supersymmetric Standard Model

Since supersymmetry requires
nB = nF (1.33)

i.e. the bosonic and fermionic degrees of freedom (d.o.f.) to match, it is a common notation
to write fermion and boson fields with the same quantum numbers as a single superfield,
denoted by a hat, which fulfills Eq. (1.33). The chiral superfield Φ̂ then carries a complex
spin 0 scalar boson Φ as well as a two component Weyl spinor Ψ. Likewise, the vector
superfield Â is composed out of a real spin 1 boson Aµ and a spinor λ.
When constructing the most general gauge- and SUSY invariant interactions, a very useful
object, the superpotential W, is introduced. It is a holomorphic function of the superfields,
has mass dimension 3 and is invariant under the gauge group transformations. Additional
discrete symmetries of the superpotential may be introduced in order to account for
experimental observations.
With a given set of chiral (vector) superfields Φ̂1,..,n (Â1,...,m) and a set of gauge group
generators T1,...,m with gauge couplings д1,...,m (here 1, ...,m are not the gauge indices but
just a counting index for the different groups), the scalar potential of the Lagrangian is
derived from the superpotential W(Φ̂n) as follows [38]

V (Φ1,...,n,Ψ1,...,n, λ1,...,m) =W∗
i W

i︸   ︷︷   ︸
F-Terms

+
1

2
д2a

(
Φi∗T a

ijΦ
j
) 2︸              ︷︷              ︸

D-Terms

+
1

2

(
WijΨiΨj + h.c.

)
+
√
2дa

(
(Φi∗T a

ijΨ
j)λa + h.c.

)
︸                                                              ︷︷                                                              ︸

Yukawa couplings and fermion masses

,
(1.34)

where summation over repeated indices is implicit and

Wi1,...,in =
δnW

δΦi1 ...δΦin

(1.35)

is the functional derivative of the super potential w.r.t. the scalar components. The D-terms
as well as the F-terms are a consequence of elementary auxiliary fields necessary for the
requirement of Eq. (1.33) for off-shell fields.
Since we did not introduce the superfields along with the superspace, we do not have the
formalism at hand to explain the supersymmetric construction of terms involving space
time derivatives (i.e. kinetic terms) from the Kähler potential [42]. For our purpose it is
enough to mention that the construction of gauge invariant kinetic terms, as described in
Section 1.2.1, is indeed also supersymmetric.

1.3.1. Particle Content

Since the model should at least contain all SM fields, it is natural to start with GSM, built
upon the SM notation in Table 1.3. The corresponding SUSY partners are usually denoted
by the same symbols as their SM partners, supplemented with an additional tilde. For
instance, the superpartners of the quarks q are called squarks q̃. A complete list of all
vector and chiral superfields is given in Table 1.4
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BecauseW needs to be holomorphic, Yukawa interactions with a single Higgs doublet like
those in the SM Eq. (1.12) are not possible. One Higgs doubletHu = (H+

u ,H
0
u )

T is only able
to give masses to the up-type quarks but not to the down type quarks and leptons because
of their iso-spin and hypercharge. Furthermore, the appearance of gauge anomalies due
to the Higgs superpartners (higgsinos) forces the introduction of a second Higgs doublet
Hd = (H0

d
,H−

d
)T with opposite hypercharge. In order to forbid lepton-flavour-violating

Super field s = 1 s = 1/2 SM Gauge Group

B̂ B B̃ U (1)

Ŵ W W̃ SU (2)

д̂ д д̃ SU (3)

Super field s = 1/2 s = 0 Generations U (1) ⊗ SU (2) ⊗ SU (3)

Ĥu H̃u Hu 1 (12 , 2, 1)

Ĥd H̃d Hd 1 (−1
2 , 2, 1)

q̂ q q̃ 3 (16 , 2, 3)

l̂ l l̃ 3 (−1
2 , 2, 1)

d̂ d̄ d̃∗ 3 (13 , 1, 3)

û ū ũ∗ 3 (−2
3 , 1, 3)

ê ē ẽ∗ 3 (1, 1, 1)

Table 1.4.: Vector- and chiral superfields with spin in the Minimal Supersymmetric Stan-
dard model (MSSM). The superpartners have the same names as their SM coun-
terparts with the exception that (i) fermions have an appended ”ino” (ii) scalars
have a prepended ”s”.

terms in the resulting Lagrangian, a discrete symmetry, called R-parity, is introduced,

RΦ = +1Φ if Φ is a SM particle
RΦ = − 1Φ if Φ is a SUSY partner of a SM particle

(1.36)

from which follows that the lightest SUSY particle (LSP) is stable and thus a possible dark
matter candidate.

With all necessary ingredients at hand, the most general superpotential reads

WMSSM = −Yl l̂ ·Ĥd ê + Yu q̂ ·Ĥu û − Yd q̂ ·Ĥd d̂ + µ Ĥu ·Ĥd , (1.37)
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where µ is a mass parameter and Ĥu·Ĥd = Ĥ+
u Ĥ−

d
− Ĥ0

u Ĥ
0
d
is a symplectic product invariant

under SU (2). We consider a CP-conserving MSSM and thus assume µ, as well as all other
MSSM parameters, to be real.

1.3.2. The MSSM Lagrangian

Before applying Eq. (1.34) to the MSSM superpotential, we briefly want to discuss the
breaking of SUSY. If we consider SUSY as an effective theory which is completed at latest at
the Planck scale, it must be broken by parameters of mass dimension equal or greater than
one in order to accommodate a mass hierarchy between the SM, SUSY and a yet unknown
theory of everything (or some other intermediate theory in-between). Instead of giving
specific scenarios of SUSY breaking, a common strategy is to parametrize all possible ways
of soft-SUSY-breaking (i.e. breaking through parameters with mass dimension greater or
equal to one) which are allowed by the symmetries of the superpotential. In case of the
MSSM, the soft-SUSY-breaking Lagrangian reads

Lsoft = Bµ (Hu ·Hd + h.c .)

+Tl l̃ ·Hd ẽ
∗ +Td q̃ ·Hd d̃

∗ +Tu q̃ ·Hu ũ
∗

+m2
Hd
|Hd |

2 +m2
Hu
|Hu |

2 +m2
q |q̃ |

2 +m2
l |l̃ |

2

+m2
d |d̃ |

2 +m2
u |ũ |

2 +m2
e |ẽ |

2

−
M1

2
B̃ B̃ −

M2

2
W̃ W̃ −

M3

2
д̃ д̃,

(1.38)

where Bµ is the soft bilinear term of the µ-term and has mass dimension two. Likewise,
the second line in Eq. (1.38) contains soft terms for the trilinear Yukawa terms of the
scalar superpartners (sleptons and squarks). The third and fourth lines are the soft scalar
mass terms which, in case of Hu and Hd , are also needed to realize EWSB. The Ti (mi )
are complex (hermitian) 3x3 matrices in the generation space. The last line contains soft
mass terms for the gauge boson superpartners bino (M1), wino (M2) and gluino (M3). For
a better readability, we refrain from the use of tildes in the soft mass parameters.

The soft parameters Ti and mi are strongly constrained by the absence of lepton-flavour-
violating (LFV) processes. Since LFV is not of relevance for this thesis we parametrize for
simplicity

Tn = Yn An, n = l ,d,u

(mk)ij = δijmki , k = l ,d,u, e
(1.39)

and always assume flavour diagonal Yukawa matrices. Thus, the stop coupling At is
the most important soft breaking coupling of sfermions to the Higgs bosons due to the
contribution of Yt ≈ 1.
After the breaking of SUSY we use the first line of Eq. (1.34) to construct the MSSM scalar
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Higgs potential

V scalar
MSSM(Hu ,Hd) =

(
µ2 +m2

Hd

)
|Hd |

2 +
(
µ2 +m2

Hu

)
|Hu |

2︸                                             ︷︷                                             ︸
F-terms and soft masses

+Bµ (Hu ·Hd + h.c.)︸                 ︷︷                 ︸
soft bilinear term

+
1

8

(
д21 + д22

) (
|Hu |

4 + |Hd |
4 − |Hu |

2 |Hd |
2
)
+

д22
2
|H †

uHd |
2︸                                                                     ︷︷                                                                     ︸

D-terms

.

(1.40)

From the F-terms and µ2 > 0, the necessity ofm2
Hu,d

for successful EWSB can be seen. As
expected, the D-terms connect the quartic Higgs couplings with the SM gauge sector. We
do not show the F- and D-terms for the sfermions as they are not discussed further. The
Yukawa sector which does not concern sfermion interactions reads

LYukawa
MSSM = Yd q ·H

†

d
d̄R − Yu q ·Hu ūR − Ye l ·Hu ēR

−
д2
√
2
H̃u ·H

†
u W̃ −

д1
√
2
H̃u ·H

†
u B̃

−
д2
√
2
H̃d ·Hd

†W̃ −
д1
√
2
H̃d ·Hd

† B̃

− µ H̃u ·H̃d

+ h.c. ,

(1.41)

where the first line is the supersymmetric version for quark and lepton Yukawa couplings.
The second and third line describe higgsino-gaugino-Higgs interactionswhich are governed
by SM gauge couplings. The fourth line is actually no Yukawa coupling in the ordinary
sense. However, as we come to the singlet extension of the MSSM, it will be useful for
comparison to include it in this place.

1.3.3. Electroweak Symmetry Breaking in the MSSM

Assuming that the condition for EWSB [38]

B2
µ >

(
µ2 +m2

Hu

) (
µ2 +m2

Hd

)
(1.42)

is fulfilled, both Higgs boson fields acquire VEVs

〈Hu〉 = (
vu
√
2
, 0)T and

〈Hd〉 = (0 ,
vd
√
2
)T ,

(1.43)

which are usually connected by the definition of the mixing angle β

tan β =
vu
vd

(1.44)
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such that v2u + v2
d
= v2 is the Standard Model VEV. To shorten the notation, we introduce

the abbreviations
tan β ≡ tβ sin β ≡ sβ cos β ≡ cβ . (1.45)

The minimum of the potential reads

〈V scalar
MSSM〉 =

(
µ2 +m2

Hd

)
v2d +

(
µ2 +m2

Hu

)
v2u + 2Bµ vd vu

+
1

8

(
д21 + д22

) (
v2u − v2d

) 2 (1.46)

from which we can extract conditions for the soft mass parameters by applying the tadpole
conditions ∂〈V 〉/∂vi

��
i=u,d

= 0 for each Higgs VEV,

m2
Hd

= Bµtβ −
1

2
m2

Zc2β − µ2 ,

m2
Hu

= Bµt
−1
β +

1

2
m2

Zc2β − µ2 ,

(1.47)

where the definition of the tree-level Z boson mass Eq. (1.22) has been used.

1.3.4. Tree-Level Masses and Mixing Matrices

In the following sections, we give expressions for the mass matrices in the gauge basis
at tree-level in unitary gauge. The diagonalization of the mass matrices is performed in
Chapters 3 and 4 where different approximations are applied.

1.3.4.1. Neutral and Charged Higgs States

After EWSB, five physical Higgs bosons mix to two CP-even h, H , one CP-odd A and a
pair of charged scalar bosons H± . It was shown in Ref. [38], that β can diagonalize the
CP-even, CP-odd and charged Higgs boson mass matrices simultaneously if the spectrum
contains only one light CP-even Higgs boson (”decoupling limit”). Thus, we will refrain
from the definition of further mixing angles for the moment. Using the tadpole conditions
Eq. (1.47) we get the symmetric CP-even (CP-odd) Higgs boson mass matrix m2

H (m2
A) as

well as the mass matrix m2
H± of the charged one in unitary gauge

m2
H =ZH

©«
Bµ tβ +m2

Z c
2
β

−Bµ −m2
Z

s2β
2

Bµ t
−1
β

+m2
Z s

2
β

ª®®¬ZT
H ,

m2
A = Bµ ZA

©«
tβ 1

t−1
β

ª®®¬ZT
A and

m2
H±

= ZP

©«
Bµ tβ +m2

W s2
β

Bµ +m2
W

s2β
2

Bµ t
−1
β

+m2
W c2

β

ª®®¬ZT
P ,

(1.48)
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where the Zi rotate the Higgs states into the mass basis and diagonolize the squared mass
matrices. In this rather simple form one can see that for very large Bµ all mass matrices
are degenerate

m2
H , m

2
H±

v2→0
−−−−→ m2

A . (1.49)

Because det(mA) = 0, there is at least one massless CP-odd scalar which is the pseudo
Golstone boson of the Z boson. If we instead expand the eigenvalues of m2

H to the first
non-vanishing order inm2

Z , we get

m2
h ≈m2

Z cos2 2β , (1.50)

which is at least ≈ (34GeV)2 below the experimental value ofm2
h
. Hence, large higher-

order corrections to Eq. (1.50) are needed if the MSSM is supposed accommodate the value
of the observed Higgs boson mass. The leading stop and top contributions to the lightest
Higgs mass for degenerate stop massesm2

SUSY and At = 0 reads

δm2
h ∝ +

1

π2

m4
t (mSUSY )

v2
log

m2
SUSY

m2
t (mSUSY )

, (1.51)

wheremt is the top mass evaluated at the SUSY scale. The larger the stop mass, the larger
the shift onm2

h
making the MSSM more realistic. However, at the same time the large

logarithm starts to amplify the uncertainty which is introduced through the running of
mt tomSUSY (or any other scale) in a truncated perturbative series. Thus, the theoretical
uncertainty in the Higgs mass prediction increases with too large stop masses.

1.3.4.2. Neutralinos and Charginos

All neutral (charged) SUSY fermions mix after EWSB to the neutralinos χ0i (charginos χ±i ),
except the gluino which is the only fermionic color octet,

(B̃, W̃3, H̃u , H̃d)
T → N (χ01 , ..., , χ

0
4 )

T ,

(W̃ +, H̃+
u )T → V (χ+1 , χ

+
2 )

T ,

(W̃ −, H̃−
d )

T → U (χ−1 , χ
−
2 )

T ,

(1.52)

where N ,U andV are unitary transformations to diagonalize the mass matrices through a
singular value decomposition,

mχ0 = N ∗

©«

M1 0 −
vд1
2 cβ

vд1
2 sβ

M2
vд2
2 cβ −

vд2
2 sβ

0 −µ

0

ª®®®®®®®®®¬
N † , mχ− = U ∗

©«
M2

vд2√
2
sβ

vд2√
2
cβ µ

ª®®¬V † .

(1.53)
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The squared eigenvaluesm2
χ±1,2

of the chargino mass matrices mχ± are doubly degenerate
such that

Vmχ+
†mχ+V

† = U ∗mχ+mχ+
†UT = diaд

(
m2

χ±1
,m2

χ±1

)
(1.54)

The indexing of the states indicates their mass ordering

|mχ01
| < ... < |mχ04

| ,

|mχ±1
| < |mχ±2

| .
(1.55)

1.3.4.3. Squark and Slepton Masses

Although we did not show the full Lagrangian for the scalar superpartners of the quarks
and leptons, we can give their mass matrices in a limit important for our calculation.
The focus of this thesis is set on scenarios where the sfermions are heavy enough to be
integrated out. This means that the soft-SUSY-breaking mass parameters must be much
larger than v. Thus, all sfermion mass matrices are already diagonal due to the requirement
of minimal flavour violation (MFV) Eq. (1.39) and determined by the soft-SUSY-breaking
mass matrices. Assuming universal soft-SUSY-breaking masses leads then to a degenerate
sfermion spectrum.
From the discussion of the decoupling theorem in Section 1.1.2 it follows, that including
terms which are proportional to v in the mass matrix would lead to contributions that are
suppressed by (v/msfermion)

2 in the matching conditions, which are not of relevance if the
sfermion masses are well above 1 TeV. This assumption is kept in all following chapters of
this thesis.

1.3.5. SUSY Breaking and UV Completions

In 1967 it was shown, that it is not possible to embed space time symmetries and internal
symmetries into one set of commuting generators rather than writing them as a direct
product of both [43]. With the introduction of SUSY and the anti-commuting SUSY-algebra
into QFT, one possible loophole from this theorem was found [44]. Making it possible to
embed interactions of gravity in QFT, local SUSY is one of the most popular ways to suggest
boundary conditions of soft-SUSY-breaking parameters. Without referring to a specific
model we want to mention that gravity-mediated SUSY breaking models (SUGRA) often
predict universal soft-SUSY-breaking parameters at the Planck scale. If we consider SUSY
to be broken near the GUT scale, the RGE running of the soft-SUSY-breaking parameters
may be neglected and thus universal soft parameters are one possible choice to reduce the
parameters space.

1.4. The Next-To Minimal Supersymmetric Standard Model

The MSSM has two major theoretical issues,
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(i) the appearance of the artificial mass parameter µ in the superpotential is not con-
nected to the SUSY breaking scale, but determined by some heavy UV theory so
that one would expect µ �msoft,

(ii) the tree-level Higgs mass is too small, so that large higher-order corrections (i.e.
large stop masses) are necessary,

which lead to the proposal of various extensions. There are many ways of going beyond
the MSSM with an extra gauge singlet. We restrict ourself to the CP-conserving and
scale-invariant superpotential, which leads to a Z3-invariant scalar potential, as described
in Ref. [45] which is called the Next-To-Minimal Supersymmetric Standard Model (NMSSM).
All chiral superfield components have the same charge e

2π i
3 under the Z3.

1.4.1. Particle Content

The additional chiral superfield Ŝ is a singlet under the gauge groupGSM but charged under
a global Z3 symmetry. Concerning the field content, we use the notation in Table 1.4 from
the MSSM and append Table 1.5.

Super field s = 1/2 s = 0 Generations U (1) ⊗ SU (2) ⊗ SU (3)

Ŝ S̃ S 1 (0, 1, 1)

Table 1.5.: The additional degrees of freedom in the Next-To Minimal Supersymmetric
Standard model (NMSSM) compared to the MSSM.

The scale-invariant superpotential and the Z3-invariant soft breaking part are also based
on their MSSM counter parts. The idea is to replace the µ parameter with the VEV of
the singlet naturally connecting it to the soft-SUSY-breaking scale through the tadpole
conditions of the singlet. Thus, we can reuse the MSSM superpotential by setting µ = 0
and add all singlet terms allowed by our restrictions. In the same manner we also set the
soft bilinear term Bµ = 0. Hence, the NMSSM superpotential and its soft terms read

WNMSSM = WMSSM |µ=0 + λ Ŝ Ĥu ·Ĥd +
κ

3
Ŝ3 ,

Lsoft
NMSSM = Lsoft

MSSM

���
Bµ=0

−

(
Tκ
3
S3 +Tλ S Hu ·Hd + h.c.

)
−m2

S |S |
2 ,

(1.56)

where the bilinear and its soft term are restored once the singlet obtains a VEV

〈S〉 =
vS
√
2
. (1.57)

A soft singlino mass term is forbidden by the Z3 symmetry. The Yukawa-like terms can
also be expressed in terms of the MSSM Yukawas with vanishing µ and additional singlet
interactions

LYukawa
NMSSM = LYukawa

MSSM
��
µ=0

− λ S H̃u ·H̃d − κ S̃ S̃ S + λS̃
(
H̃u ·Hd + H̃d ·Hu

)
h.c. , (1.58)

which is also manifestly Z3 invariant.
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1.4.2. Tree-Level Masses and Mixing Matrices

In the following sections, we will proceed as in the MSSM. The connection between
the µ parameter and vS as well as other soft breaking terms was already mentioned in
the previous section. In order to get expressions that are comparable to the MSSM, we
introduce the abbreviations

µeff =
vS λ
√
2

and

Beff
µ =

vS

2

(
vS κ λ +

√
2Tλ

)
.

(1.59)

1.4.2.1. Tadpole Equations

There is one additional vacuum condition from the complex scalar singlet. Solving all
conditions w.r.t. the squared soft mass parameters yields

m2
Hd

= Beff
µ tβ −m2

Z

c2β

2
−
v2 λ2

2
s2β −µ2eff ,

m2
Hu

= Beff
µ t−1β +m2

Z

c2β

2
−
v2 λ2

2
c2β −µ2eff ,

(1.60)

m2
S = Beff

µ

v2

v2S

s2β

2
+ v2 κ λ s2β −

v2 λ2

2
−
vSTκ
√
2

− v2S κ
2 , (1.61)

where the λ2 term in the conditions for vu and vd is due to F-term contributions of the
singlet. Apart from that, the first two conditions are of the same form as the tadpole
conditions in Eq. (1.47) of the MSSM. The singlet tadpole condition for v → 0 and Tκ ≈mS

yields vS ≈ O(mS) naturally connecting the singlet VEV (and thus µeff) to the SUSY breaking
scale.

1.4.2.2. Higgs States

There are two additional d.o.f. in the Higgs sector, due to the complex singlet, appending
one extra dimension to the MSSM CP-even/odd mass matrices. However, similarly to the
tadpoles, the upper left 2x2 matrices are comparable to the MSSM while the CP-even and
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charged Higgs masses have additional F-term contributions

m2
H =

©«
Beff
µ tβ +m2

Z c
2
β

−Beff
µ −

(
m2

Z − v2 λ2
) s2β

2 λ v vS

(
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−
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2

Beff
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Z s
2
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−λ v vS

(
λ cβ − κ sβ
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−
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2
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s2β

2
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m2

A =
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(1.62)

m2
H±

=
©«
Beff
µ tβ +

(
m2

W − v2 λ2
2

)
s2
β
− v2 λ2

2 Beff
µ + 1

2m
2
W s2β −

v2 λ2
2

Beff
µ t−1

β
+

(
m2

W − v2 λ2
2

)
c2
β

ª®®¬
Imposing not too large mixing with the new singlet components, the lightest CP-even
mass eigenvalue of the 2x2 sub-matrix in the limit v � vS,Tλ reads

mh ≈m2
Z cos2 2β + v2λ2 sin2 2β , (1.63)

which is able to reach the experimental value ofmh at tree level, if tan β is not too large,
and allows for small higher-order corrections compared to the MSSM.

1.4.2.3. Neutralinos and Charginos

Similar to the scalar sector, the fermion sector of the MSSM gets modified by effective
µ-terms and an additional two-component Weyl spinor leading to five neutralinos com-
pared to four in the MSSM. Because of its singlet nature, the singlino can mix with the
two higgsinos but not with the gauginos,

mχ0 = N ∗

©«

M1 0 −
vд1
2 cβ

vд1
2 sβ 0

M2
vд2
2 cβ −

vд2
2 sβ 0

0 −µeff − v λ√
2
sβ

0 − v λ√
2
cβ

√
2vS κ

ª®®®®®®®®®®®®®¬
N † (1.64)

mχ± = U ∗
©«

M2
vд2√
2
sβ

vд2√
2
cβ µeff

ª®®¬V † . (1.65)
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The neutralino mass matrix implies that for vS < M1,2 , v and κ < λ a singlet-like LSP
particle can be possible. Whether scenarios with a singlet-like LSP can predict themeasured
relic density of DM is studied in Chapter 3.

1.5. Supersymmetry without Natural Scalars

It was already mentioned that one of the major motivations for weak-scale SUSY is that
it can solve the hierarchy problem, which says that scalar masses are not protected by
ordinary internal symmetries but receive large quantum corrections pushing them the
scale of new physics. However, the Higgs boson massmh ≈ O(125GeV) is required to be
small, e.g. in order to restore unitarity in the SM, while new physics is at latest expected
to appear at the Planck scale mPlanck ≈ 1018 GeV. Thus, the counter term of the SM
Higgs boson mass must be fine-tuned to a precision of about O(m2

Planck/m2
h) ≈ 1032. This

large cancellation is interpreted as a sign for a hidden approximate symmetry, which is
responsible for the smallness of the SM Higgs boson mass. Low-scale SUSY is a possible
candidate for such a symmetry which does not only address the question of naturalness in
the scalar sector, but for instance also of dark matter or gauge coupling unification.
However, the observation of a non-zero but small cosmological constantΛCC ≈ 10−48 GeV4

[2, 46] is neither addressed in the MSSM nor in most of its extensions. As an example,
SUGRA predicts the soft-SUSY-breaking scalemSUSY to be generated by the VEV 〈F 〉 of an
auxiliary field in a yet unspecified sector due to gravitational effects

mSUSY ≈
〈F 〉2

mPlanck
, (1.66)

assuming that it is possible to describe the entire space-time including gravity within the
SUSY framework. Thus, SUSY withmSUSY . 1TeV predicts a vacuum energy of roughly
Λcutoff

UV ≈ 〈F 〉2 ≈ O(1012 GeV) which is much larger than the observed
√
ΛCC . Hence,

even if weak-scale SUSY solves the hierarchy problem, it does not solve the cosmological
constant problem [47] which concerns a constant term in the superpotential fine-tuned to
O(〈F 〉4/ΛCC) ≈ 1096 orders of magnitude. Therefore, even weak-scale SUSY would be fine
tuned (indeed also the SM itself is fine-tuned to ≈ 50 digits by the same arguments).

Relaxing the requirement of naturalness, alternative approaches involving selection prin-
ciples [48] were developed to explain the smallness of the cosmological constant. In the
presence of e.g. a landscape of many different possible vacua, it is just a logical conse-
quence that human life is only realized in those solutions which stabilize the electroweak
scale. Thus, naturalness in the ordinary sense may not be extended to the scalar sector even
in the supersymmetric case. However, fermion masses are protected by chiral symmetries
since loop corrections to masses enter only in such a way, that they disappear in the
symmetry-restoring limit of vanishing masses. Hence, the use of anthropic principles in
the scalar sector does not imply that ’t Hooft‘s principle of naturalness [49] is no longer
applicable, but may only be applied to the fermionic sector where it turns out to be a very
predictive and successful tool.
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One consequence of a fine-tuned Higgs bosons mass for supersymmetric theories is,
that superpartner masses must no longer be at the TeV-scale. In this case, one may ask
about the further significance of SUSY for particle physics phenomenology because its
major motivation, the solution of the big hierarchy problem, would become obsolete.
Nevertheless, SUSY can still be a very predictive framework even with a fine-tuned scalar
sector as it is shown in chapters 3 and 4.
However, the presence of of a large SUSY breaking scalemSUSY introduces a hierarchy
between the SM and the BSM sector such that EFT techniques described in the previ-
ous sections become appropriate. The technical subtleties arising when supersymmetric
theories are to be matched are reviewed in the next section.

1.6. Higher-Order Threshold Corrections in Supersymmetric
Models

Higher order corrections in supersymmetric theories require a special treatment. We
have already seen that scalar couplings as well as masses are no free parameters anymore,
but are connected to the gauge and Yukawa sector. Thus, for a consistent perturbative
expansion one needs to take into account, that higher-order corrections in the gauge sector
are transmitted to the scalar sector through the D-terms. Furthermore, it is of fundamental
importance that the mathematical treatment of UV divergences in higher-order corrections
does not break SUSY.
In the following, we briefly discuss how these two aspects can be accounted for in a
diagrammatic calculation at the one-loop order.

1.6.1. Dimensional Regularization and Dimensional Reduction

When higher-order corrections to a scalar coupling are computed, diagrams with internal
vector bosons carrying a Lorentz index may be involved. These diagrams are potentially
UV divergent. A common way to deal with the divergences is to regularize them in a gauge
covariant way, called dimensional regularization (DREG). The strategy is to compute the
diagrams in D = 4−2ϵ space-time dimensions which allows for an analytical continuation
of the expressions and an isolation of the divergences in a power series of 1/ϵ. In aminimal
subtraction (MS) renormalization scheme, all UV divergent parts ∆MS with an additional
constant part

∆MS =
1

ϵ
− γE + log 4π , (1.67)

where γE is the Euler-Mascheroni constant, are absorbed into the corresponding counter
terms. As a consequence of DREG the B boson, for instance, now has D d.o.f. while the
bino B̃ still has four d.o.f. Hence, SUSY is broken when applying DREG because nB = nF
is violated.
A way to overcome this problem is given by dimensional reduction (DRED) where all
four-momenta are treated in D dimensions while the vector fields are still four dimen-
sional. It was shown in Ref. [50], that DRED is indeed equivalent to DREG up to finite
terms appearing in the DR scheme counter terms of the DRED computation. Thus, if
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1.7. Effective Higgs Masses in Supersymmetric Models

a non-supersymmetric model, conventionally computed in MS, is to be matched to a
supersymmetric model including higher-order corrections, one needs to account for the
conversion from MS to DR.

The computation of one-loop amplitudes in DREG as well as DRED (actually constrained
differential renormalization which is equivalent to DRED at one loop) is fully automatized
in the computer program FormCalc [28], which we use to compute the difference of the
two schemes.

1.6.2. Threshold Corrections to Gauge Couplings

From the tree-level relation Eq. (1.50) of the lightest Higgs boson mass in the MSSM,

m2
h ≈

v2

4

(
д21 + д22

)
cos2 2β , (1.68)

which has its origin in supersymmetric D-terms, it can be seen that one-loop corrections to
the gauge couplings д1,2 also enter the one-loop Higgs boson mass. For a generic spectrum
generator, it is thus important to be able to compute the threshold corrections to any gauge
coupling in general gauge theories, even if it is only intended to match the scalar sectors
at higher orders.
Generic expressions for one-loop threshold corrections to gauge couplings дEFT in sponta-
neously broken gauge theories were first computed in Refs. [51] and [52],

дEFT(Qmatch) = д(Qmatch)
©«1 + д2(Qmatch)

192π2

∑
f

C f T
(3)
f

T
(2)
f

S f I
r
f log

M2
f

Q2
match

ª®¬ , (1.69)

where the sum runs over all heavy fields f with masses M f . The factors C f , S f , T
(2)
f

and

T
(3)
f

account for reversed propagator lines (charge factor), spin, iso-spin and the color
factor of the heavy field running in the loop,

C f =

{
2 , f charged
1 , f neutral

T
(N )
f

= DimrSU (N )

S f =


1 , s = 0

4 , s = 1/2

21/2 , s = 1

I rf =


Dynkin index of the field f

transforming under the repr-
esentation r of the gauge group

.

(1.70)

1.7. Effective Higgs Masses in Supersymmetric Models

1.7.1. General Overview

This section puts the aim of this thesis, a generic matching between two arbitrary scalar
sectors, into the context of the literature already available on the topic of effective Higgs
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mass calculations.

A comprehensive summary of SUSY spectrum generators as well as dedicated studies on
Higgs mass computations is given in Ref. [53]. Although the publication of this summary
was only two years ago, there were many developments in the field of EFT Higgs mass
calculation. Computer programs, which were originally based on pure fixed-order calcula-
tions, such as FeynHiggs [54–56], FlexibleSUSY [6, 57, 58] or SARAH/SPheno [12, 59],
are nowadays able to compute the lightest Higgs mass in an effective SM, if all other SUSY
particles (except one Higgs boson) are heavy. This scenario is also called high-scale SUSY.
Although different renormalization schemes as well as computational techniques are in-
volved, there is a good agreement [59] between new implementations of e.g. effective
Higgs mass calculations in SARAH/SPheno and results of SusyHD [60], which is a dedi-
cated tool for high-scale SUSY scenarios.
A quantitative comparison between the spectrum generators SARAH/SPheno, Flexible-
SUSY, FeynHiggs and SusyHD computing the lightest MSSM Higgs mass in an effective
SM was made in Ref. [59] and is shown in Fig. 1.6a. The plot shows the Higgs mass
predictionmh as a function of the matching scalemSUSY at which the SUSY partners are
integrated out. There is a good agreement over many orders of magnitude between the
different approaches. One major difference between SusyHD and the other codes is, that
it does not account for v2/m2

SU SY suppressed terms. These terms become most important
formSUSY < 0.5TeV, where the brown SusyHD curve starts to differ significantly from
the other codes. The red-dotted line shows the fixed-order calculation of SARAH, which
does not rely on EFT techniques. The fixed-order result, incorporating the v2/m2

SU SY terms,
seems to be complementary and starts to differ from the EFT approach ifmSUSY > 0.5TeV.
This leads to the question how the theoretical uncertainties in both approaches behave.
The uncertainties on the Higgs mass prediction in a fixed-order and a comparable EFT
calculation are studied in Ref. [6] and are shown in Fig. 1.6b. The red band shows the
uncertainty of a three-loop fixed-order calculation, rapidly increasing asmSUSY approaches
the TeV scale. The grey band shows the uncertainty of an EFT calculation at two-loop
order which is again complementary to the conventional approach. The authors of Ref.
[6] found that both bands have the same width at the scalemequal

SUSY ≈ 1.2TeV.
The influence of higher-order QCD corrections in the EFT framework also has been im-
proved in dedicated studies [9, 35]. Recently, four-loop order contributions O(α2

s α
2
t ) have

been studied [57] which influence the Higgs mass prediction in the sub-GeV range. In
studies which go beyond one-loop, the higher-order corrections decrease with the match-
ing scale and are negligibly small ifmSUSY > 105 TeV.

Furthermore, EFTs which go beyond the SM as a low-energy theory are very popular
because they have a rich phenomenology. Matchings of the MSSM to a two Higgs doublet
model (2HDM) where performed in Refs. [8, 61] and has been implemented in FeynHiggs
[54]. Split SUSY, where the fermionic superpartners are kept in the EFT taking the weaker
bounds on electroweakinos into account, was first proposed in 2003 [62] while the Split
MSSM was phenomenologically studied in Refs. [7, 35]. However, studies involving EFT
techniques which go beyond the MSSM such as Refs. [10, 63–65] are rare and often do not
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1.7. Effective Higgs Masses in Supersymmetric Models

consider higher-order corrections.

This offers the possibility to test the new implementation, which was developed within
this thesis, against results available in the literature. Moreover, we can now address
open questions which were hard to answer without the availability of a generic spectrum
generator being able to perform generic matchings in the scalar sector. This is the topic of
Chapters 3 and 4.
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Figure 1.6.: (a) Comparison of the Higgs mass prediction from the MSSM matching to an
effective SM between various computer codes as well as one fixed-order calcula-
tion (red-dotted line). (b) Uncertainty estimate on the Higgs mass prediction in
a fixed-order calculation at three-loop order and an EFT calculation at two-loop
order. The grey/red band represents the uncertainty of the EFT/fixed-order
calculation. The computer codes in the legend are: SS: SoftSusy (fixed-order),
FS: FlexibleSUSY (fixed-order), +H: Himalaya, HSSUSY: FlexibleSUSY (EFT).

1.7.2. Status Quo in SARAH/SPheno

Although SARAH was introduced as a generic spectrum generator, able to calculate the
mass spectrum for any renormalizable Lagrangian, an EFT calculation formh was so far
only possible for an effective SM. If there are further light Higgs states present, the EFT
routines were not used, leading to less precise predictions of scalar masses. The following
paragraph gives details on the EFT Higgs mass strategy used so far and how it is modified
in order to be able to perform a generic matching.

The SPheno Fortran code generated by SARAH is using an iterative procedure shown in
Fig. 1.7 in order to obtain an effective Higgs mass. First, all Lagrangian parameters are
extracted from measured observables at the scalemZ using one-loop relations in an MS
scheme. Second, an RGE running using SM RGEs is employed up to the matching scale
Qmatch where all parameters are translated into a DR scheme. Third, a pole-mass matching
to the BSM Higgs pole-mass prediction is performed from which the effective quartic
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1. Introduction

coupling λMS
SM(Qmatch) is extracted (this procedure is explained in the next paragraph).

Fourth, all parameters, including the new effective coupling, are run down to the top mass
mt where the one-/two-loop corrected mass spectrum is calculated within the SM. If the
mass spectrum significantly differs from the previous iteration, a new iteration starts by
running tomZ and proceeds with step two.

The reason why this procedure cannot be extended to a non-SM EFT (where the additional
Lagrangian parameters would be user input) is due to the used pole-mass matching instead
of a direct matching of the quartic coupling(

mBSM, pole

h
(Qmatch)

) 2
=

(
mSM,pole

h
(Qmatch)

) 2
=

(
mSM,Tree

h
(Qmatch)

) 2
+ΠSM

h (Qmatch)

⇒ v2SMλSM =
(
mBSM, pole

h

) 2
− ΠSM

h ,

(1.71)

where the tree-level relation Eq. (1.12) has been used. In favour of better readability, the
dependence of all parameters on the matching scale in the last line has been omitted.
mBSM, pole

h
(Qmatch) is the one-/two-loop Higgs mass in the BSM model whereas ΠSM

h
are the

one-/two-loop corrections in the SM calculated using the effective potential. However,
an extended Higgs sector often has much more scalar couplings than masses, making
it impossible to invert the tree-level relations without introducing mixing angles. For
instance, a CP-conserving 2HDM of type II has five quartic couplings, but only four Higgs
boson mass parameters. Thus, one also needs to take the matching of the mixing angle
into account, which is not straight-forward to do in a pole-mass matching.

The next chapter is discussing the matching of scalar couplings at the one-loop order which
is replacing the pole-mass matching. With this replacement, the procedure in Fig. 1.7 can
be applied to EFTs beyond the SM.
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1.7. Effective Higgs Masses in Supersymmetric Models

MS parameters atMZ (дMS
i (MZ ), YMS

i (MZ ), vMS(MZ )):
full one-loop matching including higher-order corrections

↓

Running Up:
SM RGEs up to two-loop

↓

DR parameters at Qmatch (дDRi (Qmatch), YDR
i (Qmatch), vDR(Qmatch)) :

two-loop MS–DR conversion; one-loop SUSY shifts

↓

Effective Higgs self-coupling λMS
SM (Qmatch):

Higgs pole-mass matching at one- or two-loop

↓

Running Down:
SM RGEs up to two-loop

↓(not converged) ↓(converged)

λMS
SM (MZ ):

new iteration to obtain дMS
i (MZ ),

YMS
i (MZ ), vMS(MZ )

λMS
SM (Mt):

Higgs pole-mass calculation: one-
and two-loop corrections included

Figure 1.7.: Effective SM Higgs boson mass calculation in SARAH/SPheno [59]. The
replacement of the pole-mass matching (highlighted box) through a direct
matching of the scalar coupling(s) is one issue addressed in this thesis.
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2. Scalar Matching Conditions at Next-to
Leading Order

In the previous chapter, the theoretical ingredients necessary for the matching of two
scalar theories were discussed. This chapter reviews the technical details required for a
one-loop calculation of generic scalar amplitudes in the limit of vanishing external mo-
menta. In addition, the separation of local and non-local contributions for all possible light
and heavy field insertions is discussed. As mentioned in the introduction, only the local
contributions enter threshold corrections after matching conditions have been applied.
Hence, the separation of scales has to be done only once for each loop integral. In a specific
(model-dependent) calculation of threshold corrections, one can then restrict oneself to
the use of the modified loop functions that contain the local parts only.

In order to verify that the separation of scales has been done correctly, both sides of
the matching condition (the EFT and the full theory part) are investigated separately in a
toy model, to show that all non-local terms indeed cancel. Finally, the implementation of
the technical aspects in SARAH is discussed.

2.1. Topologies and Generic Diagrams and their Amplitudes

In this thesis, we distinguish between four types of Feynman-like diagrams which are
based on the FeynArts notation:

1. Topologies
Neither the statistical nature (spin=0,1,1/2) nor the mass (light or heavy i.e. zero or
non-zero) are specified. Since the focus is on the matching of scalar sectors, external
fields are always light scalars denoted by dashed lines.

2. Generic Diagrams
The spin of all fields is specified but not their mass hierarchies. This is still a model-
independent graph.

3. Generic Amplitudes
The spins determine the Lorentz structure of the diagram. Thus, all necessary
information is given to compute a model-independent expression of the diagram.
All couplings and masses are yet unspecified.

4. Insertions
These are Feynman diagrams in the ordinary sense. All couplings and masses take
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2. Scalar Matching Conditions at Next-to Leading Order

the form governed by a given model. The summation over generation and group
indices is also performed here.

In order to support a large class of BSMmodels for the computation of threshold corrections,
all possible diagrams of the first three types as well as the expressions for the generic
amplitudes need to be known. Because this thesis computes threshold corrections to
renormalizable operators, only those diagrams that connect 2, 3 or 4 external lines at
leading and next-to-leading order are needed. From the requirement of renormalizability
it follows further that internal vertices cannot connect more than 4 lines. At tree level,
only singly connected internal vertices (i.e. no closed internal lines) are required while
at one-loop level exactly one closed internal line and optional singly connected internal
vertices (leading to 1PR topologies) must be present.
The graphical notation for the topologies is as follows. Vertices, denoted by a black filled
dot, represent generic couplings that can have any form allowed by renormalizability and
Lorentz invariance. External scalar legs are drawn with a dashed line while internal
straight lines are reserved for all possible field-types (vector, fermion or scalar) and mass
insertions. The external legs can be charged or neutral and do not necessarily have the
same field insertions amongst the different legs.
The notation used to describe the topologies within this thesis and the implementation in
SARAH is described in Fig. 2.1. Topologies are denoted by a string with a length between
two and five characters. The first letter specifies whether it is a tree-level (T), self-energy
(S), WFR (W) or ordinary one-loop diagram (blank). The next letter gives information
about the involved loop integrals (which are defined later in Eq. (2.6)) followed by three
numbers specifying the number of external legs (2,3 or 4), whether it is a 1PI (1) or 1PR
(2) diagram and a counting index. A complete list of all tree-level and one-loop topology
diagrams is given in Appendix A.1, while this section discusses only an excerpt of this list.

2.1.1. Generic Tree-Level Graphs

The two-point function is necessary for the matching of scalar sectors that involve no
Higgs bosons i.e. scalars that do not develop a VEV. In this case the scalar masses and
couplings are independent parameters and have to be matched separately. At tree level,
the two-point topology T2 has two external lines singly connected by a dot. This accounts
for squared diagonal and off-diagonal mass terms.

Since there is only one three-point topology (T3) at tree level, shown in Fig. 2.2 (a),
the trilinear couplings in a tree-level matching can also directly be determined by compar-
ing the two Lagrangians.

Furthermore, there are two tree-level topologies with four external scalars, shown in
Fig. 2.2 (b) and (c). The first one is a local quartic coupling which could for example be
given by supersymmetric D-terms and/or F-terms while the second has one internal prop-
agator, necessarily heavy and of bosonic nature. Thus, fermions can only enter one-loop
and higher-order corrections but not the tree-level matching. The tree-level contribution of
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2.1. Topologies and Generic Diagrams and their Amplitudes

_ B 4 2 1
WFR (W), self-energy (S), tree
(T) or common one-loop (blank)
diagram

Involved loop integral: A0 (A) B0
(B), C0 (C) or D0 (D) defined in
Eq. (2.6)

Number of external legs

In case of a common one-loop
diagram: 1PI (1) or 1PR (2)

Numbering (blank means only
one topology of that type exists)

(a) (b) B421

Figure 2.1.: Notation on topologies shown in Appendix A.1. The example expression
explained in (a) corresponds to the topology shown in (b).

the corresponding generic amplitude is always of the form δλTree ∝ T1T2/m2
H, with trilinear

couplings Ti of mass dimension one and a heavy mass m2
H � p2. In case of a heavy

vector, the amplitude is proportional to the external momentum which vanishes in the
approximation p2 → 0. Thus, only heavy scalar bosons can contribute at tree level to the
generic scalar amplitudes.

(a) T3 (b) T41
(c) T42

Figure 2.2.: Tree-level graphs with 3 and 4 external scalars. The straight line can be a
heavy scalar or a heavy vector boson.

2.1.2. Generic One-Loop Graphs

There are a large number of generic one-loop diagrams and non-zero generic amplitudes
(i.e. generic amplitudes that are not linear in p2), see Table 2.1. Thus, only an excerpt
of topologies, shown in Fig. 2.3, is discussed. Also the discussion of possible generic
amplitudes is restricted to diagrams with either only heavy fermions or heavy scalars,
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2. Scalar Matching Conditions at Next-to Leading Order

External Scalars Topologies Generic Diagrams Non-zero Amplitudes

2 2 6 (7) 6 (7)

3 4 14 (15) 14 (15)

4 12 51 (60) 44 (49)

Table 2.1.: Counting of the different possible diagram types for 2, 3 and 4 external scalars.
The numbers in brackets include diagrams with ghost fields.

to describe the overall scaling behaviour of their contributions. A full list of one-loop
topologies is given in Appendix A.1.
Since we work always in the limit of massless SM gauge bosons at the matching scale i.e.
vSM → 0, the SM ghost fields do not contribute to the threshold corrections. However, in
the context of extended gauge theories it might be necessary to also compute loops that
involve ghost fields of heavy vector bosons. Thus, we also count the number of diagrams
and non-zero amplitudes including ghosts given in brackets in Table 2.1.

2.1.2.1. Two-Point Function

At the one-loop order, two two-point topologies, shown in Fig. 2.3, involving either a
quartic (a) or two trilinear couplings (b) exist. The difference between generic two-point
amplitudes of heavy scalars and fermions is due to the different mass dimensions of the
couplings and the additional topology (A2), available for scalars only, involving the quartic
coupling. The generic amplitude scales as

[
Mscalar

1→1

]
= [mass]2 =


[Yukawa coupling]2 · [loop mass]2 , heavy fermion
[quartic coupling]2 · [loop mass]2

+ [trilinear coupling]2 , heavy scalar
. (2.1)

Thus, Yukawa couplings with heavy fermions will always lead to a fine-tuned squared
mass parameter, as the new contributions must be canceled against other parameters in
the potential in order to keep the external scalar light. When heavy scalars are integrated
out, large fine-tuning appears only if there is a quartic coupling to the light fields or if
a large trilinear coupling is present. However, in theories with spontaneous symmetry
breaking, this fine-tuning is often hidden in the tadpole equations.

2.1.2.2. Three-Point Function

Four three-point one-loop topologies exist. The scaling of generic three-point amplitudes
with fermions/scalars is again determined by dimensional arguments. For instance, the C3
(triangle) topology shown in Fig. 2.3 (c) scales as

[
Mscalar

2→1

]
= [mass] =


[Yukawa coupling]3 · [loop mass] , heavy fermion
[trilinear coupling]3

[loop mass]2
, heavy scalar

. (2.2)
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2.2. Loop Functions with vanishing External Momenta

The scalar contribution decouples if the trilinear coupling is not connected to the scalar
masses while the fermion contributions behave similar to the two-point function.

2.1.2.3. Four-Point Function

Fig. A.7 shows the 12 one-loop topologies that involve 4 external scalars out of which 4
(WA41, WA42, WB41 and WB42) are wave-function renormalization diagrams and two
(SB4 and SA4) account for self-energies. The D4 (box) topology, shown in Fig. 2.3 (d),
is discussed in more detail. Since the four point function is dimensionless, the scaling
behaviour of the box topology is given by

[
Mscalar

2→2

]
= [1] =


[Yukawa coupling]4 · , heavy fermion
[trilinear coupling]4

[loop mass]4
, heavy scalar

. (2.3)

Thus, scalars behave similar to the three-point function while the impact of heavy fermions
is less critical, as their masses can only contribute in ratios of heavy masses.

From the dimensional arguments given above one can specify two types of operators.
The important operators have mass dimension 2 or 3, which will be fine-tuned if either a
Yukawa coupling to heavy fermions or a quartic coupling of the light scalars to heavy
ones exists. The marginal operators have dimension four and dimensionless couplings.
They are either suppressed by some heavy mass or at least a loop factor.

(a) A2 (b) B2 (c) C3 (d) D4

Figure 2.3.: Excerpt of the topology list given in Appendix A.1.

2.2. Loop Functions with vanishing External Momenta

All diagrams are computedwith vanishing external momenta, which significantly simplifies
the evaluation of the involved loop integrals. With the definition of the common prefactor

κD =
(2πQ)4−D

iπ2
(2.4)

and the integrand

In =
n∏

i=1

(
q2 −m2

i

) −1
, (2.5)

39



2. Scalar Matching Conditions at Next-to Leading Order

all necessary loop functions reduce to

A0(m
2
1) = κD

∫
dDqI1 ,

B0(m
2
1,m

2
2) = κD

∫
dDqI2 ,

C0(m
2
1,m

2
2,m

2
3) = κD

∫
dDqI3 ,

D0(m
2
1,m

2
2,m

2
3,m

2
4) = κD

∫
dDqI4 ,

(2.6)

where we have omitted all momenta in the arguments of the function definitions. As
already mentioned, loops containing light and heavy fields are crucial for the decoupling.
Our calculation assumes that all light fields have a negligible massmL as well as external
momenta are small compared to the large matching scale p2,m2

L ≡ ϵ2
match

→ 0. For
instance, aC0(0,m

2,m2) function appears in scalar triangle topologies and corresponds to
one light and two heavy loop-field insertions.
Using ϵ2

match
→ 0 is an unphysical assumption when only light fields appear in non-local

parts of the calculation, yielding apparent divergences

∆p2 ≡ lim
ϵ2match→0

log
ϵ2
match

Q2
match

,

∆D ≡ lim
p2,m2

L→0

1

p2 −m2
L

,

(2.7)

which are supposed to cancel in the matching condition (the D stands for ”denominator”
divergence, while the ∆2

p marks non-local p2 dependent logarithmic divergences). In the
following, the UV-finite parts of the loop integrals are given, whereas the divergent parts
∝ ∆MS can be found in Ref. [66]. The tadpole integral A0 [67] vanishes for a vanishing
argument

A0(m
2) =m2

(
1 − log

m2

Q2
match

)
, (2.8)

A0(0) = 0 , (2.9)

where Qmatch is the renormalization scale at which the matching takes place. Before
proceeding with the analytical expressions for the B0 integral, consider the two-point graph
in Fig. 2.4 (a) with one heavy (double solid line) and one light (dashed line) propagator (the
external fields are omitted as they do not play a role in this discussion). The naive picture
of an EFT tells us that we can deform the graph in such a way that the heavy propagator
shrinks to one point. The result of this operation, shown in Fig. 2.4 (c), corresponds to a
loop with one light propagator. This graphical interpretation shows the interplay between
the B0 and the A0 integral. Since the light loop is connected to the UV behaviour not
entering the Wilson coefficient, there must be a second contribution denoted by the
effective vertex in Fig. 2.4 (b) corresponding to the local (p2-independent) part of the
two-point diagram. Thus, the separation of the different scales connects a loop function
with integrand In to a loop function with integrand Im withm < n.
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2.2. Loop Functions with vanishing External Momenta

(a) (b) (c)

Figure 2.4.: The two-point functionwith a heavy and a light insertion (a) splits for vanishing
external momenta into two pieces: (b) a local part ∝ A0(m

2) and (c) a p2

dependent part ∝ A0(ϵ
2
match

) = 0.

Furthermore, the deformation in Fig. 2.4 is obviously symmetric in the propagators. Thus,
one can already guess the form of the B0 with vanishing external momenta

B0(m
2
1,m

2
2) =

A0(m
2
1) −A0(m

2
2)

m2
1 −m2

2

, (2.10)

B0(m
2,m2) = − log

m2

Q2
match

m2→0
−−−−−→ −∆p2 , (2.11)

(2.12)

which is identical to the solution found in Ref. [68] by using partial differentiation and the
method of partial fraction. The analytical correspondence to Fig. 2.4 is then

B0(m
2, 0) =

A0(m
2)

m2︸   ︷︷   ︸
p2-independent

− lim
ϵ2match→0

A0(ϵ
2
match

)

m2︸       ︷︷       ︸
p2-dependent

, (2.13)

where in this case the p2-dependent part vanishes. This is not the case for all higher loop
integrals as their p2 dependent parts correspond to non-local contributions (i.e. light
propagators connecting different points in momentum space).

In the same manner, the three-point function C0 is connected to the two-point function,
like the B0 is connected to the A0 for vanishing external momenta

C0(m
2
1,m

2
2,m

2
3) =

B0(m
2
1,m

2
3) − B0(m

2
2,m

2
3)

m2
1 −m2

2

. (2.14)

Inserting one heavy and two light fields, i.e. consider C0(m
2, 0, 0), shrinks the heavy

propagator to a point connecting the three-point function to two-point integrals B0(0, 0)
and B0(m1, 0) as shown in fig Fig. 2.5. The local part in Fig. 2.5 (b) corresponds to the
finite terms ∝ B0(m

2,0)/m2 in Eq. (2.14) while the two-point topology corresponds to the

41



2. Scalar Matching Conditions at Next-to Leading Order

(a) (b) (c)

Figure 2.5.: The three point function with a heavy and two light insertion (a) splits for
vanishing external momenta into two pieces: (b) a local part ∝ 1/m2

heavy and (c)
a non-local part proportional to ∆p2 .

term B0(0, 0) ∝ ∆p2 . Thus we expect that non-local terms from triangle-diagrams like C4
(c.f. Fig. A.7 (a)) cancel in the matching condition against B0 diagrams, like B4 (c.f. Fig. A.7
(d)), from within the EFT.
A different way of understanding that the non-local parts ∝ B0(0, 0) cannot contribute is
by taking the limit ϵmatch → 0 before performing the loop integration

B0(0, 0) = κD
∫

dDq
1

(q2)2
= 0, (2.15)

which vanishes because it is a scale-less integral. However, this viewpoint makes it
impossible to cross-check if the IR-divergent parts of two theories cancel in the matching
condition. In addition, also 1PR diagrams involving light propagators ∝ ∆D must cancel in
the matching condition. This happens in the most trivial way within a tree-level matching,
where the scales are already separated and diagrams with light propagators directly cancel
against their EFT counterparts.
The four-point function D0 behaves very similar, except that there are many possibilities
to connect it to the C0, B0 and A0 integrals by choosing different mass limits. The general
case with four different masses is

D0(m
2
1,m

2
2,m

2
3,m

2
4) =

1

m2
1 −m2

2

(
C0(m

2
1,m

2
3,m

2
4) −C0(m

2
2,m

2
3,m

2
4)

)
. (2.16)

The expressions of the loop functions for arbitrary masses given in Eqs. (2.10), (2.14)
and (2.16) are not suitable for the implementation into a computer program because of the
apparent poles in certain mass limits (e.g. all masses being equal). The analytical limits of
all possible mass combinations are given in Appendix A.2.

We have shown that, for p2 → 0, it is sufficient to solve only the A0 integral analyt-
ically and from there on use the fact that physical scales get separated into local and
non-local parts by re-writing scalar integrals of higher orders in terms of the lower-order
ones (where the order denotes the integrand In). However, in the calculation of diagonal
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2.3. A Toy-Model with Two Real Singlets

WFR constants, also the derivatives of loop functions w.r.t to their external momentum
appear. In the one-loop case, the derivatives of the A0 and B0 are sufficient. The A0

does not depend on the external momentum and thus the derivative vanishes while the
derivative of the B0 [66] is given by

∂p2A0 = 0 , (2.17)

∂B0(m
2
1,m

2
2) ≡ κD∂

2
p

∫
dDq

(
(q + p)2 −m2

2

) −1 (
q2 −m2

1

) −1����
p2→0

(2.18)

=
1

2
(
m2

1 −m2
2

) 2 ©«m2
1 +m2

2 +
2m2

1m
2
2 log

m2
2

m2
1

m2
1 −m2

2

ª®®¬ ,
Since we use FormCalc for the generation of generic amplitudes, all tensor integrals are
already decomposed into scalar integrals using the Passarino-Veltman (PaV) reduction
algorithm [69].

2.3. A Toy-Model with Two Real Singlets

In this section the matching of a toy-model with two real singlet scalar fields to a usual
φ4-theory with one light singlet is discussed. The purpose of this calculation is to demon-
strate the cancellation of all IR contributions in the matching condition, which will be
ignored in the automatized calculations (i.e. we set ∆p2 = ∆D = 0).

The most general renormalizable potential for two real singlets ϕ1 and ϕ2 reads

VFULL =
1

2
m2

1ϕ
2
1 +

λ1
4!
ϕ4
1 +

1

2
m2

2ϕ
2
2 +

λ2
4!
ϕ4
2

+
λ12
4
ϕ2
1ϕ

2
2 +

κ2
3!
ϕ3
2 +

κ112
2

ϕ2
1ϕ2 ,

(2.19)

with a large mass splittingm1 �m2 andϕ1 being charged under a Z2 symmetryϕ1 → −ϕ1.
Our aim is to determine the parameters of the low-energy Lagrangian

VEFT =
1

2
m2

EFT ϕ
2 +

λEFT

4!
ϕ4 (2.20)

in terms of the UV-parameters of VFULL at the one-loop level. Further, we want to show
that, using effective tree-level couplings in the EFT, all IR contributions appearing in the
one-loop matching condition cancel.

2.3.1. Tree-Level Matching

The tree-level threshold corrections to λEFT are due to heavy ϕ2 propagators in the T42
topology shown in Fig. 2.2c. For the quartic coupling we find

λ
(0)
EFT = λ1 −

3κ2112
m2

2

, (2.21)
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while the mass parameter can be identified withm(0)
EFT =m1. The Feynman rules for the

effective couplings will again be drawn by a crossed dot.

2.3.2. One-Loop Amplitudes

The Z2 symmetry of ϕ1 protects the generation of a trilinear coupling κEFT
1 to all orders in

perturbation theory. The one-loop quartic coupling λ(1)EFT receives corrections through box
diagrams (D4), triangle diagrams (C41 and C42) and various B0 diagrams (B41, B421, B422,
SA4 and SB4). All other contributions are absent because of the Z2 symmetry. Furthermore,
no additional wave function renormalization contributions to ϕ exist,

ϕ = ϕ1

(
1 −

1

2
∂p2

∏
1→1

−
1

m2
1 −m2

2

∏
2→1

) �����
p2→0

= ϕ1 , (2.22)

where
∏

1→1 = 0 is the diagonal self-energy contribution. The off-diagonal contribution∏
2→1 = 0 is also protected by the discrete symmetry to all orders. The reason for a

vanishing diagonal WFR is the absence of a linear coupling ϕ2
1ϕ2 which would get rise to

the derivative of a B4 topology. However, the only WFR diagrams that can be drawn have
a tadpole integral on the external legs (A4 topology) which has a vanishing derivative at
the one-loop order.

The one-loop part of the ϕ1ϕ1 → ϕ1ϕ1 amplitude in the full theory for p2,m2
1 → 0

reads

− i(4π)2M
(1)
FULL =

3

2

[
λ21B0(0, 0) + λ212B0(m

2
2,m

2
2)

+ 4κ2112λ12C0(m
2
2,m

2
2, 0) + 4κ2112λ1C0(m

2
2, 0, 0)

+4κ4112D0(m
2
2,m

2
2, 0, 0)

]
−

3

m2
2

[
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(2.23)

where no analytical expressions or relations between the loop integrals have been used
so far. The B0(0, 0) terms correspond to diagrams with light loops only, i.e. the diagrams
(c)-(e) in Fig. 2.6. The C0 and D0 integrals with more than one light field, drawn in Fig. 2.6
(f)-(h), need to be separated into local and non-local terms
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C0(m
2
2, 0, 0) = −

B0(m
2
2, 0)

m2
2

−
B0(0, 0)

m2
2

,

D0(m
2
2,m

2
2, 0, 0) = −

B0(m
2
2, 0) + 1

m4
2

+
B0(0, 0)

m2
2

.

(2.24)

Further separation is not needed as the non-local terms in B0(m
2
2, 0)|non-local ∝ A0(0) = 0

vanish. Using the relations in Eq. (2.24), all non-local IR contributions are reflected in the
B0(0, 0) ∝ ∆p2 terms. Thus, we can write the one-loop amplitude as

M
(1)
FULL =

[
M

(1)
FULL

]
UV

+
[
M

(1)
FULL

]
IR
, (2.25)

where the IR part includes all non-local ∆p2 terms while the UV part contains the local
terms including the finite pieces of Eq. (2.24). Simplifying the IR part yields

− i(4π)2
[
M

(1)
FULL

]
IR
=

3

2

(
λ21 −

3κ2112
m2

2

) 2
B0(0, 0) . (2.26)

The ϕϕ → ϕϕ one-loop amplitude in the EFT is given by the diagram in Fig. 2.6 (b). Using
the tree-level relation in Eq. (2.21) for the effective tree-level vertices shows that

−i(4π)2M
(1)
EFT =

3

2

(
λ
(0)
EFT

) 2
B0(0, 0)

=
3

2

(
λ1 −

3κ2112
m2

2

) 2
B0(0, 0)

= −i(4π)2
[
M

(1)
FULL

]
IR
,

(2.27)

i.e. the IR contributions of the full theory and the EFT are identical. Thus, we can impose
the matching condition for the one-loop amplitude

MFULL |p2→0 ≡ MEFT |p2→0 , (2.28)

where
[
M

(1)
FULL

]
IR

and
[
M

(1)
EFT

]
IR

cancel such that the effective one-loop coupling is given
by the UV terms of the full model

δλ
(1)
EFT = −i

[
M

(1)
FULL

]
UV
. (2.29)
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(a) local EFT vertex to deter-
mined

(b) non-local EFT contribu-
tion to be cancelled

(c) B41 (d) SB4 (e) B421

(f) D41 (g) C41 (h) C42

Figure 2.6.: All IR-divergent diagrams appearing in the matching condition. The first row
are diagrams of the EFT amplitude. The second row contains diagrams in the
full theory with light loops, only while the third row contains diagrams with
mixed loops. Heavy fields are denoted by a double line. Crossed diagrams are
not drawn but included in the calculation.

For completeness we give the final result of the one-loop matched quartic coupling
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.

(2.30)
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2.3.2.1. Matching of the Mass Parameter

In addition, the mass parametermEFT has to be matched, since VFULL is an ordinary scalar
theory, without spontaneous symmetry breaking. The only non-local contribution is a
diagram of the type A2 with a vanishing massless tadpole integral A0(0). Thus, we can
express the mass parameterm2

EFT in terms of the full one-loop amplitude

(4π)2δm2 (1)
EFT =

λ1
2
A0(0) +

λ12
2
A0(m

2
2) + κ2112B0(m

2
2, 0)

=
1

2

(
λ12m

2
2 + 2κ2112

) (
1 − log

m2
2

Q2
match

)
.

(2.31)

2.4. Implementation in SARAH/SPHENO

This section describes the implementation of the technical aspects from the previous
sections in the spectrum generator SARAH.
The flow of information, when the matching routines are called, is drawn in Fig. 2.7. The
generation of topologies, generic diagrams and generic amplitudes is done with FeynArts
and FormCalc using the generic model file Lorentz.gen which does not contain any
model dependent information but only all possible Lorentz structures and renormalizable
couplings. The topologies as well as generic amplitudes and their MS − DR conversion
factors are extracted in a SARAH readable format and saved into SARAH’s source code.
This procedure is shown in the yellow box in Fig. 2.7 and has already been performed such
that there is no direct dependence on FeynArts/FormCalc during the program call.
Before performing a matching, two SARAH model files for the UV and EFT model need
to be chosen. Also the correspondence between an amplitude in the UV model and an
effective coupling in the EFT model must be provided as input. After the UV model has
been initialized, this information is given as a boundary condition for the EFT model at
the matching scale and is used to compute the (correctly normalized) amplitudes in the
UV model. Furthermore, various assumptions and parametrisations can be defined (i.e.
replacements of DR parameters through MS definitions or which VEVs shall be neglected
at the matching scale). When initializing the matching routines, this information is used
to diagonalize the mass spectrum analytically. If the automatic mass diagonalization fails,
one can use the numerical Fortran routines which are not part of this thesis.
After the matching routines were successfully initialized, all possible field insertions for
the generic topologies are generated, couplings and masses are determined and inserted
into the generic amplitudes provided by FormCalc. The modified loop functions (without
IR parts) from Appendix A.2 are inserted after the summation over all generation and
group indices has been performed. If the tree-level contribution contains gauge couplings,
Eq. (1.69) is used to calculate one-loop contributions to the coupling originating from
gauge coupling thresholds.
Finally, an analytical expression is given which can optionally be incorporated into the
SPheno output of the EFT model. The generated Fortran code operates as described in
Fig. 1.7 where the pole-mass matching is replaced with the analytical expressions of the
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2. Scalar Matching Conditions at Next-to Leading Order

effective couplings.
A comprehensive manual of SARAH’s matching interface is provided in Appendix A.3.

initialize UV model
SARAH

EFT model and
boundary conditions

User input

heavy field insertions

thresholds to
gauge couplings

insert loop functions
expanded in p2/m2

BSM

generic topologies
FeynArts

Insert generic fields
FeynArts

PaV reduction
MS − DR conversion

FormCalc

SARAH readable
topologies

SARAH readable
amplitudes

analytical
expressions

SARAH
Fortran output
for EFT model

SPheno

Figure 2.7.: Flow of information when invoking the matching interface from a UV-model.
The operations with the grey dotted arrows were done once and do not need
to be repeated with the downloadable version of SARAH. All black straight
arrows carry model-dependent informations.
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The following chapters apply the new SARAH/SPheno implementation of EFT Higgs
boson mass determinations on two different kinds of EFT models. The first one includes
high-scale SUSY scenarios where all SUSY partners are integrated out at the matching scale,
leading either to an effective SM or an effective 2HDM, depending on the mass hierarchy
in the Higgs boson sector. The second scenario is split SUSY, which additionally includes
all fermionic super partners in the EFT while only the scalar fields are integrated out. The
complexity of the EFT Lagrangian will increase with each of the following chapters.
The numerical scans in all chapters are using an one-loop matching, one-loop RGE running
and one-loop mass calculations at the electroweak scale.

3.1. High-Scale MSSM: an Overview

The MSSM is one of the most precisely studied BSM theories for SUSY scales not too far
away from the electroweak scale. Thus, it is natural to begin a high-scale BSM scenario by
applying the new implementation on the MSSM. This has successfully been done in the
literature [6, 9, 35, 59, 70]. The tree-level matching of the quartic coupling,

λEFT(mSUSY ) =
1

4

(
д21 + д22

)
cos2 2β , (3.1)

shows, that only two MSSM parameters have an influence on the effective tree-level Higgs
boson massmEFT

h
≈ λEFT(mZ ) v2. These are the mixing angle β andmSUSY , which enters

through the running of λEFT frommZ tomSUSY using SM RGEs. In particular, β is not an
input parameter of the SM but completely determined at the UV scale. Thus, the choice
of the renormalization scheme for β is ambiguous, as one can always compensate finite
counter terms δβ by choosing an appropriate input value of β at the matching scale. We
adopt the renormalization scheme of Ref. [9] and choose the finite part of the mixing
angle counter term to cancel the off-diagonal external leg contributions to the SM-like
Higgs boson at vanishing external momenta

δβfinite = −
1

m2
A

∏
A→h

(0), (3.2)

where A denotes the heavy Higgs boson doublet with degenerate components in the
v → 0 limit as shown in Eq. (1.49). This choice is not only motivated by the significant
simplification of the higher-order threshold corrections to the quartic coupling, but also
because the definition of tan β through the VEV ratio becomes ill defined at the matching
scale where vu , vd ≈ 0 is assumed [70]. However, the choice of Eq. (3.2) introduces a scale
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3. Validation: High-Scale Supersymmetry

dependence on β above the matching scale, which enters higher-order calculations in the
full theory. With the new extension of SARAH, it is in principle also possible to choose
a scale-independent (i.e. MS) scheme for β and optionally include the off-diagonal WFR
contributions into the threshold corrections. For the comparison with the literature we do
not take this possibility into account.

The one-loop corrections to Eq. (3.1) are listed in Ref. [9] in all detail for non-degenerate
SUSY particles. Thus, we refrain from listing them here again but only mention that
the new SARAH version is able to reproduce their analytical results with the input file
MSSM/Matching_HighScaleSUSY.m provided with the new release.

The precise experimental and theoretical value ofmh reduces the analysis of the BSM sector
to a two-dimensional problem in the (mSUSY , β)-space at tree level, while at the one-loop
order all soft parameters discussed in Section 1.3 enter the threshold corrections through
heavy particles in the loops. Gluinos are the only exception which start to contribute at
the two-loop order. The leading one-loop contributions are due to heavy stops and scale
with powers of the stop mixing parameter

X̂t ≡
Xt

√
mq3mu3

, Xt ≡ At − µ tan−1 β (3.3)

and are maximal for X̂t =
√
6. By choosing a degenerate spectrum of heavy masses

i.e. mA = µ = mqi = mui = mei = mli = mSUSY , the parameter At can be fixed for a
maximal/minimal stop contribution reducing the parameter space again down to two
dimensions. It was shown in Ref. [9], that a high-scale MSSM can reproduce the measured
value ofmh within the range of 104 GeV .mSUSY . 1010 GeV, which is in contrast to the
findings in Ref. [70] where the authors assumed very large non-degeneracies between the
SUSY fields to amplify the threshold corrections. However, large mass hierarchies within
the SUSY spectrum again raise the uncertainties of the Higgs boson mass predictions
which was not considered in Ref. [70]. Thus, concerning the MSSM, soft-SUSY-breaking
coinciding with the GUT scale is ruled out in the more precise scenario of degenerate
masses. Using the SARAH input file MSSM/SimpleHighScaleSUSY.m, contained in
the new version, the matching routines perform the MSSM → SM matching assuming a
degenerate mass spectrum. The numerical results of a scan in the (mSUSY − tan β)-space
are shown in Fig. 3.1. The red area marks points withmh = 125 ± 4GeV and is always
below the upper limit of 1010 GeV found in Ref. [9] for a non-degenerate mass spectrum.
The blue and green bands mark the ±2GeV and ±1GeV regions. In Fig. 3.1 it is also shown
that for tan β > 5, high-scale SUSY above 105 GeV is not possible in the MSSM.
Because of the running of the SM quartic coupling [71], rather small or even negative values
for λEFT

SM (mSUSY ) are needed for large matching scales in order reproduce the correct Higgs
boson mass. Since д1 and д2 grow with the running from the SM to the matching scale
while λEFT

SM grows with the running from the matching scale to the SM scale, the correct
matching scale which reproduces the observed Higgs boson mass rapidly drops with
increasing tβ as the D-terms always have a positive contribution. This picture dramatically
changes as one proceeds with the high-scale NMSSM, which is discussed in the next
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section.
Since we always combine the one-loop matching with a one-loop RGE running, our upper
bound onmSUSY with a degenerate spectrum accidentally coincides with the upper bound
of Ref. [9] which used a non-degenerate spectrum (larger stop contributions) but a three-
loop RGE running which shifts the running of λEFT

SM towards negative values (larger matching
scale). Thus, in the MSSM, the N3LO RGE-running seems to accidentally compensate
larger threshold corrections due to non-degenerate scenarios.

(a) Minimal stop mixing X̂t = 0. (b) Maximal stop mixing X̂t =
√
6.

Figure 3.1.: The Higgs boson mass predictionmh as a function of tan β andmSUSY in the
degenerate high-scale MSSM for minimal (a) and maximal (b) stop mixing. The
red/blue/green bands are points withmh = 125 ± 4/2/1GeV.

3.2. Non-Minimal SUSY: Matching the NMSSM to the SM

In this section, the Z3 symmetric NMSSM, described in Section 1.4, is matched to the SM
by computing the one-loop threshold corrections to the quartic coupling of the SM-like
Higgs boson. The singlet decoupling parametrization is introduced, which connects the
NMSSM to the MSSM and allows to take the continuous limit from the NMSSM to the
MSSM.The limit is taken within a 3 dimensional parameter scan, showing the new features
introduced by the singlet extension. Furthermore, comparisons between leading order
and next-to-leading order threshold corrections and their impact on the Higgs boson mass
predictions are made.

In contrast to the MSSM, the NMSSM explicitly connects the µ-parameter to the soft-
SUSY-breaking scale, c.f. Section 1.4.2.1. Thus, if the soft singlet massmS and the soft
sfermion masses are generated in the hidden sector by the same mechanism atmSUSY , the
NMSSM is a valid candidate for a high scale SUSY scenario. In this case not only heavy
sfermions, a heavy Higgs boson doublet and heavy electroweakinos enter the threshold

51



3. Validation: High-Scale Supersymmetry

corrections of the quartic SM Higgs boson self-coupling, but also a heavy singlet and a
heavy singlino.

3.2.1. Tree-Level Mass Spectrum at the Matching Scale

Before the threshold corrections are studied, the mass spectrum at the matching scale
mSUSY is calculated. Since every field which is not part of the SM Lagrangian is integrated
out, we chose all dimensionful parameters of the NMSSM to be of the order of the matching
scale Tκ , Tλ , vS ≈ O(mSUSY ). With the assumption of a vanishing SM VEV v �mSUSY , all
SM fields are treated as massless at the matching scale.

3.2.1.1. Heavy Higgs Bosons

Using v → 0 in the Higgs boson mass matrices Eq. (1.62) yields block diagonal matrices
where all mixing components with the singlet vanish. The upper left 2x2 matrices (i.e. the
Hu , Hd components) are diagonalized by tan β which rotates Hu and Hd into a basis of one
heavy (A) and one light (H ) Higgs doublet

©«
H

A

ª®¬ =
©«
cβ sβ

−sβ cβ

ª®¬ ©«
−ϵH ∗

d

Hu

ª®¬ , (3.4)

while the singlet is already in the mass basis. The non-zero eigenvalues of the CP-even
Higgs boson mass matrix read

m2
A =

1 + t2
β

2t2
β

vS

(
vS κ λ +

√
2Tλ

)
=

1 + t2
β

tβ
Beff
µ , (3.5)

m2
S = 2v2S κ

2 +
vSTκ
2
, (3.6)

where the definition of the effective soft bilinear parameter from Eq. (1.59) was used.
Similarly, the CP-odd Higgs boson mass matrix has two non-zero eigenvalues. As already
mentioned in Section 1.3.4, the state associated with the doublets is degenerate with the
CP-even and the charged Higgs boson massm2

A.
The mass of the CP-odd state associated with the complex singlet can be read off from the
mass matrix with vanishing SM VEV,

mAS
2 = −

3vSTκ
√
2
. (3.7)

In the following we choose vS > 0 andTκ < 0 to ensure a positive squared mass parameter
of the CP-odd state. From the CP-even singlet mass it then follows that 0 > Tκ > −4vS κ.

3.2.1.2. Neutralinos and Charginos

The chargino mass matrix is diagonal in the limit v → 0 so that the tree-level mass and
interaction eigenstates coincide and the rotation matrices are just the unit matrix,

mχ± = diag
(
M2,

vS λ
√
2

)
, (3.8)
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whereas the neutralino mass matrix in Eq. (1.64) still has two off-diagonal elements
originating from the µeffHu ·Hd-term. The rotation into the mass basis is performed by a
unitary transformation Ũ for the higgsino fields

N =

©«
12x2

Ũ

1

ª®®®®¬
, Ũ =

©«
i√
2

i√
2

− 1√
2

1√
2

ª®¬ , (3.9)

while all other fields are already mass eigenstates. The neutralino masses are then given
by

mχ0 = diag
(
M1, M2,

vS λ
√
2
,
vS λ
√
2
,
√
2vS κ

)
. (3.10)

In order to decouple all neutralinos, we also require M1, M2 ≈ O(mSUSY ).

3.2.2. Matching to the SM

With the masses and mixing matrices at hand, the quartic coupling of the lightest Higgs
boson is calculated at the one-loop order

λEFT
SM = λNMSSM |v2,p2�m2

SU SY

=
1

4

(
д21 + д22

)
cos2 2β︸                   ︷︷                   ︸

MSSM D-terms

+
λ

2
sin2 2β︸     ︷︷     ︸

singlet F-terms

−

3
(
sin 2β

(√
2Tλ + 2κ λ vS

)
− 2λ2 vS

) 2
8m2

s︸                                             ︷︷                                             ︸
singlet s/t/u-channel exchange

+ δλ(1)
EFT,

(3.11)

where the first line are D-terms as in the MSSM, the second line are singlet F-terms and
the third line is generated by tree-level diagrams involving an internal singlet which is
integrated out (i.e. a T42 topology). The one-loop contributions to the quartic coupling
in the fourth line are rather lengthy but can easily be reproduced with SARAH using the
input file NMSSM/SimpleHighScaleSUSY.m for the matching routines included in
the new release. The leading stop contributions of order O(Y 4

t ) to δλ
(1)
EFT are comparable to

the MSSM. Using the effective µ-parameter µeff = λvS/
√
2, given in Eq. (1.59), we define the

effective stop mixing parameter X eff
t = At − µefft

−1
β

. The leading one-loop contributions
from stops degenerate in massmstop are

δλ(1)
EFT ⊃ −

Y 4
t

32π2
X̂ eff, 2
t

(
X̂ eff,2
t − 12

)
−
3Y 4

t

8π2
log

Q2
match

m2
stop

, (3.12)
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which are maximized for X̂ eff
t = ±

√
6 (”maximal stop mixing”) and minimized for X̂ eff

t = 0
(”minimal stop mixing”).

3.2.3. The Singlet Decoupling Parametrisation

The following section studies the impact of the singlet extension onto the Higgs boson
mass prediction in the high-scale scenario. Although the NMSSM introduces two new
superpotential parameters κ, λ and three dimensionful parameters vS, Tλ and Tκ (m2

S can
be traded for the other three by using the tadpole equation Eq. (1.60)), the high scale
scenario can again be reduced to a problem with only a few dimensions. The physical
reason for this is that the high-scale scenario requires all non-SM states to live at the
scale ∝ mSUSY constraining most of the parameters to be within certain regions. The
assumption, that no further hierarchies are present between the non-SM fields, can be
realized by using a parametrization that connects all soft and dimensionless parameters
with only one dimensionless parameter andmSUSY . The mass hierarchy is then controlled
by these two parameters only. We introduce one possible parametrization and compare
the effects of the full NLO corrections with partial corrections that are already available in
the literature.
Being independent of the singlet sector we always use a degenerate sfermion and gaugino
spectrumms f ermions = M1 = M2 =mSUSY .

The NMSSM introduction in Section 1.4 pointed out, that the NMSSM reproduces all
MSSM couplings when relating the singlet VEV and λ with the MSSM µ parameter as well
as defining an effective bilinear term Beff

µ . Taking these relations as input, the NMSSM
can be divided into an MSSM-like sector with effective parameters and a singlet sector.
Thus, the limit λ,κ,Tλ,Tκ → 0, does not influence the MSSM sector, while it turns off
all couplings that concern the singlet and thus recovers the MSSM with effective µ and
Bµ-terms. Because the singlet can effectively be decoupled from all interactions, we call
this the decoupling parametrization (not to be confused with the meaning of the decoupling
theorem).
In addition, demanding a degenerate mass spectrum atmSUSY yields the conditions

vS =

√
2 µeff
λ

=

√
2mSUSY

λ
,

Bµeff =
vS

2

(
vS κ λ +

√
2Tλ

)
=

tβ

1 + t2
β

m2
A =

tβ

1 + t2
β

mSUSY ,

(3.13)
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which need to be fulfilled to ensure that the neutralinos and the heavy doublet have a
mass ofmSUSY . Similarly the conditions

Tλ =
mSUSY

2
λ (sin 2β − 1) ,

κ =
λ

2
,

Tκ = −
λ

3
mSUSY ,

(3.14)

lead to a singlino massms̃ =mSUSY and singlet massesmAS =mSUSY andms =
√
3/2mSUSY .

In fact, it is not possible to have all masses degenerate within this parametrization.

3.2.4. Numerical Analysis

Using the decoupling parametrization and the requirement of degenerate masses, only λ,
tan β andmSUSY are not fixed (while At is chosen to maximize/minimize the MSSM-like
stop contributions). Thus, taking the limit λ → 0 is enough to recover a high-scale MSSM
scenario as it can be seen in Fig. 3.2 which compares the N/MSSM Higgs boson mass
predictions as a function of the matching scale for various values of λ at tβ = 4. The figure
also shows that at fixed tβ , the NMSSM matching scale which reproduces the measured
Higgs boson mass can be many orders of magnitude larger than in the MSSM.

Figure 3.2.: Prediction of the effective SM Higgs boson mass as a function of the matching
scale in the MSSM and the NMSSM for λ ={0, 0.2, 0.3} and tan β = 4 using the
decoupling parametrization defined in Eqs. (3.13) and (3.14).

Using the effective parameters from Eq. (3.13) in the tree-level matching condition shows
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that the singlet s/t/u-channel contributions to (3.11) are only λ2 dependent because all
quartic terms are proportional to v2S λ

4 ∝ µ2effλ
2. The MSSM-like D-terms vanish for tβ = 1,

such that the effective SM quartic becomes negative

λEFT
SM (tβ = 1) ≈ −

λ2

4
, (3.15)

enabling the possibility of GUT-scale soft-SUSY breaking. For larger tβ , the D-terms
become important while the singlet F-terms are suppressed and the value of λEFT

SM at the
matching scale again strongly depends on the values of the gauge couplings at the matching
scale

λEFT
SM (tβ → ∞) ≈

1

4

(
д21 + д22

)
− 3λ2(1 − t−1β ) + O(t−2β ) . (3.16)

Thus, for low values of tβ , the correct matching scale should be rather high as the (negative)
NMSSM contributions are dominant while large values of tβ look more MSSM-like i.e.
small values of λ are required.

We performed numerical scans in the (λ, tan β ,mSUSY )-space and chose At to minimize
or maximize the leading NLO stop contributions while requiring a Higgs boson mass of
mh = 125 ± 2GeV. The results are shown in contour plots in Figs. 3.3a and 3.3b. The
qualitative correlations are as described above. The dark blue area, corresponding to the
MSSM limit λ → 0, has the same shape as the pure MSSM prediction in Fig. 3.1. However,
for λ > 0, all possible values of tan β andmSUSY > m

MSSM
SUSY are allowed by the Higgs boson

mass constraint. Another remarkable result is, that λ cannot be larger than ≈ 0.65 below
the GUT scale.
Higher-order matching conditions for the MSSM to an effective SM have been well known
for a long time. Thus, it is straightforward to partially compute NMSSM matching condi-
tions by using the following recipe:

1. Take the general expressions of the one-loop threshold corrections for λEFT
SM computed

in the MSSM,

2. make use of the NMSSM decoupling parametrization in Eq. (3.13) i.e. write µ =
µeff(vS, λ) and Bµ = Beff

µ (λ,κ, vS,Tκ),

3. add the tree-level contributions from the NMSSM given in Eq. (3.11).

Using this method, partially NMSSM higher-order corrections are computed in Ref. [10].
However, contributions from the heavy singlet at NLO are missing. For instance B4 topolo-
gies, which involve a heavy singlet loop and two hhSS-couplings or D4 (box) topologies
involving singlinos and higgsinos shown in Fig. 3.4, are not accounted for. Since the full
NMSSMNLO results are now available, we can compare them against an MSSMNLO calcu-
lation where the singlet tree-level contributions have been added. In the following, the
approximate calculation is called mMSSM approach for modified MSSM. The difference
mNMSSM

h
−mmMSSM

h
in the Higgs boson mass prediction between the two approaches is shown

in Figs. 3.3c and 3.3d. In particular, the difference is maximized for large values of λ, i.e.
matchings near the GUT scale. This is due to the special choice of parametrization, as all
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3.3. High-Scale MSSM with LowmA: Matching to a 2HDM

other singlet-couplings and soft-breaking parameters scale with λ (see Eqs. (3.13) and (3.14)).
Depending on the choice of minimal/maximal stop mixing, the difference between the two
approaches can be up to 2GeV. The maximum difference ∆m between the NMSSM and
the mMSSM prediction also scales with the stop contributions since ∆mAmin

t < ∆mAmax
t .

This is consistent with the findings from the NMSSM scans in Figs. 3.3a and 3.3b, that
maximal stop mixing allows for larger values of λ and thus also leads to larger deviations
from the mMSSM calculation.

In summary, the mMSSM approach, to re-use known MSSM threshold corrections in the
NMSSM with a decoupling parametrization, is a good estimate of higher-order corrections
which introduces a new systematic uncertainty of a few hundredMeV formSUSY < 108 GeV
and minimal stop mixing. However, in GUT scale SUSY breaking scenarios, which were
one motivation for introducing the high-scale NMSSM, this uncertainty can be up to 2GeV
for tan β < 5. If maximal stop mixing is considered, the additional Higgs boson mass
uncertainty is at least ≈ 1GeV for λ > 0.3 and any value of tan β .

3.3. High-Scale MSSMwith LowmA: Matching to a 2HDM

The high-scale NMSSM is an interesting framework which shows that non-minimal SUSY
without naturalness could be realized even at the GUT scale. Using the decoupling
parametrisation it also yields the possibility to verify the new implementation of the
SARAH matching routines by comparing numerical results with the well-known MSSM
results in the MSSM-limit λ → 0, as we did in the previous section. However, this does
not test the correct operation of the routines on extended Higgs sectors, since the high-
scale NMSSM only leaves the SM Higgs boson in the EFT. For the purpose of validating
the new implementation, a matching of the MSSM to a 2HDM is performed as the NLO
threshold corrections have been well known for a long time [8, 61, 72, 73] and give another
possibility to compare the automatically generated results of SARAH against the literature.

From a phenomenological point of view, the matching to a 2HDM is interesting because
it gives hints about how a general 2HDM can experimentally be distinguished from an
MSSM-like 2HDM, even if only the MSSM Higgs boson sector is measured while all other
MSSM fields are out of experimental reach. This idea is also supplemented in the hMSSM
approach [74], where the Higgs sector is only described bymA < 500GeV and tan β while
the size of radiative corrections is determined bymh ≈ 125GeV, which is considered as an
input. However, the hMSSM does not involve a proper matching of the scalar sectors but
only solves the fixed-order NLO result for a 125GeV Higgs boson mass with the result of
mSUSY & 1TeV for small values of tan β . Unfortunately, the (one-loop) fixed order result is
already starting to become untrustworthy in this mass range because large logarithms are
not accounted for. Thus, the hMSSM is well suited for moderate values ofmSUSY . 1TeV
i.e. larger values of tan β . Consequently, Ref. [8] found deviations between the hMSSM
and the EFT prediction in the heavy Higgs boson mass which can be 10GeV large for
small values of tan β < 5. In this region, large values ofmSUSY are required by the input
of the light SM Higgs boson mass.
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3. Validation: High-Scale Supersymmetry

Another example, which shows that the EFT matching has to be done properly by consid-
ering all mass hierarchies, is given by the recent developments in the computer program
FeynHiggs [75] which previously was not able to compute the light Higgs boson mass in
the effective 2HDM. Including the effects of an intermediate effective 2HDM, the authors
of Ref. [75] found differences of O(10GeV) in the Higgs boson mass prediction compared
to previous versions of FeynHiggs.
However, the focus of this section is on the validation of the analytical results rather
than a phenomenological study. Thus, we will only introduce all technical informations
necessary for the matching procedure.

3.3.1. The Low-Energy Lagrangian

The most general renormalizable CP-conserving scalar potential for two Higgs boson
doublets H1 and H2 [76, 77] reads,

V2HDM =m2
1 |H1 |

2 + λ1 |H1 |
4 +m2

2 |H2 |
2 + λ2 |H2 |

4

+ λ3 |H1 |
2 |H2 |

2 + λ4

���H †

2H1

���2
+

[
m2

12H
†

1H2 +
1

2
λ5

(
H †

2H1

) 2
+

(
λ6 |H1 |

2 + λ7 |H2 |
2
) (

H †

1H2

)
+ h.c

]
,

(3.17)

where both doublets have hypercharge +1. In order to make a connection to the MSSM
Higgs sector, we identify the doublets of the general 2HDM with those of the MSSM by
flipping the hypercharge and iso-spin of Hd

H1 → −ϵH ∗
d ,

H2 → Hu .
(3.18)

However, this choice is not unique as there is no preferred basis of Higgs doublets in a
general 2HDM, i.e. one could also interchange H1 and H2 in Eq. (3.18) (or take any linear
combination of both). With the choice made in Eq. (3.18), one can simultaneously apply a
rotation into the mass basis on (H1,H2) and (Hu ,−ϵH ∗

d
) so that the tree-level mixing angle

tan β of the MSSM coincides with the EFT.
Replacing the general 2HDM fields with their MSSM counter parts yields the potential

V2HDM =m2
1H

†

d
Hd + λ1

���H †

d
Hd

���2 +m2
2H

†
uHu + λ2

��H †
uHu

��2
+ λ3 |Hd |

2 |Hu |
2 − λ4

���H †

d
Hu

���2
+

[
−m2

12Hd ·Hu +
1

2
λ5

(
H †

d
Hu

) 2
−

(
λ6 |Hd |

2 + λ7 |Hu |
2
)
(Hd ·Hu) + h.c

]
,

(3.19)

which shall be expressed in terms of the MSSM potential Eq. (1.40) at tree- and one-loop
level.
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3.3. High-Scale MSSM with LowmA: Matching to a 2HDM

3.3.2. Tree-Level Matching

The tree-level matching can in principle be performed by comparing the tree-level La-
grangian derived in this section and the scalar potential derived in the MSSM introduction
in Eq. (1.40). However, in order to make the transition to the one-loop matching trivial,
all necessary tree-level MSSM amplitudes are computed instead and are matched to the
Lagrangian parameters of the 2HDM. Thus, at one-loop order, one just has to replace the
corresponding tree-level amplitudes by their one-loop counterparts.
The matching is performed using tree-level mass eigenstates. However, since vu , vd → 0,
the mass and gauge eigenstates do coincide and we can write

H2 = Hu =
1
√
2

©«
H + iA

H+

ª®¬ , H1 = −ϵH ∗
d =

1
√
2

©«
h + iG0

−G+

ª®¬ , (3.20)

because the CP-even, CP-odd and charged Higgs rotation matrices are unit matrices in
this limit. All other mass and rotation matrices for the electroweakinos and sfermions are
as in the high-scale scenario of the previous sections.
The effective couplings are then given by the amplitudes shown in Fig. 3.5, where the
field normalizations, permutation factors and different sign conventions compared to the
MSSM have been considered as well. The resulting quartic couplings read

λ1 =
1

8

(
д21 + д22

)
, (3.21)

λ2 = λ1 , (3.22)

λ3 =
1

4

(
д21 − д22

)
, (3.23)

λ4 = −
1

2
д22 , (3.24)

λ5 = λ6 = λ7 = 0 , (3.25)

while all mass parameters are given by

m2
12 = −Bµ , (3.26)
m2

1 = µ2 +m2
Hd
, (3.27)

m2
2 = µ2 +m2

Hu
. (3.28)

As in the MSSM,m2
1 andm2

2 can be traded for the quartic couplings through the use of
tadpole equations. The parameterm2

12 is given by the mass of the CP-odd statem2
A ∝ Bµ .

Since the CP-odd Higgs boson mass is also responsible for the doublet mixing, the renor-
malization of the mixing angle is connected to whether threshold corrections to m2

12
have to be considered as well. The scheme dependent choice of tan β in Eq. (3.2), for
example, already accounts for those threshold corrections above the scalemA. Thus,m2

A is
interpreted as an input parameter at the matching scale, since it is given by the bi-linear
soft-SUSY-breaking term.
Furthermore, different possible renormalization schemes for vu , vd and tan β are e.g. dis-
cussed in Ref. [61].
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3.3.3. One-Loop Matching

The matching is performed by computing the amplitudes in Fig. 3.5 at the one-loop order
with vanishing external momenta and vu , vd → 0. Since Bµ ∝ m2

A < 1TeV, also the
bi-linear coupling is set to zero at the matching scalemSUSY .
Using SARAH‘s matching routines as described in Appendix A.3.1.3 together with the
included input file MSSM/Matching_THDMII.m, the full one-loop threshold corrections
are computed. Comparisons with the expressions originating from heavy sfermions given
in Refs. [8, 72] yield identical results if the different normalizations are taken into account
and their chosen degree of mass degeneracy in the stop sector is considered. The contri-
butions from non-degenerate electroweakinos were computed in Ref. [61] and are also
identical to our findings.

In summary, the new SARAH matching routines have been validated using three compar-
isons with results available in the literature, one of them with an extended Higgs boson
sector. In addition, the correct separation of local and non-local contributions has been
shown using a simple toy-model.
Thus, we are able to apply the routines on untested scenarios. The next chapter discusses
the first dedicated application of SARAH‘s new matching routines on a model with an
extended scalar sector. A phenomenological study of the model including Higgs boson
and dark matter searches as well as low-energy constraints is performed.
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3.3. High-Scale MSSM with LowmA: Matching to a 2HDM

(a) Minimal stop mixing X̂ eff
t = 0. (b) Maximal stop mixing X̂ eff

t =
√
6.

(c) Minimal stop mixing. (d) Maximal stop mixing.

Figure 3.3.: NMSSM parameter points for a degenerate mass spectrum in the decoupling
parametrization which fulfillmh = 125 ± 2GeV. (a)/(b) are for minimal/maxi-
mal stop mixing. Figures (c)/(d) compare the NLO Higgs boson mass prediction
of the high-scale NMSSMmNMSSM

h
with the modified MSSM predictionmmMSSM

h
(i.e. MSSM NLO thresholds plus tree-level singlet contributions).
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(a) singlet loop
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(b) singlino-higgsino loop

Figure 3.4.: Excerpt of diagrams not accounted for in the calculation of threshold cor-
rections in Ref. [10] where only MSSM-like contributions are included. The
double-arrow denotes Majorana fermions.
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Figure 3.5.: Matching conditions for quartic couplings expressed in terms of effective
amplitudes in the unbroken SU(2) phase where the components of the mass
eigenstatesh, H , H±, G±, A andG0 coincide with the components of the gauge
doublets Hd and Hu .
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The following chapter studies the NMSSM with a large mass hierarchy which does not
separate SM fields from all non-SM fields, as in the high-scale SUSY scenario, but assumes
that only scalar superpartners of the SM fermions as well as one Higgs doublet are decou-
pled.

In the previous chapter we argued that the NMSSM may be more suited for a high-
scale SUSY scenario because it intrinsically connects the µ parameter to the (large) SUSY
breaking scale without specifying the hidden sector responsible for SUSY breaking. In case
of the MSSM, further assumptions on the hidden sector are necessary for µ ∝mSUSY . If
this is not the case, µ as well as all soft fermion masses can be protected by an approximate
globalU (1) symmetry which is a remanent of the discrete R symmetry R[Ĥu ·Ĥd ] = 0 [78].
Thus, it is also possible that supersymmetric fermions are light while only the scalars are
decoupled (except at least one light Higgs boson). Likewise, the effective µ parameter in
the NMSSM can only be protected by taking further assumptions of the SUSY breaking
pattern into account which separate the soft singlet mass term (and thus vS ∝ µeff) from all
other soft terms. This idea will be explained in more detail in the next section.

These aspects emerged in split SUSY scenarios where the experimental constraints on
the squark masses [79, 80] are taken as a guidance for multi-TeV or even heavier scalar
soft-SUSY-breaking parameters. However, due to the weaker bounds on uncolored fermion
masses [81, 82], fermionic SUSY particles can still be light. Thus, split SUSY as an in-
termediate EFT, consisting of the typical SUSY spectrum with the heavy scalars being
integrated out, is an economic way to account for experimental constraints and to give
precise predictions at the same time. In contrast to high-scale SUSY, the split scenario still
benefits from the additional light fermions. They enter not only predictions of low-energy
observables, but also contribute to the RGE running which can improve unification of the
SM gauge couplings д1,д2 and д3 near the GUT scale. In Fig. 4.1 the running of the SM
gauge couplings is compared between the MSSM (a) and the split MSSM (b) using two-loop
RGEs generated with SARAH. Due to the missing scalars, the prediction of the unified
gauge coupling strength in the split MSSM is smaller. In the specific example shown here,
where no sfermion threshold corrections have been considered, i.e. ms f ermion > mGUT,
unification is even more precise. The quality of unification is determined by δ = |1−д3/д1,2 |
evaluated at the scale where д1 and д2 are unified. We find δMSSM/δsplit MSSM ≈ 4.5.
Furthermore, stable fermions with masses of about one TeV and couplings to SM-fields
comparable with the strength of the weak interaction, i.e. Weakly Interacting Massive Par-
ticles (WIMPS), are known to be able to reproduce the observed relic density Ωh2 ≈ 0.12
of dark matter particles. Electroweakinos can fulfill these conditions and also evade pre-
dictions for direct detection (DD) searches of DM scattering cross-sections with heavy
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(a) MSSM (b) split MSSM

Figure 4.1.: The two-loop RGE running of the SM gauge couplings д1, д2 and д3 in the
MSSM and the split MSSM near the GUT scale. The RGEs have been calculated
by SARAH. The running starts at 3 TeV using the inputs: д1 = 0.45, д2 = 0.63
and д3 = 1.04. The area of the enclosed triangle in (b) is about ≈ 16 times
smaller compared to (a).

nuclei [83].
In addition, interesting collider signatures are predicted by split SUSY scenarios. Due
to the missing colored scalars, the relatively light gluino can only decay through higher
dimensional operators of the form д̃qq̄χ0 suppressed by the soft-SUSY-breaking scale. Thus
a large gluino lifetime and associated displaced vertices are typical signatures of split SUSY
[7, 84, 85] and are part of recent experimental searches [5].

However, the major motivations for the NMSSM given in Section 1.4 are also valid for
split SUSY scenarios if the singlet VEV is not associated with the SUSY breaking scale
responsible for the heavy sfermions but with an approximate symmetry which is a good
symmetry even after SUSY is broken. Furthermore, the NMSSM provides an additional
dark matter candidate, the singlino, which has the possibility to annihilate into a singlet
through resonant s-channel diagrams at tree-level. This process would be important during
the thermal freeze-out, providing a mechanism to reduce the relic abundance which is
often too large in the MSSM. These aspects are e.g. studied in Ref. [86] for the natural
SUSY case at fixed-order.

4.1. Non-Minimal Split SUSY: The Split NMSSM

The most general singlet extended split SUSY scenario was already considered in Refs. [64,
65, 87] with the focus on strongly first order electroweak phase transitions taking the SM
Higgs boson mass constraint into account using a one-loop matching which extended the
existing split MSSM corrections.
The focus of this section is on singlino dominated dark matter within the context of the
split NMSSM and the interplay with the scalar sector at low energies. Thus, the simplest
singlet-extended SUSY model described in Section 1.4 is considered as UV-model. The
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S HSM

S̃

S̃ XSM

XSM

(a) singlet-doublet mixing

S̃

H̃d,u

HSM

S̃

S̃

XSM

XSM

(b) singlino-higgsino mixing

Figure 4.2.: Possible processes during the thermal freeze-out. The SM particles XSM will
decay further while the singlino S̃ , if it is the LSP, contributes to the relic density.
The blob indicates the mixing between the singlet and the doublet and the
singlino with the higgsinos, respectively. Similar diagrams with non-resonant
t/u-channel exchange exist as well.

scalar singlet must be light enough to be able to mix with the SM-like Higgs in order to
serve as a possible mediator between the singlino and SM fields as indicated by the blob
in Fig. 4.2a. Furthermore, the singlino mass ∝ vS requires the singlet VEV also to be at or
below the TeV-scale. However, this predicts that the effective µ-term and thus the higgsino
masses are at the TeV-scale, too. Hence, the singlino can also couple to the SM-like Higgs
boson through mixing with the higgsinos as shown in Fig. 4.2b. Thus, the minimal EFT
content is the SM extended with a complex singlet S , a singlino S̃ , two neutral and two
charged higgsinos H̃u , H̃d . The three gauginos W̃ , B̃ and д̃ are also kept in the EFT because
of a symmetry argument given later.
The following sections elaborate this principle idea of the two models at the UV and IR
further and give analytical expressions for mass matrices suitable at their corresponding
energy scales. A one-loop matching of the scalar sector as well as a tree-level matching
of the Yukawa sector is performed using the matching routines described in Section 2.4.
The loop-corrected spectrum generated by SPheno is then used to study the possibility of
singlino dominated dark matter.

4.1.1. The NMSSM atmSUSY

The CP-conserving NMSSM introduced in Section 1.4 is assumed at the matching scale.
The superpotential and the soft breaking terms are

WNMSSM = WMSSM |µ=0 + λŜĤu ·Ĥd +
κ

3
Ŝ3,

V soft
NMSSM = V soft

MSSM |Bµ=0 +
Tκ
3
S3 +TλSHu ·Hd +m2

S |S |
2 + BµHu ·Hd

(4.1)

where the soft breaking potential V soft
NMSSM contains an additional MSSM-like bilinear soft

term Bµ . Because the singlet is supposed to be light i.e. vS � mSUSY , the separation
into one heavy and one light Higgs doublet through a large singlet VEV Beff

µ ∝ v2S is no
longer possible in the Z3-symmetric NMSSM. The solution to this problem is the additional
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bilinear term Bµ ≈ O(m2
SUSY ) which is an additional source of mass for the heavy doublet.

A motivation for Eq. (4.1), including the large Bµ-term, is given in Ref. [88] and is based
on a discrete R symmetry which forbids operators with couplings of dimension [mass]1

but allows for those of dimension [mass]2 except for the singlet superfield.
Thus, it follows from the arguments given in the introduction to the decoupling theorem
in Section 1.1.2, that all R-invariant operators have couplings O(m2

SUSY ) while the soft
R-symmetry breaking terms are protected and assumed to be of order O(mt) � mSUSY

such that the symmetry is restored in the limit of vanishing soft parameters.
Thus, the linear R-breaking parameters vS, M1,2,3 and Au,d,e are input of the EFT at the
TeV scale and negligible at the large matching scale. This is analogous to the v → 0 ap-
proximation in the high-scale SUSY scenario and effectively excludes higher dimensional
operators suppressed by vS/mSU SY from the calculation of scalar masses.
The singlet, the charginos and neutralinos are then treated as massless at the matching
scale ∝mSUSY . Using modified loop functions in the calculation of threshold corrections
will account for the separation of mass scales and the cancellation of IR divergences intro-
duced through this approximation, as it was shown in the toy-model example in Section 2.3.

Because all dimension three operators (i.e. trilinear scalar couplings and fermion mass
terms) are protected by an R-symmetry, sources of masses at the matching scale are present
in the scalar sector only

Bµ , m
2
li
, m2

ei , m
2
qi , m

2
di
andm2

ui ∝m2
SUSY �m2

t . (4.2)

Thus, threshold corrections at the matching scale appear only from the heavy doublet as
well as from sfermions. In particular, the stopmixing parameter X̂t ∝ At/mSU SY is suppressed
by the large SUSY breaking scalemSUSY and vanishes in the R-symmetry restoring limit.
Thus, as we set At = 0, the leading stop contributions from Eq. (3.12) are not present in
the split SUSY scenario.

4.1.2. Parameter Counting

Assuming all heavy scalars to be degenerate in massmSUSY , eleven free NMSSM input
parameters remain

tan β, λ, κ, M1,2,3, vS, Tλ, Tκ , Bµ , mSUSY . (4.3)

The mixing angle tan β plays the same role as in the high-scale NMSSM and rotates Hu ,
Hd into the SM Higgs basis H = cos βHd − sin βϵH ∗

u .
Bµ is connected to the heavyHiggs bosonmass and also eliminated in favour of a degenerate
mass spectrum.

Bµ =
tan β

1 + tan2 β
m2

SUSY . (4.4)

Overall, there are 10 free parameters in the degenerate case, out of which the six parameters
tan β , vS,Tλ,Tκ , λ and κ affect couplings of the scalar sector.

66



4.1. Non-Minimal Split SUSY: The Split NMSSM

4.1.3. The Split NMSSM atmt

The following section discusses the low-energy EFT of the split NMSSM with a large Bµ

introduced in the previous section and performs the tree-level matching of the scalar as
well as fermion sector.

4.1.3.1. Scalar Sector

The scalar potential in the gauge basis reads

V (H , S) = m2
HHH † +

λH
2

��HH†
��2

+ m2
SSS

∗ +
λS
2

|SS∗ |2

+ λSHSS
∗HH†

+ (κSHSHH † + κSSSS + h.c. ),

(4.5)

where the quartic and trilinear couplings κi and λi shall be expressed in terms of their
NMSSM counterparts at the matching scale. The squared mass parametersm2

H andm2
S

can again be eliminated by the use of tadpole equations. Comparing Eq. (4.5) with the
tree-level potential of the NMSSM, after rotating it into a basis of one light and one heavy
doublet, yields the tree-level matching conditions valid at the scale Qmatch ∝mSUSY

λH =
1

4
(д22 + д21) cos

2 2β +
1

2
λ2 sin2 2β ,

λS =2κ2 ,

λSH =λ2 − 2κλ
tβ

1 + t2
β

−
T 2
λ

m2
SUSY

(
t2
β
− 1

t2
β
+ 1

) 2
,

κS =
1

3
Tκ ,

κSH = −Tλ
tβ

1 + t2
β

,

(4.6)

which shall be extended by higher-order contributions. Remarkably, the quartic singlet-
doublet coupling λSH is the only coupling which has additionalm−2

SUSY suppressed contri-
butions (which do not scale with a VEV) from integrating out the heavy Higgs bosons.
Thus, λSH is very sensitive to Higgs boson masses that are of similar order as Tλ.
An important aspect of the trilinear couplings is, that they have dimension mass and thus
are sensitive to UV cut-offs ∝mSUSY . In particular, the contributions of heavy fermions to
the trilinear couplings, do not decouple but scale with the mass of the heavy fermions in
the loop, as it was shown in the dimensional analysis of the generic amplitudes in Sec-
tion 2.1. In order to have a stable vacuum, all trilinear couplings and the light singlet mass
should be of similar order. Thus, large cancellations between the tree-level parameters of
the trilinear couplings and their loop-corrections are necessary. However, the trilinear
couplings in the NMSSM are protected through a discrete R symmetry. Consequently, also
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the parameters of the EFT κSH and κS cannot receive such corrections since all fermions
are light.

After EWSB, the real singlet as well as the real part of the light doublet component
mix to two CP-even scalars h and S . The 2x2 CP-even scalar mass matrix reads

m2
H =

©«
m2

11 m2
12

m2
12 m2

22

ª®¬ =
©«

λH v2
√
2 vκSH + v vS λSH

√
2 vκSH + v vS λSH −

v2 κSH
2 vS

+ 3 vS κS√
2

+ v2S λS

ª®¬ , (4.7)

which can be diagonalized analytically using an orthogonal field transformation ZH (θ).
The eigenvalues of the matrix in Eq. (4.7) ,

m2
h,S =

1

2

(
m2

11 ±m2
22 +

√
(m2

11 −m2
22)

2 + 4m4
12

)
, (4.8)

are related through the mixing angle θ

tan 2θ = 2
m2

12

m2
11 −m2

22

=
4 v vS

(√
2κSH + vS λSH

)
v2

(√
2κSH + 2 vSλH

)
− v2S

(
3
√
2κS + 2 vS λS

) , (4.9)

such that for a small singlet VEV vS � v one obtains tanθ ∝
vS
v . The imaginary part of the

singlet corresponds to a pseudoscalar after EWSB with the mass

m2
A = −

9 v2S κS + v2κSH
√
2 vS

, (4.10)

while the remaining degrees of freedom from the doublet act as Goldstone bosons to
give rise of vector boson masses as discussed in Section 1.2.

4.1.3.2. Running in the Gauge Basis

In the previous section it was shown that the imaginary part of the singlet leads to a CP-odd
pseudoscalar which does not mix with any other fields. Furthermore, the imaginary part of
S does not take part in the κSH -interaction because of the hermicity of the Lagrangian and
the assumed CP-conservation. As a consequence, the beta functions of the CP-even/odd
singlets in the electroweak basis differ by a term ∝ κ2SH because the CP-odd field Si (i.e. A
in the mass basis) does not couple linearly to the Higgs doublet.
In order to account for this difference in the gauge basis, where the singlet CP-even
and CP-odd components have the same mass parameterm2

SSS
∗, the usual splitting into

CP-even/odd components is performed before EWSB

S =
1
√
2
(Sr + iSi) , 〈Sr 〉 = vS , (4.11)
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Sr Sr

H

H

Figure 4.3.: One-loop contribution to the singlet propagator involving two internal doublets.
Only the real component of the singlet is affected, leading to an additional
contribution of the beta function of the scalar CP-even states.

which equivalently describes a CP-conserving model with two real singlets

V (H , S) ≡ V (H , Si , Sr )

= m2
HHH† +

λH
2

(
HH †

) 2
+

m2
Sr

2
SrSr +

λSr
8

(SrSr )
2 +

m2
Si

2
SiSi +

λSi
8

(SiSi)
2

+
λSr i
4

SrSrSiSi +
λSH r

2
SrSrHH † +

λSH i

2
SiSiHH†

+
√
2κSH rSrHH † +

1
√
2
κSrSrSrSr −

3
√
2
κSr iSrSiSi

(4.12)

with additional boundary conditions at the matching scale

κSH ≡ κSH r ,

κS ≡ κSr = κSr i ,

λS ≡ λSr i = λSi = λSr ,

λSH ≡ λSHr = λSHi ,

m2
S ≡ m2

Sr
=m2

Si
.

(4.13)

Note that the Si field does indeed not couple trough κSH terms as it drops out once the
hermitian conjugate is added. The additional contribution to the beta function of the scalar
CP-even states due to theκSHr coupling is shown in Fig. 4.3. In contrast to the Si-propagator,
the Sr -propagator receives a one-loop contribution with two internal doublets. The quartic
couplings are not influenced by this effect because their beta functions are identical i.e.
the CP-even and CP-odd components are coupled quadratically in the same way because
V (Sr , Si) is assumed to be CP-conserving.
The numerical effect of the different beta functions on the running of the mass parameters
is shown in Fig. 4.4a, where the absolute difference between the mass parametersm2

Sr
and

m2
Si

of the real and imaginary singlet component is shown. The parameters are computed
at the top mass scale and drawn as functions of the scale at which they where matched
to the NMSSM using SPheno (as described in the next section). The analogue is shown
for the trilinear singlet self-coupling κS separated into κSr and κSr i in Fig. 4.4b, which also
receives different contributions at the one-loop order.
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(a) Mass parameter. (b) Trilinear coupling.

Figure 4.4.: The absolute difference of the squared mass parameters and self-couplings
of the real/imaginary part of the singlet computed at the top mass scale as
a function of the SUSY matching scale.The parameters at the matching scale
are: κ = 2.2, λ = −0.7, tan β = 17, vS = 197GeV, M1 = 2706GeV, M2 =
1021GeV, M3 = 1723GeV, Tλ = 2067GeV, Tκ = 1865GeV.

Considering κS , the difference tends to zero near the SM scale because it is only an RGE
generated effect and the couplings atmt are tree-level parameters. However, the squared
mass parameters are also affected by different tadpole corrections computed by SPheno
at mt , which is why they differ even for a small RGE running. The relative difference
generated by this effect is between 1-10% for the discussed example where a running over
one order of magnitude is performed.

4.1.3.3. Fermion Sector

Similar to the scalar sector, the fermion interactions as well as mass terms have the general
form in the EFT

Lfermion = Y EFT
d q H † d − Y EFT

u q H − Y EFT
e l H e

− дu2H̃u H
†W̃ −

дu1
√
2
H̃u H

† B̃

− дd2 H̃d H W̃ −
дd1
√
2
H̃d H B̃

−Yu
S S̃ H̃u H

† − Yd
S S̃ H̃d H

− YS̃ S̃ S̃ S −
Yud
√
2
S H̃u ·H̃d

−
Mд̃

2
д̃д̃ −

MB̃

2
B̃B̃ −

MW̃

2
W̃W̃

+ h.c. ,

(4.14)
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where the дji and Y
j
i are Yukawa couplings. Except Y EFT

d,u,e
, which are the SM-like Yukawa

couplings, all couplings are interpreted as free and independent input parameters. As in the
usual NMSSM, an effective µ-term as well as a singlino mass is generated spontaneously
through the VEV vS of the singlet.
Comparison with the NMSSM Lagrangian yields the tree level relations valid at the
matching scale

дu1 = д1 sin β , дu2 = д2 sin β ,

дd1 = д1 cos β , дd2 = д2 cos β ,
Yud = λ , YS̃ = κ ,

Yu
S = λ sin β , Yd

S = λ cos β ,
Y EFT
e,d = cos β Y FULL

e,d , Y EFT
u = sin β Y FULL

u ,

MB̃,W̃ ,д̃ = M1,2,3 ,

(4.15)

where Y FULL
d,u,e

are the Yukawa couplings in the NMSSM superpotential. The mass matrices
of the neutralinos and charginos in the split NMSSM are determined by the corresponding
matrices of the NMSSM, described in Section 1.4.2.3, using the relations in Eq. (4.15).
Also the diagonalization of the fermion sector is analogous to the procedure described
in Section 1.4.2.3. Thus, we will use the same notation for the mixing matrices N , U
and V . The actual diagonalization for all mass matrices with finite vS and v is performed
numerically by SPheno.

4.2. One-Loop Matching of the Scalar Sector

In the following analytical expressions of the one-loop corrections to Eq. (4.6) are given.
The full expressions are rather lengthy and can easily be reproduced with the new SARAH
matching routines. Thus, only the leading one-loop contributions in the limit д1,д2 → 0
are shown and are expanded for small/large values of tan β . However, for the numerical
analysis, the complete analytical results are used.

4.2.1. Quartic Couplings

The SM-like quartic coupling λH receives similar corrections as in the high-scale NMSSM,
except that contributions from the higgsinos, gauginos and soft sfermion couplings Ai are
absent. Thus, the leading contributions in the limit λ � д1,2 are dominated by λ4 terms

(4π)2δλ
(1)
H ≈ − 12 λ4 t2β

(
t2
β
− 1

) 2(
t2
β
+ 1

) 4
−

λT 2
λ

m2
SUSY


22λ t−2

β

(κ + 3
4λ)

 +
T 4
λ

m4
SUSY


2

1

 , for

tβ � 1

tβ ≈ 1

 ,
(4.16)

which are enhanced by a factor of tan β2. In addition to the absence of X̂t -terms, also the
Yt ,u,d-contributions vanish because a degenerate spectrum at the matching scalemSUSY is
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S

h

S

h

H H

d̃ / t̃

Figure 4.5.: Example of a tan β-enhanced/suppressed one-loop diagram involving a sbot-
tom/stop loop and two heavy Higgs boson propagators.

considered, cf. Eq. (3.12). ThemSUSY -suppressed terms become important once a rather
small matching scalemSUSY ≈ |Tλ | is assumed.
The singlet-like quartic coupling λS is also dominated by diagrams that contain two quartic
couplings and internal heavy Higgs bosons

(4π)2δλ
(1)
S ≈ − 4κ2 λ2

(
t2
β
− 1

t2
β
+ 1

) 2
−

4T 2
λ

m2
SUSY


κ2

1
6(κ

2 − 3λ2 − 3κ λ)

 +
T 4
λ

m4
SUSY


4

−1
6

 , for

tβ � 1

tβ ≈ 1

 .
(4.17)

However, no tan β enhancement is found for λ(1)S . The shift in the quartic coupling λSH ,
which is responsible for the singlet-doublet mixing, is given by

(4π)2δλ
(1)
SH ≈ − 2κ λ2


−κ(
3λ − 2κtβ

)
t−1
β


− 2

T 2
λ

m2
SUSY

(
t2
β
− 1

t2
β
+ 1

) 2 (
t−2β Y 2

t + t2β (Y
2
d + Y 2

τ )
)

−
T 2
λ

m4
SUSY


2T 2

λ
− 4T 2

κ

2T 2
κ +

T 2
λ
4 + 2TλTκ

 , for

tβ � 1

tβ ≈ 1

 ,
(4.18)

which has an interesting tan β enhancement for the down-type sfermion Yukawa cou-
plings in them−2

SUSY suppressed terms while the stop contributions ∝ Y 2
t are tan β sup-

pressed. The sfermion contributions are generated through diagrams of topology type
SA4, like the one shown in Fig. 4.5.

72



4.3. Numerical Analysis of the Split NMSSM Matching

S∗

S

S

H

H

Figure 4.6.: The operator SSS∗ is generated at one-loop order through corrections from the
heavy Higgs boson H .

4.2.2. Trilinear Couplings

The trilinear singlet self-coupling is corrected at one-loop order by the leading term

(4π)2δκ
(1)
S ≈ −2κ λTλ

(
t2
β
− 1

t2
β
+ 1

) 2
−

1

12m2
SUSY


6Tκ T

2
λ

T 2
λ
(Tκ − 2Tλ)

 , for

tβ � 1

tβ ≈ 1

 , (4.19)
whereas the largest corrections to the coupling responsible for the S − H mixing are

(4π)2δκ
(1)
SH ≈ −λTλ


κ

3 λ t−1
β

 +
T 2
λ

m2
SUSY


17Tλ t

−1
β

2Tκ +
9
4Tλ

 , for

tβ � 1

tβ ≈ 1

 . (4.20)

As expected, the one-loop trilinear couplings scale with [trilinear coupling]3m−2
SUSY , be-

cause no threshold corrections from heavy fermions are present.

Additional operators are generated at the one-loop order, when integrating out the heavy
Higgs doublet. For instance, the operator SSS∗ is generated through the diagram Fig. 4.6,
although it is not present in the original Lagrangian Eq. (4.5). However, since a CP-
conserving model is considered, no additional operators to those in Eq. (4.12) can appear
as this is already the most general CP-conserving potential for two real singlets. Thus,
all new one-loop contributions, like the one in fig. Fig. 4.6, are already accounted for by
directly matching the Lagrangian L(H , Sr , Si) instead of L(H , S). This has been done by
implementing a new SARAH model, SplitSUSY_NMSSM, which is based on Eqs. (4.5)
and (4.14), and now part of SARAH’s source code.

4.3. Numerical Analysis of the Split NMSSMMatching

The following sections perform a numerical analysis of the split NMSSM with a scalar
sector matched at one-loop order to the NMSSM. The SPheno code [11, 12] generated
by SARAH [13] includes the matching conditions, the RGE running and computes the
mass spectrum in the low-energy theory as well as cross-sections, branching fractions
and decay rates of several processes. The output for a given set of numerical values of the
input parameters, discussed in Section 4.1.2, is a spectrum file in the SLHA2 format [89].
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4. Application: Split Supersymmetry

Figure 4.7.: Example of a split NMSSM mass spectrum. The red horizontal line marks
125GeV whereas the area between the two vertical black lines is allowed
by Higgs constraints (HiggsBounds). Masses ≥ 1 TeV are not shown for
simplicity: mд̃ ≈ 1.7TeV, mχ±2 ,χ

0
4
≈ 1TeV, mχ05

≈ 2.7TeV in the area allowed
by HiggsBounds.

The generated spectrum file contains all computed information of the low-energy theory
and is passed to HiggsBounds [90], which compares the computed cross-sections and
branching fractions against publicity available Higgs searches from the Large Electron
Positron (LEP) collider, Tevatron and the LHC. Furthermore, mircOmegas [91] is used to
calculate the relic density.

4.3.1. Example spectrum

Before examining the whole parameter space of the split NMSSM, an example spectrum
is considered. All parameters are fixed to the values shown in Fig. 4.7 while onlymSUSY

is varied from 2-20 TeV. In particular Tλ and Tκ are chosen to be ≈ 2TeV. The purpose of
this is to estimate the influence of themSUSY -suppressed terms, which become relevant if
Tλ,Tκ ≈mSUSY .

The dependence of the scalar and fermion masses lighter than one TeV on mSUSY is
shown in Fig. 4.7. In particular, the SM-like Higgs boson mass is very sensitive tomSUSY

formSUSY < 3TeV compared to the other mass parameters. This is not only due to the
running of λH (as in high-scale SUSY) but also due to the choice of Tλ = 2TeV and the
T 2
λ/m2

SU SY -terms in the tree-level relation of λSH which become important. In this regime
the EFT approach of two well separated mass scales becomes questionable. Thus, we
discard parameter points with 2mSUSY < Tλ, Tκ , vS for the actual phenomenological study.
The area enclosed by the two vertical black lines, where themSUSY -dependence ofmh is
already flattened, is allowed by the HiggsBounds constraints.
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4.3.1.1. Comparison: Tree-Level against One-Loop Matching

The effect of the NLO contributions calculated with the new SARAH interface w.r.t. the LO
contributions can also give further guidance on the minimum choice of the matching scale.
This is due to the fact, that all couplings (except λSH ) do not receivem−1

SUSY suppressed
terms at LO but only from NLO threshold corrections.
For the comparison, only the perturbative order of the matching is varied while the mass
spectrum atmt is always computed at the one-loop order. The differences from LO to
NLO matching conditions on the prediction of the quartic and trilinear couplings atmt

is shown in Figs. 4.8a and 4.8b while the resulting difference in the singlet-like, pseu-
doscalar and SM-like masses is shown in Fig. 4.8c. The experimentally allowed range
mSUSY = {3.2, 6.7} TeV is considered only.
The quartic singlet self-coupling does neither receive large NLO corrections nor shows a
strong dependence on the matching scale which is likely because them−4

SUSY -term has a
different sign and less numerical suppression factors such that cancellations are possible.
The SM-like coupling λH is tan β enhanced for terms which are not suppressed bymSUSY

(note that tβ = 17 is chosen) and thus is corrected at a level of 7% without a large depen-
dence on the matching scale. Interestingly, the singlet-doublet coupling λSH receives large
corrections for smallmSUSY which is due to the tan β enhancedm−2

SUSY suppressed terms
in Eq. (4.18). Thus, also the NLO corrections require at least 2mSUSY > Tλ.
The trilinear couplings in Fig. 4.8b have a rather weak dependence onmSUSY . The singlet
self-coupling has a positive correction of O(5%) because Tκ ≈ −Tλ was chosen while the
singlet-doublet coupling is barely changed w.r.t. the leading-order computation.
The resulting differences in the scalar mass predictions are shown in Fig. 4.8c. The scalar
singlet and SM-like mass differences have a rough dependence on the matching scale for
smallmSUSY and receive positive corrections at the O(2 − 4%) level. The pseudoscalar
mass is twice as heavy as the singlet mass and thus relatively robust against small changes
of the matching scale. The shift on the singlet pseudoscalar massmA from an LO to NLO
matching is about -4%.

In conclusion, NLO corrections have the ability to improve the mass predictions at the
1−10% level while care has to be taken ifmSUSY ≈ Tλ ,Tκ . All low-energy mass parameters
should be chosen to be at least smaller than 2mSUSY for the considered parameter point.

4.3.1.2. Relic Density Constraint

The impact of the matching scale on the prediction of the relic density Ωh2 is shown in
Fig. 4.9awhere the horizontal linemarks the central value of the experimental measurement.
In the considered scan range, the neutralinomixingmatrix elements fulfill |N13 |

2+|N14 |
2 =

{0.95, 0.96} i.e. the LSP is higgsino-like. Thus, the running of the gauge couplings and Yud
frommt tomSUSY are the dominant effects. A variation of less than 5% is observed in the
region allowed by HiggsBounds. However, the theoretical uncertainty in the calculation
of Ωh2 performed with mircOmegas is rather high and was found to be more than 20%
[92] because only tree-level processes based on CalcHEP [93] are included.
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(a) quartic couplings (b) trilinear couplings (c) scalar masses

Figure 4.8.: Relative difference between leading and next-to-leading mass predictions.
Parameters are chosen as in Fig. 4.7.

Thus, we allow for a variation ofΩh2 = 0.12±0.08 in the results generated bymicrOmegas
for all following scans.

4.3.1.3. Tree-Level Unitarity Constraints

Unitarity at tree-level constrains the smallest eigenvalue a0 of the scattering matrix for a
scalar state a = {1, 2} with two scalars labeled by 1 and 2 into a scalar state b = {3, 4}
with two scalars 3 and 4,

(a0)ab =
1

32π

√
4| ®pa | | ®pb |

2δ122δ34s

∫
1

−1
d(cosθ) Mba(cosθ) , (4.21)

where ®pi are the incoming/outgoing momenta in the centre-of-mass (CM) frame, s is the
CM scattering energy, θ is the scattering angle between ®pa and ®pb andMab is the Feynman
amplitude for the scattering process. Unitarity at tree level requires Re(a0)ab < 1/2. In
the large s approximation s → ∞, only 4-point interactions in the amplitude Mba are
taken into account which leads to the constraint |Mba | < 8π [94] . The impact of this
approximation on the computation of the eigenvalues of the scattering matrix was studied
in [94] and can differ significantly from a full computation involving trilinear couplings
i.e. diagrams of the topology type T42. Such couplings are also generated in models with
spontaneous symmetry breaking where quartic couplings are multiplied with potentially
large VEVs. In this case, the amplitude may have the form

Mba ∝
λ2v2

s −m2
, (4.22)

where λ is a quartic coupling, v is a (large) VEV andm a scalar mass. Thus, even ifm2 � s ,
it is possible that such contributions become important if v2 ∝ O(s). The computation
of the full tree-level scattering matrix was implemented in SARAH/SPheno [95] which
is used in the following to determine the impact of the trilinear couplings present in the
singlet extended Higgs boson sector of the EFT.

In Fig. 4.9b, the large s approximation is compared against the full computation with
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(a) Relic density in the split NMSSM.The area
between the two vertical black lines is al-
lowed by HiggsBounds. The horizontal
black line corresponds to the experimen-
tally measured value.

(b) Comparison of the smallest scattering
eigenvalue in the large s approximation
against the one of the full scattering ma-
trix with

√
smax = 3TeV.

Figure 4.9.: Relic density (a) and tree-level unitarity (b) in the split NMSSM

the maximum scattering energy
√
smax = 3TeV using the same data sample as in the

previous sections. The tree-level trilinear couplings |Tλ |, |Tκ | ≈ 2TeV are smaller than s if
mSUSY is large while at one-loop order the dependence onmSUSY discussed in Section 4.3.1.1
is generated which can enhance the trilinear couplings for small values of mSUSY . As
expected, the full computation can significantly change the smallest scattering eigenvalue
a0 for smallmSUSY while it tends towards the result of the large s approximation for large
mSUSY .
A detailed study of the influence of the large s approximation on the unitarity constraint
is performed in the next section.

4.3.2. Parameter Scan

To analyse the complete parameter space of the model, a random scan over all ten input
parameters within the ranges given in Table 4.1 is performed. Parameter points that do not
have a light scalar with massm = 125.09± 2GeV are discarded while all other constraints
are subsequently applied later on the generated data sample. Furthermore, all low-energy
mass parameters must not be larger than mSU SY/2 in order to keep the EFT uncertainty
small. In addition, points with chargino masses smaller than their experimental lower
bound from LEP of 94GeV [2] as well as gluino masses smaller than 1.5 TeV are discarded.

4.3.2.1. Parameter Correlations after Matching

Before the different constraints are discussed, the correlations among the most important
NMSSM input parameters are considered which are shown in scatter plots in Fig. 4.10. The
orange points are excluded by HiggsBounds while white areas are unphysical (e.g. due
to negative mass squares) and blue points fulfill the Higgs boson mass constraint in the
range of ±2GeV. The correlation between λ and κ is shown in Fig. 4.10a, which is rather

77



4. Application: Split Supersymmetry

parameter scan range

λ [-3, 3]

κ [-3, 3]

tan β [1, 50]

vS [0, 3000] GeV

parameter scan range

Tλ [-3000, 3000] GeV

Tκ [-3000, 3000] GeV

M1,2 [10, 3000] GeV

M3 [1000, 3000] GeV

MSUSY [103, 1016] GeV

Table 4.1.: Scan ranges for the random scan over the NMSSM parameter space. All param-
eters are input at the matching scalemSUSY .

weak and unaffected by the Higgs searches. A lower bound on λ > 0.5 exists in the range
of κ ≈ 0 which means that light singlinos require heavy higgsinos.
The dependence of Tλ on Tκ , shown in Fig. Fig. 4.10b, is uncorrelated for Tκ < 0 as it was
chosen in the highs-scale NMSSM, see Eq. (3.7). However, in the split NMSSM also positive
Tκ are possible if Tλ is chosen to be non-zero.
The behaviour in the λ-tan β plane, Fig. 4.10c, is also very similar to the high-scale NMSSM
i.e. low values of tan β enable larger values of λ. In the high-scale NMSSM we found
for a degenerate spectrum in the decoupling parametrisation that λ < 0.6, cf. Fig. 3.3b,
while in the split NMSSM λ > 2 is possible. The dependence of κ on tan β , Fig. 4.10d, is
complementary. Low values of tan β allow for κ ≈ 0 only, otherwise the two parameters
are uncorrelated.
The most important input parameter dependencies for the dark matter prediction are
those of the dimensionless couplings on the singlet VEV, shown in Fig. 4.10e and Fig. 4.10f,
because they determine the singlino/higgsino mass spectrum. The vS − λ plane has a white
area for small vS and λ from discarding points withmχ±1

< 94GeV. The exclusion limits
from Higgs searches require λ to be rather small if vS is assumed to be small in contrast to
κ which must be large for small vS because otherwise the singlet quartic coupling ∝ κ2

(and hence its mass) is too small.

4.3.2.2. Scalar Sector and Higgs Constraints

Since S is a gauge singlet, the observed tree-level decay h125 → ZZ is not possible for S if
no mixing with the SM-like Higgs doublet is present. Thus, scenarios where the scalar
with mass 125GeV has a large singlet component, i.e. tanθ � 1, are likely to be excluded
by Higgs boson measurements. This can bee seen in the scatter plot in Fig. 4.11a, where the
singlet-like mass is plotted against the mixing angle tanθ . The color of the points indicates
the matching scalemSUSY while grey points are excluded by HiggsBounds. Large SUSY
scales allow for tanθmax ≈ 1/2 which corresponds to a maximum singlet admixture of
20%. This is only possible withmSUSY near the GUT scale because them−2

SUSY -suppressed
contributions to κSH and λSH are not too large such that all mass matrix elements are of
similar size. Singlet-doublet decoupling, tanθ ≈ 0, is only observed for TeV-scale SUSY
breaking. This indicates that an RGE running over several orders of magnitude always
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(a) (b) (c)

(d) (e) (f)

Figure 4.10.: NMSSM input parameters. Orange points are excluded by HiggsBounds.

introduces sizeable mixing effects i.e. relatively large λSH and κSH .
The mass of the singletmS as a function of the pseudoscalar singlet massmA is shown
in Fig. 4.11b. In the considered parameter space, the singlet mass mS scales from ≈

200GeV, near the current experimental constraints, up to 6 TeV which is above the energy-
scale probed by current colliders. However, even for a TeV-scale CP-even singlet, the
pseudoscalar can have a mass of only several GeV if the matching scalemSUSY is not too
small. Since the pseudoscalar is a singlet, it cannot be constrained through couplings to
the Z -boson as they are only loop induced and naturally small. A possibility to constrain
the pseudoscalar mass is through the invisible width of the SM-like Higgs boson h → AA
which, however, was not considered here. The focus of this section is on the singlet as a
DM mediator which is relatively independent onmA formA < 200GeV.

4.3.2.3. Tree-Level Unitarity Constraints

Tree-level unitarity checks are performed in the samemanner as described in Section 4.3.1.3.
The interesting region of

√
s is the scale ofmS andmA in Fig. 4.11b, where contributions

not covered by the large s approximation are important. Thus, we scan
√
s from 250GeV

(where SM Higgs boson propagators are important) tommax
S ≈ 6TeV. The presence of

poles, e.g. s ≈m2
S , are handled by SPheno [95], which ignores such corrections.

The prediction of the maximum smallest eigenvalue afull0 as a function of the scalar and
pseudoscalar mass in the full a0 calculation (including trilinear couplings) is shown in
Figs. 4.12a and 4.12b. The largest eigenvalues are found formS . 3TeV andmA . 1.5TeV.
This is the energy regime, for which the trilinear singlet coupling κs ∝ Tκ = {−3, 3} TeV
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(a) (b)

Figure 4.11.: Singlet scalar mass as a function of the mixing angle tan |θ | (a) and the
pseudoscalar mass (b). The color indicates the scale at which the matching to
the NMSSM was performed. Grey points are excluded by HiggsBounds.

can be of O(1) compared to the singlet masses. Thus, tree-level contributions like

MA,A→S→A,A ∝
T 2
κ

s −m2
S

(4.23)

can contribute with large values to afull0 , if s is not too large. The apparent threshold at
mS ≈ 5TeV is due to s/t/u-channel resonances which are cut out by SPheno.
The difference between the full afull0 computation and the computation involving the large
s approximation a

large s
0 is shown in Fig. 4.12c. The x-axis shows the scattering energy

√
sbest for which a0 is maximized. The largest deviations are observed in the region of

the trilinear couplings √sbest < 4TeV, while there is good agreement between the two
approaches for large values of √sbest.
Furthermore, Figs. 4.12a to 4.12c also show the dependence onmSUSY which is controlling
the large values of afull0 as well as the large deviations to alarge s

0 . This is due to the trilinear
couplings, which can be enhanced for smallmSUSY but are not accounted for in a

large s
0 .

However, we do not find many cases where a parameter point is allowed in the s → ∞ limit
but forbidden in the finite s computation (or vice versa). In addition, the EFT uncertainty
is larger for smallmSUSY . Higher-order corrections may predict smaller trilinear couplings
and can shift the points with a0 > 1/2 again below 1/2. Thus, the tree-level unitarity
constraint is satisfied in almost all regions of the considered split NMSSM parameter space.
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(a) (b) (c)

Figure 4.12.: Smallest scattering eigenvalue as a function of the matching scale and the
(pseudo)scalar massmS (mA). The right plot shows the difference between
the smallest scattering eigenvalue in the large s approximation and the full
tree-level computation depending on the scattering energy √

sbest.

4.3.2.4. Low-Energy Constraint from the ρ-Parameter

The EFT of the split NMSSM does not contain light squarks. Thus, the only SUSY con-
tributions to the ρ parameter are from the gauginos and higgsinos which give rise to
electroweak corrections only. In contrast, stops/sbottoms would contribute with possible
large mass splittings to the one-loop ρ parameter in Eq. (1.27) as well as with large QCD
corrections at two-loop order. The effect of large mass splittings in the electroweakino
sector is shown in Fig. 4.13a and b, where ∆ρ = ρNLO − 1 is plotted against the relative
mass difference of the two charginos (a) and the relative difference of the LSP mass and the
heavier chargino mass (b). For the latter M1 > 2.5TeV > M2, µeff has been used because
the bino cannot contribute to the ρ parameter due to its abelian nature.
No dependence on the mass splitting is observed and only a few points are outside the
experimental uncertainty ∆ρexp = (3.9 ± 1.9)·10−4 marked with the two horizontal lines
in Fig. 4.13.
For the further analysis, no additional theoretical uncertainty is introduced but all points
outside ∆ρexp are discarded.

4.3.2.5. Relic Density and Dark Matter Components in the Split NMSSM

Thefinal goal is to find parameter spaces for singlet mediated singlino DM. For this purpose,
the relic density dependence on the neutralino mixing elements is shown in Fig. 4.14a, to
visualize if singlino DM is possible at all. The horizontal black lines mark the theoretical
uncertainty, discussed in Section 4.3.1.2 around the central value of the measurement
Ωh2 = 0.12 ± 0.08. This area is exclusively shown in Fig. 4.14b.
The gaugino masses are driven by the four parameters M1, M2, tan β andmSUSY (through
the running of д1,2), so that a rough estimate yields gaugino like DM ifM1,2 < vS. However,
neutral gauginos do not directly couple to the Z boson because of the abelianU (1) content.
Annihilation between two gauginos is e.g. possible into twoW bosons with a chargino in
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Figure 4.13.: The ρ-parameter prediction in the split NMSSM as a function of the chargino
mass splitting (a) and the relative mass difference of the LSP and charged
NLSP (b).

the u/t-channel. If the involved couplings are not large enough, pure gauginos easily lead
to an overabundance as shown in Fig. 4.14.
The higgsino masses are controlled by vS and λ and mix complementary to the gauginos
since they share the same non-zero off-diagonal mass matrix elements. In particular, hig-
gsinos have the possibility to co-annihilate into two SM Higgs bosons via t and u-channel
exchange of the singlino. The annihilation into hSM is relatively efficient as it can be seen in
Fig. 4.15, where the relic density distribution is shown as a function of the LSP mass for the
different LSP species (we require the corresponding mixing elements do indicate at least
90% of the corresponding field content in the LSP state). If the annihilation into the Higgs
boson with a mass of 125GeV becomes kinematically allowed, the higgsino prediction
as well as the singlino prediction of Ωh2 drop and start to increase with increasing LSP
masses. However, resonant annihilation of pure higgsinos into the SM-like Higgs boson is
not possible as this would violate SU (2) invariance, i.e. there is no H̃uH̃dH operator.
The singlet-component, plotted in green in Figs. 4.14 and 4.15, does not have the channels
involving intermediate gauginos or charginos available. However, even without mix-
ing, the singlino can annihilate into two SM-like Higgs bosons with a higgsino in the
t/u-channel which is why the singlino-component has a similar shape as the higgsinos in
Fig. 4.15. Resonant annihilation with a pure singlet in the s-channel is only possible into
two higgsinos. If a singlet-doublet or singlino-higgsino admixture is present, annihilation
into SM fields is possible as shown in Figs. 4.2a and 4.2b. However, the singlet mass is not
an input parameter. Thus, resonant singlet exchange cannot be seen in Fig. 4.15 but must
be investigated further which is the topic of the next section.

4.3.2.6. Resonant Singlino Dark Matter

From the previous discussion, one would expect that resonant singlino annihilation is
possible starting from singlet masses of about 200GeV as indicated by the lower-bound
in Fig. 4.11c and the rich possibilities to accommodate light singlino LSP in the whole
scan range in Fig. 4.15. However, projecting the singlino nature into themLSP −mS plane
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Figure 4.14.: The Relic density as a function of neutralino mixing elements. Blue, orange
or green near to 1 correspond to gaugino-, higgsino- or singlino-like dark
matter. The right plot zooms into the experimentally allowed region enclosed
by the two black lines in the left plot.

Figure 4.15.: The relic density as a function of the LSP mass for a gaugino-like LSP (blue,
|N11 |

2 + |N12 |
2 > 0.9), higgsino-like LSP (orange, |N13 |

2 + |N14 |
2 > 0.9) and

singlino-like LSP (green, N15 |
2 > 0.9). The vertical line marks 125GeV.

83



4. Application: Split Supersymmetry

(a) The LSP mass as a function of the sin-
glet mass and the singlino mixing compo-
nent. Grey points are excluded by Higgs-
Bounds.

(b) The relic density as a function of the
singlino-like LSP and the singlet-like
mass. The area between the two black
lines corresponds to the experimental
constraint.

Figure 4.16.: Singlino-like dark matter. Only points with a singlino contribution to the LSP
mass of at least 60% are shown.

yields a stronger lower-bound on the scalar singlet mass because vS and κ cannot be small
at the same time, as it was shown in the discussion of the input parameter correlations,
cf. Fig. 4.10. This projection is given as scatter plot in Fig. 4.16a, where ”singlino-like”
DM is defined as |N15 |

2 > 0.6. The lower-bound onmS is determined to ∼ 500GeV. If
mLSP = 1/2mS , a resonant s-channel annihilation can be achieved, starting from singlino
masses of about 250GeV.

The relic density as a function ofmLSP −
mS
2 is shown in Fig. 4.16 for singlino-like LSPs.

As expected, a dip at zero indicates the high annihilation rate in this kinematic regime.
Thus, it was shown that singlino-like dark matter can be achieved using the mechanism
of resonant annihilation if the scalar superpartner of the singlino has a mass of at least
500GeV.

4.3.3. Top-Down Versus Simplified Models: the Advantage of Matching

In Section 4.1.2 six input parameters concerning the split NMSSM scalar potential at the
matching scale were counted (excluding scalar masses). However, the scalar potential of
the low-energy EFT has six parameters as well

tanθ , vS,κSH ,κS , λS and λH . (4.24)

Thus, one may ask about the advantage of the matching because the number of parameters
in the scalar sector is not reduced. If there is not advantage in the matching, the EFT may
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be interpreted as a simplified model which is not matched to an UV completion but all
parameters in Eq. (4.24) are input at the weak scale instead. The simplified model may
then cover the whole parameter space as well (concerning the scalar sector) without being
matched to a UV-completion. This question is addressed within this section.

In the EFT, the low-energy parameters counted in Eq. (4.24) are not an input at the
electroweak scale but are expressed in terms of NMSSM parameters at the matching scale
and undergo an RGE running. The NMSSM is a more fundamental theory since SUSY
connects operators from the scalar, fermion and gauge sector.
Thus, the parameter space of a matched EFT can significantly differ from an simplified
model. This is because experimental and theoretical constraints from e.g. the scalar sector
are transmitted into the fermion sector and vice versa. To illustrate this connection, the
three quartic couplings of the split NMSSM λSH , λS and λH are compared at the scalemt . In
Fig. 4.17a, the numerical results of the couplings, after the matching and the running tomt

was performed, are shown. Alternatively, we interpret the EFT as a simplified model and
independently scan over all parameters in the effective Lagrangian without performing a
matching but using the prior discussed constraintsmh = 125 ± 2GeV, mχ±0

> 94GeV and
mд̃ > 1.5TeV. The results of this scan in the (λSH , λS , λH )-space are shown in Fig. 4.17b.
The singlet-like quartic coupling λS is indeed identical in both approaches, since it concerns
a pure BSM sector (i.e. κ2). However, λH and λSH have completely different shapes in
both approaches. In case of λH in the top-down approach, there is a deep connection
to the weakly coupled gauge sector keeping it small for small values of λ. The presence
of singlet F-terms in λH , is also connected to large λSH ∝ λ(λ − κ) which cannot always
compensate each other to accommodate the correct Higgs boson mass and e.g. respect the
mass constraint on charginos at the same time. This is not the case in the simplified model
where scalar and fermion masses are independent parameters.

For completeness, the comparison between the two approaches is extended to the fermion
sector in Fig. 4.18 where all Yukawa couplings additional to the SM are shown. In con-
trast to the scalar sector, where spontaneous symmetry occurs, no predictions among the
different parameters in the fermion sector are made in the simplified model. The matched
prediction for the couplings Yd

s (Y
u
s ) shown in the upper-left plot in Fig. 4.18 is a aligned

on the bisecting line at the matching scale but gets rotated clockwise through the stronger
RGE running of Yu

s . Likewise, the Yud(Ys) dependence in the upper-right plot (actually
λ(κ) at the matching scale) was already shown in Fig. 4.10a without the involved RGE
running. The distribution is not changed but only scaled by a factor of ∼ 1/2 trough the
RGE running. The Yukawa couplings shown in the in the lower row of Fig. 4.18 are given
by the SM gauge couplings and tan β at the matching scale which determine the shape of
the right edge of the distributions. To explicitly demonstrate the effect of the RGE running,
the values of the couplings at the matching scale are shown in red in the lower-right plot.
The running of the Yukawa couplings дu,d1,2 tomt then deforms the shape of the parameter
space to lower as well as larger values .

It was shown that the matching is crucial for determining the valid parameter space
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of an EFT for a given UV completion. In addition, the RGE induced effects are not negligi-
ble and can change the shape in parameter distributions significantly.

(a) with matching (b) without matching

Figure 4.17.: Comparison between parameter scans in a top-down approach (a) and a
simplified model (b) of the split NMSSM. The correlations between the three
quartic couplings evaluated atmt are shown. In (b) the couplings are input
parameters at the weak scale while in (a) they are calculated through the
matching conditions and undergo an RGE running.
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Figure 4.18.: Comparison between split NMSSM scans in the fermion sector with (orange)
and without (blue) matching. All parameters values are given at the scalemt

while the red band in the lower-right plot marks values at the matching scale.
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5. Summary and Outlook

Effective field theory techniques have been proven to be a powerful framework for the
precise description of low-energy observables in the presence of large mass hierarchies.
In contrast, fixed-order Higgs mass calculations in SUSY models suffer from large uncer-
tainties starting at O(1TeV) mass gaps. Thus, increasing lower bounds on colored scalar
particle masses, naturally appearing in SUSY models, requires the use of EFTs in order to
compete with the accuracy of current experiments.
At the same time, a landscape of complex BSM models demands for automation mecha-
nisms of theoretical predictions. Computer programs such as SARAH/SPheno [11, 13]
have been developed in order to automatize the tree-level as well as higher-order calcula-
tions of mass spectra, decays, RGEs, theoretical constraints and low-energy observables at
fixed-order. Thus, it is natural to extend such tools to include the use of EFT techniques in
models with large mass hierarchies.

The focus of this work was to develop a generic method that allows to perform the
matching of the scalar sectors of two arbitrary renormalizable QFTs at the one-loop order.
The purpose of such a matching is to give precise predictions on scalar masses in theories
with a large mass hierarchy and additional light scalars. The theoretical foundations for
such a matching were reviewed in Chapter 1 with the focus on supersymmetric theories.
The actual method and its implementation in the program code of SARAH was developed
in Chapter 2. The correct separation of scales, belonging to the infra-red and ultra-violet
parts of the theories to be matched, is crucial for the decoupling. This was explicitly
demonstrated in a toy-model example in Chapter 2. Furthermore, the implementation
includes all calculations necessary for the matching of supersymmetric models such as
MS − DR conversion and the calculation of gauge coupling threshold corrections of any
renormalizable gauge theory.
The implementation was validated in Chapter 3 by comparing with results available in
the literature. Two high-scale SUSY scenarios for the MSSM [9] and the NMSSM [10] as
well as an effective 2HDM [8, 61] emerging from the MSSM were used for this purpose. In
particular, the partial one-loop results for the NMSSM were completed and deviations of
up to 2GeV in the SM Higgs boson mass prediction have been found.

Non-minimal split SUSY was investigated in a dedicated study in Chapter 4. The split
NMSSM was matched onto an EFT containing light fermions and one complex singlet,
in addition to the SM fields. While the fermion sector was matched at tree-level, the
new implementation has been used to perform a one-loop matching of the scalar sec-
tors. A first phenomenological study, taking some theoretical as well as experimental
constraints into account, found deviations of O(10%) in the prediction of quartic cou-
plings between tree-level and one-loop order matching. Variations in the scalar mass
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predictions can also amount to several percent. The behaviour of trilinear couplings near
the TeV-scale can be dangerous as potentially large higher-order corrections of the form
[trilinear coupling]·m−2

SUSY come into play.
The split NMSSM is relatively stable concerning the tree-level perturbative unitarity con-
straint, as it was shown in Section 4.3.2.3. Although the low-energy theory contains light
SU (2) doublets, no large deviations in the ρ-parameter have been found. However, Higgs
boson searches constrain the CP-even singlet-like scalar to be heavier than ∼ 250GeV
while the CP-odd singlet can be much lighter. Resonant singlino dark matter requires
an appropriate singlet-doublet admixture as well as a singlino LSP which yields a lower
bound on the scalar singlet mass of ∼ 500GeV and thusmLSP ≈ 250GeV for resonant DM.
In addition, the EFT of the split NMSSM has been interpreted as a simplified model at
the weak scale demonstrating that such an effective model is not able to predict the same
parameter correlations compared to its UV completion. In particular, comparisons be-
tween the scalar sectors have shown dramatic deviations between the two approaches
even though the number of free parameters in the scalar sectors is equal. Taking the
fermion sector into account, simplified models will always have more free parameters than
SUSY models, which connect the fermion sector to the scalar sector. It was shown that
this has dramatic consequences for the correlation among different Yukawa couplings
and thus influences e.g. DM searches.

However, the phenomenological study carried out in this thesis was motivated by a
first dedicated application of the implemented matching routines and their numerical
impact. Additional experimental as well as theoretical constraints may be included in
future studies. The presence of potentially large trilinear couplings while requiring a
small singlet mass may not always lead to a stable vacuum. Computer programs such
as Vevacious [96] are able to compute the global minima of extended scalar sectors. In
addition, experimental constraints such as signal rates provided by e.g. HiggsSignals
[97] or direct detection of the LSP using micrOmegas [91] could be considered as well.
Future work may use these tools to constraint the split NMSSM parameter space further.

Furthermore, the method of matching scalar sectors presented in this thesis may be
extended to the Yukawa sector. In particular, this is necessary for a consistent matching
when a tower of EFTs is considered. That is, if multiple matchings and RGE runnings are
subsequently performed to account for more complex mass hierarchies. Therefore, the
implementation of EFT towers is also reserved for future work.
Higher-order threshold corrections beyond the one-loop order are only known for specific
models. The SM Higgs boson mass receives an additional shift from SUSY QCD correc-
tions of up to O(2GeV) in the high-scale MSSM for maximal stop mixing and relatively
low matching scales while three and four-loop effects are in the sub-GeV range [6, 57].
The implementation of generic two-loop threshold corrections that include wavefunction
renormalization effects as well as one-particle-reducible diagrams (not covered by the
effective potential approach) is a possible but exhaustive task for the future.
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A. Appendix

A.1. Topologies

In this appendix we provide a complete list of all possible one-loop topologies with 2, 3
and four external scalars which were discussed in Chapter 2.

A.1.1. Notation

For completeness, the notation already introduced in Chapter 2 is repeated in Fig. A.1. A
topology is described by a string consisting of maximum five characters. It starts with
the specification of the diagram type which can be tree-level (T), self-energy (S), WFR
(W) or ordinary one-loop diagram (blank) followed by a letter specifying the involved
loop integral defined in Appendix A.2. In the third place, the number of external fields is
specified while the fourth digit indicates a 1PI (1) or 1PR (2) diagram type. The last digit is
a counting index (blank means only one diagram of that type exists).

The external fields are always light scalars (dashed lines) while internal straight lines
are placeholders for all kinds of propagators of different spin and mass.

A.1.2. Generic Tree-Level Graphs

A.1.2.1. Two-Point Function

Figure A.2.: The scalar propagator ”T2” at tree-level.

A.1.2.2. Three-Point Function

Figure A.3.: The only tree-level graph ”T3” with 3 external scalars.
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_ B 4 2 1
WFR (W), self-energy (S), tree
(T) or common one-loop (blank)
diagram

Involved loop integral: A0 (A) B0
(B), C0 (C) or D0 (D) defined in
Eq. (2.6)

Number of external legs

In case of a common one-loop
diagram: 1PI (1) or 1PR (2)

Numbering (blank means only
one topology of that type exists)

(a) (b) B421

Figure A.1.: Notation on topologies shown in this appendix. The example expression
explained in (a) corresponds to the topology shown in (b).

A.1.2.3. Four-Point Function

(a) T41
(b) T42

Figure A.4.: Tree-level graphs with 4 external scalars. The straight line can be a heavy
scalar or a heavy vector boson.
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A.1.3. Generic One-Loop Graphs

A.1.3.1. Two-Point Function

(a) A2 (b) B2

Figure A.5.: Scalar propagator topologies at the one-loop level.

A.1.3.2. Three-Point Function

(a) C3 (b) B3

(c) WA3 (d) WB3

Figure A.6.: One loop three-point topologies. All diagrams which contain at least one
heavy fermion, scalar or vector boson have to be computed. Diagrams (c)-(d)
account for wave function renormalization constants. The notation used to
describe the topologies is explained in Fig. A.1.

93



A. Appendix

A.1.3.3. Four-Point Function

(a) C41 (b) C42 (c) D4

(d) B41 (e) B421 (f) B422

(g) SB4 (h) SA4 (i) WB41

(j) WB42 (k) WA41 (l) WA42

Figure A.7.: One loop four-point topologies. Topologies (i)-(l) account for wave function
renormalization constants while (g)-(h) encode self-energy corrections of
heavy fields. The notation used to describe the topologies is explained in
Fig. A.1.
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A.2. Loop Functions with vanishing External Momenta

In this appendix we give the analytical expressions for all loop functions used in the
matching routines. In particular, we list the limits for all possible combinations of vanishing
and equal masses.

A.2.1. Definition of the Loop Functions

For better readability, we repeat the definitions from Section 2.2. The common prefactor

κD =
(2πQ)4−D

iπ2
(A.1)

and the integrand

In =
n∏

i=1

(
q2 −m2

i

) −1
(A.2)

simplify the definitions of the loop integrals

A0(m
2) = κD

∫
dDqI1 ,

B0(m
2
1,m

2
2) = κD

∫
dDqI2 ,

C0(m
2
1,m

2
2,m

2
3) = κD

∫
dDqI3 ,

D0(m
2
1,m

2
2,m

2
3,m

2
4) = κD

∫
dDqI4 .

(A.3)

The integrand In is symmetric w.r.t to the masses and thus also the loop functions are sym-
metric w.r.t. their arguments. We define the following abbreviations for finite logarithmic
terms

ti ≡ log
m2

i

Q2
tij ≡ log

m2
i

m2
j

, (A.4)

as well as for diverging terms

∆t ≡ lim
ϵ2match→0

log
ϵ2
match

Q2
,

∆D ≡ lim
ϵ2match→0

1

−ϵ2
match

.

(A.5)

A.2.2. One- and Two-Point Integrals

The tadpole integral A0 is given by

A0(m
2) =m2(1 − t) , (A.6)

A0(0) = 0 , (A.7)
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whereas the two-point integral B0 is

B0(m
2
1,m

2
2) =

A0(m
2
1) −A0(m

2
2)

m2
1 −m2

2

(A.8)

= 1 − t2 −
m2

1

m2
1 −m2

2

t12 , (A.9)

B0(m
2, 0) = 1 − t , (A.10)

B0(m
2,m2) = −t , (A.11)

B0(0, 0) = −∆t . (A.12)

In addition, the tensor integral

B1(m
2
1,m

2
2) =

1

p2
pµBµ =

κD
p2

∫
dDq pq

[ (
q2 −m2

1

)
(q + p)2 −m2

2

] −1
(A.13)

is not decomposed for vanishing external momenta by FormCalc but needed for off-
diagonal WFR factors with internal fermions. The analytical expression for arbitrary p2 is
given in Ref. [66]. In the limit of vanishing external momentum the B1-function reads

B1(m
2
1,m

2
2) = −

1

4(m2
1 −m2

2)

[
m2

1 +m2
2 − 2m2

1B0(m
2
1, 0)

+(4m2
1 − 2m2

2)B0(m
2
1,m

2
2)

]
, (A.14)

B1(m
2, 0) = −

1

4

(
1 + 2B0(m

2
1, 0)

)
, (A.15)

B1(m
2,m2) =

1

2
t , (A.16)

B1(0, 0) =
1

2
∆t . (A.17)

A.2.3. Triangle Integrals

The three-point function can be simplified with the definition

q1 ≡
m2

2

m2
1

q2 ≡
m2

3

m2
1

, (A.18)
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which yields

C0(m
2
1,m

2
2,m

2
3) =

B0(m
2
1,m

2
3) − B0(m

2
2,m

2
3)

m2
1 −m2

2

(A.19)

= −
q1 t21 (q2 − 1) + q2 t32 (1 − q1)

m2
1 (−1 + q1)(q1 − q2)(−1 + q2)

, (A.20)

C0(m
2
1,m

2
1,m

2
2) =

m2
2 −m2

1 +m2
2 t12(

m2
1 −m2

2

) 2 , (A.21)

C0(m
2,m2,m2) = −

1

2m2
, (A.22)

C0(m
2
1,m

2
2, 0) = −

t12

m2
1 −m2

2

, (A.23)

C0(m
2,m2, 0) = −

1

m2
, (A.24)

C0(m
2, 0, 0) =

1

m2
−

t

m2
+

∆t

m2
, (A.25)

C0(0, 0, 0) =
1

2
∆D . (A.26)

A.2.4. Box Integrals

Analogously we compute the four-point integral in all mass combinations

D0(m
2
1,m

2
2,m

2
3,m

2
4) =

1

m2
1 −m2

2

(
C0(m

2
1,m

2
3,m

2
4) −C0(m

2
2,m

2
3,m

2
4)

)
, (A.27)

D0(m
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1,m

2
1,m

2
2,m

2
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1
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2 −m2

3

(
−m2

1 +m2
2 +m2 t12(

m2
2 −m2

1

) 2 +
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1 −m2
3 −m2

3 t13(
m2

3 −m2
1

) 2 )
, (A.28)

D0(m
2
1,m
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2
2,m

2
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1 −m2
2

) 3 (
−2m2

1 + 2m2
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, (A.29)
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2
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2
2 t12
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2 −m2
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) 3 , (A.30)

D0(m
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1,m

2
1,m

2
1,m

2
1) =

1

6m2
1 ,

(A.31)

(A.32)
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and with at least one vanishing mass (corresponding to a light field being part of the EFT),

D0(m
2
1,m

2
2,m

2
3, 0) =
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2 −m2

3) t31 + (m2
3 −m2
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2)(m
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, (A.33)
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) , (A.34)

D0(m
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, (A.35)
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, (A.37)
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2m2
, (A.38)

D0(0, 0, 0, 0) = −
1

6
∆2

D . (A.39)

A.2.5. Derivatives of the One- and Two-Point Functions

Although already given in Eq. (2.18) we list the derivatives here for completeness

∂A0 = 0 , (A.40)

∂B0(m
2
1,m

2
2) = κD∂

2
p

∫
dDq
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(q + p)2 −m2
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Their mass limits are

∂B0(m
2,m2) =

1

6m2
, (A.43)

∂B0(m
2, 0) =

1

2m2
, (A.44)

∂B0(0, 0) = −
1

6
∆D . (A.45)

A.3. The SARAH Extension Manual

A.3.1. The SARAH NLOMatching Interface

This appendix describes the user interface to the matching routines available in SARAH
from version 4.14.0.
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A.3.1.1. Initialization

To initialize the routines, a Mathematica kernel has to be started and the UV model must
be initialized by SARAH,

In[1] <<SARAH`
In[2] Start["ModelName"]
In[3] InitMatching[Options]

The possible options for the initialization procedure are

• Parametrisation −> $LIST

– Default: {}

– Description: list of specific parametrisations of all model parameters

– Example: {vu −> v Sin[ArcTan[TanBeta]]}

• Assumptions −> $LIST

– Default: {}

– Description: list of assumptions for parameters in themodel in order to simplify
the expressions

– Example: {v>0,TanBeta>0}

• SolveTadpoles −> $LIST

– Default: {}

– Description: list of parameters which are obtained by the tadpole equations

– Example: {mHu2,mHd2}

• ReadLists −> $BOOL

– Default: False

– Description: if set to True, the calculation of the vertices is skipped, but results
stored in a previous session are used

• InputFile −> $FileName

– Default: False

– Description: can be used to define an input file containing all necessary infor-
mations

where InputFile has to be given if the SPheno output is to be generated.
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A.3.1.2. Interactive Mode

After the initialization and calculation of all mass matrices, involving the given sim-
plifications and parametrisations, one can compute the leading order (LO) and next-to
leading order (NLO) corrections to an amplitude with the external fields given in the list
fieldlist with the commands

In[1] EFTcoupLO[fieldlist, Options]
In[2] EFTcoupNLO[fieldlist, Options]

where the possible options are

• Simplifications −> $LIST

– Default: {}

– Description: list with additional simplifications in the current calculation
beyond those already defined in InitMatching.

• Topologies −> $LIST

– Default: {}

– Description: list of topologies to include into the calculation. If empty, all
topologies are used. Topologies are denoted as in Fig. A.1

– Example: {B[4][1],B[4][2][1], B[4][2][2]} or equivalently{B[4]}

• ExcludeFields −> $LIST

– Default: {}

– Description: list of fields that are excluded when appearing as internal field

– Example: {Cha,Chi} e.g. to exclude electroweakinos for a split SUSY sce-
nario

• GaugeThresholds−>$BOOL

– Default: True

– Description: whether to include the contributions from gauge coupling thresh-
olds to the amplitude

• ShiftMSDR−> 0/1/2/Automatic

– Default: Automatic

– Description: whether to include the MS − DR conversion factors. 0: no, 1:
inclusive, 2: exclusive, Automatic: decide between 1 and 0 depending on the
type of considered model (SUSY or non-SUSY).

• Debug −> $BOOL

– Default: False
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– Description: multiplies each amplitude with a debug variable marking its
topology and field insertions

– Example: debug[B][4][1][hh[2], hh[1]]

• SimplifyResults −> $BOOL

– Default: True
– Description: whether to simplify the results using the given assumptions

• ExplicitLoopFunctions −> $BOOL

– Default: True
– Description: whether to use the definitions in Appendix A.2 for loop functions.

If set to False, the FormCalc notation of the loop functions is used e.g. a
B0(m

2
1,m

2
2) function is denoted by B0i[bb0,0,m1^2,m2^2].

A.3.1.3. Batch Mode

The complexity of the calculation requires a high level on reproducibility of the results.
For this purpose it is possible to write input files that contain all necessary information for
the matching to a given EFT model. This includes all information already discussed in the
interactive mode. In addition, the correspondence between couplings in the low-energy
model and amplitudes in the UV model, as they where for example given in Section 3.3
for a 2HDM matching, have to be defined. Also the generation of LATEX output, for an
evaluation of expressions in a human readable format, can be controlled.
The batch mode uses this input file and is started during the initialization

In[1] InitMatching[InputFile−>"/path/to/Matching.m"]

where the content of Matching.m is e.g.

Matching.m �
1 ( ∗ Defines a name for the current settings ∗ )
2 $NameUV= "HighScaleMSSMlowMA" ;
3

4 ( ∗ Options equivalent to corresponding options of InitMatching ∗ )
5 $ParametrisationUV = { vd−> epsUV , vu−> epsUV , B [ \mu] −> epsUV^ 2 } ;
6 $SimplificationsMatching={ conj[x_] −> x , . . . } ;
7 $AssumptionsMatching={ TanBeta> 0 } ;
8 $SolveTadpolesUV = {mHd2 , mHu2 } ;
9

10 ( ∗ define the matching conditions ∗ )
11 $MatchingConditions = {
12 Lambda1 −> −1/6 hh [ 1 ] .hh [ 1 ] .hh [ 1 ] .hh [ 1 ] ,
13 Lambda2 −> −1/6 hh [ 2 ] .hh [ 2 ] .hh [ 2 ] .hh [ 2 ] ,
14 Lambda3 −> −hh [ 1 ] .hh [ 1 ] .Hpm [ 2 ] .conj[Hpm [ 2 ] ] ,
15 Lambda4 −> hh [ 1 ] .hh [ 2 ] .Hpm [ 2 ] .conj[Hpm [ 1 ] ] +

↪→ I ∗hh [ 1 ] .Ah [ 2 ] .Hpm [ 1 ] .conj[Hpm [ 2 ] ] ,
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16 Lambda5 −> hh [ 1 ] .hh [ 2 ] .Hpm [ 2 ] .conj[Hpm [ 1 ] ] −

↪→ I ∗hh [ 1 ] .Ah [ 2 ] .Hpm [ 1 ] .conj[Hpm [ 2 ] ] ,
17 Lambda6 −> −hh [ 1 ] .hh [ 2 ] .Hpm [ 1 ] .conj[Hpm [ 1 ] ] ,
18 Lambda7 −> −hh [ 1 ] .hh [ 2 ] .Hpm [ 2 ] .conj[Hpm [ 2 ] ]
19 } ;
20

21 ( ∗Exclude light fields from being integrated out ∗ )
22 $ExcludeFieldsMatching={hh ,Ah ,Hpm } ;
23

24 ( ∗ wheter to create TeX output ∗ )
25 $EFTcouplingsToTeX = True /False ;
26

27 ( ∗ additional TeX symbols ∗ )
28 $AdditionalTeXsymbols={ Lambda1 −> "\\lambda_1" , . . . } ;

The variable $MatchingConditions is a list of matching conditions to be applied at
the matching scale. In this example, we implemented the matching conditions for the
effective 2HDM in a high-scale MSSM as in Section 3.3.
If $EFTcouplingsToTeX is set to True, a TEX file is generated containing the results of
all mass and rotation matrices as well as matching calculations. Additional TEX symbols to
those defined in the UVmodel can be defined in the$AdditionalTeXsymbols variable.

The results of the matching are stored in

$SARAH_Directory/Output/$Model/EWSB/Matching/$NameUV

and can be used in other Mathematica/SARAH sessions. The produced TEX file

MatchingConditions_$Model_$NameUV.tex

can be compiled using a standard LATEX compiler.

A.3.1.4. SPheno Output

It is also possible to generate a SPheno output using the analytical results. For this purpose,
the command

In[1] ExportToSPheno[options]

exists which can be used after running the batch mode. If only the matching conditions
in Form of Fortran routines are demanded, no additional options need to be given. The
output is given as Fortran functions with a naming pattern

EFTcoupling<counting number>

stored in the output directory mentioned above. An example function could look like �
1 Real ( dp ) Func t i on EFTcoupling1 (g1 ,g2 ,TanBeta ,Yd ,Ye ,Yu )
2 I m p l i c i t None
3 Complex ( dp ) ,Intent ( i n ) : : Yd ( 3 , 3 ) ,Ye ( 3 , 3 ) ,Yu ( 3 , 3 )
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4 Real ( dp ) ,Intent ( i n ) : : g1 ,g2 ,TanBeta
5 EFTcoupling1 = 1 / 4 ∗ (g1 ∗ ∗ 2+g2 ∗ ∗ 2 ) ∗ (TanBeta−1) ∗ ∗ 2 / (TanBeta+1 ) ∗ ∗ 2
6 End Func t i on EFTcoupling1

These functions can be used in the Fortran output of the EFT model by specifying the
boundary conditions at the matching scale in the file

SPheno/<Model>/Boundaries_<model>.f90

However, it is also possible to automatically adjust an existing SPheno.m file of a model to
include these functions and generate the modified Fortran code with the MakeSPheno
function as it is done in previous SARAH versions. For this purpose, the following options
exist:

• EFTmode −> "ModelName"

– Default: False

– Description: name of the EFT model directory

– Example: "SplitSUSY_NMSSM"

• SPhenoFile −> "FileName.m"

– Default: "SPheno.m"

– Description: .m SPheno file which is used as template

• MatchingScale −> $Symbol

– Default: UVscaleQ

– Description: the matching scale to use

– Example: MSUSY

This uses a SPheno.m file as template, and appends the boundary conditions as well as
new parameter definitions to it. Also the Fortran functions are saved beside the new
SPheno input file and are used in there. Thus, there is no need to program Fortran code
at all

SPheno.m �
1 BoundaryHighScale = Join[BoundaryHighScale , {
2 { \ [Lambda ] ,EFTcoupling1[g1 ,g2 ,TanBeta ,Yd ,Ye ,Yu ] }
3 } ] ;
4 . . .
5 SelfDefinedFunctions = {
6 ReadString[ToFileName[
7 $sarahCurrentMatchingDir ,
8 "EFTcoupling1_SPhenoEFT_MSSM.f90" ] ]
9 } ;

Furthermore, a new SPheno.m can be generated using information from variables set in
the input file
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Matching.m �
1 ( ∗ . . . Continue with Matching .m from above ∗ )
2

3 $ExportToSPheno=True ;
4 ( ∗define the low−energy EFT model ∗ )
5 $SPhenoEFTmodel="THDM−IInoZ2" ;
6 ( ∗extra input parameters of the EFT model ∗ )
7 $SPhenoMINPAR={
8 { 1 , m0 } ,
9 { 2 , mGauginos } ,

10 { 3 , TanBeta } ,
11 { 4 , MuSUSY } ,
12 { 5 , Azero } ,
13 { 6 , MA } } ;
14 ( ∗extra boundary counditions ∗ )
15 $SPhenoBoundaryHighScale = { } ;
16 $SPhenoBoundaryRenScale={
17 {M12 , −MA^2 TanBeta / ( 1 +TanBeta^2 ) }
18 } ;
19 ( ∗ Tadpole equations in the EFT model ∗ )
20 $SPhenoTadpoles={M112 ,M222 } ;
21 ( ∗ Which parameter to use for UVscaleQ ∗ )
22 $SPhenoMatchingScale=m0 ;
23 ( ∗ Matching to the SM ∗ )
24 $SPhenoRenScale=MA^2 ;
25 $SPhenoMatchingEWSB=Default[THDMII ] ;

where $SPhenoEFTmodel defines the low-energy model. All other variables with the
SPheno prefix have the same meaning as in the usual SPheno.m file, see Ref. [14].
The usage of $ExportToSPheno=True automatizes the previously explained steps i.e.
ExportToSPheno is already invoked with the correct options.

A.3.2. Reserved Variables

There are a couple of variables that should not be overwritten but can be used in various
places

• epsUV

– Type: Symbol

– Description: is set to zero at the matching scale (e.g. one parametrize the VEVs
with this)

• UVscaleQ

– Type: Symbol

– Description: default matching scale used in all loop functions

note that it can be important to use epsUV instead of directly setting e.g. the VEVs to
zero because otherwise the tadpole conditions cannot be applied correctly.
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A.3.3. Example Usage

A comprehensive example is located in the root directory of the new SARAH version.
TheMathematica notebook file Example_matching.nb contains the matching of the
MSSM to an effective 2HDM described in Section 3.3 using the interactive as well as the
batch mode.
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