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Abstract

Large parts of the simulation of particle collisions take place in a low-energy regime
and thus, rely on phenomenological models. The hadronization process describing the
transition from partons to colour-neutral hadrons is one of these soft parts. The Monte
Carlo event generator Herwig makes use of the cluster hadronization model. An important
step of this is colour reconnection, in which the predefined colour structure from the parton
shower is allowed to change. In the first part of this thesis, a new colour reconnection
model is implemented and analysed. The novelty is that for the first time clusters with
baryonic quantum numbers are included in the reconnection process. In the second part,
the description of angular-correlations of identified particles is studied. In order to improve
the description of these observables, another new model aiming to decorrelate the particles
evolving from the hadronization is incorporated into Herwig. The model is analysed and
its results are discussed.






Zusammenfassung

Grofle Teile der Simulation von Teilchenkollisionen finden bei niedrigen Energien statt
und beruhen daher auf phanomenologischen Modellen. Der Hadronisierungsprozess, der
den Ubergang von Partonen zu farbneutralen Hadronen beschreibt, ist einer dieser nicht
storungstheoretischen Elemente. Der Monte Carlo Event Generator Herwig verwendet
hierfiir das sogenannte Cluster-Hadronisierungsmodell. Ein wichtiger Teil von diesem ist
die sogenannte Colour Reconnection, bei der die aus dem Partonenschauer vorgegebene
Farbstruktur geandert wird. Im ersten Teil dieser Arbeit wird ein neues Colour Reconnecti-
on Modell implementiert und analysiert. Die Besonderheit von diesem besteht darin, dass
zum ersten Mal Cluster mit baryonischen Quantenzahlen in den Reconnection-Prozess
integriert werden. Im zweiten Teil wird die Beschreibung von Korrelationen beziiglich des
azimutalen Winkels von Teilchenpaaren im Endzustand betrachtet. Um die Beschreibung
dieser Observablen zu verbessern, wird ein neues Modell zur Dekorrelation der Teilchen
nach dem Hadronisierungsprozess in Herwig eingearbeitet. Das Modell wird analysiert
und die aus ihm resultierenden Ergebnisse werden diskutiert.
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1. Introduction

Modern particle physics strives towards a fundamental understanding of the Universe
and the inherent laws of Nature. For this purpose, the study of particle behaviour at high
energies - as a method to probe the structure and physics of the early stages of the Universe
- is indispensable. This is why many high-energy particle colliders have been built over the
last century. A prominent and current example is the Large Hadron Collider (LHC). There,
in 2012, the Higgs Boson was discovered, which was the last missing piece of the Standard
Model (SM) of particle physics. However, there are phenomena that are not described
by the Standard Model and therefore, are not fully understood so far, for instance, the
matter—antimatter asymmetry in the Universe as well as the nature of dark matter and
dark energy. One main goal of current and future experiments is the investigation of
physics Beyond the Standard Model (BSM). For this task, an ongoing improvement of
theoretical predictions and the understanding of the various aspects of particle collisions
is crucial.

In this respect, simulation has become increasingly important. Simulation translates theo-
retical models into observables and thus, enables the comparison of theoretical predictions
and experimental data. An important example for simulation software are Monte Carlo
event generators, which use Monte Carlo methods for numerical integration.

To a certain extent, the simulation relies on perturbative calculations which can be carried
out in high precision. However, perturbation theory is only valid in a high-energy regime.
Large parts of the event generation lie outside this regime and depend on phenomeno-
logical models which are not fully described by a theoretical model, instead relying on
experimental observations and theoretical considerations. Examples include the hadroniza-
tion process, which describes the transition from colour-charged partons to colour-neutral
hadrons, and parts of the underlying event.

In order to simulate an event that is as exclusive as possible, it is indispensable that not
only the high-energy parts of the event are simulated accurately, but also the so-called
soft parts. For the sake of validating the simulation process, its output is compared to
data from former experiments. Data measured with a minimum bias trigger are rigourous
arenas for testing soft models.

Within the framework of this thesis, the Monte Carlo event generator Herwig [1-4] is
extended by two new phenomenological models.

In the first part, we introduce a new colour reconnection model. Colour reconnection is
an important part of the hadronization process, which allows different parts of the event,
i.e. the hard process and the underlying event, to interfere with each other. It is crucial for
the accurate description of various observables. The new model is compatible with the
current version of Herwig and can be seen as an alternative to the three different colour
reconnections models Herwig already provides.

In the second part, the description of angular-correlation of identified particles is exam-
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ined. These angular-correlations are minimum bias observables, which have never been
considered in detail for the Herwig cluster model. We will see that in some parts Herwig
fails to describe these observables accurately and suggest and investigate the reasons
for that. Through the gained insights, a new model is motivated and implemented into
Herwig, in order to obtain an improvement in the description of this data.

This thesis is structured as follows: Since we focus on hadron collisions and aspects affect-
ing colour-charged particles, chapter 2 gives a short introduction to quantum chromody-
namics (QCD), which describes the interaction of colour-charged particles. Subsequently,
chapter 3 explains the individual steps of the event simulation with Herwig and can be
seen as a short introduction to Monte Carlo event generators. Chapter 4 deals with the
motivation, implementation and analysis of the new colour reconnection model, namely
the baryonic-mesonic colour reconnection model. In chapter 5 the angular-correlation ob-
servables are discussed and subsequently, the post-hadronization momentum swapping
model is introduced and analysed. Finally we summarize the work and perceptions of this
thesis and give a brief outlook in chapter 6.



2. Quantum Chromodynamics

In particle physics the Standard Model (SM) describes the fundamental particles and their
interactions. The SM combines the electroweak theory and quantum chromodynamics
(QCD), which are both quantum field theories. The following is a brief introduction to
QCD with focus on the parts which are relevant for simulation of hadron collisions in
general and the work of this thesis in particular. For a more detailed description of QCD
the interested reader is referred to the various textbooks on this topic, e.g. [5].

QCD describes the interactions among colour-charged particles, such as quarks and gluons,
which is referred to as the strong interaction and is one of the four fundamental forces in
the Universe. In QCD quarks are massive spin-1/2 particles, whereas gluons are massless
bosons with spin 1. Quarks and gluons are conventionally referred to as partons, a name
that originates from Feynman’s original parton model of the strong force [6].

In Nature no single colour-charged particles are observed but only particles which are
neutral in colour-charge, so-called colour-singlets. These composite particles consist of
partons and are referred to collectively as hadrons. Hence, there is a need for a description
of the transition from the parton-level interactions in hard processes to the colourless
hadrons that are detected. The formation of hadrons, which is referred to as hadronization,
happens at energy scale of O(1 GeV). While at higher energy, where the partons are
approximately free, the interaction can be calculated in perturbation theory, this approach
is not valid for lower energies. Thus, the description of hadronization processes relies on
phenomenological models.

2.1. QCD Lagrangian

QCD is a SU(3)c non-abelian gauge theory. It is described by its Lagrangian density,
1 a HYV T, ]
L = _ZF,UVFG + Z \I]q,i(l}/ Dy - mq)l-j‘I’q,j + Lgauge + Lghosta (2.1)
q=flavours

where Fy, is the field strength tensor determined by the eight massless gluon fields A},
that correspond to the eight SU(3)c generators T:

Fl, = 0,A% — 0,A% — g, fU AL AT, (2.2)

where g, is the strong coupling constant, a, b and ¢ the colour indices and % is the
structure constant of SU(3)¢, which is determined by the commutation relation of the
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generators:
a by _ : pabcoc
[T T°] =if™°T". (2.3)
In the fundamental representation the generators are T¢ = ’17“ where A, refer to the
Gell-Mann matrices.
The second term of equation 2.1 corresponds to the kinetic energy of the quarks and their
interaction with the gluons, which leaves the flavour of the quarks unchanged. Here ¥, is

the spinor corresponding to the quark field with flavour q and mass m,. D,, is the covariant
derivative, which is given by:

D, = 8, — ig,T°A%. (2.4)

Lgauge is a gauge-fixing term, which leads to a particular gauge choice. This is required,
among other things, to define the gluon propagator properly. There are some degrees of
freedom in choosing the gauge-fixing term. A common gauge, for instance, is the covariant
gauge, that leads to unphysical degrees of freedom, which have to be cancelled. This is
done via the ghost term Lgp,05¢ Which is a complex scalar field and entails an additional
ghost propagator and vertices. However, the axial gauge is defined in such a way that the
ghost-term vanishes.

2.2. Asymptotic Freedom and Confinement

The fundamental picture of QCD consists of colour-charged particles interacting with

coupling strength as = %. However, technically the coupling constant as is not a constant,
since it depends on the momentum transferred in the interaction. It is often referred to as
running coupling constant.

In renormalization theory - where divergent parts of the expansion in ag in perturbative
calculations are cut off - the scale-dependence of the coupling is expressed through the
renormalization group equation [5],

Plas) = 707" (2.5)

where Q is the scale of the momentum transfer in the interaction. In equation 2.5 f§ can be
written in terms of the strong coupling azs,

Blas) = —(braf + byl + O(ay)) (2.6)

with the coefficients

332y 15319

2

b -
! 1277 2472

(2.7)
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Here ny is the number of active quark flavours. In QCD ny < 6 is true in general. For
ng < 16 the coefficients have negative signs. Thus, in QCD for asymptotically high
energies, i.e. small distances, the coupling vanishes. This phenomenon is called asymptotic
freedom [7] [8] and entails that at large energies partons asymptotically behave as if they
were free particles.

If the expansion of f(as) (equation 2.6) is truncated after the term quadratic in ag, which
is reasonable in the perturbative regime (Q? p% > 1 GeV?), the solution for equation 2.5
is given by

as (.Ufg)

as(Q?) = %
1+ as(y?) - by - In (f—)

(2.8)

Here it should be pointed out that as In (Q®/%) becomes large as approaches 0. Thus,
asymptotic freedom for large energy scales Q? can be directly read from this equation.
Equation 2.8 describes the energy-dependent behaviour of the coupling as. That means if
as(pz) is known for a certain energy scale yi%, the coupling as(Q?) at any other scale Q
can be deduced by using equation 2.8. However, the coupling has to be measured. A plot of
current measurements on s at different energy scales is shown in figure 2.1. A common
scale for as-measurements is, for instance, the pole of the Z-Boson mass, Mz = 91.2 GeV.
At this scale the coupling has been measured to be as = 0.118.

For this reference scale the running coupling exceeds the value 1 for Q? < O(1 GeV?). At
this energy regime the truncated equation for f(as) is not valid, since the contribution of
terms in @ increases with higher orders. Hence, perturbation theory is not longer valid.
An alternative approach is introducing a dimensional parameter Apcp which sets the scale
at which ag diverges. The energy behaviour of the running coupling then reads

as(Q?) = (2.9)

b In (AZQZ )

QCD

AZQCD depends on the used renormalisation scheme and also the order up to which the
B(as) function is considered. As already implicitly mentioned the coupling diverges, when
Q? approaches AZCD. This corresponds to the so-called confinement property of QCD,
which implies that all colour-charged particles form colour-neutral states at energy scale
O(1 GeV). Thus, perturbation theory breaks down and no single partons are observed at

macroscopic scales.
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Figure 2.1.: The strong coupling contant as(Q?) plot taken from [9]. Shown is as(Q?) of
several measurements as a function of the energy scale Q2. The solid lines show
the predicted behaviour of as(Q?) extrapolated from the measured value of the
coupling aS(M%) at the Z-pole Mz. The plot illustrates the energy-dependent
behaviour of the as(Q?). For small energy it diverges towards confinement,
while for high energy it decreases.

2.2.1. Colour Flow and large-N¢ Limit

In QCD the colour structure of each Feynman rule and thus, of each Feynman diagram
can be decomposed into Kronecker-deltas §;; between external colours. This is called
the colour flow of the diagram and shows how the colour evolves during an interaction.
Consider the example of the quark-gluon vertex given by the Feynman rule:

—igsy“Tj;. (2.10)

So its matrix element contains the square of the generator T}7. Using the Fierz identity one
can show that

ara 1 1
Tikal = 5(51‘15]‘]( - ﬁc&j&cl). (211)

The two terms correspond to two Feynman diagrams with different colour flows. They are
shown in figure 2.2. For the first term the colour flow can be seen as going between the
quarks and the gluon, while for the second term the colour flows between the quarks, and
the gluon carries a colour and the same anticolour, the so-called colour-singlet gluon. The
contribution of the second diagram is suppressed by a factor of Nlc Hence, it decreases for
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higher numbers of colour-charges. In the No — oo limit [10], where an arbitrary number
of colours is supposed, it vanishes completely and thus,

TeTS ~ %@,@-k. (2.12)
Therefore, in this limit only the first diagram contributes. Similar considerations can
be done for the 3-gluon-vertex and the 4-gluon-vertex. In general it can be shown that
in the N — oo limit gluons are always part of two different colour lines and thus, the
colour structure is planar. This limit is quiet powerful and crucial for Monte Carlo event
generation. In Herwig, for instance, the hadronization model (see section 3.3) is based on
it.

9u WOO0000000000" 9w

Figure 2.2.: The two contributing Feynman diagrams for the quark-gluon vertex with
different colour flow. On the left-hand side the leading diagram with a colour
line between the quark and the gluon, and an anticolour line between the
gluon and the antiquark. On the right-hand side the subleading diagram is
suppressed by a factor of Lc, where the colour flow is within the gluon and
between the quark and the antiquark.






3. Monte Carlo Event Generation with
Herwig

General-purpose Monte Carlo event generators like Herwig [1-4] are used to simulate
particle collisions at high energies, such as those taking place at collider experiments, for
example at the LHC [11]. To get a good description of data it is imperative to accurately
simulate all aspects of the process, from the first particle collisions to the transition to
the finale particle states, as measured in the detector. Thus, the simulation contains a
number of different physical processes separated in energy scales. Processes happening at
a characteristic energy scale above the hadronization scale are governed by perturbation
theory, while those below it rely on non-perturbative phenomenological models.

The main steps of the simulation are the hard scattering process, the parton shower and
the hadronization process. To simulate the underlying event, additional semi-hard and
soft interactions between the remnants of the colliding particles occur in hadron-hadron
collisions. In figure 3.1 a schematic overview of a simulated proton-proton collision without
the underlying event is illustrated. During the hard process two incoming particles scatter
at a high-energy scale calculated in perturbative theory by summing over all Feynman
diagrams of the relevant process up to a certain order of the coupling constants. The
outgoing particles radiate perturbatively in the parton shower by emitting particles until
they reach an energy scale close to the hadronic scale, where perturbation theory is
no longer valid. In addition, the outgoing particles of the semi-hard underlying-event
processes shower to this soft regime.

After the parton shower the hadronization takes place, where the partons originating from
the hard process, the semi-hard and soft underlying-event processes and also the hadron-
remnants form colour-singlet particles. This is done in the soft-regime of event simulation.
In Herwig the so-called cluster hadronization model is implemented. Colour-connected
particle pairs form colour-neutral clusters and decay together in two excited particle states.
These excited states finally decay into the final state particles measured in the detector. In
the following the individual steps of the event simulation are discussed in detail.
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Figure 3.1.: Schematic overview of the event generation process. The core of the event is
the hard process. Through the parton shower the primary outgoing particles
lower their energy down to the hadronic scale by emitting partons. The
hadronization then describes the formation of excited hadrons, which finally
decay into the finale state particles measured in the detector.

3.1. Hard Scattering Process

One of the major elements of event simulation is the hard scattering process, in which the
incoming particles collide. These processes involve large transverse momentum transfer.
For the determination of the cross section, the species of the incoming particles are
important. In lepton collisions the involved particles are elementary and thus, calculating
the cross section is relatively straight forward. In contrast, hadrons are composite particles
and therefore, their exact composition and inner momentum structure have to be taken
into account.

The cross section for ij — n hadron scattering is given by [5]:

1
o= Z/O dxy dxy fi(x1, pr) fi(x2, pr) X 6(pi, pj as(ur), Q% pr) (3.1)
LJ

Where fi(x, ur) is the parton distribution function (PDF), which at leading order gives
the probability for finding a parton i with the momentum fraction x of the total hadron
momentum at energy scale yr.

6(pi, pj, as(ur), Q?/ ur) is the cross section for a two parton collision and is given by:

« 1
&(pi» pj» as(pr), Q°/ pr) = / do, z—slMij—>n|2(q>n;llF,llR), (3.2)

where | Mij_m|2 is the squared matrix element, which represents all possible processes in
the hard scattering process as a sum of Feynman diagrams. In addition % denotes the
parton flux and d®, is the differential phase space element for a final state with n particles.

10



3.2. Parton Shower

Determining the hard process relies heavily on the choice of matrix elements and PDFs.
In Herwig 7 the considered processes can be set by the user. Herwig provides a limited
number of built-in matrix elements, but also additional matrix elements can be accessed
by using the external matrix element providers GoSam [12, 13], OpenLoops [14], VBFNLO
[15-17] and MADGRAPH [18].

Moreover Herwig provides built-in PDFs, but also additional PDFs are available using
LHAPDF [19].

The particles of the hard scattering process are forwarded to the parton shower, where
they undergo perturbative stochastic radiation.

3.2. Parton Shower

In Herwig the hard scattering process is calculated up to next-to-leading order (NLO) of
the strong coupling constant («;). But beyond that level the complexity of determining
the matrix elements grows. Thus, it would take too much computing power to do further
calculations.

However, higher order corrections are not negligible in all regions of phase space. Due to
this, an additional approach is required to include these corrections.

The parton shower implemented in Herwig is such an approach. Starting at the energy of
the hard scattering process (Q?), it evolves particles by quark and gluon radiation down to
the hadronic scale Q2 ~ 1 GeV at which confinement is valid and partons form hadrons.

In Herwig two different approaches of the parton shower are available. The so-called
angular-ordered shower, which is set as default, and the dipole shower, which can be chosen
as an alternative.

The section is structured as follows: First, the basic idea and theoretical background of the
final- and initial-state parton shower [20] is introduced. Subsequently, the two different
parton shower algorithms implemented in Herwig are discussed in more detail.

3.2.1. Final State Shower

To illustrate the basic features of the parton shower, consider the process e*e™ to two jets.
Later we will generalize these points to a process-independent approach.

For the process e"e™ — qq the total cross section in leading order 044 can be calculated
in perturbative theory. In the next to leading order process one of the quarks emits an
additional gluon: e*e™ — gqgg. Its differential cross section is given by:

doggg a2 1+ (1-2)°

—zo'_.c_
dcos0dz 99" ~For sin® 0 z

(3.3)

Here z is the energy fraction of the gluon, 8 the opening angle between the gluon and the
quark. Cr is a colour factor depending on the number of colour charges. It can be easily
seen that the total cross section oy, is proportional to the leading order cross section oyq.
Hence, the rest of the equation can be interpreted as the probability that an additional
gluon is emitted.

11
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In equation 3.3 two types of divergence appear: The first occurs at § — 0 and § —
7 corresponding to the emitted gluon becoming collinear to the quark or anti-quark
respectively. Additionally, the second type occurs as z — 0. This is referred to as soft
divergence and corresponds to the gluon energy going towards zero.

First, consider the collinear divergences. The term responsible for the divergences can be
split in two:

2 1 1 1 1

= + x + —.
sin0 1—cos® 1+cos 1-cosf 1-cosh

(3.4)

Here 0 represents the angle between the gluon and the anti-quark. The last approximation
is only valid in the limit & — 0 or & — 7 respectively. Using this expression in the
mentioned limit equation 3.3 can be rewritten as follows:

1+(1-2)7°
dogy ~ 03+ ) Croy - d2 (3.5)
99

z

Hence, the differential cross section is expressed as the sum of independent emissions of
the two partons. In equation 3.5 0 is the opening angle between the gluon and the respec-
tive parton. For other phase space parametrisations with variables that are proportional to
0, like the virtuality of the off-shell quark propagator g* or the transverse momentum of
the gluon k?, mathematically-identical expressions are obtained.

It can be shown that the structure of equation 3.5 is completely generalizable. Thus,
the differential cross section for any hard process with an additional parton j with mo-
mentum fraction z can be expressed by:

as do?
do ~ o - Z EW dzP;i(z, ) d. (3.6)

1

Here oy is the cross section for the process without the additional parton. Pji(z, ¢) are the
so-called DGLAP splitting functions [21, 22], which depend on flavour and in general also
on spin. Averaged over spin they are given by:

2
Pol2) = Cr 11+_Zz , (3.7)
Pyy(2) = CF#_Z)Z, (3.8)
4 Y
Pyle) = (59
Pyy(z) = Tr - (2% + (1 — 2)%), (3.10)

where Cr, C4 and Ty are again colour factors. Pyq, Pyq, Pyg and Pyy correspond respectively
to the splittings ¢ — q9, ¢ — 9q, g — gg and g — qq.

12



3.2. Parton Shower

Now an iterative algorithm can be derived by utilizing expression 3.6. First, it is applied to
the hard process to induce a splitting and emit an additional parton. In a next step, it is
applied to the resulting products to generate more splittings.

At this point, the divergences are not taken into account. Partons that are exactly collinear
and have the same quantum numbers are physical indistinguishable. Therefore, it is rea-
sonable to only produce resolvable partons which fulfil a resolution criteria. For instance,
the transverse momentum can be used as such a criteria. Two partons are referred to
as resolvable, if their relative transverse momentum is above a cut-off scale Qg. In that
way collinear and soft divergences are guarded, since singularities are cancelled between
virtual and unresolved terms.

Up to now, the calculated distribution is the inclusive distribution of all gluon emis-
sions. In order to get the distribution of multiple gluon events and thus, describe multiple
branchings, the distributions of individual gluons have to be separated out. For that the
virtuality of the inner quark propagator g° is used as an ordering variable. The distribution
calculated before can then be regarded as the probability for the emission of a parton of
type i in the energy range ¢* and ¢° + dg*:

d 2 1—Q—g
2

dP = &_q/gz T dzP;(2). (3.11)

0

ra

21 g2

The limits on z follow from the resolution conditions. To determine the probability of the
first branching at g2, the probability that no branching at a scale higher than g* happened
Ai(q®, Qp) is used. Ai(¢%, Qp) is called the Sudakov form factor and is defined by:

dAi(q®, QF)

dP
= Ai(¢%, 0?)—. 3.12
i (q°, Qp i (3.12)

It can be shown that the solution of this differential equation and so the Sudakov form
factor is given by:

¢ gkt g, [0
Ai(q%, QF) = exp —/ ——s/ dzPji(2)} ¢. (3.13)
Q

k2 27 J<%
q2

Q? is the maximal possible virtuality. The Sudakov form factor can be used to implement
a Monte Carlo shower by using it to determine the scale ¢’ for the next branching. This
can be done, for instance, by generating a random number R in the interval [0,1] and
subsequently solving the equation

R = A(Q% ). (3.14)
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If the calculated solution for ¢’* is greater than the cut-off scale QZ, a branching at the
scale ¢’ is generated. The value for z is determined according to the splitting function
P;j(z). This procedure is repeated recursively for each branching product until ¢”* < Qp,
which means that the calculated branching would not be resolvable.

3.2.2. Initial State Shower

So far, only the showering of particles produced in the hard process were considered. As
one would expect, the incoming particles before the actual collision are able to perform a
shower as well. The forward showering described in the previous section could be applied
on the incoming particles. However, that would be fairly inefficient, since partons with
the correct kinematics for the requested hard process are required.

Therefore, in Monte Carlo event generators usually the hard process is the starting point
around which additional initial and final radiation is simulated. That means, the initial-
state shower is generated backwards from the hard process to the incoming protons.
The Sudakov form factor of equation 3.13 is replaced by one depending on the PDFs of the
colliding hadrons:

Q* 412 1—(,;)—§ X f(X K2
A(Q ¢ x) = exp{— /q "llc—';;‘—ﬂ /f— dzpji(z)%}, (3.15)
where x is the initial momentum fraction of the parton while contributing to the hard
process and 7 is its moment fraction at the stage to which it possibly evolves back.

Due to the PDF-ratio it is very likely that the shower terminates at the stage of a valence
quark, because their PDF are dominant for high-x. However, in cases where this does not
happen by itself, the termination at the stage of a valence quark is forced by performing
additional branchings.

The partons emitted by the initial state shower will perform additional final state showers.

3.2.3. Parton Shower Algorithms

The default shower algorithm in Herwig 7 is the angular-ordered shower [23]. The user
can also choose the so-called dipole shower algorithm [24, 25]. Both are briefly discussed
below.

3.2.3.1. Angular-ordered Shower

The angular-ordered shower in Herwig 7 is based on the coherent branching algorithm,
which provides angular ordering conservation and invariance under boosts along the jet
axis. For a detailed derivation the interested reader is referred to [23]. Here only the
key-elements are pointed out briefly.

The evolution scale ¢ for the branching a — bc with parent a and children b and c in
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terms of the respective opening angles is given by:

2 _ 2E,(1 — cos O, )(1 + cos 6,)?

(1 + cosBy)(1+ cosb,) (3.16)

where 6y, denotes the angle between the children and 8,, 6, and 6, denote the opening angle
between the respective parton and the so-called shower progenitor. Shower progenitors
are the partons from the hard process initiating the shower. E, is the energy of the parent.
For small emission angles equation 3.16 can be approximated as

G = Eq0pe. (3.17)

The child-partons have momentum fraction z and due to four-momentum conservation
(1 — z). Angular ordering is then ensured by setting the maximum evolution scale for
the branching to zg and (1 — z)q respectively. Hence, the maximum opening angle of a
subsequent branching is less than or equal to Op.

As long as only quarks are involved in a branching its colour flow is unique. For gluons
there are two possible configurations of the colour lines, either their colour line or their
anticolour line breaks up for emission. In this case a random choice is made.

3.2.3.2. Dipole Shower

In the limit of a N, — oo [10], where N, denotes the number of colour-charges, the colour
structure of the parton shower is such that it can be drawn on a plane and is composed in
colour lines. Each colour line links a colour-charged parton with an anticolour-charged
parton and thus, can be seen as colour-anticolour dipole. The generation of the shower
then takes place through radiations of these dipoles and the resulting emissions, which are
independent of each other in the considered limit N, — oco. These emissions are repeated
recursively until a cut-off scale Q3.

The total emission probability for a dipole is calculated from the sum of the two splitting
functions from the two sides of the dipole.

Each emission with a non-vanishing momentum involves a recoil. Gluons carry a colour
and an anticolour and are therefore, connected with two colour lines. The recoil of a dipole
containing a gluon may therefore, affect the subsequent evolution of the other dipole
connected to the gluon. To prevent that, the emission of the highest transvere momentum
is generated at first. This transverse momentum then functions as a upper limit for the
other evolution.

In Herwig 7 the basis of the dipole shower implementation is the Catani-Seymour subtrac-
tion kernel [26].

15



3. Monte Carlo Event Generation with Herwig

3.3. Hadronization

The partonic final states evolved from the parton shower have to be transformed into the
final state particles as measured in the detector. This happens in the soft regime, where
perturbation theory is not valid. Hence, one has to make use of phenomenological models.
Different Monte Carlo event generators use different hadronization models. In Pythia
[27], for instance, the Lund-String model [28] is implemented. In contrast, Herwig makes
use of the so-called cluster model [29], which is based on the preconfinement property of
the parton showers [30]. Such a hadronization model was first proposed in [31] and then
incorporated into a lepton event generator in [32] and [33].

The preconfinement property states that for any shower at any evolution scale Q* the
partons can be arranged in colour-singlet states, which have an asymptotically universal
invariant mass distribution. This implies that the mass distribution depends neither on
the scale Q? nor on any property of the hard process or the shower itself.

The colour structure is considered in the No — oo limit, where it is a set of colour lines
connecting colour-charged partons with anticolour-charged partons to colour-singlets.
Since in this limit gluons always carry both anti-colour and colour, the remaining gluons are
each split non-pertubatively into quark-antiquark pairs. Then the parton pairs connected
by colour lines form colour-neutral clusters. These clusters subsequently decay into excited
states of hadrons. These excited states again successively decay into final state particles
observed in the detector. Clusters which are too heavy to perform this decay directly
first fission into a pair of lighter clusters. Also colour reconnection can be applied before
cluster fission and cluster decay. A simplified sketch of the hadronization process without
colour reconnection is shown in figure 3.2. In the following subsections the individual
steps of the hadronization process are discussed in more detail.

3.3.1. Gluon Splitting and Cluster Finding

In the N¢ — oo limit gluons are always part of an anticolour and a colour line and thus,
the colour structure is planar. First the remaining gluons from the parton shower are split
non-perturbatively into quark-antiquark pairs. The splitting is done isotropically in the
restframe of each gluon. For this to be possible, the gluons acquire a constituent mass at
this stage. The splitting can only produce the lighter quark flavours: up, down and strange.
The flavours are produced with different weights.

After the splitting only colour-connected quark-antiqu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>