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Abstract

Large parts of the simulation of particle collisions take place in a low-energy regime

and thus, rely on phenomenological models. The hadronization process describing the

transition from partons to colour-neutral hadrons is one of these soft parts. The Monte

Carlo event generator Herwig makes use of the cluster hadronization model. An important

step of this is colour reconnection, in which the prede�ned colour structure from the parton

shower is allowed to change. In the �rst part of this thesis, a new colour reconnection

model is implemented and analysed. The novelty is that for the �rst time clusters with

baryonic quantum numbers are included in the reconnection process. In the second part,

the description of angular-correlations of identi�ed particles is studied. In order to improve

the description of these observables, another new model aiming to decorrelate the particles

evolving from the hadronization is incorporated into Herwig. The model is analysed and

its results are discussed.
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Zusammenfassung

Große Teile der Simulation von Teilchenkollisionen �nden bei niedrigen Energien statt

und beruhen daher auf phänomenologischen Modellen. Der Hadronisierungsprozess, der

den Übergang von Partonen zu farbneutralen Hadronen beschreibt, ist einer dieser nicht

störungstheoretischen Elemente. Der Monte Carlo Event Generator Herwig verwendet

hierfür das sogenannte Cluster-Hadronisierungsmodell. Ein wichtiger Teil von diesem ist

die sogenannte Colour Reconnection, bei der die aus dem Partonenschauer vorgegebene

Farbstruktur geändert wird. Im ersten Teil dieser Arbeit wird ein neues Colour Reconnecti-

on Modell implementiert und analysiert. Die Besonderheit von diesem besteht darin, dass

zum ersten Mal Cluster mit baryonischen Quantenzahlen in den Reconnection-Prozess

integriert werden. Im zweiten Teil wird die Beschreibung von Korrelationen bezüglich des

azimutalen Winkels von Teilchenpaaren im Endzustand betrachtet. Um die Beschreibung

dieser Observablen zu verbessern, wird ein neues Modell zur Dekorrelation der Teilchen

nach dem Hadronisierungsprozess in Herwig eingearbeitet. Das Modell wird analysiert

und die aus ihm resultierenden Ergebnisse werden diskutiert.
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1. Introduction

Modern particle physics strives towards a fundamental understanding of the Universe

and the inherent laws of Nature. For this purpose, the study of particle behaviour at high

energies - as a method to probe the structure and physics of the early stages of the Universe

- is indispensable. This is why many high-energy particle colliders have been built over the

last century. A prominent and current example is the Large Hadron Collider (LHC). There,

in 2012, the Higgs Boson was discovered, which was the last missing piece of the Standard

Model (SM) of particle physics. However, there are phenomena that are not described

by the Standard Model and therefore, are not fully understood so far, for instance, the

matter–antimatter asymmetry in the Universe as well as the nature of dark matter and

dark energy. One main goal of current and future experiments is the investigation of

physics Beyond the Standard Model (BSM). For this task, an ongoing improvement of

theoretical predictions and the understanding of the various aspects of particle collisions

is crucial.

In this respect, simulation has become increasingly important. Simulation translates theo-

retical models into observables and thus, enables the comparison of theoretical predictions

and experimental data. An important example for simulation software are Monte Carlo

event generators, which use Monte Carlo methods for numerical integration.

To a certain extent, the simulation relies on perturbative calculations which can be carried

out in high precision. However, perturbation theory is only valid in a high-energy regime.

Large parts of the event generation lie outside this regime and depend on phenomeno-

logical models which are not fully described by a theoretical model, instead relying on

experimental observations and theoretical considerations. Examples include the hadroniza-

tion process, which describes the transition from colour-charged partons to colour-neutral

hadrons, and parts of the underlying event.

In order to simulate an event that is as exclusive as possible, it is indispensable that not

only the high-energy parts of the event are simulated accurately, but also the so-called

soft parts. For the sake of validating the simulation process, its output is compared to

data from former experiments. Data measured with a minimum bias trigger are rigourous

arenas for testing soft models.

Within the framework of this thesis, the Monte Carlo event generator Herwig [1–4] is

extended by two new phenomenological models.

In the �rst part, we introduce a new colour reconnection model. Colour reconnection is

an important part of the hadronization process, which allows di�erent parts of the event,

i.e. the hard process and the underlying event, to interfere with each other. It is crucial for

the accurate description of various observables. The new model is compatible with the

current version of Herwig and can be seen as an alternative to the three di�erent colour

reconnections models Herwig already provides.

In the second part, the description of angular-correlation of identi�ed particles is exam-
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1. Introduction

ined. These angular-correlations are minimum bias observables, which have never been

considered in detail for the Herwig cluster model. We will see that in some parts Herwig

fails to describe these observables accurately and suggest and investigate the reasons

for that. Through the gained insights, a new model is motivated and implemented into

Herwig, in order to obtain an improvement in the description of this data.

This thesis is structured as follows: Since we focus on hadron collisions and aspects a�ect-

ing colour-charged particles, chapter 2 gives a short introduction to quantum chromody-

namics (QCD), which describes the interaction of colour-charged particles. Subsequently,

chapter 3 explains the individual steps of the event simulation with Herwig and can be

seen as a short introduction to Monte Carlo event generators. Chapter 4 deals with the

motivation, implementation and analysis of the new colour reconnection model, namely

the baryonic-mesonic colour reconnection model. In chapter 5 the angular-correlation ob-

servables are discussed and subsequently, the post-hadronization momentum swapping
model is introduced and analysed. Finally we summarize the work and perceptions of this

thesis and give a brief outlook in chapter 6.
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2. Quantum Chromodynamics

In particle physics the Standard Model (SM) describes the fundamental particles and their

interactions. The SM combines the electroweak theory and quantum chromodynamics
(QCD), which are both quantum �eld theories. The following is a brief introduction to

QCD with focus on the parts which are relevant for simulation of hadron collisions in

general and the work of this thesis in particular. For a more detailed description of QCD

the interested reader is referred to the various textbooks on this topic, e.g. [5].

QCD describes the interactions among colour-charged particles, such as quarks and gluons,

which is referred to as the strong interaction and is one of the four fundamental forces in

the Universe. In QCD quarks are massive spin-1/2 particles, whereas gluons are massless

bosons with spin 1. Quarks and gluons are conventionally referred to as partons, a name

that originates from Feynman’s original parton model of the strong force [6].

In Nature no single colour-charged particles are observed but only particles which are

neutral in colour-charge, so-called colour-singlets. These composite particles consist of

partons and are referred to collectively as hadrons. Hence, there is a need for a description

of the transition from the parton-level interactions in hard processes to the colourless

hadrons that are detected. The formation of hadrons, which is referred to as hadronization,

happens at energy scale of O(1 GeV). While at higher energy, where the partons are

approximately free, the interaction can be calculated in perturbation theory, this approach

is not valid for lower energies. Thus, the description of hadronization processes relies on

phenomenological models.

2.1. QCD Lagrangian

QCD is a SU (3)C non-abelian gauge theory. It is described by its Lagrangian density,

L = −
1

4

FaµνF
µν
a +

∑
q=�avours

Ψ̄q,i(iγ
µDµ −mq)ijΨq,j + Lgauge + Lghost, (2.1)

where Faµν is the �eld strength tensor determined by the eight massless gluon �elds Aa
µ ,

that correspond to the eight SU (3)C generators T a
:

Faµν = ∂µA
a
ν − ∂νA

a
µ − дs f

abcAb
µA

c
ν , (2.2)

where дs is the strong coupling constant, a, b and c the colour indices and f abc is the

structure constant of SU (3)C , which is determined by the commutation relation of the

3



2. Quantum Chromodynamics

generators:

[T a,Tb] = i f abcT c . (2.3)

In the fundamental representation the generators are T a =
λa
2

, where λa refer to the

Gell-Mann matrices.

The second term of equation 2.1 corresponds to the kinetic energy of the quarks and their

interaction with the gluons, which leaves the �avour of the quarks unchanged. Here Ψq is

the spinor corresponding to the quark �eld with �avour q and massmq . Dµ is the covariant

derivative, which is given by:

Dµ = ∂µ − iдsT
aAa

µ . (2.4)

Lgauge is a gauge-�xing term, which leads to a particular gauge choice. This is required,

among other things, to de�ne the gluon propagator properly. There are some degrees of

freedom in choosing the gauge-�xing term. A common gauge, for instance, is the covariant
gauge, that leads to unphysical degrees of freedom, which have to be cancelled. This is

done via the ghost term Lghost which is a complex scalar �eld and entails an additional

ghost propagator and vertices. However, the axial gauge is de�ned in such a way that the

ghost-term vanishes.

2.2. Asymptotic Freedom and Confinement

The fundamental picture of QCD consists of colour-charged particles interacting with

coupling strength αS =
д2

s
4π . However, technically the coupling constant αS is not a constant,

since it depends on the momentum transferred in the interaction. It is often referred to as

running coupling constant.
In renormalization theory - where divergent parts of the expansion in αS in perturbative

calculations are cut o� - the scale-dependence of the coupling is expressed through the

renormalization group equation [5],

β(αS ) = Q
2
∂αS
∂Q2
, (2.5)

where Q is the scale of the momentum transfer in the interaction. In equation 2.5 β can be

written in terms of the strong coupling αS ,

β(αs) = −(b1α
2

S + b2α
3

S + O(α
4

S )) (2.6)

with the coe�cients

b1 =
33 − 2n f

12π
b2 =

153 − 19n f

24π 2
. (2.7)

4



2.2. Asymptotic Freedom and Con�nement

Here n f is the number of active quark �avours. In QCD n f ≤ 6 is true in general. For

n f ≤ 16 the coe�cients have negative signs. Thus, in QCD for asymptotically high

energies, i.e. small distances, the coupling vanishes. This phenomenon is called asymptotic
freedom [7] [8] and entails that at large energies partons asymptotically behave as if they

were free particles.

If the expansion of β(αS ) (equation 2.6) is truncated after the term quadratic in αS , which

is reasonable in the perturbative regime (Q2, µ2

R � 1 GeV
2
), the solution for equation 2.5

is given by

αS (Q
2) =

αS (µ
2

R)

1 + αS (µ
2

R) · b1 · ln

(
Q2

µ2

R

) . (2.8)

Here it should be pointed out that as ln

(
Q2/µ2

R

)
becomes large αS approaches 0. Thus,

asymptotic freedom for large energy scales Q2
can be directly read from this equation.

Equation 2.8 describes the energy-dependent behaviour of the coupling αS . That means if

αS (µ
2

R) is known for a certain energy scale µ2

R , the coupling αS (Q
2) at any other scale Q2

can be deduced by using equation 2.8. However, the coupling has to be measured. A plot of

current measurements on αS at di�erent energy scales is shown in �gure 2.1. A common

scale for αS-measurements is, for instance, the pole of the Z-Boson mass, MZ = 91.2 GeV.

At this scale the coupling has been measured to be αS ≈ 0.118.

For this reference scale the running coupling exceeds the value 1 for Q2 < O(1 GeV
2). At

this energy regime the truncated equation for β(αS ) is not valid, since the contribution of

terms in αS increases with higher orders. Hence, perturbation theory is not longer valid.

An alternative approach is introducing a dimensional parameter ΛQCD which sets the scale

at which αS diverges. The energy behaviour of the running coupling then reads

αS (Q
2) =

1

b1 ln

(
Q2

Λ2

QCD

) . (2.9)

Λ2

QCD depends on the used renormalisation scheme and also the order up to which the

β(αS ) function is considered. As already implicitly mentioned the coupling diverges, when

Q2
approaches Λ2

QCD . This corresponds to the so-called con�nement property of QCD,

which implies that all colour-charged particles form colour-neutral states at energy scale

O(1 GeV). Thus, perturbation theory breaks down and no single partons are observed at

macroscopic scales.

5



2. Quantum Chromodynamics

Figure 2.1.: The strong coupling contant αS (Q
2) plot taken from [9]. Shown is αs(Q

2) of

several measurements as a function of the energy scaleQ2
. The solid lines show

the predicted behaviour of αS (Q
2) extrapolated from the measured value of the

coupling αS (M
2

Z ) at the Z-pole MZ . The plot illustrates the energy-dependent

behaviour of the αS (Q
2). For small energy it diverges towards con�nement,

while for high energy it decreases.

2.2.1. Colour Flow and large-NC Limit

In QCD the colour structure of each Feynman rule and thus, of each Feynman diagram

can be decomposed into Kronecker-deltas δij between external colours. This is called

the colour �ow of the diagram and shows how the colour evolves during an interaction.

Consider the example of the quark-gluon vertex given by the Feynman rule:

−iдsγ
aT a

ij . (2.10)

So its matrix element contains the square of the generatorT a
ij . Using the Fierz identity one

can show that

T a
ijT

a
kl =

1

2

(
δilδjk −

1

Nc
δijδkl

)
. (2.11)

The two terms correspond to two Feynman diagrams with di�erent colour �ows. They are

shown in �gure 2.2. For the �rst term the colour �ow can be seen as going between the

quarks and the gluon, while for the second term the colour �ows between the quarks, and

the gluon carries a colour and the same anticolour, the so-called colour-singlet gluon. The

contribution of the second diagram is suppressed by a factor of
1

NC
. Hence, it decreases for

6



2.2. Asymptotic Freedom and Con�nement

higher numbers of colour-charges. In the NC →∞ limit [10], where an arbitrary number

of colours is supposed, it vanishes completely and thus,

T a
ijT

a
kl ≈

1

2

δilδjk . (2.12)

Therefore, in this limit only the �rst diagram contributes. Similar considerations can

be done for the 3-gluon-vertex and the 4-gluon-vertex. In general it can be shown that

in the N → ∞ limit gluons are always part of two di�erent colour lines and thus, the

colour structure is planar. This limit is quiet powerful and crucial for Monte Carlo event

generation. In Herwig, for instance, the hadronization model (see section 3.3) is based on

it.

Figure 2.2.: The two contributing Feynman diagrams for the quark-gluon vertex with

di�erent colour �ow. On the left-hand side the leading diagram with a colour

line between the quark and the gluon, and an anticolour line between the

gluon and the antiquark. On the right-hand side the subleading diagram is

suppressed by a factor of
1

NC
, where the colour �ow is within the gluon and

between the quark and the antiquark.

7





3. Monte Carlo Event Generation with
Herwig

General-purpose Monte Carlo event generators like Herwig [1–4] are used to simulate

particle collisions at high energies, such as those taking place at collider experiments, for

example at the LHC [11]. To get a good description of data it is imperative to accurately

simulate all aspects of the process, from the �rst particle collisions to the transition to

the �nale particle states, as measured in the detector. Thus, the simulation contains a

number of di�erent physical processes separated in energy scales. Processes happening at

a characteristic energy scale above the hadronization scale are governed by perturbation

theory, while those below it rely on non-perturbative phenomenological models.

The main steps of the simulation are the hard scattering process, the parton shower and

the hadronization process. To simulate the underlying event, additional semi-hard and

soft interactions between the remnants of the colliding particles occur in hadron-hadron

collisions. In �gure 3.1 a schematic overview of a simulated proton-proton collision without

the underlying event is illustrated. During the hard process two incoming particles scatter

at a high-energy scale calculated in perturbative theory by summing over all Feynman

diagrams of the relevant process up to a certain order of the coupling constants. The

outgoing particles radiate perturbatively in the parton shower by emitting particles until

they reach an energy scale close to the hadronic scale, where perturbation theory is

no longer valid. In addition, the outgoing particles of the semi-hard underlying-event

processes shower to this soft regime.

After the parton shower the hadronization takes place, where the partons originating from

the hard process, the semi-hard and soft underlying-event processes and also the hadron-

remnants form colour-singlet particles. This is done in the soft-regime of event simulation.

In Herwig the so-called cluster hadronization model is implemented. Colour-connected

particle pairs form colour-neutral clusters and decay together in two excited particle states.

These excited states �nally decay into the �nal state particles measured in the detector. In

the following the individual steps of the event simulation are discussed in detail.

9



3. Monte Carlo Event Generation with Herwig

Figure 3.1.: Schematic overview of the event generation process. The core of the event is

the hard process. Through the parton shower the primary outgoing particles

lower their energy down to the hadronic scale by emitting partons. The

hadronization then describes the formation of excited hadrons, which �nally

decay into the �nale state particles measured in the detector.

3.1. Hard Scattering Process

One of the major elements of event simulation is the hard scattering process, in which the

incoming particles collide. These processes involve large transverse momentum transfer.

For the determination of the cross section, the species of the incoming particles are

important. In lepton collisions the involved particles are elementary and thus, calculating

the cross section is relatively straight forward. In contrast, hadrons are composite particles

and therefore, their exact composition and inner momentum structure have to be taken

into account.

The cross section for ij → n hadron scattering is given by [5]:

σ =
∑
i,j

∫
1

0

dx1 dx2 fi(x1, µF )fj(x2, µF ) × σ̂ (pi ,pj ,αs(µF ),Q
2/µF ) (3.1)

Where fi(x , µF ) is the parton distribution function (PDF), which at leading order gives

the probability for �nding a parton i with the momentum fraction x of the total hadron

momentum at energy scale µF .

σ̂ (pi ,pj ,αs(µF ),Q
2/µF ) is the cross section for a two parton collision and is given by:

σ̂ (pi ,pj ,αs(µF ),Q
2/µF ) =

∫
dΦn

1

2s

��Mij→n

��2(Φn; µF , µR), (3.2)

where

��Mij→n

��2
is the squared matrix element, which represents all possible processes in

the hard scattering process as a sum of Feynman diagrams. In addition
1

2s denotes the

parton �ux and dΦn is the di�erential phase space element for a �nal state with n particles.

10



3.2. Parton Shower

Determining the hard process relies heavily on the choice of matrix elements and PDFs.

In Herwig 7 the considered processes can be set by the user. Herwig provides a limited

number of built-in matrix elements, but also additional matrix elements can be accessed

by using the external matrix element providers GoSam [12, 13], OpenLoops [14], VBFNLO

[15–17] and MADGRAPH [18].

Moreover Herwig provides built-in PDFs, but also additional PDFs are available using

LHAPDF [19].

The particles of the hard scattering process are forwarded to the parton shower, where

they undergo perturbative stochastic radiation.

3.2. Parton Shower

In Herwig the hard scattering process is calculated up to next-to-leading order (NLO) of

the strong coupling constant (αs ). But beyond that level the complexity of determining

the matrix elements grows. Thus, it would take too much computing power to do further

calculations.

However, higher order corrections are not negligible in all regions of phase space. Due to

this, an additional approach is required to include these corrections.

The parton shower implemented in Herwig is such an approach. Starting at the energy of

the hard scattering process (Q2
), it evolves particles by quark and gluon radiation down to

the hadronic scale Q2

0
≈ 1 GeV at which con�nement is valid and partons form hadrons.

In Herwig two di�erent approaches of the parton shower are available. The so-called

angular-ordered shower, which is set as default, and the dipole shower, which can be chosen

as an alternative.

The section is structured as follows: First, the basic idea and theoretical background of the

�nal- and initial-state parton shower [20] is introduced. Subsequently, the two di�erent

parton shower algorithms implemented in Herwig are discussed in more detail.

3.2.1. Final State Shower

To illustrate the basic features of the parton shower, consider the process e+e− to two jets.

Later we will generalize these points to a process-independent approach.

For the process e+e− → qq̄ the total cross section in leading order σqq̄ can be calculated

in perturbative theory. In the next to leading order process one of the quarks emits an

additional gluon: e+e− → qq̄д. Its di�erential cross section is given by:

dσqq̄д

d cosθ dz
≈ σqq̄ ·CF

αs
2π

2

sin
2 θ

1 + (1 − z)2

z
. (3.3)

Here z is the energy fraction of the gluon, θ the opening angle between the gluon and the

quark. CF is a colour factor depending on the number of colour charges. It can be easily

seen that the total cross section σqq̄д is proportional to the leading order cross section σqq̄ .

Hence, the rest of the equation can be interpreted as the probability that an additional

gluon is emitted.
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3. Monte Carlo Event Generation with Herwig

In equation 3.3 two types of divergence appear: The �rst occurs at θ → 0 and θ →
π corresponding to the emitted gluon becoming collinear to the quark or anti-quark

respectively. Additionally, the second type occurs as z → 0. This is referred to as soft

divergence and corresponds to the gluon energy going towards zero.

First, consider the collinear divergences. The term responsible for the divergences can be

split in two:

2

sin
2 θ
=

1

1 − cosθ
+

1

1 + cosθ
≈

1

1 − cosθ
+

1

1 − cos
¯θ
. (3.4)

Here
¯θ represents the angle between the gluon and the anti-quark. The last approximation

is only valid in the limit θ → 0 or θ → π respectively. Using this expression in the

mentioned limit equation 3.3 can be rewritten as follows:

dσqq̄д ≈ σqq̄ ·
∑
qq̄

CF
αs
2π

dθ 2

θ 2
dz

1 + (1 − z)2

z
(3.5)

Hence, the di�erential cross section is expressed as the sum of independent emissions of

the two partons. In equation 3.5 θ is the opening angle between the gluon and the respec-

tive parton. For other phase space parametrisations with variables that are proportional to

θ , like the virtuality of the o�-shell quark propagator q2
or the transverse momentum of

the gluon k2
, mathematically-identical expressions are obtained.

It can be shown that the structure of equation 3.5 is completely generalizable. Thus,

the di�erential cross section for any hard process with an additional parton j with mo-

mentum fraction z can be expressed by:

dσ ≈ σ0 ·
∑
i

αs
2π

dθ 2

θ 2
dzPji(z,ϕ)dϕ . (3.6)

Here σ0 is the cross section for the process without the additional parton. Pji(z,ϕ) are the

so-called DGLAP splitting functions [21, 22], which depend on �avour and in general also

on spin. Averaged over spin they are given by:

Pqq(z) = CF
1 + z2

1 − z
, (3.7)

Pдq(z) = CF
1 + (1 − z)2

z
, (3.8)

Pдд(z) = CA
z4 + 1 + (1 − z)4

z(1 − z)
, (3.9)

Pqд(z) = TR · (z
2 + (1 − z)2), (3.10)

whereCF ,CA andTR are again colour factors. Pqq , Pдq , Pдд and Pqд correspond respectively

to the splittings q → qд, q → дq, д→ дд and д→ qq̄.
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3.2. Parton Shower

Now an iterative algorithm can be derived by utilizing expression 3.6. First, it is applied to

the hard process to induce a splitting and emit an additional parton. In a next step, it is

applied to the resulting products to generate more splittings.

At this point, the divergences are not taken into account. Partons that are exactly collinear

and have the same quantum numbers are physical indistinguishable. Therefore, it is rea-

sonable to only produce resolvable partons which ful�l a resolution criteria. For instance,

the transverse momentum can be used as such a criteria. Two partons are referred to

as resolvable, if their relative transverse momentum is above a cut-o� scale Q2

0
. In that

way collinear and soft divergences are guarded, since singularities are cancelled between

virtual and unresolved terms.

Up to now, the calculated distribution is the inclusive distribution of all gluon emis-

sions. In order to get the distribution of multiple gluon events and thus, describe multiple

branchings, the distributions of individual gluons have to be separated out. For that the

virtuality of the inner quark propagator q2
is used as an ordering variable. The distribution

calculated before can then be regarded as the probability for the emission of a parton of

type i in the energy range q2
and q2 + dq2

:

dP =
αs
2π

dq2

q2

∫
1−

Q2

0

q2

Q2

0

q2

dzPji(z). (3.11)

The limits on z follow from the resolution conditions. To determine the probability of the

�rst branching at q2
, the probability that no branching at a scale higher than q2

happened

∆i(q
2,Q2

0
) is used. ∆i(q

2,Q2

0
) is called the Sudakov form factor and is de�ned by:

d∆i(q
2,Q2

0
)

dq2
= ∆i(q

2,Q2

0
)
dP

dq2
. (3.12)

It can be shown that the solution of this di�erential equation and so the Sudakov form

factor is given by:

∆i(q
2,Q2

0
) = exp

{
−

∫ Q2

Q2

0

dk2

k2

αs
2π

∫
1−

Q2

0

q2

Q2

0

q2

dzPji(z)}

}
. (3.13)

Q2
is the maximal possible virtuality. The Sudakov form factor can be used to implement

a Monte Carlo shower by using it to determine the scale q′2 for the next branching. This

can be done, for instance, by generating a random number R in the interval [0,1] and

subsequently solving the equation

R = ∆i(Q
2,q′2). (3.14)
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3. Monte Carlo Event Generation with Herwig

If the calculated solution for q′2 is greater than the cut-o� scale Q2

0
, a branching at the

scale q′2 is generated. The value for z is determined according to the splitting function

Pij(z). This procedure is repeated recursively for each branching product until q′2 < Q2

0
,

which means that the calculated branching would not be resolvable.

3.2.2. Initial State Shower

So far, only the showering of particles produced in the hard process were considered. As

one would expect, the incoming particles before the actual collision are able to perform a

shower as well. The forward showering described in the previous section could be applied

on the incoming particles. However, that would be fairly ine�cient, since partons with

the correct kinematics for the requested hard process are required.

Therefore, in Monte Carlo event generators usually the hard process is the starting point

around which additional initial and �nal radiation is simulated. That means, the initial-

state shower is generated backwards from the hard process to the incoming protons.

The Sudakov form factor of equation 3.13 is replaced by one depending on the PDFs of the

colliding hadrons:

∆i(Q
2,q2,x) = exp

{
−

∫ Q2

q2

dk2

k2

αs
2π

∫
1−

Q2

0

k2

Q2

0

k2

dzPji(z)
x
z · fj(

x
z ,k

2)

x · fi(x ,k2)

}
, (3.15)

where x is the initial momentum fraction of the parton while contributing to the hard

process and
x
k is its moment fraction at the stage to which it possibly evolves back.

Due to the PDF-ratio it is very likely that the shower terminates at the stage of a valence

quark, because their PDF are dominant for high-x . However, in cases where this does not

happen by itself, the termination at the stage of a valence quark is forced by performing

additional branchings.

The partons emitted by the initial state shower will perform additional �nal state showers.

3.2.3. Parton Shower Algorithms

The default shower algorithm in Herwig 7 is the angular-ordered shower [23]. The user

can also choose the so-called dipole shower algorithm [24, 25]. Both are brie�y discussed

below.

3.2.3.1. Angular-ordered Shower

The angular-ordered shower in Herwig 7 is based on the coherent branching algorithm,

which provides angular ordering conservation and invariance under boosts along the jet

axis. For a detailed derivation the interested reader is referred to [23]. Here only the

key-elements are pointed out brie�y.

The evolution scale q̃2
for the branching a → bc with parent a and children b and c in
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3.2. Parton Shower

terms of the respective opening angles is given by:

q̃2 =
2Ea(1 − cosθbc)(1 + cosθa)

2

(1 + cosθb)(1 + cosθc)
, (3.16)

where θbc denotes the angle between the children and θa , θb and θc denote the opening angle

between the respective parton and the so-called shower progenitor. Shower progenitors

are the partons from the hard process initiating the shower. Ea is the energy of the parent.

For small emission angles equation 3.16 can be approximated as

q̃ = Eaθbc . (3.17)

The child-partons have momentum fraction z and due to four-momentum conservation

(1 − z). Angular ordering is then ensured by setting the maximum evolution scale for

the branching to zq̃ and (1 − z)q̃ respectively. Hence, the maximum opening angle of a

subsequent branching is less than or equal to θbc .
As long as only quarks are involved in a branching its colour �ow is unique. For gluons

there are two possible con�gurations of the colour lines, either their colour line or their

anticolour line breaks up for emission. In this case a random choice is made.

3.2.3.2. Dipole Shower

In the limit of a Nc →∞ [10], where Nc denotes the number of colour-charges, the colour

structure of the parton shower is such that it can be drawn on a plane and is composed in

colour lines. Each colour line links a colour-charged parton with an anticolour-charged

parton and thus, can be seen as colour-anticolour dipole. The generation of the shower

then takes place through radiations of these dipoles and the resulting emissions, which are

independent of each other in the considered limit Nc →∞. These emissions are repeated

recursively until a cut-o� scale Q2

0
.

The total emission probability for a dipole is calculated from the sum of the two splitting

functions from the two sides of the dipole.

Each emission with a non-vanishing momentum involves a recoil. Gluons carry a colour

and an anticolour and are therefore, connected with two colour lines. The recoil of a dipole

containing a gluon may therefore, a�ect the subsequent evolution of the other dipole

connected to the gluon. To prevent that, the emission of the highest transvere momentum

is generated at �rst. This transverse momentum then functions as a upper limit for the

other evolution.

In Herwig 7 the basis of the dipole shower implementation is the Catani-Seymour subtrac-

tion kernel [26].
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3. Monte Carlo Event Generation with Herwig

3.3. Hadronization

The partonic �nal states evolved from the parton shower have to be transformed into the

�nal state particles as measured in the detector. This happens in the soft regime, where

perturbation theory is not valid. Hence, one has to make use of phenomenological models.

Di�erent Monte Carlo event generators use di�erent hadronization models. In Pythia

[27], for instance, the Lund-String model [28] is implemented. In contrast, Herwig makes

use of the so-called cluster model [29], which is based on the precon�nement property of

the parton showers [30]. Such a hadronization model was �rst proposed in [31] and then

incorporated into a lepton event generator in [32] and [33].

The precon�nement property states that for any shower at any evolution scale Q2
the

partons can be arranged in colour-singlet states, which have an asymptotically universal

invariant mass distribution. This implies that the mass distribution depends neither on

the scale Q2
nor on any property of the hard process or the shower itself.

The colour structure is considered in the NC →∞ limit, where it is a set of colour lines

connecting colour-charged partons with anticolour-charged partons to colour-singlets.

Since in this limit gluons always carry both anti-colour and colour, the remaining gluons are

each split non-pertubatively into quark-antiquark pairs. Then the parton pairs connected

by colour lines form colour-neutral clusters. These clusters subsequently decay into excited

states of hadrons. These excited states again successively decay into �nal state particles

observed in the detector. Clusters which are too heavy to perform this decay directly

�rst �ssion into a pair of lighter clusters. Also colour reconnection can be applied before

cluster �ssion and cluster decay. A simpli�ed sketch of the hadronization process without

colour reconnection is shown in �gure 3.2. In the following subsections the individual

steps of the hadronization process are discussed in more detail.

3.3.1. Gluon Splitting and Cluster Finding

In the NC →∞ limit gluons are always part of an anticolour and a colour line and thus,

the colour structure is planar. First the remaining gluons from the parton shower are split

non-perturbatively into quark-antiquark pairs. The splitting is done isotropically in the

restframe of each gluon. For this to be possible, the gluons acquire a constituent mass at

this stage. The splitting can only produce the lighter quark �avours: up, down and strange.

The �avours are produced with di�erent weights.

After the splitting only colour-connected quark-antiquark pairs are left. The colour-

connected particle pairs each are gathered into clusters with mesonic quantum numbers.

These clusters are colour-singlets, i.e. colour-neutral. The momentum of a cluster is

determined by the sum of the momenta of its components. Due to the precon�nement

property the mass distribution of the cluster does not depend on the hard process or

properties of the shower. Furthermore, it can be shown that high cluster masses are

suppressed and the mass distribution peaks at the order of O(1 − 3 GeV) [34].

Clusters that are formed in this �rst cluster �nding process are referred to as primary

clusters.
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3.3. Hadronization

Figure 3.2.: Schematic overview of the hadronization process in Herwig. First remaining

gluons are split into quark-antiquarks pairs. Then colour-connected partons

form clusters, which either decay directly into a pair of excited hadrons or

�sson into two lighter clusters �rst.

At this point, one aspect should be mentioned that has been neglected so far. Not every

primary cluster necessarily contains a quark and anti-quark and has mesonic quantum

numbers. There are also primary clusters containing a quark-diquark pair (an antiquark-

antidiquark pair respectively) with baryonic quantum numbers. A (anti)diquark is a

theoretical state of two (anti)quarks grouped together. Diquarks carry anticolour-charge

and antidiquarks colour-charge. In Herwig the beam remnants are treated as diquarks and

thus, there are diquarks in primary clusters, when there are beam remnants involved in

the process.

3.3.2. Colour Reconnection

The basic idea of colour reconnection is to consider di�erent colour-connection topologies

than the one prede�ned by the parton shower. This is done by exchanging components of

di�erent primary clusters with each other to form new possible colour-neutral states. This

is especially interesting, because the hard process and the underlying event otherwise exist

"side by side" without in�uencing each other. In primary clusters there are no partons from

the di�erent parts together. Thus, colour reconnection is a way to connect the underlying

event with the hard process.

There are di�erent models for performing colour reconnection. In Herwig 7.2.2 there

are three such models available, all based on reducing the invariant mass or the inner

rapidity distance of the clusters respectively. Within this thesis Herwig was extended by
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3. Monte Carlo Event Generation with Herwig

a further colour reconnection algorithm, which is discussed in detail in chapter 4. This

sections looks at the three models that were already in place, namely the plain model
[35], the statistical model [35] and the baryonic model [36]. Where the last one is used by

default in Herwig and is so far the only one which allows the production of clusters with

baryonic quantum numbers. It should be mentioned that a further model has recently

been developed based on space-time [37]. However, it is not yet available in the current

Herwig release, since it is still in the process of analysis, tuning and further development.

3.3.2.1. Plain Colour Reconnection

This algorithm aims to reduce the sum of invariant cluster mass, which is referred to as

colour length λ:

λ =

N
cl∑
i

M2

i , (3.18)

where Ncl is the number of clusters. This leads to a shift towards lighter clusters.

The algorithm works like follows: First the clusters are placed in a random order to avoid

systematic biases.

Then the �rst cluster in the list, which is labeled as cluster A, is picked and a suitable

reconnection partner is searched for it by going through all of the other clusters in the list

step by step. For each possible partner the sum of the invariant masses of the two clusters

is calculated: MA +MB . Then the new possible cluster con�guration with the two clusters

C and D is considered and also the sum of their invariant masses: MC +MD . If the new

cluster con�guration leads to a lower sum of invariant mass, i.e. MC +MD ≤ MA +MB and

C and D are colour-singlets, then cluster B is marked as a possible reconnection partner

for A.

If more than one possible reconnection partner for cluster A is found, the one which

leads to the lowest sum MC +MD is chosen. The reconnection is accepted with a certain

probability preco , which is a free parameter of the model.

The whole procedure is repeated for each cluster in the list.
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3.3. Hadronization

3.3.2.2. Statistical Colour Reconnection

In this model, colour reconnection is seen as a minimization problem of the colour length

λ, de�ned in equation 3.18. Since there is a large amount of clusters in hadron collisions,

a brute force approach by calculation all possible cluster con�gurations is not a suitable

solution. Instead the statistical colour reconnection model makes use of a simulated an-

nealing algorithm [38] to approximate the global minimum of λ.

The algorithm picks random pairs of clusters as reconnection candidates and any reconnec-

tions that would produce colour-octets are vetoed. The reconnection is always accepted,

if it lowers the colour length. If it would raise the colour length it is accepted with the

probability

p = exp

{
−
λ2 − λ1

T

}
(3.19)

with λ1 and λ2 being the colour length before and after respectively the reconnection.

T is the so-called temperature, which controls the acceptance of con�gurations with

higher λ. It is gradually reduced during the process and thus, the probability for higher-λ
con�gurations is also reduced. In that way the algorithm terminates with time. The

possibility to accept a reconnection that would raise λ prevents being caught in a local

minimum.

3.3.2.3. Baryonic Colour Reconnection

A recent extension of Herwig was the baryonic colour reconnection model [36]. In contrast

to the other two colour reconnection models, it allows the generation of (anti)baryonic

clusters consisting of three quarks or antiquarks respectively. Further it is not based on

the colour length, since due to the relative high invariant mass of baryonic clusters, this is

not reasonable. Instead the rapidity y with respect to the z-axis (beam axis) is considered

as the key quantity. The rapidity y is given by:

y =
1

2

ln

(
E + pz
E − pz

)
. (3.20)

The algorithm aims to reconnect clusters in such a way that the rapidity distance between

the components within a cluster is reduced. That means that the components should

approximately populate the same phase space region.

Initially, analogous to the plain colour reconnection model, the clusters are placed in a

random order. Then the �rst cluster in the list, again referred to as cluster A, is considered

�rst. Cluster A is boosted in its rest-frame, where the quark qA and the antiquark q̄A are

back-to-back. The direction of the antiquark q̄A is de�ned as the z-axis. Then for each

other cluster B the rapidity of its quark qB and antiquark q̄B with respect to the z-axis and

in the rest-frame of cluster A is calculated. There are three di�erent possible outcomes:
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3. Monte Carlo Event Generation with Herwig

1.) y(qB) > 0 and y(q̄B) < 0, which means that qB is in rapidity direction of q̄A and q̄B is

in rapidity direction of qA. Cluster B is considered for mesonic reconnection with

cluster A and referred to as mesonic candidate.

2.) y(qB) < 0 and y(q̄B) > 0, which means that qB is in rapidity direction of qA and q̄B is

in rapidity direction of q̄A. Cluster B is considered for baryonic reconnection with

cluster A and referred to as baryonic candidate.

3.) Neither 1.) nor 2.) is ful�lled. Cluster B is not considered for any reconnection with

cluster A.

In order to decide which clusters are �nally chosen for reconnection, the total rapidity

sum ytot = |y(qB)| + |y(q̄B)| is considered, where again cluster con�gurations containing

colour-octet states are vetoed. If the two clusters with the highest sum ytot are baryonic

candidates, baryonic reconnection takes place with probability pB . If the cluster with the

highest sum ytot is a mesonic candidate, mesonic reconnection takes place with probability

pM . Again, analogous to the plain colour reconnection model, the procedure is repeated

for each cluster in the list.

However, baryonic and antibaryonic clusters produced during the algorithm are excluded

from further reconnections. Thus, this model contains transitions from mesonic to baryonic

clusters but no retransitions from baryonic to mesonic clusters. Hence, it must be noted

that this model may lead to a systematic bias towards baryonic clusters. However, the

baryonic colour reconnection model achieved signi�cant improvement in the description

of various observables.

3.3.3. Cluster Fission

There is small fraction of clusters which has to �ssion into lighter - less excited - clusters,

since they carry too much mass to decay directly into hadrons. Thus, cluster �ssion is a

transition from particles with high energy to a greater number of particles with lower

energy. Since the formation of hadrons is carried out non-perturbatively, it is reasonable

to avoid high energy scales. To decide whether or not a cluster �ssions the following

condition is used:

MClpow ≥ Cl
Clpow

max
+ (m1 +m2)

Clpow, (3.21)

where M is the invariant mass of the considered cluster andm1 andm2 are the invariant

masses of the cluster components. Clpow andClmax are free parameters which are di�erent

for di�erent �avours. If condition 3.21 is ful�lled for a cluster, the following �ssion process

is applied on it: First of all, a quark-antiquark pair or a diquark-antidiquark pair is generated

from the vacuum, where only light �avours are allowed (up, down and strange). The

probability for generating a certain �avour is also controlled by a parameter of the model.

Then two new clusters are formed, each containing a component of the parent cluster

and the matching partner of the quark-antiquark-pair. The mother cluster is subsequently

replaced by the two children in the event record. Due to diquark production, clusters with

baryonic quantum numbers may be produced.
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3.3. Hadronization

The masses of the new clusters are chosen according to:

M1 =m1 + R
1

P
split

1
· (M −m1 −mq), (3.22)

M2 =m2 + R
1

P
split

2
· (M −m1 −mq̄), (3.23)

where M1 and M2 denote the masses of the new clusters andmq andmq̄ denote the masses

of the generated parton pair. R1 and R2 are uniformly distributed random numbers in the

interval [0,1]. Psplit is the so-called splitting parameter which controls the distribution of

cluster masses and is also �avour-dependent.

There are additional constraints for the masses of the child clusters. The sum of the two

new cluster masses has to be less than or equal to the mass of the parent cluster, i.e.

M ≥ M1 +M2, and the mass of each cluster is required to be greater than the sum of the

masses of its components.

3.3.4. Cluster and Hadron Decay

Once the cluster �ssion is complete, the clusters decay into excited hadrons. Usually

one cluster decays in a pair of excited hadrons. This is to ensure momentum and energy

conversation. The types of hadron depends on �avour and spin of the partons in the

clusters and also on the available phase space.

First, baryonic clusters produced during colour reconnection, which contain three quarks

are transformed to clusters containing a quark and diquark. For the actual decay, similar to

cluster �ssion, a quark-antiquark pair or a diquark-antidiquark pair is produced from the

vacuum, where again only the light �avours up, down, and strange are allowed with di�er-

ent weights. A sketch of all possible decay combinations is shown in �gure 3.3. It can be

seen that the emerging hadron pair is either a pair of (anti)mesons, an antibaryon-baryon

pair, a (anti)meson-baryon pair or a (anti)meson-antibaryon pair. However, antibaryon-

antibaryon and baryon-baryon pairs do not occur. At this point, it is anticipated that this

pairwise decay into hadrons might entail unwanted correlations. Especially, when the

colour reconnection model is also considered. Because of the colour reconnection process,

partons which are close in rapidity tend to be together in clusters. And subsequently, these

close partons hadronize together. Thus, strong correlations for near-side particles might

arise.

The clusters decay isotropically in their rest-frame. Hadrons from clusters containing a

parton produced in the perturbative stage retain the direction of this parton, but with a

small Gaussian smearing, whereby the smearing angle is randomly chosen depending on

the �avour of the parton.

Clusters which are too light to decay directly into two hadrons decay instead into the

lightest allowed hadron. In order to give them the correct invariant mass, their energy

and momentum is reshu�ed with clusters neighbouring them.
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Figure 3.3.: Possible pairwise cluster decays. Depending on the cluster components and the

produced quark-antiquark pair or diquark-antidiquark pair respectively, either

a) two (anti)mesons, b) a baryon-antibaryon pair or c) a (anti)meson-baryon

pair or a (anti)meson-antibayron pair (in case of a cluster with antibaryonic

quantum numbers) respectively is produced. Baryon-baryon and antibaryon-

antibaryon pairs do not occur.

These hadrons originating from the cluster decays are excited hadrons and hence unstable.

As a result, they decay again into the �nal-state particles measured in the detector. Both

strong and electroweak decays happen and thus, not only hadrons but also, for instance,

leptons are produced. The model for hadron decays used in Herwig is described in [1].

Additionally, a description for τ -decays can be found in [39].

3.4. Underlying Event

In hadron colliders an event will involve not only the hard process, but also the so-called

underlying event. In collider experiments the underlying event is de�ned as the sum of

incidents which are not related to the hard process of interest. The colliding hadrons are

composite particles and thus, all constituents may interact with each other. Therefore,

additional hard processes in the perturbative regime might happen but also soft interactions

at lower energies. For high center-of-mass energies, the probability that more hadronic

interactions happen than only the hard event is signi�cant. These additional interactions

are the dominant part contributing to the underlying event. Therefore, it is crucial for an

accurate simulation to ensure that there is a good description of these interactions.

The underlying event is modeled with multiple parton interactions (MPIs). The MPI-model

used in Herwig is based on the eikonal model [40–42]. It consists of two separate parts, a

perturbative and a non-perturbative one. Here the transverse momentum of the respective

interaction is decisive. If it is above a certain threshold momentum pmin

T , the interaction

is modelled as a QCD 2 → 2 interaction. These perturbative interactions are referred

to as semi-hard interactions. However, if the transverse momentum is below pmin

T , the

interaction is referred to as soft interaction. Before the release of Herwig 7.1 the default

model for these soft interactions were elastic gluon scatterings [43]. This model can still

be chosen by the user in the current version of Herwig. However, with the mentioned

release a new model was introduced [44]. While in the old model for every soft interaction

a pair of gluons is produced, in the new model a pair of quarks and a number of gluons,

whose transverse momentum is restricted by the threshold momentum pmin
T , is produced.
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The gluons are ordered in rapidity in such a way that the rapidity distribution of the

subsequently produced particles is roughly �at.

The threshold momentum is not the same for each simulated collision but depends on its

center-of-mass energy

√
s and is extrapolated by a power law:

pmin

T = pmin

T ,0 ·

(√
s + b

E0

)c
, (3.24)

where pmin

T ,0 is the value of pmin

T around the reference scale E0. b is an o�set, which is

necessary for �tting pmin
T for small center-of-mass energies

√
s . pmin

T ,0 , E0, b and the power

c are correlated parameters of the model. Besides these, the inverse hadron radius µ2
is

also an important parameter for the MPI model, since it controls the matter distribution

in the proton. The parameters of the MPI and also of the colour reconnection have been

tuned to minimum bias and underlying event data [45] to ensure a good description of

data. It is worth mentioning that it can be observed that µ2
and pmin

T ,0 are correlated for

some observables.

3.5. Minimum Bias Events and Di�ractive Model

In experiments minimum bias de�nes a class of events done with a trigger which has as

little bias as possible. Hence, there is no certain hard process in focus. Instead, the aim is

to be as inclusive as possible. Such minimum bias events where no hard process occurs

make up the bulk of events at high-energy experiments.

In Herwig minimum bias events are simulated with the MPI model. Since the software ar-

chitecture of Herwig requires a "hard process" to split up the colliding hadrons and initiate

the MPIs, a dummy matrix element is used to replace the actual hard process. Result-

ing in a situation where partons with no transverse momentum are taken from the hadrons.

However, this is not su�cient to describe all minimum bias observables accurately. Es-

pecially for events with a large pseudorapidity gap an alternative approach is necessary.

Di�raction describes hadron collisions where no perturbative electroweak or strong inter-

action among the partons occurs but where one or both of the hadrons are broken up.

In Regge theory di�raction is modeled by an exchange of pomerons which are hypothetical

colour-neutral strong-interacting particles. There are three di�erent types of di�raction:

(i) single di�raction, where only one hadron dissociates, i.e. A + B → A + X (ii) double

di�raction, where both hadrons dissociate , i.e. A+ B → X +Y and (iii) central di�raction,

where an active region in-between the two hadrons appears, i.e. A + B → A + X + B.

So far in Herwig only single di�ractive and double di�ractive events are available. The

dissociation of a proton is simulated by a decay into a quark-diquark pair moving collinar

to the mother proton. This pair is then transformed into a cluster and thus, in the subse-

quent hadronization process decays into one, two or more hadrons. Detailed descriptions

of the di�ractive model of Herwig can be found in [46] , where it was �rst introduced, and

in [47]. To vary the ratio between di�ractive and non-di�ractive events in Herwig there is

a model parameter called DiffractionRatio, which represents the ratio of the di�ractive
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3. Monte Carlo Event Generation with Herwig

and the non-di�ractive cross section. Approximately 20 - 25 % of the events are di�ractive.

In order to simulate an event as exclusive as possible, and to describe a hard process

and its underlying event in all detail, it is crucial that not only the high-energy parts of

an event are simulated accurately but also the soft parts. For the second, minimum bias

observables are rigorous arenas to test any new phenomenological model.
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4. Baryonic-Mesonic Colour Reconnection
Model

Since colour reconnection models entail that di�erent parts of the event interfere and

hadronize together, they are indispensable for describing data from hadron colliders. A

prominent example is the distribution of mean transverse momentum over the number of

charged particles < pT > (Nch). For independent interactions < pT > would not depend

on Nch. Due to a large spacetime overlap of the individual interaction this is not true

for reality. And thus, colour reconnection is essential for this observable. In the colour

reconnection process the multiplicity is reduced due to smaller clusters and the available

transverse momentum is shared between less particles. Thus, < pT > rises for the same

Nch.

An overview of colour reconnection in Herwig and the implemented models is given in

section 3.4. In the following, clusters consisting of a quark and an antiquark are referred

to as mesonic clusters, while clusters consisting of three quarks or three antiquarks re-

spectively are called baryonic or antibaryonic respectively.

Adding the baryonic colour reconnection model (see subsection 3.3.2.3) to Herwig led to a

signi�cant improvement of the description of various observables. As an example in �gure

4.1 the charged multiplicity for Nch ≥ 1 using the plain and the baryonic colour reconnec-

tion respectively is plotted and compared to data from ATLAS [48]. The curve produced

with baryonic colour reconnection �ts the data better. However, while with plain colour

reconnection the high charge multiplicities are overestimated, with the baryonic colour

reconenction they are underestimated. Thus, there is still room for improvement. Since

baryonic clusters produced during the algorithm are excluded from further reconnections,

the model may lead to a systematic bias towards baryonic clusters. It is reasonable to

assume that a model implying re-reconnection to mesonic clusters may compensate for

overcompensation as observed in �gure 4.1.

In the following we implement such a model into Herwig, the so-called baryonic-mesonic
colour reconnection model. It incorporates baryonic clusters in the reconnection process.

Besides re-reconnection from baryonic to mesonic clusters, reconnection from baryonic

clusters to di�erently arranged baryonic clusters and also between mesonic and baryonic

clusters are allowed. A similar idea was already pursued in [49], where baryonic recon-

nection from mesonic to baryonic clusters as well as re-reconnection from baryonic to

mesonic clusters were incorporated in a simulated annealing algorithm [38]. However,

here we use a slightly di�erent approach.

In the following, we �rst present the fundamentals and subsequently the algorithm. We

tune the model parameters to data and discuss the results, whereby we also consider

analyses not used for the tuning procedure.
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4. Baryonic-Mesonic Colour Reconnection Model

Figure 4.1.: Comparison of Herwig 7.2 with plain and baryonic colour reconnection for

charged multiplictiy distribution for Nch ≥ 1 andpT > 500 measured by ATLAS.

The baryonic colour reconnection model lead to a better description of data.

The plot was done using RIVET [50].

4.1. Fundamentals

The plain and the statistical colour reconnection model aim to reduce the invariant cluster

mass. Since baryonic clusters carry a relatively high mass, for the baryonic colour recon-

nection model the rapidity distance was introduced as a reconnection criterion. For the

baryonic-mesonic model we use a related but slightly di�erent criterion: the displacement

∆R which reads for two partons i and j

∆R2

ij = ∆Y 2

ij + ∆ϕ
2

ij . (4.1)

Here ∆Yij is the rapidity distance between the considered quarks (yi − yj) relative to the

beam axis, where the rapidity reads

y =
1

2

ln

(
E + pz
E − pz

)
. (4.2)

E is the energy of the considered parton and pz is the momentum with respect to the z-axis,

i.e. beam-axis. The rapidity is a measure for the relativistic velocity of a particle. For a

particle with small momentum with respect to the z-axis it approaches zero. In contrast,

if the particle moves along the beam-axis the rapidity goes towards in�nity. Thus, the

rapidity indicates the direction of a particle along the beam-axis.

In the second term of equation 4.1 ∆ϕij refers to the azimuthal angular distance of the

two partons ϕi − ϕj . The azimuthal angle is the angle "around" the beam-axis. Hence, the
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4.2. Algorithm

rapidity - as a measure for the direction along the beam-axis - in combination with the

azimuthal angle provides an accurate description of the direction in which a particle is

moving. Figure 4.2 is intended to illustrate that. A colour reconnection model based on

the displacement ∆R considers clusters for reconnection, if the involved partons go to the

same direction.

(a) (b)

Figure 4.2.: Illustration of rapidity (a) and azimuthal angle (b). The rapidity is a measure

for the direction of a particle along the beam-axis. The azimuthal angle gives

the direction around the beam-axis.

4.2. Algorithm

The colour reconnection process and thus the baryonic-mesonic colour reconnection model

starts immediately after the cluster �nding (see subsection 3.3.1) in the hadronization

process. Once the perturbative evolution of the parton shower has terminated and the

gluons are split into quark-antiquark pairs, all colour-connected partons form colour-

neutral clusters. Technically, the resulting primary clusters are combined in a so-called

cluster-vector and this is passed on to the colour reconnection model, which is allowed to

change the prede�ned cluster con�guration.

First a brief overview of the basic steps of the baryonic-mesonic colour reconnection

algorithm is given. The individual steps are explained in more detail below. The algorithm

goes through the following steps:

1.) Pick a random combination of clusters, which should be either three mesonic clusters,

two (anti)baryonic or one mesonic cluster mesonic and one (anti)baryonic cluster.

2.) Determine the displacement ∆R for each picked cluster and calculate the sum.

3.) Go through all other possible cluster con�gurations for the constituents chosen by

step 1.), each time calculating the sum for ∆R. Con�gurations which would result in

colour-charged clusters are automatically vetoed.

4.) If a possible reconnection leads to a lower total ∆R-sum than the original con�gura-

tion, it is considered for reconnection. In the case of multiple such con�gurations,

the one with the lowest total ∆R is chosen.
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4. Baryonic-Mesonic Colour Reconnection Model

5.) The reconnection is accepted with a certain probability depending on the kind of

reconnection.

We decide not to include the case of only two mesonic clusters considered for mesonic

reconnection directly. This is to keep the algorithm as simple as possible. Three mesonic

clusters are needed to reconnect to a baryonic and an antibaryonic cluster. Thus, in the

case of three mesonic clusters, we are able to consider baryonic and mesonic reconnection

simultaneously. Also, the case of two clusters perform mesonic reconnection is already

included indirectly when one cluster remains unchanged in the case of mesonic reconnec-

tion.

Additionally, clusters containing diquarks are generally excluded from reconnection. This

is the case in all implemented models and is conventionally justi�ed as follows: diquarks at

this stage of simulation always originate from the hadron remnants and thus are relatively

far away from other clusters.

The steps in the baryonic-mesonic reconnection algorithm are repeated several times. The

exact number of iterations Nsteps is determined by

Nsteps = fstep · N
2

cl
, (4.3)

where Ncl is the total number of clusters in the event and fstep is the so-called StepFactor,

which is a free parameter of the model.

4.2.1. Picking random Clusters

Since the algorithm only considers speci�c con�gurations of the randomly picked clusters

previously mentioned, it is not su�cient to simply pick two or three clusters from the

list. Either three mesonic, two (anti)baryonic or a mesonic and a (anti)baryonic cluster are

needed and thus, the algorithm is illustrated in a simpli�ed way in �gure 4.3.

Initially the clusters are shu�ed so that they are in a random order. The �rst cluster

not containing a diquark is added to the list of picked clusters in any case, likewise the

second one. If one of them or both are (anti)baryonic, the picking procedure terminates.

Now, we have either two (anti)baryonic clusters or a (anti)baryonic and a mesonic cluster

considered for reconnection. If the �rst two clusters are mesonic, we go through the rest

of the clusters until a third mesonic one is found. In that case, three mesonic clusters are

considered for reconnection.
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4.2. Algorithm

Figure 4.3.: Schematic overview of the algorithm picking the cluster combination consid-

ered for reconnection. The algorithm terminates, when either three mesonic,

two baryonic, or a mesonic and a baryonic cluster are in the list.

4.2.2. Determining the Displacement

As mentioned above, the equation 4.1 is used as a measure of the displacement within

a cluster. For mesonic clusters this is trivial, since only ∆R between the quark and the

antiquark has to be calculated. (Anti)baryonic clusters on the other hand have three

components (q1, q2, q3). Therefore, the total displacement ∆Rtot is given by the sum of all

displacements between the individual quarks and thus, reads

∆Rtot = ∆R1,2 + ∆R1,3 + ∆R2,3. (4.4)

In order to make (anti)baryonic and mesonic cluster-con�gurations comparable, a factor

ωBM regulating the weight of displacements of the (anti)baryonic clusters with respect to

the mesonic ones has to be introduced. To illustrate that, the possible con�gurations of

three quarks (1, 2, 3) and three antiquarks (1̄, 2̄, 3̄ ) are considered. A possible con�guration

with three mesonic clusters is, for instance, 11̄, 22̄, 33̄. Here it is assumed that the three

considered quark-antiquark pairs form colour singlets. In this case the total displacement

∆Rmes

tot
is determined by the sum of the displacements of the individual clusters,

∆Rmes

tot
= ∆R

1,1̄ + ∆R2,2̄ + ∆R3,3̄. (4.5)

For the same six partons, only one baryonic cluster con�guration is possible consisting of

a baryonic cluster (123) and an antibaryonic cluster (1̄2̄3̄). The total displacement ∆R
bary

tot
is

again determined by the the sum of the displacements of the baryonic and the antibaryonic

cluster ∆R1,2,3, ∆R
1̄,2̄,3̄ respectively and due to equation 4.4 reads

∆R
bary

tot
= ∆R1,2,3 + ∆R1̄,2̄,3̄ = ∆R1,2 + ∆R1,3 + ∆R2,3 + ∆R1̄,2̄ + ∆R1̄,3̄ + ∆R2̄,3̄. (4.6)
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If equations 4.5 and 4.6 are now considered, it immediately becomes apparent that ∆Rmes

tot

is the sum of three individual displacements, while ∆R
bary

tot
is the sum of six displacements.

Therefore, it seems natural to set the weight ωBM to 1/2, i.e. whenever the displacement

of (anti)baryonic and mesonic clusters are compared, the displacement-values of the

(anti)baryonic clusters are multiplied by 1/2. Based on this simple consideration ωBM was

speci�ed to be 1/2 during the implementation of the baryonic-mesonic colour reconnection

model. However, this does not necessarily have to be the best choice. It is possible that a

di�erent value entails a better description of the meson-baryon ratio in hadron-collisions.

The choice of this parameter could play a role in future tunes and improvements of the

model. We leave this avenue open to further investigations in the future.

4.2.3. Reconnection Configurations

We give a short overview over the possible reconnection con�gurations occurring in the

model. They are summarized in table 4.1, where M refers to a mesonic cluster, B to a

baryonic and aB to an antibaryonic cluster.

There are four di�erent con�gurations for the randomly picked clusters considered for

reconnection.

1.) In the case of three mesonic clusters, the clusters might reconnect to three di�erent

mesonic clusters or to an antibaryonic and a baryonic cluster. For the six quarks con-

sidered here, there are six mesonic cluster con�gurations, one of which is the inital

one, and one baryonic. If the best reconnection option is mesonic, the reconnection

is accepted with probability pM,M , and if it is baryonic with probability pM,B .

2.) If we consider a mesonic and a (anti)baryonic cluster, they might reconnect to a

di�erent mesonic and anti(baryonic) cluster. In that case, there are three recon-

nection con�gurations that have to be considered, where the (anti)quark of the

mesonic cluster is exchanged with each parton of the (anti)baryon. A possible found

reconnection option is accepted with probability pMB,MB .

3.) If the considered clusters are a baryonic and an antibaryonic cluster, they might

reconnect to three mesonic clusters. In that case, there are six possible con�gurations

as to how the quarks from the baryonic cluster form mesonic clusters with the

antiquarks from the antibaryonic cluster. Here the reconnection is accepted with

probability pB,M .

4.) Finally, two baryonic or antibaryonic clusters respectively can be considered for

reconnection. They have nine reconnection con�gurations to form two di�erent

baryonic or antibaryonic clusters respectively. If a possible reconnection is found, it

is accepted with probability pB,B .

The reconnection probabilities are free parameters of the model. Additionally, there is the

StepFactor (see equation 4.3), which controls the number of iterations. Thus, there are six

parameters in the model that must be carefully chosen to get a good description of data.
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Table 4.1.: Overview of the possible reconnection con�gurations. M refers to a mesonic

cluster, B to a baryonic and aB to an antibaryonic cluster. The third column

gives the corresponding reconnection probability parameter.

Before reconnection After reconnection Reconnection probability

3 M 3 M’ pM,M
3 M 1 B + 1 aB pM,B
1 M + 1 (a)B 1 M’ + 1 (a)B’ pMB,MB

1 B + 1 aB 3 M pB,M
2 (a)B 2 (a)B’ pB,B

4.3. Tuning and Results

The values of the new model parameters have to be constrained. Due to the high numbers

of parameters, we tune the parameters to experimental data using the current version

of the PROFESSOR tuning system [51] in combination with AutoTunes framework [52].

The used analyses are provided by Rivet [50]. The tuning is performed for

√
s = 7 TeV

center-of-mass energy and with minimum bias data. First we brie�y describe the tuning

procedure, subsequently we present the tuning results and �nally we discuss the output

for analyses not included in the tuning procedure.

4.3.1. Tuning Procedure

Since we expect the model to have signi�cant impact on the multiple parton interactions,

key parameters of the MPI-model are included in the tuning procedure, namely the inverse

proton radius µ2
and pmin

T ,0 . This results in a total of 8 parameters:

• the �ve probabilities of the baryonic-mesonic colour reconnection model: pM,M , pM,B ,

pMB,MB , pB,M and pB,B

• the StepFactor fstep of the baryonic-mesonic colour reconnection model, controlling

the number of reconnection-iterations

• pmin

T ,0 , parameter of the parametrisation of soft-hard-threshold transverse momentum

in the MPI-model (see equation 3.24)

• the squared inverse proton radius µ2
which controls the matter distribution within

the proton

As previously indicated, the factor ωBM regulating the weight of displacements of baryonic

clusters with respect to mesonic ones is in principle a tuneable parameter. However, in

the scope of this work we �xed it to 1/2 based on considerations we made (see subsection
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4.2.2). We tune to minimum bias data measured by ATLAS [53] using the results from the

analyses published in [48]. In detail we use the following observables, where the weights

are adjusted by AutoTunes.

• The charged pseudorapidity distributions for Nch ≥ 1, Nch ≥ 2, Nch ≥ 6 and Nch ≥ 20

• The charged transverse momentum distributions for Nch ≥ 1, Nch ≥ 2, Nch ≥ 6 and

Nch ≥ 20

• The charged multiplicities for Nch ≥ 1, Nch ≥ 2, Nch ≥ 6 and Nch ≥ 20

• The average charged transverse momentum vs. number of charged particles for

Nch ≥ 1 and Nch ≥ 2

AutoTunes divides the parameters to be tuned in two subsets, which are chosen in such

way that strongly correlated parameters are tuned together. For each subset, a set of 500

Herwig runs with randomly distributed parameter-values is generated and then several

times a subset of these runs is used to interpolate the generator response. This is done

by using PROFESSOR. For each of these run combinations, again PROFESSOR is used to

determine the parameter-values which lead to the smallest X 2/Ndof -value, where Ndof

refers to the degrees of freedom. The parameter ranges arising from the results of the

individual run-subsets are then used for the next tune iteration. In total we perform two

iterations. As the �nal result, we obtain the parameter values resulting in the smallest

X 2/Ndof -value as well as the whole range for the parameter values received by the set of

tunes of the last iteration.

4.3.2. Tuning Results

The results are listed in table 4.2, where we show the parameter choice which results in

the lowest X 2/Ndof value, and also the total range obtained by the total number of tunes.

A small range means that the data are highly sensitive to the parameters. The default

value in the current Herwig version for each parameter as well as the parameter-ranges

used for tuning are also listed.

We notice that the value for the MPI-parameters do not exhibit much deviation from their

default values. The tuned value for fstep is almost 1. According to equation 4.3 that means,

the number of reconnection-tries is approximately the squared number of clusters in the

event. This corresponds to the plain and baryonic colour reconnection model, where for

each cluster the reconnection with every other cluster is checked.

Additionally, the probability-parameter for two baryonic clusters reconnecting to three

mesonic clusters pB,M is very low. Hence, we conclude that the assumed bias towards

baryonic clusters in the baryonic reconnection model is probably not a major problem.

However, a di�erent choice of the weight ωBM may entail diverging results. For larger

ωBM, the mesonic reconnection is preferred over the baryonic in the case of three mesonic

clusters. And baryonic reconnection is only considered, when it leads to a massive decrease

of displacement. Thus, increasing the value of ωBM could lead to a higher tuning result for

pM,B and also to a lower value for pM,M .
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Table 4.2.: Parameter values for the baryonic-mesonic colour reconnection model tuned to

minimum bias data from ATLAS [48]. The �rst two columns give the default

values in the current Herwig version and the parameter-ranges used for tuning.

Then the parameter-values resulted in smallestX 2/Ndof as well as the parameter-

ranges obtained by the total number of tunes are listed.

parameter default value range used best value range obtained

for tuning by tuning

pmin

T ,0 2.87 1.0 − 5.0 2.89 2.85 − 2.92

µ2
1.1 0.0 − 2.0 1.10 1.08 − 1.11

pM,M 0.95
1

0.0 − 1.0 0.56 0.52 − 0.57

pM,B 0.7 0.0 − 1.0 0.41 0.40 − 0.44

pMB,MB None 0.0 − 1.0 0.09 0.08 − 0.11

pB,B None 0.0 − 1.0 0.22 0.11 − 0.24

pB,M None 0.0 − 1.0 0.02 0.00 − 0.02

fstep None 0.1 − 5.0 1.04 1.03 − 1.06

1
To be exact, pM,M does not have a default value so far, since it is de�ned

as the probability 3M → 3M′. What is given here is the default value for

2M → 2M′.

We obtain a satisfactory description for all considered observables. For a number of

them, an improvement is achieved compared to the default of the current Herwig version,

especially for the charged transverse momentum distributions. We assume that this is due

to baryonic-to-baryonic reconnection, for which the value of the probability-parameter is

signi�cant higher than for the other newly introduced reconnection types. The option

of baryonic-to-baryonic reconnection provides greater �exibility in the composition of

baryonic clusters.

In �gure 4.4 we compare the tuned new baryonic-mesonic model with the Herwig default

for a selection of the considered observables. In sub�gure 4.4c the charged multiplicity-

distribution from �gure 4.1 is shown. We observe no signi�cant change in the distribution

of this observable. In the appendix section A.1 more plots for this analysis are shown.

Below we apply the new colour reconnection model to other observables not included in

the tuning procedure.
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(a) (b)

(c) (d)

Figure 4.4.: Comparison of the default output of Herwig and the best tune for the new

baryonic-mesonic colour reconnection model for minimum bias data from

ATLAS.
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4.3.3. Results for identified Particle Yields

Besides the observables we used for tuning, the yields for identi�ed particles are key-

observables for testing simulation of minimum bias events. Above we only considered

observables corresponding to the totality of charged particles. Here we use data measured

by ALICE and published in [54] to study the description of individual particle types. In

�gure 4.5 we compare the description of mid-rapidity, i.e |y | < 0.5, transverse momentum

spectra of pions (π++π−), kaons (K++K− ) and antiprotons and protons (p+p̄) normalized

to the number of inelastic collisions NINEL for the default of the current Herwig version

and the new model with the tuned parameter choice.

For π+ + π− and K+ + K− the description for low-pT improves slightly for the tuned new

model, while we observe a deterioration for higher pT . For p + p̄ both models only roughly

�t the data. In summary, although no substantial improvement can be noted, the data are

still described satisfactorily and we do not see any signi�cant deterioration. Thus, for

these analyses the new model is validated.

The tuning results were also validated by cross-checks with charged-multiplicity and

pseudo-rapidity distributions from ALICE [55] as well as with rapidity-gap data from

ATLAS [56]. The corresponding plots can be found in the appendix sections A.2 and A.3.

4.4. Conclusion

We implemented a new colour reconnection model to Herwig which allows to include

baryonic clusters in the reconnection process. We tuned parameters of the model to

minimum bias observables and obtained a good description of this considered observables.

We cross-checked the tuned model with observables of other analyses.

However, there are still many points that should be investigated with respect to the new

model. So far, only its behaviour for

√
s = 7 TeV center-of-mass energy has been studied. In

addition, further tunes may lead to an even better description. On one hand, it is interesting

to perform broader tunes with more observables under consideration, e.g. observables

related to the underlying event. On the other hand, promising results could be achieved by

narrower tunes where only observables very sensitive to the parameters are considered.

35



4. Baryonic-Mesonic Colour Reconnection Model

(a) (b)

(c)

Figure 4.5.: Comparison of the default output of Herwig and the best tune for the new

baryonic-mesonic colour reconnection model for transverse momentum spec-

tra of identi�ed particles.
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5. Post-Hadronization Momentum
Swapping

As mentioned before, minimum bias observables are rigorous arenas to test the soft physics

models in the simulation process. Particle generation in hadron colliders is complex and

thus, there are various minimum bias observables which have to be taken into account.

There is the charged multiplicity, the particle-distribution in rapidity and the particle-

distribution in transverse momentum to name just a few. In the framework of this thesis,

two-particle angular-correlations of identi�ed particles were considered in greater detail. In

order to get a more precise description of these observables, Herwig was extended by a

new soft model, namely the post-hadronization momentum swapping and its parameters

were tuned to data. In this chapter, we discuss the mentioned observables, and the new

model and its result in detail. This chapter is organized as follows: First the observables

under consideration are introduced and we discuss default Herwig’s ability to describe the

data. In the following section, the basic idea of the new model is motivated. Subsequently,

the algorithm is described. After that we tune the parameters of the model and other

MPI-parameters to minimum bias observables and �nally the results are shown.

5.1. Observables under Consideration

The considered data were measured by the ALICE [57] experiment at the center-of-mass

energy

√
s = 7 TeV and were �rst published in [58]. These are two-particle correlations in

the azimuthal angle ϕ of �nal-state particles, namely pions, kaons, protons and lambda-

baryons, for (anti)meson-(anti)meson, meson-antimeson, (anti)baryon-(anti)baryon and

baryon-antibaryon combinations in the pair. Here and in the following, particle-antiparticle

pairings are referred to as opposite-sign pairings, while particle-particle pairings and

antiparticle-antiparticle pairings are referred to as same-sign pairings.

The correlation C(∆ϕ) indicates whether the presence of a certain particle in an event re-

duces or increases the probability that another particle occurs at a certain angular distance

∆ϕ from the �rst particle. Therefore, a background estimation by event-mixing is carried

out.

The correlation function is integrated over rapidity and transverse momentum. The em-

ployed transverse momentum cut is pT ≥ 0.5 GeV and the rapidity-cut is y ≤ 0.8, since the

rapidity range of the measurement is limited by the architecture of the ALICE-detector.

Additionally, only hadron-pairs with a rapidity-distance less than 1.3 are taken into ac-

count, i.e. ∆y ≤ 1.3.
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In the analyses the angular-correlation function C(∆ϕ;HH ′) of two hadrons HH ′ is deter-

mined by

C(∆ϕ;HH ′) =
2 · N (∆ϕ;HH ′)

N (∆ϕ;HH ′
mix
) + N (∆ϕ;HmixH ′)

, (5.1)

where N (∆ϕ;HH ′) is the number of HH ′-hadron-pairs with angular distance in the az-

imuthal interval ∆ϕ. In the numerator, we consider hadron pairs with both hadrons from

the same event, while the pairs in the denominator are created from event mixing. That

means the denominator indicates the number of pairs that can be expected by chance

purely through the general particle distribution. Thus, the following applies for di�erent

values of the correlation function C(∆ϕ;HH ′):

1.) For C(∆ϕ; HH′) < 1.0 an anticorrelation is observed for the respective hadron-pair.

2.) For C(∆ϕ; HH′) = 1.0 no correlation or anticorrelation is observed for the respective

hadron-pair.

3.) For C(∆ϕ; HH′) > 1.0 a correlation is observed for the respective hadron-pair.

Figure 5.1 shows a selections of the angular-correlations functions comparing the output

of Herwig 7.2 (red line) with the measured data. For the runs, the baryonic colour recon-

nection model (see subsection 3.3.2.3) was applied and all model parameters were set to

their default values. We use K+K−-pairs as an example for opposite-sign meson pairs and

for same-sign meson pairs K−K− and K+K+. For baryons, we use pp̄-pairs and pΛ and

p̄Λ̄ respectively. Data for mesons and baryon-antibaryon pairs exhibit a peak for small

angular distances. The Herwig output reproduces these small-distance peaks, but exceeds

them.

Additionally, for baryon-antibaryon pairs a correlation for back-to-back particles is ob-

served in the Herwig output, which is not supported by data. For baryon–baryon and

antibaryon–antibaryon pairs, where both particles have the same baryon number, near-

side anticorrelation structure arises in data, which is also reproduced by the Herwig output.

It is reasonable to assume that the overly strong correlations are due to the hadronization

model. In section 3.3.4 we described the pairwise cluster decay, which may induce cor-

relations, especially in combination with the colour reconnection model. Due to colour

reconnection nearby partons tend to be together in clusters and subsequently these near-

side partons hadronize together. Figure 3.3 illustrates that in the pairwise decays no

baryon-baryon and antibaryon-antibaryon pairs are produced. That might explain why

the simulation does not exhibit a near-side peak for these pairs.

In the following subsections, we study the in�uence of colour reconnection, the proton

remnant and the hadron decay model on the angular-correlations.
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(a) (b)

(c) (d)

Figure 5.1.: Angular-correlation distributions for identi�ed particles integrated over trans-

verse momentum and rapidity measured by ALICE. The red line is the output

of Herwig 7.2, where all model parameters are set to their default values. On

display are the distributions for (a) same-sign kaon-pairs, (b) opposite-sign

kaon-pairs, (c) same-sign proton-pairs and (d) opposite-sign proton-lambda-

pairs.
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5.1.1. Colour Reconnection

As indicated above, a strong association between colour reconnection and the observables

under consideration is expected. The colour reconnection model has a signi�cant impact

on which partons hadronize together and how close they are in space and momentum.

Hence, in �gure 5.2 the Herwig output for di�erent colour reconnection models is shown.

The red line gives the output for no colour reconnection, i.e. the colour structure from the

parton shower determines directly the composition of the cluster which either decay to

hadrons directly or undergo the cluster �ssion process �rst. The blue line gives the output

for only mesonic colour reconnection enabled, i.e. no baryonic clusters are produced in

the colour reconnection process. Therefore, the baryonic colour reconnection model (see

subsection 3.3.2.3) is applied with the baryonic reconnection probability set to 0 pB = 0.

The green line �nally shows the output for baryonic and mesonic colour reconnection

enabled with default parameter settings and thus, it is the same output as displayed in

�gure 5.1.

It can be observed that turning o� the colour reconnection model causes a reduction of

the near-side angular-correlations in the simulated data. In the case of K+K−-pairs, the

simulation without colour reconnection reproduces the measured data accurately.

Applying mesonic colour reconnection increases the near-side correlation, while additional

baryonic colour reconnection is associated with a decrease in these. Therefore, it might be

assumed that a decrease of mesonic and an increase of baryonic colour reconnection would

entail a more accurate description of these data. However, it should be noted that mesonic

colour reconnection is of great importance for describing other important minimum bias

observables accurately.

Sub�gure 5.2d illustrates that colour reconnection also a�ects the near-side anticorrela-

tions of baryon-baryon and antibaryon-antibaryon pairs. These anticorrelations are only

reproduced if baryonic colour reconnection is enabled. Hence, it is reasonable to assume

that particles originating from baryonic clusters lead to these.

5.1.2. Proton Remnants

At this point, we brie�y highlight the in�uence of the proton remnants on the simulated

data. In �gure 5.3 the pp̄-angular-correlation distribution for di�erent particles is plotted.

The red line shows the inclusive correlation distribution for all �nal state proton-antiproton

pairs. The green line gives the distribution for proton-antiproton pairs where both hadrons

originate from the remnants of the colliding protons. In contrast, the blue line is the

distribution for all proton-antiproton pairs except those originating from remnants.

A strong back-to-back correlation for the remnant-particles is observed. Thus, the proton

remnants appear to be of signi�cant importance for the back-to-back-correlations not

supported by the measured data. However, they do not seem to be the only source

according to the blue line. This observation could be a starting point for future changes to

Herwig aiming to improve the description of angular-correlations.
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(a) (b)

(c) (d)

Figure 5.2.: Angular-correlations for di�erent colour reconnection models. The red line is

the Herwig output for no colour reconnection, the blue line for only mesonic

colour reconnection and the green line for mesonic and baryonic colour recon-

nection. Strong near-side angular-correlations are associated with mesonic

colour reconnection. Baryonic colour reconnection seems to be responsible

for near-side anticorrelation.
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Figure 5.3.: Angular-correlation of particles originating from proton remnants (green line)

and particles not originating from proton remnants (blue line). A strong back-

to-back angular-correlation of opposite-sign baryon pairs originating from

remnants is observed.

5.1.3. Hadron Decay

In addition to the actual hadronization process, the decay from excited hadrons originating

from the cluster decays into the �nal state particles (see subsection 3.3.4) is a soft part

of the event simulation. Therefore, it is interesting to investigate whether this has an

in�uence on the considered correlations distributions. To get a �rst indication, Herwig

runs were performed with hadron decays turned o�. The distributions generated this way

do not show major deviations from the previous ones. This suggests that the hadron decay

model has no relevant in�uence on the considered observables. Corresponding plots are

shown in appendix section B.1.

42



5.2. Motivation and Fundamentals

5.2. Motivation and Fundamentals

Above we observed that Herwig fails to describe angular-correlation in all detail. Further-

more we made the reasonable assumption that this is due to the cluster hadronization

process in combination with the colour reconnection model. In order to improve the

description of the considered observables, an obvious approach would be to make changes

in these models. For instance, an alternative to cluster decay in two hadrons could be

implemented. However, pairwise hadronization has the strength that momentum, energy

and �avour conservation are baked into the prescription. Thus, replacing it would emerge

various complex issues. Meanwhile colour reconnection is indispensable for the descrip-

tion of other minimium bias observables, for instance, the average transverse momentum

over the charged multiplicity.

Therefore, we pursue a di�erent and less complex approach. Instead of preventing the

emergence of correlations in the hadronization process, we decorrelate the hadrons af-

terwards. The basic idea is to swap the momenta of pairs of excited hadrons, where the

pairs are chosen randomly. This is expected to decorrelate the direction of the particles

while other key observables are not in�uenced. Since we just swap the momenta and do

not generate any new hadrons with new momenta, the charged multiplicity, transverse

momentum and rapidity should remain statistically unchanged.

We name this new phenomenological model post-hadronization momentum swapping. In

the following the corresponding algorithm is discussed in more detail.

At this point we notice brie�y that in the Lund-String hadronization model [28] used

by Pythia the so-called popcorn model plays an important role for reducing unwanted

correlations. A detailed description of this model can be found in [27].

43



5. Post-Hadronization Momentum Swapping

5.3. Algorithm

The starting point for the new model of post-hadronization momentum swapping is the ex-

cited hadrons emerging from the cluster decays. The momentum swapping algorithm then

allows to decorrelate these hadrons by swapping their momenta pairwise. An overview of

the work�ow of the algorithm is shown in �gure 5.4. The �nal algorithm for momentum

swapping consists of the following steps:

1.) Initially the list of excited hadrons is shu�ed. This is necessary, in order to prevent

any bias that comes from the pairing of the hadrons considered for swapping.

2.) We pick the �rst two hadrons in the list and accept the swapping of their momenta

with a certain probability pswap.

3.) If the swapping is accepted, it is carried out as follows. First, we boost the hadrons

into their common center-of-mass frame. In this frame the hadrons are back-to-back

and therefore, ®p1 = −®p2 applies for their 3-momenta. This is crucial, in order to

preserve both their energy and their invariant mass. Their 3-momenta are swapped

and subsequently they are boosted back into the laboratory-frame.

4.) Repeat steps 2.) and 3.) for the next two hadrons in the list and so on until no or just

one hadron is left.

The swapping-probability pswap is a free parameter of the model. To be precise, there are

three such parameters. The model is implemented in such a way that di�erent probabilities

can be set depending on the kind of hadrons considered for swapping. Hence, there is

probability parameter for the case we consider two baryons p
bary

swap
, one for the case we

consider two mesons pmes

swap
and �nally one for the case we consider a meson and a baryon

p
mes−bary

swap
.

5.3.1. Hadrons originating from Baryonic Clusters

In section 5.1.1 we discovered that particles originating from baryonic clusters seem to be

important for the correct description of the near-side anticorrelation of same-sign baryons.

Considering this, it might be necessary to exclude the aforementioned baryons from the

swapping procedure.

Hence, the model provides the boolean parameter SwapParticlesfromBaryonicClusters,

which can be set by the user and determines, whether particles originating from baryonic

clusters are considered for swapping or not. To implement this, it is crucial to identify

these particles. The sketch in �gure 5.5 illustrates the algorithm used for this identi�cation.

The fundamental idea is to go iteratively through the history of the considered hadron and

check whether it contains a cluster with three components or not. If this is the case, the

algorithm terminates and the particle is excluded from swapping. On the other hand, if

we reach the parton-level history without �nding such a cluster, the algorithm terminates

and the particle is NOT excluded from swapping.
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5.3. Algorithm

Figure 5.4.: Sketch of the work�ow of the post-hadronization momentum swapping model.

Figure 5.5.: Sketch of the algorithm to identify particles originating from baryonic clusters.
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5.4. Validation and first Results

In order to validate that the implemented model reproduces the expected results, a set of

angular-correlation distributions for di�erent swapping probabilities is plotted in �gure

5.6. The remaining can be found in the appendix section B.2. For the simulation exactly

the same default settings were used as before and only the swapping model was addition-

ally applied. Particles originating from baryonic clusters were excluded from swapping.

Additionally, the di�erent swapping probability parameters p
bary

swap
, pmes

swap
and p

mes−bary

swap
were

all set to the same value, 0.5 or 1.0 respectively.

The description of data improves signi�cantly for the pp̄- and K+K−- pairs. The near-side

correlation decreases and in case of the pp̄ also the back-to-back-correlation is lowered. On

the other hand, no such improvement is observed for the same-sign hadron-pairs. These

distributions do not show any major changes.

However, the description of the near-side anticorrelation of same-sign baryon-pairs is

neither a�ected strongly. Figure 5.7 illustrates the e�ect of swapping hadrons originating

from baryonic clusters on the description of these anticorrelations. The blue line cor-

responds to a simulation with these hadrons included in momentum swapping, while

the green line corresponds to a simulation with these hadrons excluded from swapping.

Including particles originating from baryonic clusters in the swapping procedure causes a

deterioration in the description of the near-side anticorrelation. Thus, it is reasonable to

exclude them.

In summary, the swapping model entails a signi�cant improvement in the description of

angular-correlation, but is also limited.

5.4.1. E�ect on other Minimum Bias Obsverbales

Above we assumed that the swapping model will not a�ect the output of minimum bias

observables such as the charged multiplicities, the rapidity and the transverse momentum

distributions. In fact this is con�rmed for low-pT observables. However, for high-pT
observables opposite observations are made. In �gure 5.8 the charged pT distributions with

swapping and without swapping for di�erent swapping probabilities for pT > 100 MeV

and pT > 2500 MeV are plotted. The data shown are from ATLAS [48].

For high-pT a signi�cant deviation is observed. So far, the reason for this has not been

further investigated. However, this might be due to the random choice of hadron pairs

that are swapped. If we swap the momentum of two particles with medium transverse

momentum, which are far in space and momentum, we may get one particle with high

transverse momentum and one with low transverse momentum. And since before applying

the swapping the percentage of high-pT hadrons is very low, this could lead to a shift

towards high transverse momenta. Thus, this shift could perhaps be reduced, if the hadron

pairs were selected according to a locality criterion. This could be an interesting aspect

for further studies on the swapping model.
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(a) (b)

(c) (d)

Figure 5.6.: Angular-correlations for di�erent swapping probabilities. Particles originating

from baryonic clusters are excluded from swapping. The red line shows the

Herwig output with no post-hadronization momentum swapping model. The

blue and the green line give the output for including swapping model, where

the blue line is with swapping probability pswap = 0.5 and the green line is

with probability pswap = 1.0.
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Figure 5.7.: pΛ- and p̄Λ̄- angular-correlation distributions for particles originating from

baryonic clusters included (blue line) and not included (green line) in swapping.

The swapping probability in both cases is set to pswap = 1.0. The red line gives

the Herwig output without the swapping model. Including particles originating

from baryonic cluster in the swapping procedure causes a deterioration of the

description of near-side anticorrelation.

(a) (b)

Figure 5.8.: Charged pT -distributions with and without swapping for (a) pT > 100 MeV

and (b) pT > 2500 MeV. For high-pT a signi�cant deviation is observed.
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5.5. Tuning and Results

The results presented above reveal that in order to achieve further improvements, aspects

other than momentum swapping need to be considered as well. In section 5.1.1 we pointed

out that colour reconnection impacts the angular-correlation-observables by a large degree.

Additionally, one can observe that the observables are sensitive to other MPI-parameters.

First and foremost pmin

T ,0 (see equation 3.24) and the inverse squared proton radius µ2
are to

be mentioned. It seems natural to vary pmin

T ,0 , µ2
and the colour reconnection parameters.

However, such variations may entail changes in the description of other observables

and thus, one is confronted with a complex optimization problem in a high-dimensional

parameter space, where various observables have to be considered. Hence, it is reasonable

to apply a generator tuning to constrain the value of the parameters.

The tuning is performed at

√
s = 7 TeV center-of-mass energy and again by using the

PROFESSOR tuning system [51] with AutoTunes [52]. Since particles from baryonic

clusters have proven to be crucial for the description of the near-side anticorrelation of

same-sign baryons, their swapping is disabled. The new baryonic-mesonic model (chapter

4) is used as colour reconnection model. We aim to obtain an adequate parameter choice

for the combination of the two new models. A total of 11 parameters are tuned:

• the three momentum swapping probabilities: p
bary

swap
, pmes

swap
and p

mes−bary

swap

• the �ve probabilities of the baryonic-mesonic colour reconnection model: pM,M , pM,B ,

pMB,MB , pB,M and pB,B

• pmin

T ,0 , parameter of the parameterisation of soft-hard-threshold transverse momentum

in the MPI-model (see equation 3.24)

• the squared inverse proton radius µ2
, which controls the matter distribution within

the proton

• the ladder multiplicity factor nladder, a parameter of the soft part of the MPI-model

We decide to tune nladder, because it controls the number of soft gluons per rapidity. Thus,

it may act as a counterbalance to µ2
and pmin

T ,0 with respect to particle multiplicity and

result in more freedom in the variation of these parameters. The StepFactor of the colour

reconnection model is not included in the tuning procedure and left at fstep = 1.04.

We tune the parameters to the data on angular-correlation mentioned above and to mini-

mum bias data measured by ATLAS [53], we used in section 4.3.

For some of the parameters the results are in a broad range and the tune does not converge

at all. For that reason, these parameters are manually adjusted in order to obtain a good

description of the data mentioned above. However, due to the large parameter space and

high sensibility of various observables, that was immensely complicated. Moreover, it

seems that angular-correlation observables "prefer" di�erent values than the other mini-

mum bias observables. We do not claim to have found the best values. The result can be

regarded as a compromise. The preliminary �nal parameter choice based on tuning and

�ne-adjusting by hand is listed in table 5.1. They produce a satisfactory description of the

considered observables. However, possibly future tunes may lead to further improvements.
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Table 5.1.: Tuned and adjusted parameter values for the post-hadronization momentum

swapping and baryonic-mesonic colour reconnection model. Default states

the value used as a default in the current Herwig version and range gives the

parameter range used for tuning.

parameter default range new value

pmin

T ,0 2.87 1.0 − 5.0 4.98

µ2
1.1 0.0 − 2.0 2.1

nladder 0.6 0.0 − 2.0 0.78

pM,M 0.95
1

0.0 − 1.0 0.01

pM,B 0.7 0.0 − 1.0 0.98

pMB,MB None 0.0 − 1.0 0.33

pB,B None 0.0 − 1.0 0.19

pB,M None 0.0 − 1.0 0.01

p
bary

swap
None 0.0 − 1.0 0.39

pmes

swap
None 0.0 − 1.0 0.99

p
mes−bary

swap
None 0.0 − 1.0 0.95

1
To be exact, pM,M does not have a default

value so far, since it is de�ned as the proba-

bility 3M → 3M′. What is given here is the

default value for 2M → 2M′.

It is directly noticeable that the values for the MPI-parameters pmin

T ,0 and µ2
as well as for

the mesonic colour reconnection probability pM,M di�er strongly from their default values.

For the angular-correlation observables, for which the results are plotted in �gure 5.9, we

achieve a signi�cant improvement compared to the original Herwig output. The peak for

back-to-back opposite-sign baryon pairs almost completely disappears. However, for the

same-sign meson pairs, there is still no major change in the description recognized. Plots

for further particle-pairs can be found in the appendix section B.2.

For the minimum bias observables from ATLAS the picture is mixed. For the charged

transverse momentum distributions, we generally obtain an improved description. On the
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other hand, for the charged multiplicity distributions the output of the Herwig default

setting �ts the data better than our tuned new models. A set of example plots can be found

in �gure 5.10.

(a) (b)

(c) (d)

Figure 5.9.: Comparison of the default output of Herwig and the tune for new post-

hadronization momentum swapping model in combination with the baryonic-

mesonic colour reconnection model for angular-correlation distributions.
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(a) (b)

(c) (d)

Figure 5.10.: Comparison of the default output of Herwig and the best tune for new post-

hadronization momentum swapping model in combination with the baryonic-

mesonic colour reconnection model for minimum bias data from ATLAS.
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5.5.1. Results for identified Particle Yields

Next, we cross-check our tune with other observables which were not used for tuning.

We make use of the transverse momentum distribution for kaons, pions and protons

already considered when validating the baryonic-mesonic colour reconnection model (see

subsection 4.3.3). The results are displayed in �gure 5.11. We observe that the data are

not described in a satisfactory way for the tuned model. Thus, it cannot be considered

validated.

Here, it should be emphasized that these are the results for the tuned model, where

colour reconnection and MPI-parameters deviate signi�cantly from their default values. In

order to check, whether the deviations are caused by the post-hadronization momentum

swapping model directly, the results for default setting with additional post-hadronization

momentum swapping (green line) are also plotted. It is observed that the model alone

already causes changes in the description. This is also an interesting task for further

studies in the future. However, the deviation can not be explained by the model only.

Another reason may be the values of the MPI-model µ2
and pmin

T ,0 , which deviate strongly

from results of previous tunes. It seems that the description of the angular-correlation and

other observables are in con�ict with respect to these parameters.

5.6. Conclusion

We studied the description of angular-correlation distribution of identi�ed particles, It was

observed that the current version of Herwig fails to describe them accurately, especially

because near-side correlations are overestimated.

We added a new phenomenological model, the post-hadronization momentum swapping,

to Herwig aiming to decorrelate hadrons after the hadronization process. The model is

at least able to improve the description of the considered observables. However, when

tuning the model and MPI-parameters to data, we observed that the best parameter choice

results in a signi�cant deterioration in the description of other key-observables.

In the future, broader tunes including more observables may lead to improvement. How-

ever, potentially modi�cation to the hadronization model could be expedient.
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(a) (b)

(c)

Figure 5.11.: Comparison of the default output of Herwig and the best tune for new post-

hadronization momentum swapping model in combination with the baryonic-

mesonic colour reconnection model for transverse momentum spectra of

identi�ed particles. The green line shows the results for Herwig default

settings in combination with the post-hadronization momentum swapping,

where the swapping probability is set to pswap = 1.0.
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Within the framework of this thesis, a new colour reconnection model was implemented

into Herwig. The new feature compared to the existing models is that the model allows

baryonic clusters to be included in the reconnection process. The model parameters were

tuned to minimum bias data and thus, a satisfactory description of data is achieved. So far,

the tuning and analysing was performed only for

√
s = 7 TeV center-of-mass energy. One

task of future studies is to cross-check the model for other energies, especially

√
s = 13 TeV.

Additionally, it could be interesting to consider a wider range of observables in further

tuning and analysing procedures. As an example we mention underlying event observables

such as the charged particle density and the charged transverse momentum sum as a

function of the leading track in jet events. Narrower tunes with focus on observables

very sensitive to the model parameters are also a promising option. Through such further

investigations, an even better parameter choice can probably be made, resulting in an even

more accurate description and full validation of the model.

In the second part of this thesis, we considered and analysed the description of pairwise

angular-correlations of identi�ed particles, namely kaons, pions, protons and lambda-

baryons, by Herwig. These are observables that have never been considered in detail by

the Herwig project. We observed that the current Herwig version overestimates near-side

correlations for meson pairs and baryon-antibaryon pairs and we made the assumption that

this is due to the pairwise cluster decay implemented in Herwig. Additionally, the Herwig

output exhibits a back-to-back peak for baryon-antibaryon pairs, which is not supported

by data. We made the insight that the colour reconnection model has a signi�cant impact

on the description of these observables. Mesonic colour reconnection seems to contribute

to the strong near-side correlations in a signi�cant way, while particles originating from

baryonic clusters produced through colour reconnection are essential for the description

of near-side anti-correlations in antibaryon-antibaryon and baryon-baryon pairs.

In order to decorrelate the hadrons after the hadroniziation process, we introduced the post-

hadronization momentum swapping model which pairwise swaps momenta of hadrons.

The model provides the opportunity to exclude particles originating from baryonic clus-

ters from swapping. First analyses showed that the new model entails an improvement

of the description for at least some of the considered observables, while it leaves other

key minimum bias observables unchanged - except for some high transverse momentum

observables.

We tuned the parameter of the model as well as MPI- and colour reconnection parameters

to the considered observables in combination with other minimum bias observables. Thus,

a satisfactory or at least improved description of the tuned observables was obtained. How-

ever, the tuned parameter choice entails a signi�cant deterioration in the description of

the transverse momentum spectra of identi�ed particles in minimum bias events. Thereby,
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the large discrepancy in the value of the MPI-parameters compared to the results of pre-

vious tunes probably play a crucial role. We also observed that the post-hadronization

momentum swapping model alone has impact on the description of these observables.

The obtained results can not be seen as �nal.

However, the post-hadronization momentum swapping model achieves �rst promising

successes and generally does what was anticipated from it. Future studies may entail

further insights as well as improvement in its results and in the interaction with the rest

of the simulation process. For one thing, it is interesting to investigate the reasons for the

in�uence of the model on the high transverse momentum observables. In this context, it

may be promising to introduce a criterion for the choice of the two respective hadrons

which swap their momentum. Additional, further tunes incorporating di�erent or more

observables and perhaps more parameters of interest may lead to further improvements.

However, it is also possible that the new model in combination with variation of model

parameters in other parts of the simulation is not su�cient to gain a good description of

the angular-correlations distributions. Hence, further model adjustment in Herwig may

become necessary. A modi�cation in the cluster hadronization process in such a way

that the hadronization no longer is performed in pairs is expected to a�ect the output for

the considered correlation observables by a large degree. Although this requires further

physical considerations, since in the current model the pairwise decay provides a simple

framework for ensuring energy and momentum conservation.

In general, the development of Monte Carlo event generators - and especially of the

parts based on phenomenological modelling - is an ongoing process requiring constant

adaptions and improvements, in order to meet the increasingly precise measurements and

theoretical predictions.
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A. Further Results of Baryonic-Mesonic
Colour Reconnection

A.1. Minimum Bias Observables

Here we show the remaining results for the minimum bias observables from ATLAS [48],

which were used for the tuning of the baryonic-mesonic colour reconnection model.

Figure A.1.: Comparison of the default output of Herwig and the best tune for the new

baryonic-mesonic colour reconnection model for various averaged charged

transverse momentum over charged multiplicity distributions. The data are

measured by ATLAS and were used for tuning.
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A. Further Results of Baryonic-Mesonic Colour Reconnection

Figure A.2.: Comparison of the default output of Herwig and the best tune for the new

baryonic-mesonic colour reconnection model for various charged rapidity

distributions. The data are measured by ATLAS and were used for tuning.

64



A.1. Minimum Bias Observables

Figure A.3.: Comparison of the default output of Herwig and the best tune for the new

baryonic-mesonic colour reconnection model for various charged transverse

momentum distributions. The data are measured by ATLAS and were used

for tuning.
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A. Further Results of Baryonic-Mesonic Colour Reconnection

Figure A.4.: Comparison of the default output of Herwig and the best tune for the new

baryonic-mesonic colour reconnection model for various charged multiplicity

distributions. The data are measured by ATLAS and were used for tuning.
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A.2. Pseudorapidity and Charged Multiplicity

A.2. Pseudorapidity and Charged Multiplicity

Figure A.5.: Comparison of the default output of Herwig and the best tune for the new

baryonic-mesonic colour reconnection model for pseudorapidity and charged

multiplicity distributions. The data are measured by ALICE [55] and were

NOT used for tuning.
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A. Further Results of Baryonic-Mesonic Colour Reconnection

A.3. Rapidity Gap

Figure A.6.: Comparison of the default output of Herwig and the best tune for the new

baryonic-mesonic colour reconnection model for rapidity gap cross sections.

The data are measured by ATLAS [56] and were NOT used for tuning.
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B. Further Results for Post-Hadronization
Momentum Swapping

B.1. Disabled Decay Model

Figure B.1.: Angular-correlations for enabled (red line) and disabled (blue line) decay model.

No major deviations are observed. This indicates that the hadron decay model

in Herwig has no signi�cant in�uence on the description of angular-correlation

distributions. The data are measured by ALICE [58].
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B. Further Results for Post-Hadronization Momentum Swapping

B.2. Di�erent Swapping Probabilities

Here, we show the remaining angular-correlation distributions for Herwig default settings

without and with applied post-hadronization momentum swapping model. The data are

measured by ALICE [58].

Figure B.2.: Angular-correlations of mesonic particle pairs for di�erent swapping probabil-

ities. Particles originating from baryonic clusters are excluded from swapping.

The red line shows the Herwig output with disabled post-hadronization mo-

mentum swapping model. The blue and the green line give the output for ap-

plied swapping model, for the blue line with swapping probability pswap = 0.5
and for the green line with probability pswap = 1.0.
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B.2. Di�erent Swapping Probabilities

Figure B.3.: Angular-correlations of baryonic particle pairs for di�erent swapping probabil-

ities. Particles originating from baryonic clusters are excluded from swapping.

The red line shows the Herwig output with disabled post-hadronization mo-

mentum swapping model. The blue and the green line give the output for ap-

plied swapping model, for the blue line with swapping probability pswap = 0.5
and for the green line with probability pswap = 1.0.
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B. Further Results for Post-Hadronization Momentum Swapping

B.3. Tuned Model

Here, we show the remaining angular-correlation distributions for the tuned post-hadronization

swapping model in combination with the new baryonic-mesonic colour reconnection

model and compare them with the distributions produced for Herwig default settings. The

data are measured by ALICE [58].

Figure B.4.: Comparison of the default output of Herwig and the tune for new post-

hadronization momentum swapping model in combination with the baryonic-

mesonic colour reconnection model for angular-correlation distributions of

mesonic particle pairs.
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B.3. Tuned Model

Figure B.5.: Comparison of the default output of Herwig and the tune for new post-

hadronization momentum swapping model in combination with the baryonic-

mesonic colour reconnection model for angular-correlation distributions of

baryonic particle pairs.
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