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Abstract

In this thesis the hadronisation model of Herwig 7 will be discussed and alternative

approaches presented. Currently the transition in a particle collision from the high-

energy regime of the hard scattering to the low-energy regime of observable particles is

implemented in Herwig 7 as the cluster hadronisation model. Its main steps are cluster

formation, iterative cluster �ssion until clusters are below a certain mass threshold and

�nally cluster decay into hadrons. In a �rst approach the iterative nature of the cluster

�ssion is kept but the determination of the properties of the two newly produced clusters

is di�ered. As a second approach each cluster, that is able to �ssion, �ssions directly into a

certain number of clusters which then decay into hadrons. Both approaches are explained

and the results are compared to data from lepton collisions.
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1 Introduction

The goal of High-Energy physics is to fundamentally understand what the universe is

made of. For this purpose many particle colliders have been built over the last decades. A

current example is the Large Hadron Collider (LHC) at CERN with its experiments CMS,

ATLAS, ALICE and LHCb. With the discovery of the Higgs Boson at the LHC in 2012

the Standard Model (SM) is now fully discovered, yet there are phenomena which are not

described by the SM. For example, with the SM itself, the existence of dark matter or the

asymmetry of matter and antimatter can not be explained. Therefore, the task of the LHC

and future colliders is to look for physics beyond the Standard Model (BSM).

To compare data from experiments with predictions of theory a third mainstay of physics

has been playing an increasingly important role over the last decades: Simulation. With

Monte Carlo event generators for example it is possible to simulate a theoretical model

and get its predictions on �nal state distributions for a given particle collision. Monte

Carlo event generators use Monte Carlo methods for numerical integration. One of these

event generators is Herwig 7 [1], which is the event generator used in this thesis.

The theory of strong interaction, also known as Quantum Chromodynamics (QCD), de-

scribes the interaction of particles carrying colour charge. These can be quarks, antiquarks

or gluons, collectively called partons. Particle detectors in experiments do not measure

partons directly but composite particles, called hadrons, in which partons are held together

by strong interaction. Theoretical models are calculated in perturbation theory. These

calculations only hold true in a high energy regime. In these high energy regions partons

are not bound and can move freely, called asymptotic freedom. In lower energy regions

partons are con�ned and they form colour neutral particles, hadrons. Therefore, no colour

charged particles are observed in nature and detectors in particle experiments only mea-

sure properties of colour neutral particles. For the transition from the regime of asymptotic

freedom to the con�nement state, perturbation theory is not a su�cient description any

more. Instead one uses phenomenological models described not by a full theoretical model

but by theoretical as well as experimental observations. It is therefore crucial to have

models that describe data well and are based on solid theoretical considerations. The work

on this thesis focuses on the hadronisation of Herwig 7, which describes the transition

from free partons to excited hadrons.

For the hadronisation Herwig 7 uses the cluster model [2]. Clusters are colour singlet states

formed after the parton shower from pairs of partons. Some of these clusters are too heavy

to decay directly into hadrons and are therefore split into smaller clusters by sequential

�ssions, each into two smaller clusters, until they are below the �ssion threshold.

Data of most observables available is described quite well by the current hadronisation

model of Herwig 7. In some regions of observables though, where hadronisation plays an

important role, deviation of simulated distributions from data is up to 40% or more. Thus it

is of greater interest to take a closer look at the hadronisation model, discuss its properties

1



1 Introduction

and describe possible alternatives. This is the main aim of this thesis and with a better

understanding of the hadronisation it aims to contribute towards a better understanding

of particles and their interactions.

In the �rst part of this thesis the hadronisation process, its integration in the event gen-

eration as a whole and the properties of the current implementation in Herwig 7 are

described. In the second part several alternative approaches to the hadronisation model

will be discussed.

Chapter 2 gives a short description of QCD and its properties that form the foundation for

hadronisation. For a more detailed description of QCD and the SM the reader is referred

to one of the many textbooks on the topic, for example [3–5]. The following chapter

gives an overview of the event generation process. In Chapter 4 the current hadronisation

model is described in detail and its properties are discussed. The �rst alternative approach,

discussed in Chapter 5, is to keep the sequential decays of one cluster into two clusters

but change the way properties of these two clusters are chosen. A second alternative is

introduced in Chapter 6. Here the clusters do not �ssion sequentially into several clusters

but a cluster heavy enough to �ssion does so directly into a certain number of clusters

which then decay into hadrons. Finally the work in this thesis is summarised and a brief

outlook will be given in Chapter 7.
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2 Prerequisites

The fundamental interactions between particles are described in the SM. It is a combination

of two quantum �eld theories, QCD, and the electroweak theory. Its underlying gauge

group therefore is

SU(3)QCD × SU(2)L × U(1)Y. (2.1)

The SM describes the interactions of all fundamental particles and QCD as part of the

SM is the theory of the interactions between colour charged particles such as quarks and

gluons. Since no bare colour charged particles are observed in nature (e.g. single quarks

and gluons alone) but only particles that are neutral in terms of colour charge, a transition

from the elementary process with single partons to the physically detectable particles

has to be made. This transition, called hadronisation, can so far only be described by

phenomenological models as perturbation theory in energy ranges O(1 GeV) is enhanced

in higher orders of the coupling constant and thus can not be truncated. The main topic of

this thesis is to implement an alternative approach to the current hadronisation model in

Herwig 7 [1]. As such this work builds upon the basics of QCD and its features. Therefore

in this chapter there will be a short overview of QCD itself, followed by a brief summary

of the relevant features for hadronisation.

2.1 Quantum chromodynamics

In this section the part of the SM that describes the interaction of quarks and gluons,

namely the QCD Lagrangian, will brie�y be discussed. It is based on the non-abelian gauge

group SU(3) and is given by

LQCD =
∑

q=u,d,s,...

q̄a (iγ
µDµ −m)abqb −

1

4

FaµνF
µν
a + Lghost + Lgauge-�xing, (2.2)

where Faµν is the �eld strength tensor given by

Faµν = ∂µA
a
ν − ∂νA

a
µ − д f

abcAb
µA

c
ν , (2.3)

with Aa
µ being the massless gluon �eld with eight colour degrees of freedom and д the

strong coupling constant. These gluon �elds are based on the generators of the SU(3):

T a
. The structure constants f abc are de�ned in the commutation relation of the SU(3)

generators

[T a,Tb
] = i f abcT c . (2.4)

3



2 Prerequisites

The covariant derivative Dµ is given by

Dµ = ∂µ − iдT
aAa

µ , (2.5)

qa are the massive quark �elds in the triplet representation of the SU(3) (a = 1,2,3). The

gauge �xing term Lgauge-�xing in the Lagrangian is needed to de�ne a propagator for the

gluon �eld Aa
µ . To cancel additional, non-physical degrees of freedom that appear because

of gauge invariance, the ghost term Lghost has to be introduced. Interaction between the

massless gauge �elds (here the gluon �elds) and the massive quark �elds is described by

this covariant derivative.

2.2 Asymptotic Freedom and Confinement

In QCD the strength of the coupling αS depends on the energy scale Q2
, at which it is

considered. The running of αS is de�ned by [3]

Q2
∂αS
∂Q2

= β (αs ), (2.6)

where αS is also dependent on the energy scale µ2
. µ2

is the mass scale at which the

subtraction in renormalisation is performed. In Eq. 2.6 the beta function can be written as

the following perturbative expansion in terms of powers of αS

β (αS ) = −bα
2

S (1 + b
′αS + b

′′α2

S +O (α3

S )), (2.7)

with the coe�cients given by

b =
33 − 2n f

12π
,

b′ =
153 − 19n f

2π (33 − 2n f )
, (2.8)

b′′ =
77139 − 15099n f + 325n2

f

288π 2(33 − 2n f )
,

and n f being the number of active �avours. Unlike b and b′, which are independent

of the renormalisation scheme ([3], p.36), b′′ depends on the renormalisation scheme

used, in this case the MS scheme [6]. If n f ≤ 16 the coe�cients have negative signs and

therefore at su�ciently large energies the coupling vanishes and partons move freely. This

characteristic of QCD is called asymptotic freedom.

In the perturbative region (Q2, µ2 �1 GeV
2
) for both scales µ and Q it is plausible to

truncate the expansion on the right-hand side of Eq. 2.7 and neglect the term b′ and terms

of higher order. The solution for the coupling constant is then given by

αS (Q
2) =

αS (µ
2)

1 + αS (µ2)b ln

(
Q2

µ2

) . (2.9)
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2.2 Asymptotic Freedom and Con�nement

Since αS cannot be calculated from the deduced equations, but rather its energy dependent

behaviour, it is determined only by measurements. Usually µ2
is set to a scale large enough

to be in the perturbative regime and then deduce any other value at another scale Q2
. One

common scale to measure αS is the pole mass of the Z-boson, MZ = 91.2 GeV. Current

results of αS-measurements are shown in Fig. 2.1. For αS (MZ ) ≈ 0.1181 the running

coupling constant αS (Q
2) exceeds the value αS = 1 if Q < O(1 GeV). This behaviour is

implied in Fig. 2.1b. In this energy regime it is not su�cient any more to truncate Eq. 2.7

as the contribution of αS increases with every order of αS .

An alternative concept is to introduce a dimensionful parameter Λ directly into the de�ni-

tion of the running coupling constant

αS (Q
2) =

1

b ln

(
Q2

Λ2

) . (2.10)

Λ sets the scale at which αS diverges and is dependent on the chosen renormalisation

scheme and the order of β to which it was used in the calculation of αS .

Over macroscopic distance scales no single quarks or gluons are observed. Therefore all

colour charged particles form colour neutral states under SU(3)QCD at the energy scale of

O(1 GeV). This property is called con�nement.
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Figure 2.1: Measurements on αS (Q
2) taken from [7]. On the left-hand side the mean value

of several measurements of αS (M
2

Z ) is plotted. The energy scale µ is measured

at the pole mass of the Z-boson, MZ = 91.2 GeV. On the right-hand side

measurements on αS (Q
2) are shown.
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3 Monte Carlo event generators

Monte Carlo event generators such as Herwig 7 [1, 8], Pythia 8 [9] and Sherpa 2 [10] are

used to simulate high-energy particle collisions. In order to give a good description of data

based on theoretical models the simulation has to cover all aspects concerning the particle

collision and the transition to observable particles, measured in detectors. In Fig. 3.1 a

schematic overview of a proton-proton collision is shown. The main steps are the hard

scattering process, parton shower, hadronisation and hadronic decay. Incoming particles

scatter at high-energy scales in the hard process. This is calculated in perturbation theory

by summing over all possible Feynman-diagrams from the considered collision up to a

certain order in the coupling constant. Outgoing particles from the hard scattering process

are still at high-energy scales. By radiating partons in the parton shower particles reach

lower energies down to the cut-o� scale of the parton shower.

So far all the steps are calculated in perturbation theory. As seen in Section 2.2 at low

energy scales perturbation theory falls short and therefore one has to rely on models to

describe the transition from quasi-free partons to observed �nal state hadrons.

This chapter gives an overview of the di�erent steps in an event simulation with Herwig 7.

Starting with a brief description of the physics behind the hard scattering process, after-

wards the di�erent approaches to simulating the parton shower will be described. Next

the hadronisation will be brie�y outlined, followed by an explanation of underlying events

and �nally hadronic decays.
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3 Monte Carlo event generators

Figure 3.1: Overview of a Monte Carlo event simulation. Shown is a collision of two

protons with momenta P1 and P2. In this case two partons scatter at momentum

fractions x1P1 and x2P2 producing two new fundamental primary particles. The

incoming partons might radiate additional gluons, this is called initial state

radiation (ISR). After the hard process the energy of these partons gets scaled

down to the hadronic scale by radiating new partons. In the hadronisation the

partons in the �nal state of the parton shower get clustered together to form

excited states of hadrons. In the �nal step the excited hadrons decay into the

observed �nal state particles.

3.1 Hard scattering process

Particle collisions are categorised depending on the type of the colliding particles, e.g.

hadron-hadron collision, lepton-lepton collision. This is important for the hard scattering

process insofar as hadrons are composite particles and resulting collisions in the hard

scattering processes therefore depend on the exact structure of incoming hadrons. For

incoming leptons this is not the case as leptons are so far understood as fundamental

particles. The cross section of a hard scattering process is given by [3]

σ (P1, P2) =
∑
i,j

∫
1

0

dx1dx2 fi (x1, µF ) fj (x2, µF )σ̂ij (p1,p2,αs (µF ),Q
2/µF ). (3.1)

To take the hadron composition into account fi,j (x1,2, µF ) has to be used in the cross section

calculation. fi,j (x1,2, µF ) is the parton distribution function (PDF), the probability to �nd a

8



3.2 Parton shower

certain parton i or j inside the hadron with momentum fraction x1,2 at energy scale µF . The

parton entering the hard scattering process therefore has momentum equal to the momen-

tum fraction p1,2 = x1,2P1,2. For parton collisions the cross section σ̂ij (p1,p2,αs (µF ),Q
2/µF )

is given by

σ̂ij =

∫
dΦn

1

2s
|Mij→n |

2(Φn; µF , µR ). (3.2)

For a given parton-parton collision all possible con�gurations of Feynman-diagrams are

summed and squared in the squared matrix element |Mij→n |
2(Φn; µF , µR ). Lastly, dΦn is

the di�erential phase space element for an n-particle �nal state.

Calculating the hard cross section therefore relies on PDFs provided by several external

collaborations. Herwig 7 has built-in PDFs that can be used, additional PDFs can be

accessed via LHAPDF [11]. For the actual calculations of Feynman diagrams in the hard

scattering process Herwig 7 can calculate some built-in matrix elements. For additional

matrix elements external matrix element providers such as MADGRAPH [12] and VBFNLO

[13–15] can be used. The resulting particles are then forwarded to the parton shower

discussed in the following section.

3.2 Parton shower

The hard scattering process can be calculated in QCD up to next-to-leading order (NLO)

in αs as a whole and only in parts up to next-to-next-to-leading order (NNLO) in αs . Since

higher order corrections cannot be neglected in certain regions of phase space an additional

approach to include higher order corrections has to be taken into account when simulating

whole events.

The parton shower is such an approach that takes e�ects of all orders into account. Starting

from the energy scale of the hard process Q2
the parton shower evolves particles down to

the evolution cut-o� scale Q2

0
, usually ∼ 1 GeV

2
. In this section at �rst the basic outlines

of the parton shower algorithm will be explained followed by a short clari�cation on the

di�erences regarding the parton shower algorithm for initial and �nal states. The section

is concluded by a short exposition of the two shower algorithms implemented in Herwig 7.

3.2.1 Final state evolution

Following the description of the parton shower basics from Ref. [16] closely the shower is

�rstly described for e+e− → qq̄д and then generalised for any process. At �rst the cross

section σe+e−→qq̄д is formulated in such a way that it is given by σe+e−→qq̄ with an additional

gluon emission. The di�erential cross section dσqq̄д is given by

dσqq̄д

d cosθdz
≈ σqq̄CF

αs
2π

2

sin
2 θ

1 + (1 − z)2

z
, (3.3)

where θ is the opening angle between the gluon and the quark, z is the energy fraction of

the gluon and CF =
N 2

c −1

2NC
is the colour factor. In Eq. 3.3 all the non divergent terms were

neglected, so that the divergences occurring are:

9



3 Monte Carlo event generators

• θ → 0, the collinear limit, where the gluon is emitted in the same direction as the

quark momentum direction.

• θ → π , where the gluon is emitted collinear to the antiquark.

• z → 0, where the energy of the emitted gluon goes to zero independent of the

opening angle.

For the following consideration only the �rst two divergences in the collinear region are

considered.

The angular distribution can be separated into two components so that only one of the

two components diverges at the corresponding collinear region. With
¯θ being the angle

between the gluon and the antiquark the angular distribution is expressed by

2

sin
2 θ
≈

1

1 − cosθ
+

1

1 − cos
¯θ
. (3.4)

This separation then corresponds to

dσqq̄д ≈ σqq̄
∑

partons

CF
αs
2π

dθ 2

θ 2
dz

1 + (1 − z)2

z
, (3.5)

where now θ is the opening angle between the gluon and the emitting parton. In Eq. 3.5

the di�erential cross section is given by the sum of the independent emissions from the

quark and antiquark. This structure is completely general and can therefore be expressed

for any hard process as

dσ ≈ σ0

∑
partons,i

αs
2π

dθ 2

θ 2
dzPji (z,ϕ)dϕ . (3.6)

Here the cross section σ0 describes a hard process that produces partons of �avour i ,
emitting a parton j which has momentum fraction z. Pij are spin- and �avour-dependent

splitting functions and are given for the spin average by

Pqq (z) = CF
1 + z2

1 − z
, Pдq (z) = CF

1 + (1 − z)2

z
(3.7)

Pдд (z) = CA
z4 + 1 + (1 − z)4

z (1 − z)
, Pqд (z) = TR (z

2 + (1 − z)2). (3.8)

CF , CA and TR are colour factors, where TR is de�ned as TR =
1

2
.

Before deriving an actual iterative algorithm where one can use Eq. 3.6 iteratively the still

existing divergences have to be taken care of. Since exactly collinear partons, that have the

same total momentum and other quantum numbers, cannot be physically distinguished, a

resolution criteria should be introduced. One choice of a resolution criteria is the transverse

momentum, so that two partons are resolvable if their relative transverse momentum is

above the cut-o� scale Q2

0
. With this, both the collinear and the soft divergences are taken

care of and the total resolvable emission probability is �nite.
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3.2 Parton shower

For all branchings of a certain parton i the total probability distribution in the energy

range between q2
and q2 + dq2

is

dPi =
αs
2π

dq2

q2

∫
1−Q2

0
/q2

Q2

0
/q2

dzPji (z), (3.9)

where q2
is the virtuality of the internal quark propagator and the limits on z result from

the condition that the partons are resolvable. To get the probability distribution of the �rst

branching at q2
one needs to �rst calculate the probability that there was no branching

at a scale higher than q2
. This probability is de�ned as ∆i (Q

2,q2) and is known as the

Sudakov form factor. It is given by the di�erential equation

d∆i (Q
2,q2)

dq2
= ∆i (Q

2,q2)
dPi

dq2
, (3.10)

where the solution is

∆i (Q
2,q2) = exp

*
,
−

∫ Q2

q2

dk2

k2

αs
2π

∫
1−Q2

0
/k2

Q2

0
/k2

dzPji (z)+
-
. (3.11)

The upper limit Q2
is the maximum possible virtuality. With the Sudakov form factor it is

now possible to formulate an iterative algorithm suitable for a Monte Carlo implementation.

One possible implementation is as follows. Firstly a random number R (0; 1) is chosen,

then the equation

∆i (Q
2,q2) = R (3.12)

is solved for q2
. If the solution is above the cut-o� scale Q2

0
the branching is generated

and z is calculated from Pij (z). For each branching product the steps are repeated until the

resulting q2 < Q2

0
i.e. no more emissions can be resolved.

3.2.2 Initial state evolution

So far only particles produced in the hard process were taken into account of the shower

algorithm. However particles before the hard scattering process are able to shower o�

just as much. Simply applying the �nal state evolution to incoming particles and using

appropriate particles from the shower’s �nal state is extremely ine�cient as the probability

of the partons having the correct kinematics for a speci�c hard process is very small [16].

What is done instead is to select the wanted hard process at �rst and generate the additional

radiation (initial and �nal) around it.

For the initial state radiation the Sudakov form factor from Eq. 3.11 is replaced by

∆i (Q
2,q2

;x ) = exp
*.
,
−

∫ Q2

q2

dk2

k2

αs
2π

∫
1−Q2

0
/k2

Q2

0
/k2

dzPij (z)

x
z fj

(
x
z ,k

2

)
x fi (x ,k2)

+/
-
, (3.13)

which now depends explicitly on the PDFs of the incoming hadrons and the momentum

fraction x . A consequence of the ratio of the two PDFs in Eq. 3.13 is that for increasing x
the PDF decreases and the emission probability will be small. It is therefore more likely

that the parton came directly from the hadron, being a valence quark, than resulting from

an evolution of a higher-x-parton.
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3 Monte Carlo event generators

3.2.3 Shower algorithms

In Herwig 7 two di�erent shower algorithms are implemented. The default algorithm is the

angular ordered q̃-shower [17]. Additionaly, the dipole shower algorithm is implemented

[18, 19].

3.2.3.1 Angular ordered shower

The basis for the angular ordered shower algorithm is the coherent branching algorithm.

It preserves angular ordering and provides invariance under boosts along the jet axis [17].

The cross section for a soft gluon emission contains the dipole radiation terms [20]

Wij (k ) ≡ ω
2 *

,

pi · pj

(pi · k ) (pj · k )
−

1

2

p2

i

(pi · k )2
−

1

2

p2

j

(pj · k )2
+
-
, (3.14)

where pi and pj are the momenta of the colour connected partons and k is the momentum

of the radiated gluon. The angles between the directions of particles i ,j and k are labelled

θij , θik , etc. For θik → 0 or θjk → 0 Eq. 3.14 contains collinear singularities and can be

rewritten as

Wij (k ) ≡W
(i )
ij (k ) +W (j )

ij (k ). (3.15)

W (i )
ij contains a collinear singularity only for

~k parallel to ~pi and not for
~k parallel to ~pj ,

therefore it is associated with the gluon emission o� parton i . Furthermore it is given by

[20]

W (i )
ij (k ) =

βi
2ζik

(
βi − cosθik

1 − βi cosθik
+

cosθik − βj cosθij

1 − βj (cosθij cosθik + sinθij sinθik cosϕi )

)
, (3.16)

where ϕi is the azimuthal angle w.r.t. ~pi and βi =
vi
c . Eq. 3.16 is positive-de�nite for

θik < θij . For θik > θij the function can have negative values, resulting in destructive

interference. The azimuthal average, given by [20]

〈W (i )
ij 〉ϕi =

βi
2ζik

*..
,

βi − cosθik
(1 − βi cosθik )

+
cosθik − βj cosθij√

| cosθik − βj cosθij |2 + (1 − β2

j ) sin
2 θik

+//
-
, (3.17)

is in the massless limit, βi,j → 1, the Heavyside step-function Θ(θij − θik ). To have a

resulting soft radiation the opening angle θik therefore has to be smaller than θij , this is

the angular ordering property.

In shower algorithms the partons exiting the hard process and initiating the shower are

called shower progenitors. The scaling variable for the angular ordered shower in Herwig 7

for the evolution of partons with space-like virtualities is written in terms of the respective

opening angles as

q̃2 =
2Ea (1 − cosθbc ) (1 + cosθa )

2

(1 + cosθb ) (1 + cosθc )
. (3.18)
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3.2 Parton shower

Where, considering the branching a → b+c , θa is the angle between the parent particle and

the progenitor. θb , θc are the angles between the children particles b, c and the progenitor.

For small emission angles the evolution variable is given by

q̃ = Eaθbc (1 − O (θ
2

x )). (3.19)

For every branching the children partons with momentum fractions z and, because of

four-momentum conservation, 1 − z have the starting evolution scale at zq̃ and (1 − z)q̃

zq̃ ≈ Eaθbc ,

(1 − z)q̃ ≈ Ebθbc . (3.20)

The maximum opening angle of a following branching is θbc , therefore in any subsequent

branching the branching angle is smaller than θbc .

3.2.3.2 Dipole shower

The dipole shower model is based on Catani-Seymor subtraction kernels [21]. In the limit

of large Nc , where Nc is the number of colours, the colour structure of the parton shower

can be drawn on a plane like the one shown in Fig. 3.2, where colour-anticolour partners

are aligned adjacent to each other. Every colour line connecting two partons forms a

colour-anticolour dipole. In the soft-gluon and large-NC limit each of these dipoles emits

independently. This emission is carried out recursively until a certain cut-o� is reached and

the shower is terminated. Gluons carry colour lines of two dipoles and so dipole radiations

involving gluons may a�ect the subsequent radiation pattern of neighbouring dipoles.

The recoil in systems with �nite transverse momenta a�ects both dipoles connected to

the gluon. To prevent this, the shower is evolved globally and the dipole emission with

the highest transverse momentum emission is generated �rst to set the upper limit for the

subsequent evolution. Since in the case of dipole showering emissions are 2→ 3 processes

instead of 1→ 2 processes, four-momentum can be explicitly conserved at every step in

the shower.

Figure 3.2: Planar representation of the colour structure of a parton shower in the limit of

large Nc .
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3 Monte Carlo event generators

3.3 Hadronisation, brief outline

To convert the partons from the parton shower into hadrons di�erent models are used by

the di�erent MC event generators. In Pythia the Lund-String model [22] is used whereas

Herwig 7 uses the cluster model [2]. The cluster model, initially proposed by Wolfram and

Field [2], is based on the precon�nement property of the angular ordered parton shower

[23, 24]. Precon�nement states, that pairs of colour-connected partons close to each other

in space-time can be arranged into colour singlet states. These colour singlet states have

an asymptotic mass distribution which is independent of the hard process scale and the

properties of the parton shower.

Gluons left by the parton shower are split non-perturbatively into quark-antiquark pairs.

From all the remaining quarks and antiquarks colour neutral clusters are formed. These

clusters then either decay into hadrons directly or, if too heavy, �ssion iteratively into

additional clusters until the mass of the clusters reaches a certain mass cut-o� scale. For the

sake of completeness it should be noted that the constituents of a cluster do not necessarily

have to be (anti-)quarks but can also be so called (anti-)diquarks. (Anti-)Diquarks, two

(anti-)quarks grouped together, play a role when there are beam remnants involved in

the process. Since this thesis focuses solely on lepton collisions, (anti-)diquarks are not

considered any further. The hadronisation process is described in detail in Chapter 4.

3.4 Underlying event

In hadron colliders not only the primary hard process and its subsequent steps contribute

to the event but also other processes involving the remnants of incoming hadrons. All

elementary particles involved in hadron collisions are colour charged and can therefore

interact with each other. In experiments every interaction except for the hard process of

interest is de�ned as an underlying event, therefore underlying events are not limited to

soft interactions (interactions with low pT ) but also involve hard interactions (interactions

with high pT ).

In Herwig 7 the default model for the underlying event is a model for multiple parton

interactions (MPIs) which is based on the eikonal model [25–27]. There are two parts in the

model, a perturbative and a non-perturbative part [28], which are separated depending on

the transverse momentum. If the interactions are above a certain pmin
T MPIs are modelled as

QCD 2→ 2 processes, called semihard interactions. On the other hand, if the interactions

are below pmin
T they are modelled as elastic gluon scattering, called soft interactions.

With the release of Herwig 7.1 a new model to describe these soft interactions is introduced

as the default model [29]. Instead of producing a gluon pair for each soft interaction a

number of gluons, determined by a Poisson distribution, and a pair of quarks is produced.

The gluons produced are restricted to the regime of soft transverse momenta pT < pmin
T and

are ordered in rapidity, resulting in a "roughly �at distribution in rapidity of the clusters

and the subsequently produced particles" ([30], p.5). This leads to major improvements in

describing data which was insu�ciently described before [30]. Similar kinematics will

be used in the "1 to N "-model later on in this thesis as an alternative approach to cluster

�ssion with sequential two body decays.
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3.5 Cluster and hadron decays

3.5 Cluster and hadron decays

Once all heavy clusters are �ssioned into smaller clusters the clusters then decay into pairs

of excited hadrons. The hadrons produced are selected from all possible �avours depending

on the available phase space, the spin and the �avour of the cluster’s constituents.

Once the decay products are chosen the hadrons are isotropically distributed in the cluster

rest frame. If a hadron contains a parton, produced in the perturbative stage of the event,

the direction of this parton is kept except for a small change in direction with a gaussian

smearing. The smearing angle θsmear is randomly chosen according to

cosθsmear = 1 + CLsmear logR, (3.21)

where CLsmear is a free parameter dependent on the �avour of the parton. The azimuthal

angle relative to the parton direction is chosen randomly following a uniform distribution

from 0 to 2π .

If a cluster is too light to decay into a pair of hadrons it decays directly into a hadron

with appropriate �avour. To allow the correct physical mass of this hadron, energy and

momentum are reshu�ed with the neighbouring clusters in a small range. As a �nal step

the excited hadrons then decay into �nal state particles that can be seen in detectors.
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4 Hadronisation

As the work in this thesis solely focuses on discussing alternatives to the current hadro-

nisation of Herwig 7 the following chapter will give a closer overview of this model.

After a description of the sequential steps in the hadronisation, the impact of current

hadronisation parameters is shown followed by a discussion of the limits when describing

data with the current model.

4.1 Gluon splitting and cluster formation

The partons handed over to the hadronisation by the parton shower can be quarks or

gluons. The �rst step of the hadronisation is to split all the received gluons into quark-

antiquark pairs, then the remaining partons will be combined into colour neutral clusters.

As can be seen in Fig. 4.1 quark-antiquark pairs (or under special circumstances diquarks-

antidiquark pairs) sharing the same colour line will be combined into the same cluster.

Figure 4.1: Gluon splitting and cluster formation.

4.2 Cluster Fission

Most of the newly formed clusters then decay into hadrons directly. Some of the clusters do

not decay directly into hadrons but split up into new clusters, this splitting is called cluster

�ssion. The purpose of this recursive non perturbative �ssion process is the transition

from particles with higher energy to a greater number of particles with lower energy. This

e�ect can be seen in Fig. 4.2. For a cluster to �ssion, its mass has to ful�l the inequality

MClpow ≥ Cl
Clpow

max
+ (m1 +m2)

Clpow, (4.1)
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Figure 4.2: Mass distribution for the default mass sampling of the process e+e− → jj with

the leading order default shower, ISR and colour reconnection turned on. In

Fig. (a) the masses of primary clusters are shown. They result from either the

parton shower or the hard process (peak at Mcl = 91.2 GeV). In Fig. (b) the

masses of all remaining clusters, after cluster �ssion was applied, are shown.

The e�ect of the cluster �ssion is clearly visible as it shifts all clusters to lower

masses and produces additional clusters.

where M is the cluster’s mass and m1,2 are the constituent masses of the cluster. Clpow

and Clmax are free parameters to control the threshold at which clusters �ssion. Both

parameters depend on the �avour of the cluster’s constituents and are therefore di�erent

for clusters containing light (up, down), charm, etc. quarks. As can be seen in Fig. 4.3 the

parent cluster, with two constituents, �ssions into two new clusters. During the �ssioning

process a quark-antiquark pair is produced from the vacuum. Each of the two children

clusters gets one constituent of the parent cluster and the matching quark or antiquark

from the vacuum. The probability of producing a quark-antiquark pair with a speci�c

�avour is controlled by the parameter Pwt . The masses of the new clusters

M1 =m1 + R

1

P
split

1
,

M2 =m2 + R

1

P
split

2
, (4.2)

depend on the mass of the parent cluster M , the masses of the parent cluster’s constituents

m1,2, the masses of the produced quark-antiquark pair mq,q̄ and on one of the random

numbers R1,2. R1,2 are uniformly distributed random numbers between mq,q̄ and (M −
m1 −m2 −mq,q̄ ) taken to the power of Psplit,

R1

(
m

Psplit

q ; (M −m1 −m2 −mq )
Psplit

) 1

P
split

,

R2

(
m

Psplit

q̄ ; (M −m1 −m2 −mq̄ )
Psplit

) 1

P
split

. (4.3)
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4.3 Discussion of the current hadronisation model

Figure 4.3: Cluster �ssion.

Additionally there are constraints on the masses of the �ssioned clusters. The sum of the

masses of the children clusters is required to be less than the mass of the parent cluster

and the mass of each cluster is supposed to be greater than the sum of the masses of its

constituents.

A short overview of the parameters is given in Table 4.1.

Table 4.1: Description of parameters in the default cluster �ssion model.

Parameter Description

ClMaxLiдht , ClMaxBottom,

ClMaxCharm Set the threshold mass for clusters to �ssion.

ClPowLiдht , ClPowBottom,

ClPowCharm Set the exponent for the threshold mass for clusters to �ssion.

PwtDquark , PwtUquark ,

PwtSquark , PwtDIquark Set the weight for choosing a speci�c �avour.

PSplitLiдht , PSplitBottom,

PSplitCharm Control the mass region of M1 and M2.

4.3 Discussion of the current hadronisationmodel

While some observables are very well described by the current hadronisation model in

Herwig 7, other observables are not well described and particularly in certain regions. As

of now the main dataset to tune and compare hadronisation e�ects of event generators

to is data from the Large-Electron-Positron collider (LEP). Therefore in this thesis if not

explicitly stated otherwise the process used for simulation is e+e− → qq̄, where only light

�avours are considered, at a centre of mass energy of 91.2 GeV and data is taken from the

DELPHI experiment [31].

One very well described observable is the mean charged multiplicity which can be seen in

Fig. 4.5a. All tested parton shower and matching methods are within 5% deviation from

data. In Fig. 4.5b the number of produced particles over the scaled momentum xp is plotted.

It is de�ned as the momentum of a single particle scaled to the momentum of the beam

xp =
|~p |

|~pbeam |
. (4.4)
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4 Hadronisation

For low momentum fractions the data is well described. However, for scaled momenta

close to xp = 1 the number of particles produced in simulations varies signi�cantly from

data in the order of 40% deviation.

The thrust, de�ned as

T =max
~nthrust

∑Nparticle

i=1
|~pi · ~nthrust |∑Nparticle

i=1
|~pi |

, (4.5)

is a shape variable, describing the spreading of outgoing particles in an event. ~pi are the

momenta of all �nal state hadrons in the event and ~nthrust is an arbitrary unit vector. ~nthrust

points in the direction that maximises T . If T ≈ 1 the outgoing particles are spatially

distributed close to each other. In this region hadronisation plays a superior role as there

is little radiation and therefore the kinematics, i.e. the transverse momentum, are mainly

described by hadronisation. For the opposite, T = 1

2
, the outgoing particles are spread

across all spatial direction and the event is spherically shaped. Here hadronisation plays

an important role as well as �xed order calculations can not be used, but kinematics are

mainly determined by radiation. For a given thrust T the shape of an event can further be

determined by the thrust major M . It is de�ned as

M =max
~nM

∑Nparticle

i=1
|~pi · ~nM |∑Nparticle

i=1
|~pi |

. (4.6)

Where ~nM is a unit vector perpendicular to the thrust axis ~nthrust pointing in the direction

that maximises M . Together with the thrust minorm, whose axis ~nm is perpendicular to

both the thrust axis and the thrust major axis, the three axes de�ne the shape of a cone. As

shown in Fig. 4.4, the thrust axis ~nT points in the direction of the cone, the thrust major

axis ~nM points in the direction of the big half axis and the thrust minor ~nm points in the

direction of the small half axis. In both border regions of the thrust observable simulation

Figure 4.4: Direction of thrust, thrust major and thrust minor axis in a particle collision,

where ~T = T · ~nthrust,
~M = M · ~nM and ~m =m · ~nm.

does not agree with data very well, which can be seen in Fig. 4.5c where not the thrust
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4.3 Discussion of the current hadronisation model

itself but the di�erence 1 −T is shown. Similar behaviour can be seen for the thrust major

M in Fig. 4.5d. Description from simulation of both observables di�ers up to more than

40% from data in referred regions.

In Fig. 4.6 some characteristic distributions for clusters in the current default model of

Herwig 7 are shown. Fig. 4.6a and Fig. 4.6d show the masses of all occuring clusters.

The peak at 91.2 GeV in Fig. 4.6a is the mass of all the initial clusters and in Fig. 4.6d it

is the mass of initial clusters in those events where the parton shower did not produce

additional gluons. The shift in masses and therefore the shift in energy from the parton

shower cut-o� scale to the scale of observable hadrons is also visible in both Fig. 4.6a and

4.6d as the peak at low masses comes solely from �nal clusters and everything in between

is from clusters that are neither initial clusters nor �nal clusters. Fig. 4.6b and Fig. 4.6e

show that clusters have in general low transverse momenta. In Fig. 4.6c and Fig. 4.6f the

rapidity distributions are shown. Rapidity is de�ned as

y =
1

2

ln

(
E + pz
E − pz

)
, (4.7)

where a z-direction is chosen (in most cases the beam direction), pz is the component of

the particle momentum in that direction and E is the energy of the considered particle. The

rapidity is an interesting observable for collider experiments as its distribution is invariant

under boosts along the chosen z-axis, as well as di�erences in rapidity ([7], p. 562). Cluster

�ssion on its own produces mostly clusters with smaller rapidities but almost no clusters

with rapidities of around y = 0. With the parton shower turned on, more clusters with

higher momentum transverse to the beam axis are produced. Therefore more clusters with

rapidity y = 0 are produced compared to events with the parton shower turned o�.

To see the impact of hadronisation on the observables discussed before and shown in

Fig. 4.5 the main parameter of the current default model, PsplitLiдht , is varied and the

output compared to data. In Fig. 4.7a the mean charged multiplicity is shown on which

the variation of PsplitLiдht has signi�cant e�ects as the deviation of some runs from data

is more than 40%. The same can be said for high scaled momentum xp > 0.2 and low

scaled momentum xp < 0.05 shown in Fig. 4.7b. For the thrust T and the thrust major M
deviation stays mostly within ≈40%, see Fig. 4.7c and Fig. 4.7d. In regions discussed before,

high and low thrust (1 −T ) → {0.5, 0} as well as high and low thrust major M → {0.5, 0},
di�erences between the runs are signi�cantly large.

The variation shows that in regions where data of depicted observables is not well described

hadronisation plays an important role as it in�uences these distributions signi�cantly.

Therefore to improve agreement with data it is of interest to take a closer look at the

hadronisation model used in Herwig 7. As described in Sec. 4.2 the properties of the newly

produced clusters mainly depend on the sampling parameters which control the mass

sampling in the cluster �ssion. In the following chapter the presented alternatives keep

the main structure of the cluster �ssion as sequential two body decays but the process

of sampling the cluster masses is changed. Whether or not these alternative approaches

are an improvement is not clear right away and therefore they will be discussed in the

subsequent chapter.
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Figure 4.5: Comparison with data of observable distributions for di�erent settings of Her-

wig 7/Herwig++ [1, 8], di�erent parton shower algorithms and matching meth-

ods, taken from [32]. In the plots ⊕ stands for MC@NLO being used as a

matching method and ⊗ for POWHEG being used.
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Figure 4.6: Distributions for e+e− → jj at centre of mass energy 91.2 GeV.(a)-(c) are from

runs without ISR, colour reconnection and parton shower. (d)-(f) are from runs

with ISR, colour reconnection and the LO-defaultshower turned on. (a)&(d)

show the masses of all clusters in the events, (b)&(e) show the transverse

momenta pT of �nal clusters and (c)&(f) show the rapidity of �nal clusters.
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Figure 4.7: Observable distributions [31] compared to runs with variation of Psplit. The

simulated process is e+e− → qlightq̄light at a centre of mass energy of 91.2 GeV

with ISR, colour reconnection and the LO-defaultshower turned on. In this case

only PsplitLiдht , the parameter for light �avoured quarks, is varied while Psplit

for the other �avours is �xed at the default values.
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5 Cluster Fission via rapidity sampling

As a �rst approach instead of sampling the masses of clusters the rapidities of the clusters

will be sampled. The kinematics of the produced clusters can then be determined from their

rapidities. Since the following approaches were mostly examined in the bachelor’s thesis

by Maximilian Horzela [33] this chapter will give an enhanced overview without going

into too much detail. A �rst description is given of the basic equations for the kinematics of

the clusters and constraints on sampling. Thereafter, several di�erent probability density

functions for sampling the rapidities are examined and compared. Finally, a comparison is

made between the new sampling approaches and their relative performance is discussed.

5.1 Basic kinematics

In the centre of mass frame of the �ssioning cluster with mass M the rapidity de�ned in

Eq. 4.7 for each of the two outgoing particles with mass M1 and M2 can be rewritten as

y1 = log

*..
,

√
M2

1
+ p∗2 + p∗

M1

+//
-
,

y2 = − log

*..
,

√
M2

2
+ p∗2 + p∗

M2

+//
-
, (5.1)

p∗ =

√
M4 +M4

1
+M4

2
− 2M2

1
M2

2
− 2M2M2

1
− 2M2M2

2

2M
.

Where p∗ is introduced to shorten the equation and four momentum conservation in the

centre of mass frame of the �ssioning cluster is used. With the rapidities de�ned in the

centre of mass frame of the �ssioning cluster it is also possible to describe the �ssioning

process in terms of a relative rapidity ∆y and a centre of mass rapidity y∗, given by

∆y =
y1 − y2

2

,

y∗ =
y1 + y2

2

. (5.2)

5.1.1 Constraints on rapidity

When sampling the rapidities not all rapidity values are accepted as there still are con-

straints on the masses for example. From the constraints on cluster masses de�ned in
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5 Cluster Fission via rapidity sampling

Section 4.2, rapidity constraints can be directly derived.

If both children clusters share each half the parent cluster’s mass then the rapidity is

y1min
= y2min

= 0, (5.3)

which is therefore the minimal absolute value for rapidities. On the other hand the maximal

values of the rapidities are reached when the cluster masses are minimal. This is the case

when

M1 =m1 +mq,

M2 =m2 +mq̄, (5.4)

so the cluster masses are solely given by the sum of their constituent masses.

Constraints on the centre of mass rapidity and the relative rapidity result from constraints

on the individual rapidities

|∆y |min = 0,

|y∗ |min = 0,

|∆y |max =
y1max

+ y2max

2

,

|y∗ |max = max(y1max
,y2max

). (5.5)

As derived in [33] by inverting Eq. 5.2 the cluster masses dependent on ∆y and y∗ are

given by

M1 =
M · sinh(∆y − y∗)

sinh(2∆y)
,

M2 =
M · sinh(∆y + y∗)

sinh(2∆y)
. (5.6)

Likewise the same can be done with Eq. 5.1 to get the masses from the sampled rapidities

M1 = −M · csch(y1 − y2) · sinh(y2),

M2 = M · csch(y1 − y2) · sinh(y1). (5.7)

The corresponding phase space in rapidity is shown in Fig. 5.1. Since the children clusters

�y o� back to back their rapidities must have an opposite sign. Therefore the rapidities

can have values in only two quadrants, namely quadrant II and IV, as seen in Fig. 5.1a and

Fig. 5.1b. An additional constraint is derived from the fact that cluster masses are always

at least given by the sum of their constituents’ masses or higher. This can be seen in Fig.

5.1a and Fig. 5.1b along the rounded edges for low mass (dark blue area) and high values

of the rapidities plotted on the abscissa. So not all values of y1 and y2 are allowed, with the

boundaries de�ned in Eq. 5.5. In addition to the di�erent signs of the rapidities the lower

mass bound of clusters also has to be taken into account when sampling the rapidities. It

proved to be su�cient to calculate the masses from generated rapidities and immediately

veto out �ssion processes whose rapidities fail mass constraints. The available phase space

for ∆y and y∗ is shown in Fig. 5.1c and Fig. 5.1d where the same constraints on masses

and consequently on rapidities are applied.
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Figure 5.1: In (a), (b) possible regions to sample y1 and y2, depending on M1 and M2, are

shown. Since both clusters �y o� back to back there are only two quadrants in

the y1-y2-plane rapidities can be sampled from. With the additional constraint

that both children clusters have to have a minimal mass of at least the sum

of their constituents the edges for higher rapidities are rounded. In (c), (d)

possible regions to sample ∆y and y∗, depending on M1 and M2, are shown.

Constraints are still that both clusters �y o� back to back and have at least the

mass of the sum of their constituents. Analogue to Figs. (a) and (b) only half

the ∆y-y∗-plane minus the reduction from the minimal mass constraint can be

sampled from.

5.2 Sampling by power law

Following the sampling procedure for the cluster masses the �rst approach is to sample

∆y and y∗ according to a power law. Therefore a uniformly distributed random number

R between 0 and ∆ymax or respectively 0 and y∗
max

taken to the power of an exponent is
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5 Cluster Fission via rapidity sampling

drawn. The actual rapidities are then given by

∆y = ±R
(
0; |∆y |

αpow
max

) 1

αpow , (5.8)

y∗ = ±R
(
0; |y∗ |

βpow
max

) 1

βpow
, (5.9)

where the signs are chosen randomly but with equal probabilities. To avoid divergences in

the case of exponent values smaller than one and rapidity values in the limit to zero an

additional parameter, e.g. δ , should be introduced to shift the boundaries by the value of δ
[33].

5.2.1 Results

To get a feeling for the new sampling method the boundaries of the new parameters have to

be tested. Unlike the default sampling method which has only one parameter for sampling

the masses two parameters are now introduced. Therefore, in this subsection which is

only a brief look at the properties of the new sampling method one parameter is �xed and

the other is varied.

Runs for di�erent parameter values compared with LEP data on LEP observables are shown

in Fig. 5.2 and Fig. 5.3. As mentioned in Chapter 4.3 the mean charged multiplicity is well

described by the current model. Therefore every newly introduced model has to describe

the mean charged multiplicity as well as the current model does.

In both variations the mean charged multiplicity data is either not described by the runs

with the speci�c parameter settings, see Fig. 5.2b and Fig. 5.3b, or described by just the

boundary values of the parameters , see Fig. 5.2a and Fig. 5.3a. In regions of higher values

of T , meaning 1 −T ≈ 0, power law sampling does not improve agreement with data and

is not able to describe data within the examined parameter range. The same argument is

valid for values of 1 −T > 0.2, shown in Figs. 5.2c, 5.2d and Figs. 5.3c, 5.3d. Additionally,

description of the scaled momentum xp , shown in Figs. 5.2e, 5.2f and Figs. 5.3e, 5.3f, does

not seem to be improved by a power sampling approach of ∆y and y∗.
In some regions of the observables discussed above data is not even within the reach of the

parameter values. Thus, tuning the newly introduced parameters to data does not seem to

be of use. Therefore, other possible approaches to sample ∆y and y∗ will be examined in

the following sections.
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Figure 5.2: Possible regions of observables [31] sampling ∆y and y∗ according to a power

law. βpow is �xed at βpow = 0.1 (left) and βpow = 1.0 (right). αpow is varied from

αpow = 0.1 to αpow = 15.0. The red line indicates runs with αpow = 4.0.
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Figure 5.3: Possible regions of observables [31] sampling ∆y and y∗ according to a power

law. αpow is �xed at αpow = 0.1 (left) and αpow = 15.0 (right). βpow is varied from

βpow = 0.1 to βpow = 1.0. The red line indicates runs with default sampling and

tuned parameters in this case.
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5.3 Sampling by exponential law

Sampling ∆y and y∗ according to a power law produces less massive clusters and fewer

clusters at smaller ∆y [33]. Therefore a probability density function with steeper decline

for higher values of ∆y and y∗ is needed. An exponential distribution,

f (x ) = λe
−λx , (5.10)

does exactly that which is why in this section sampling according to an exponential

distribution will be examined. Like in the two previous approaches a cluster �ssions into

two clusters and their properties, in this case rapidities, are sampled randomly. For each

∆y and y∗ uniformly distributed random numbers R are drawn from 1 to the exponent of

either ∆ymax or y∗max . To manipulate the distribution two new parameters are introduced

analogously to the power law sampling method. Both rapidities are then given by

∆y = ±
1

αexp
ln

(
R

(
1; e
−αexp |∆y |max

))
,

y∗ = ±
1

βexp
ln

(
R

(
1; e
−βexp |y

∗ |max

))
. (5.11)

5.3.1 Results

For this sampling method two parameters are introduced. One parameter is �xed while

the other is varied analogously to the discussion of the power law sampling method. The

number of �nal clusters over their rapidity relative to the momentum direction of the

constituents of the primary cluster is plotted in Fig. 5.4. For αexp = 0.3 and βexp = 5.0 there

is a plateau in rapidity between y ≈ ±2, which is an interesting distribution of clusters

because commonly physics in soft energy regions is uniformly distributed in rapidity. But

it is also clear from Fig. 5.4 that the distribution does not seem to be very stable as for

small changes in αexp , shown in Fig. 5.4a, and βexp , shown in Fig. 5.4b, the shape of the

distribution changes signi�cantly.

Fixing βexp and varying αexp produces a more uniform distribution of rapidity so the

following discussion will focus on that case. With this approach, data of the mean charged

multiplicity is well within reach of the parameter range as can be seen in Fig. 5.5a and

is therefore not immediately ruled out. The same can be said about about the scaled

momentum xp (Fig. 5.5b), the thrust 1 −T (Fig. 5.5c) and mostly the thrust major M (Fig.

5.5d) distributions. For values of M higher than M = 0.58 the parameter range does not

describe data. The instability of the rapidity distributions is also clearly visible in the

observable distributions as certain bands for the available parameter range are large. In

some regions, namely xp higher than 0.6 or 1 − T higher than 0.3, the band of possible

values is several magnitudes wide.

As a consequence of the instability of the rapidity distributions and the observable distri-

butions it does not seem to be reasonable to attempt further tuning of parameters for this

model. Hence, the exponential law approach is dropped as an alternative to the current

model and alternative probability density distributions are (brie�y) tested.
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Figure 5.4: The number of clusters in the �nal state before decaying into hadrons plotted

over rapidity relative to the momentum axis of the parent cluster’s constituents

for di�erent values of αexp and βexp . In (a) βexp is �xed at βexp = 5.0 and αexp is

varied from αexp = 0.1 to αexp = 0.5. In (b) αexp = 0.3 and βexp is varied from

βexp = 0.5 to βexp = 5.0.

b

Datab

LEP-Matchbox

15

20

25

30

35

40
Mean charged multiplicity

M
ul

ti
pl

ic
it

y

90.8 91 91.2 91.4 91.6

0.6

0.8

1

1.2

1.4

M
C

/D
at

a

(a)

b b
b
b
b
b b b b b b

b
b
b b

b
b

b

b

b

b

b

b

Datab

LEP-Matchbox

10−3

10−2

10−1

1

10 1

10 2

10 3

Scaled momentum, xp = |p|/|pbeam|

N
d

σ
/

d
x p

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

1.4

xp

M
C

/D
at

a

(b)

b

b b
b
b
b
b
b
b b

b
b

b
b

b
b

b

b

b

b

Datab

LEP-Matchbox

10−3

10−2

10−1

1

10 1

1 − Thrust

N
d

σ
/

d
(1

−
T
)

0 0.1 0.2 0.3 0.4 0.5
0.6

0.8

1

1.2

1.4

1 − T

M
C

/D
at

a

(c)

b

b

b

b

b
b
b b

b
b

b
b

b
b

b
b

b
b

b

b

b

b

Datab

LEP-Matchbox

10−2

10−1

1

10 1
Thrust major, M

N
d

σ
/

d
M

0 0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.8

1

1.2

1.4

M

M
C

/D
at

a

(d)

Figure 5.5: Possible regions of observables [31] sampling ∆y and y∗ according to expo-

nential law. βexp is �xed at βexp = 5.0 and αexp is varied from αexp = 0.1 to

αexp = 1.0. The red line indicates runs with αexp = 0.3.
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5.4 Sampling by di�erent density functions

So far only ∆y and y∗ were sampled with two di�erent probability density distributions.

To fully test rapidity sampling the rapidities of the children clusters, y1 and y2, are now

sampled directly. Firstly, y1 and y2 will be sampled according to a power law, analogously

to the sampling of ∆y and y∗. In this case only one parameter is introduced, so that the

rapidities are given by

y1 = ±R

(
0;y

Psplit
1max

) 1

Psplit
, (5.12)

y2 = ±R

(
0;y

Psplit
2max

) 1

Psplit
, (5.13)

with Psplit acting in the same way as for the mass sampling in the current model. For

values of Psplit where the rapidity distribution seems to form a plateau there is always a dip

in the number of �nal clusters. This is the case for low rapidities above Psplit = 0.5 as can

be seen in Fig. 5.6. Because of this a second approach to sampling y1 and y2 is considered.

The second approach is to sample both rapidities following a mixed distribution of an

exponential and a power law.
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Figure 5.6: Rapidity distribution of �nal clusters relative to the momentum axis of the

primary cluster constituents. Psplit is varied from Psplit = 0.5 shown in (a) to

Psplit = 5.0 shown in (c), whereas in (b) Psplit = 1.0.

5.4.1 Results

Sampling y1 and y2 directly according to a power law can describe data for the mean

charged multiplicity. As can be seen in Fig. 5.7a data lies within the band of possible

parameter values. The same holds true for the scaled momentum xp in Fig. 5.7b and for

the thrust major M in Fig. 5.7d. In both cases data is only described by boundary values of

Psplit and the range of possible distributions is again several magnitudes wide in certain

regions. For higher values of 1 −T , shown in Fig. 5.7c, data is not described within the

tested range of parameter values.

Following the conclusion of the other approaches it does not seem to be bene�cial to tune

this model to data since the distribution of the rapidity is unstable and not uniformly
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5 Cluster Fission via rapidity sampling

distributed, shown in Fig. 5.6. This can also be seen in Fig. 5.7 illustrated by the width of

the bands.

The mixed distribution of an exponential and a power law approach does not show any

signi�cant improvement compared to either of the two alternative approaches described

before. There is no signi�cant di�erence shown as the resulting distributions have the

same characteristics as one of the two component distributions.
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Figure 5.7: Possible regions of observables [31] sampling y1 and y2 according to power law.

Psplit is varied from Psplit = 0.3 to Psplit = 9.0. The red line indicates runs with

Psplit = 3.0.

5.5 Conclusion

The main idea in this chapter was to keep the sequential two body decay of clusters

that undergo �ssion but try to distribute them more uniformly in rapidity relative to
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the momentum direction of the primary cluster’s constituents. This was done in several

approaches by sampling the children clusters’ rapidities instead of their masses. Firstly, to

sample in rapidity, ∆y, y∗, y1 and y2 had to be calculated and the boundaries on masses

translated to boundaries on rapidity values. With this, di�erent probability density func-

tions for sampling rapidities were tested and compared to data observables.

For a power law approach some data was not described within the parameter range and

therefore the approach was not further investigated. Sampling according to an exponential

law is promising for a small range of parameter values but seems to be too unstable to

tune. Overall it also proved di�cult to maintain a stable distribution for the sequential

rapidity sampling, which can be seen in Figs. 5.4 and 5.6. Over the course of this thesis

only two of the many known probability distribution functions were used for the rapidity

sampling. Therefore the approach to sequentially sample the cluster rapidities can not

be completely ruled out as a possible improvement to the current hadronisation model.

The rapidity sampling with a mixed distribution was only a small test for sampling ap-

proaches beyond the two mainly discussed distributions. For the following part of this

thesis it was then decided to get rid of the sequential two body decay and not examine

any other probability distributions. Instead of sequentially �ssioning into two clusters

the appropriate clusters �ssion directly into N children clusters. This will be discussed

in detail in the following chapter. Beyond the scope of this work it would be interesting

to see if other distributions prove to be more stable and are able to produce �nal clusters

which are uniformly distributed in rapidity.
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A downside of sequential two body decays is that the distributions of the �nal clusters

proved to be di�cult to model. The direct decay of one or two particles (clusters) into

N particles (clusters), shown in �gure 6.1, makes the distributions easier to model. As a

"2 to N decay" has been used to describe the physics of the underlying event (UE) a "1

to N decay" might also prove useful in the description of the hadronisation. With the

release of Herwig 7.1 another "2 to N decay" is implemented as the default model for soft

interactions in the UE again. There it improves the description of data signi�cantly [30]

and strengthens the assumption that such a model might also improve the hadronisation.

A similar "2 to N decay" is used in the UA5-model [34] for an outdated description of the

underlying event. It is still implemented in Herwig 7, but not used as the default model

of the UE anymore. The basis of the UA5-model is an algorithm proposed by S. Jadach

[35] which allows the calculation of the n-particle phase space with limited computational

resources.

As part of this thesis a cluster �ssion into N clusters was implemented and tested. There-

fore in the following section �rstly the algorithm by Jadach is described after which the

implementation of the UA5-model in Herwig 7 is outlined and di�erences to the imple-

mentation of a 1 to N decay in the hadronisation are shown. Conclusively resulting

distributions and potential further investigations will be discussed.

Figure 6.1: 1 to N decay.

6.1 UA5 Parametrisation of the Underlying Event

6.1.1 Jadach Algorithm

The main idea of the algorithm proposed by Jadach [35] is to transform a phase space

integral for n particles that conserves energy and momentum into a form suitable for
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6 1 to N decay

Monte-Carlo integration,∫
Ω

∏
i

dξi f (ξi ) = lim

N→∞

1

N

N∑
I=1

1

ρG (ξI )
f (ξI ), (6.1)

where the estimation on the right hand side converges to the true value of the desired

integral on the left hand side in the limit of large numbers. ρG (ξI ) is the normalised

probability distribution of a random number ξI .

6.1.1.1 Mathematical Background

Starting o� with the phase space integral for n particles [35],

In =

∫ n∏
i=1

d
3p

2Ei
δ 3 *

,

n∑
i

pi+
-
δ *

,
w −

n∑
i=1

Ei+
-
F (p

1
,p

2
, ...,pn ), (6.2)

where pi is the four momentum of particle i and w the total energy, the �rst step is to

split the general four momentum into longitudinal momentum and transverse momentum

relative to the direction of incoming particles. The transverse momentum is given by two

components ui and vi ,

pi = (Ei ,p
L
i ,p

T
i ) = (Ei ,p

L
i ,ui ,vi ). (6.3)

The phase space integral can then be rewritten as a product,

In =

∫ n∏
i=1

duidviδ *
,

n∑
i=1

ui+
-
δ *

,

n∑
i=1

vi+
-
· Ln, (6.4)

with Ln being the integral over the longitudinal momentum

Ln =

∫ n∏
i=1

dpLi
2Ei

δ *
,

n∑
i=1

pLi
+
-
δ *

,
w −

n∑
i=1

Ei+
-
F . (6.5)

In Eq. 6.4 the δ -distributions of u and v can be eliminated via change of variables,

ui = si + λai ,

a =
1

√
n
(1, 1, ..., 1),

s · a = 0.

The integral over ui can then be written as∫ n∏
i=1

duiδ *
,

n∑
i=1

ui+
-
=

∫ n−1∏
i=1

dsidλδ (
√
nλ) =

1

√
n

∫ n−1∏
i=1

dsi , (6.6)
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where the δ -distribution completely disappeared and Eq. 6.1 can be used. For v it is

possible to do the same variable change. This leads to an integral over the transverse

momentum that is completely free of δ -distributions and according to Eq. 6.1 it can be

written as

In = lim

N→∞

1

N

N∑
i=1

(πR)n−1

n
exp

*.
,

∑ (
pTi

)
2

R
+/
-
· Ln, (6.7)

where R is a constant, dependent on the average transverse momentum pT of all generated

events. It is given by

R =
4

π
p2

T

(
1 +

1

n − 1

)
. (6.8)

To reach Eq. 6.7 it is also used that si is randomly generated with the probability distribution

ρG (s) = (πR)−
1

2
(n−1)

exp(−s2/R). (6.9)

With the transverse phase space integral rewritten to a form suitable for Monte Carlo

integration the next task is to rewrite the longitudinal phase space integral. According to

[35] it is best to introduce the rapidity variable as it simpli�es the phase space element

and gets rid of any factors in the phase space element that could result in singularities if

energy increases. In terms of rapidity the longitudinal phase space integral is

Ln = 2
1−n

∫ n∏
i=1

dyiδ *
,
w −

n∑
i=1

mT
i exp(yi )+

-
δ *

,
w −

n∑
i=1

mT
i exp(−yi )+

-
F

= w2
1−n

∫ n∏
i=1

dyiδ *
,
w2 − *

,

n∑
i=1

mT
i exp(yi )+

-
*
,

n∑
i=1

mT
i exp(−yi )+

-
+
-
δ *

,
w −

n∑
i=1

mT
i exp(yi )+

-
F ,

(6.10)

where the transverse mass is introduced as

mT
i =

√
m2

i + p
T 2

i . (6.11)

Similar to the transverse part the following variable transformation is performed

yi = Z + Yξi , (6.12)

with

ξ1 ≡ 0, ξn ≡ 1,

0 ≤ ξi ≤ 1, i = 2, 3, ...,n − 1. (6.13)

Where ξi is called the prerapidity. The longitudinal phase space integral then takes the

form

Ln = w2
1−n

∫
dZdY

n−1∏
i=2

dξiY
n−2δ

(
w2 −

(∑
mT

i exp(ξiY )
) (∑

mT
i exp(−ξiY )

))
δ

(
w − eZ

(∑
mT

i exp(ξiY
))

F , (6.14)
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with which the integration overY andZ can be performed and the δ -distributions disappear.

This then leads to

Ln = 2
1−n

∫ n−1∏
i=2

dξi
Yn−2

Dw2
F , (6.15)

and Eq. 6.1 can then be used, resulting in

Ln = lim

N→∞

1

N

N∑
I=1

n(n − 1)Yn−2

2
n−1w2D

F (ξI ), (6.16)

where

D =
������

∂

∂Y
ln

*
,

*
,

∑
i

mT
i exp(ξiY )+

-
*
,

∑
i

mT
i exp(−ξiY )+

-
+
-

������
. (6.17)

Now that the whole phase space integral can be written in a way suitable for Monte Carlo

integration an algorithm can be applied to calculate the n-particle phase space integral.

This is described in the next section.

6.2 Implementation

In this work the algorithm proposed by Jadach was implemented in to the hadronisation

following it’s implementation in the UA5 simulation program [34]. This section will

therefore describe how the Jadach Algorithm is implemented in the UA5 model for the

underlying event and point out di�erences to the implementation in the hadronisation

where they occur.

6.2.1 UA5-model

The �rst step is to determine the number of charged particles nch by drawing it from a

negative binomial distribution,

P (n; 〈n〉,k ) =

(
n + k − 1

k − 1

)
*
,

〈n〉
k

1 +
〈n〉
k

+
-

n
1(

1 +
〈n〉
k

)k . (6.18)

〈n〉 is the average number, k is a shape parameter and both are taken from �ts to data.

After the number of charged particles is determined, the composition of the produced

particles has to be generated. This is in principle done by cluster formation and decay. Two

leading clusters always consist of a nucleon, a ∆ or their antiparticles. The other clusters,

whose compositions are determined by Poisson distributions, contain a nucleon pair, a

baryon pair (except for π ) or at least one π . At each step the number of particle types

is drawn from these Poisson distributions which depend on measured ratios of di�erent

particle types.
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6.2 Implementation

These newly produced clusters are then given momenta. Following the Jadach Algorithm

this is done in two steps, �rst the transverse momentum then the longitudinal momentum

is generated. The transverse momenta are generated following an exponential distribution

dN

dp2

T

∝ e−b·pT , (6.19)

where their azimuthal directions are uniformly drawn between 0 and 2π . The momenta in

the plane perpendicular to the beam axis are conserved, therefore two independent linear

transformations are performed for each of the two transverse momentum axes

pnewi = poldi −

(∑
all clusters in event

poldi

)
N

i = u,v . (6.20)

As described in Eq. 6.12 et seq. at �rst prerapidities are generated following a certain

probability distribution. In this case a "�at central part with gaussian wings" ([34], p.455),

as seen in �gure 6.2, was found to give good agreement with data. The leading clusters are

Figure 6.2: Probability distribution of prerapidity [34].

assigned to the highest and the lowest prerapidities whereas the remaining prerapidities

are randomly distributed among the other clusters. With the generated prerapidities the

rapidities are calculated using Eq. 6.12. Z is determined from pL conservation and Y from

energy conservation. Finally with the transverse mass mT the longitudinal momentum pL
is calculated.

6.2.2 Implementation in the hadronisation

In contrast to the UA5-model there are no leading clusters in the description of solely the

hadronisation as there are no beam remnants considered in this thesis. For each cluster

that ful�ls Eq. 4.1 the number N of clusters it �ssions to is determined by an evolution of

rapidity y from ymax to 0. Contrary to Eq. 6.18, where 〈n〉 and k are �tted to data at certain

energies, an evolution for N is variable and can be used for all energies. One main goal of

an evolution in rapidity is to have a constant mean number of clusters 〈n〉 per rapidity

interval ∆y,

〈n〉

∆y
≈ const. (6.21)
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To get ymax the rapidity of the two cluster constituents is calculated in the centre of mass

frame of the �ssioning cluster according to

ymax = log

*..
,

√
m2

q1
+ p∗2 + p∗

mq1

+//
-
, (6.22)

with the momentum p∗ given by

p∗ =

√
M4 +m4

q1
+m4

q2
− 2m2

q1
m2

q2
− 2M2m2

q1
− 2M2m2

q2

2M
. (6.23)

Starting from ymax the probability to split a cluster is given by an exponential probability

distribution, comparable to nuclear decay. The new starting rapidity is then given by the

di�erence of the initial rapidity and the calculated rapidity segment ∆y, see Eq. 6.24.

y0 = ymax

∆y = αe−αx (6.24)

yi+1 = yi − ∆y

After the number of clusters is determined, generation of the phase space is mostly

following the implementation of the UA5-model, except for the probability distribution of

the transverse momentum. Instead of an exponential distribution, like in Eq. 6.9, a normal

distribution

f (µ,σ ) =
1

√
2πσ 2

e−
(x−µ )2

2σ 2 , (6.25)

is chosen to have direct in�uence on the mean transverse momentum of the produced

clusters. µ and σ are then two additional parameters introduced with the mean transverse

momentum µ and the varianceσ of the transverse momentum distribution. The distribution

can also be parametrised according to

dσ

dp2

⊥

∼ e
−

(
p⊥
2p0

⊥

)
2

, (6.26)

where p0

⊥ is the mean transverse momentum and tuning is therefore performed to a

more physical parameter. For every newly produced cluster a quark antiquark or diquark

antidiquark pair is produced from the vacuum and distributed among the clusters illustrated

in Fig. 6.3. Their �avour is randomly chosen according to weights de�ned in the parameters

PwtUDquark , PwtCquark , PwtSquark , PwtDiquark . An overview of all parameters used

in this model is given in Table 6.1.
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Figure 6.3: Choosing �avour of newly produced clusters.

Table 6.1: Description of parameters in the default cluster �ssion model.

Parameter Description

EvolutionMean Sets the α value in Eq. 6.24

EvolutionM1 Parameter for the random mass of a newly produced cluster in GeV

EvolutionM2 Parameter for the random mass of a newly produced cluster in GeV
−1

PTslope Deviation of gaussian pT sampling.

PTmean Mean value of gaussian pT sampling.

PwtUDquark Weight for ud-�avoured quarks.

PwtCquark Weight for c-�avoured quarks.

PwtSquark Weight for s-�avoured quarks.

PwtDiquark Weight for Diquarks.

6.3 Toymodel

Before the 1 to N decay is implemented in Herwig 7 the algorithm is tested in a small

Python script to determine its properties. This section will give a brief overview of the

properties of this toy model.

The mean number of produced clusters, shown in Fig. 6.4a, is linearly dependent on the

logarithm of the centre of mass energy. As a result of this linear dependence the mass

distribution of �nal clusters should be independent of the centre of mass energy, which

can be seen in Fig. 6.4b. Since one goal of an alternative approach to cluster �ssion is

a uniform distribution in rapidities of �nal clusters, it is interesting to see the rapidity

distributions of the toy model. In Figs. 6.4c (α = 1.0) and 6.4d (α = 5.0) the rapidity

distributions are shown relative to a �xed z-axis. The rapidities are not just uniformly

distributed but also seem to be stable when varying α or the centre of mass energy. For

the sake of completeness the mass distribution and the rapidity distribution are shown in

Figs. 6.4e and 6.4f. Both are in the range expected from the previous discussion.

The toy model shows that the algorithm from the UA5-model for 1 to N decays is the

desired approach. In the following section the algorithm will be implemented in the

hadronisation of Herwig 7 and its parameters determined to best describe data.
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6 1 to N decay

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Distributions from the toy model implementation. Figs. (a)-(c) show distribu-

tions for α = 1.0 (see Eq. 6.24) at di�erent centre of mass energies. In Fig. (d)

the rapidity distributions of α = 5.0 are shown for di�erent centre of mass

energies. Figs. (e) and (f) show the distributions for �xed α at a centre of mass

energy of 91.2 GeV.
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6.4 Tuning

Since the new approach introduces nine new parameters, their values have to be con-

strained. This is done by using experimental data and is called generator tuning. The

framework used for tuning is the PROFESSOR tuning system [36], the analyses used are

provided by Rivet [37] and are listed in Appendix A.1. In all tuning runs the process con-

sidered is e+e− → jj at the centre of mass energy of 91.2 GeV. The parameters described in

Table 6.1 plus the parton shower cut-o� pTmin are tuned to multiplicities, shape variables

and other observables for two di�erent ranges of pT , see Range 1 and Range 2 in Table 6.2.

All of the used observables and their weights are listed in Tables A.1-A.18. In Fig. 6.5 it

can be seen that the restriction of EvolutionMean to a smaller range is in agreement with

charged multiplicity so that simulation runs are able to describe data. According to [36]

the minimum number of runs N for a given number of parameters P is

N (P )
n = 1 +

n∑
i=1

1

i!

i−1∏
j=0

(P + j ), (6.27)

where n is the order of the polynomial used to �t. In this case the number of parameters

to tune is P = 10, since pTmin, the cut-o� value of the parton shower, has signi�cant

impact on the hadronisation and therefore is also tuned. With a higher parton shower

cut-o�, bigger clusters, subsequently more �nal clusters and higher hadron multiplicities

are to be expected. The inverse argument applies for smaller values of pTmin. For ten

parameters the minimum number of runs is N (10)
3
= 286 for a polynomial of order n = 3.

Since [36] suggests oversampling by a factor of at least 2, the minimum number of runs

is 2N (10)
3
= 572. In this thesis the number of runs in both cases is between N = 700 and

N = 800 with 1000000 events for each set of parameter ranges. The exact number of

successful runs is not clear in advance because of a yet unknown bug which causes some

(less than 100) of the 800 initial runs to not �nish at all, these runs can not be used further.

Table 6.2: Parameter ranges for tuning.

Parameter Range 1 Tune 1 Range 2 Tune 2

mult. gen. mult. gen.

EvolutionMean 1.15-1.17 1.169942 1.169942 1.15-1.17 1.168298 1.166815

EvolutionM1 0.1-5.0 0.872854 0.875266 0.1-5.0 0.741735 0.646280

EvolutionM2 50-600 599.258800 599.25880 50-600 339.451746 68.946236

PTslope 1.0-10.0 1.004623 1.004623 1.0-10.0 1.001118 9.120575

PTmean 1.0-10.0 1.013010 1.013010 1.0-10.0 1.010316 3.504758

PwtUDquark 0.0-10.0 5.913285 5.783869 0.0-10.0 9.996982 0.224378

PwTCquark 0.0-10.0 0.005470 0.005470 0.0-10.0 1.220182 0.272114

PwTSquark 0.0-10.0 7.806019 7.642248 0.0-10.0 0.028829 9.712178

PwTDiquark 0.0-10.0 0.028466 0.028466 0.0-10.0 9.991533 5.837031

pTmin 4.0-5.0 4.000184 4.000184 0.5-5.0 4.991475 0.601294
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Figure 6.5: Possible mean charged multiplicity values for 1 to N decay. In (a) Range 1

(pTmin = 4.0-5.0) is shown and in (b) Range 2 (pTmin = 0.5-5.0) is shown.

b

Datab

Tune1 gen
Tune1 mult
Tune2 gen
Tune2 mult

18

19

20

21

22

23

24

Mean charged multiplicity

M
ul

ti
pl

ic
it

y

90.8 91 91.2 91.4 91.6

0.6

0.8

1

1.2

1.4

M
C

/D
at

a

(a)

b b
b
b
b
b
b
b b b

b
b
b
b
b

b

b

b

b

b

b

b

b

Datab

Tune1 gen
Tune1 mult
Tune2 gen
Tune2 mult

10−2

10−1

1

10 1

10 2

Scaled momentum, xp = |p|/|pbeam|

N
d

σ
/

d
x p

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

1.4

xp

M
C

/D
at

a

(b)

b

b b
b
b
b
b
b
b b

b
b

b
b

b
b

b

b

b

b

Datab

Tune1 gen
Tune1 mult
Tune2 gen
Tune2 mult

10−3

10−2

10−1

1

10 1

1 − Thrust

N
d

σ
/

d
(1

−
T
)

0 0.1 0.2 0.3 0.4 0.5
0.6

0.8

1

1.2

1.4

1 − T

M
C

/D
at

a

(c)

b

b

b

b

b
b b b

b
b

b
b

b
b

b
b

b
b

b

b

b

b

Datab

Tune1 gen
Tune1 mult
Tune2 gen
Tune2 mult

10−3

10−2

10−1

1

10 1

Thrust major, M

N
d

σ
/

d
M

0 0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.8

1

1.2

1.4

M

M
C

/D
at

a

(d)

Figure 6.6: Runs with di�erent tunes of parameters for the 1 to N decay.
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6.5 Results

For both tuning runs the parameters are �rst tuned to only multiplicities (labelled as

"mult.") and then tuned to a more general selection of observables (labelled as "gen."). The

resulting parameter values for the four tunes are listed in Table 6.2. There is a noticeable

in�uence that pTmin seems to make on the overall shape of the hadronisation. Both tuning

runs for Tune 1 in Table 6.2, where pTmin only varies in a range of 1 GeV, result in very

similar parameter values. Unlike Tune 1, the results of the tuning runs from Tune 2, where

pTmin varies in the range of 4.5 GeV, di�er noticeably.

To see how well the simulation performs with the tuned parameters, simulation runs

with these tuned parameter values are carried out. The results of runs with the four

tunes are shown in Fig. 6.6. Again, the �rst observable to look at is the mean charged

multiplicity, shown in Fig. 6.6a. Although the tunes were performed speci�cally to

multiplicity distributions, with the highest weight on the mean charged multiplicity, none

of the tuned parameter sets describe the mean charged multiplicity within 5% deviation.

Tune 1 produces too many charged particles and Tune 2 produces too few charged particles.

Despite the tuned values being so di�erent in Range 2, the mean charged multiplicity is

almost identical. This can be explained by looking at the value forpTmin. For Tune 2 (mult.),

where pTmin = 4.991475 GeV, fewer initial clusters are produced than for Tune 2 (gen.),

where pTmin = 0.601294 GeV, because the shower stops at higher energies. Consequently,

these clusters have higher masses and �ssion into more clusters. In the second case,

pTmin = 0.601294 GeV, there is a greater number of initial clusters and more of these

clusters have masses below the �ssion threshold so that they do not �ssion into additional

clusters. This means that the shape of considered distributions is mostly de�ned by

the hadronisation for pTmin = 4.991475 GeV and by the parton shower for pTmin =
0.601294 GeV.

The scaled momentum xp , shown in Fig. 6.6b, is not well described by any of the tunes. At

best it is described within 20% deviation by the tunes from Range 1. Tunes from Range 2

in parts di�er by a deviation of more than 20%, Tune 2 (gen.) di�ers for high xp by even

more than 40%. Considering that this range of xp is sensitive to the hadronisation it is

plausible that in Tune 2 (gen.) the hadronisation model does not have enough impact on

the momenta of the clusters as they are, in most cases, already determined by the parton

shower.

In Fig. 6.6c the 1−T distribution is shown. For both Tune 1 and Tune 2 (mult.) data is poorly

described with deviations between data and simulation runs of more than 40%. Tune 2

(gen.) on the other hand improves the description noticeably and is for 1 −T < 0.3 within

20% deviation. However, in the region 1 −T → 0.5 Tune 2 (gen.) does not describe data

very well as the simulation deviates by more than 40% for 1 −T > 0.4. The improvement

of Tune 2 (gen.) compared to Tune 1 and Tune 2 (mult.) is also visible in the thrust

major distribution, shown in Fig. 6.6d. For all of the latter three tunes data is poorly

described with deviations of more than 40% compared to data. Tune 2 (gen.), although

an improvement, has for M > 0.2 around 20% deviation and increases to more than 40%

for M < 0.2. Both thrust variables are, like the scaled momentum, poorly described by

the tunes where hadronisation plays a bigger role (Tune 1 and Tune 2 (mult.)). Tune 2
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6 1 to N decay

(gen.) consequently describes data better in regions where the parton shower is of more

importance than in regions sensitive to hadronisation.

6.6 Conclusion

In this chapter a new approach to cluster �ssion was implemented and examined. The

main idea is that clusters, which ful�l the inequality Eq. 4.1, �ssion into N clusters instead

of two. This makes distributions of �nal clusters easier to model, for example rapidity

distributions. A very similar approach was already used for the description of the UE

by the UA5-model and therefore the implementation in the hadronisation follows the

UA5-model closely.

A �rst analysis of this approach in a small Python script, which solely simulates the 1 to N
decay, shows promising results. Rapidities of the �nal clusters are uniformly distributed,

which is commonly witnessed in soft physics and might therefore be an improvement for

the hadronisation. The number of produced clusters depends linearly on the logarithm of

the centre of mass energy and the mass distribution is independent of the centre of mass

energy.

After this test the 1 to N decay was implemented in the hadronisation model of Herwig 7.

As an alternative to the current cluster �ssion in Herwig 7 it can be used in the same

place in the event generation without restrictions on surrounding classes. The new �ssion

model introduces nine parameters which so far have not been tuned to values where

they describe data best. In addition to the nine parameters introduced by the 1 to N
decay, the minimum cut-o� scale, pTmin, is tuned as well since it has signi�cant impact on

hadronisation properties. At a centre of mass energy of 91.2 GeV for the process e+e− → jj
and two di�erent parameter ranges, two tuning runs are performed for each parameter

range. Firstly the parameters are tuned to solely multiplicity distributions and secondly

additional observables are taken into account. Although the mean charged multiplicity

can be described by the parameter values considered, all tuned parameter values do not

describe mean charged multiplicity data very well. For the other observables, e.g. xp , 1−T
and M , none of the tuning runs so far produces parameter values that result in better

simulations than the current hadronisation model.

Despite the negative results so far the "1 to N decay"-approach remains interesting. In

all the observable distributions considered, all regions can be theoretically described by

the model so it cannot be disquali�ed by a �rst look at the observable distributions. It

rather seems that the introduced parameter space of ten parameters is so complex that the

tuning runs performed in this thesis tune in the wrong region of the parameter space and

should be constrained to a smaller parameter range. Additionally, the newly introduced

parameters should be tuned to parameters of the colour reconnection, as it has signi�cant

impact on cluster properties. The colour reconnection has not been taken into account for

the tunes in this thesis.

Another point that has to be taken into account is that the toy model was mostly used

for centre of mass energies higher than 91.2 GeV. For these energies the "1 to N decay"-

algorithm does not seem to have any problems with generating the expected number of

clusters. In energy regions below 91.2 GeV it turns out to be more complex to maintain the
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linear dependence of the number of produced clusters on the logarithm of the centre of

mass energy. For the process considered in this thesis, 91.2 GeV is the highest mass a cluster

is able to have and with the parton shower turned on it is more likely that initial clusters

have masses far below 91.2 GeV. Therefore, it is of greater interest to fully understand

the behaviour of the 1 to N decay, especially in regions of low centre of mass energies.

It might turn out that the 1 to N model is a too general description to be used in event

generations with parton showers and is only useful for decays with high centre of mass

energies.

Another question that emerged recently, which is worth looking into in the future, concerns

the ordering of the cluster constituents in rapidity. Contrary to the 2 to N model in the

UE, where the gluons are ordered in rapidity, the 1 to N model of the hadronisation orders

the clusters in rapidity and not their constituents. At �rst sight this does not make sure

that the constituents are strictly ordered in rapidity as there might be an overlap between

constituents of di�erent clusters.
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In order to improve the description of LEP-observables the aim of the present thesis is to

discuss several alternative approaches to the hadronisation model used in Herwig 7 and

review if they are an improvement.

For this purpose properties of the current hadronisation of Herwig 7 are examined and it is

seen that shortcomings in description of data are in observables sensitive to hadronisation.

In a �rst approach the general structure of the algorithm is kept and only the determination

of the children clusters’ properties is changed. This means that clusters still �ssion into

two children clusters and the �ssion is done recursively until clusters’ masses are below

a certain threshold. Instead of sampling the children cluster masses, their rapidities are

sampled randomly. Sampling both rapidities independently according to a power law,

analogously to the currently implemented mass sampling, proves to be no improvement

to the current sampling. Rapidity distributions are unstable and data within the examined

parameter range is not su�ciently well described.

For additional approaches the "relative rapidity" ∆y and the "centre of mass" rapidity y∗

are introduced, de�ned in Eq. 5.2. ∆y and y∗ are then �rstly sampled according to a power

law and secondly according to an exponential law.

The power law approach for ∆y andy∗ is not able to su�ciently describe the mean charged

multiplicity, an observable very well described by the current hadronisation model, for the

examined parameter values. Other observables, such as the thrust or the scaled momentum,

are not well described by runs with the power law sampling. Another approach is therefore

examined, sampling ∆y and y∗ according to an exponential law. With an exponential

sampling data is described by the simulation in general within the used parameter range.

For certain parameter values, that describe data best in this model, the rapidities of �nal

clusters are also uniformly distributed. This is a desired distribution as soft physics seems

to be commonly described by uniform distributions in rapidity. Tuning this model however

seems to be unreasonable as the distributions are very unstable when changing the two

introduced parameters by small values.

In the last approach considered, the �ssioning cluster does not decay into N clusters by

sequential two body decays but �ssions directly into N clusters uniformly distributed

in rapidity. The occurring n-dimensional phase space integral is solved according to an

algorithm which samples rapidities uniformly. The implementation of a 1 to N cluster

�ssion follows the UA5-model, used as an outdated description of the UE, closely but with

some di�erences. The main di�erence is in the determination of the number of children

clusters. The UA5-model determines the number of produced particles by sampling from a

negative binomial distribution. In this thesis it is done as an evolution of rapidity from

ymax to 0 so that the number of produced clusters is sensible for all energies. In a �rst test

this approach seems to give the desired properties of the �nal clusters and was therefore

implemented in Herwig 7. The newly introduced parameters have to be tuned to data
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from scratch since there are no comparable parameter values. All tunes performed during

the work on this thesis result in simulation runs that are no improvement to simulation

runs with the current hadronisation model. But for several reasons the 1 to N decay still

seems to be an approach that is able to improve the hadronisation of Herwig 7. First of

all, every distribution considered in this work can be described by the "1 to N decay"-

model and changes in parameters have a signi�cant impact on the shapes of distributions.

Secondly, the parameter space introduced is quite complex with at least 10 parameters to

tune. Therefore, the tunes performed in this thesis might be in the wrong region of the

parameter space but due to lack of time further regions are not considered here. Thirdly,

the 1 to N decay proved to be more di�cult than expected for lower centre of mass energies,

especially below 91.2 GeV. Here the linear dependence of the number of clusters on the

logarithm of the centre of mass energy is not ensured. It might prove that the "1 to N
decay"-model is a too general description for low centre of mass energies.

Another open question is the ordering of cluster constituents in rapidity. So far only the

clusters are ordered in rapidity but the cluster constituents might not be due to overlapping

clusters.

For future work on hadronisation models it still remains interesting to take a closer look

at the 1 to N decay. Over the course of this thesis the model could not be ruled out

as an improvement to the current hadronisation model of Herwig 7. Moreover several

aforementioned aspects of the 1 to N decay imply that it still might be a suitable model

to describe hadronisation in event generators. Additionally, the rapidity sampling in

sequential two body decays is not completely ruled out and might prove to be a reasonable

alternative to the mass sampling currently used in Herwig 7. In this thesis only two

distributions for sampling rapidities were discussed, an exponential law and a power law,

as the focus of this work was then shifted to the 1 to N decay. In future it is therefore

interesting to look at other probability distributions for rapidity sampling.

Finally it is interesting to discuss hadronisation in the context of the LHC. With higher

centre of mass energies than LEP and therefore larger clusters the impact of an alternative

cluster �ssion approach is expected to be more severe.
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A Appendix

A.1 Weights of tunes

Table A.1: ALEPH_2004_S5765862 [38] (ECMS = 91.2 GeV)

Observable Weight Observable Weight

gen. mult. gen. mult.

Thrust minor,m 1.0 - Jet mass di�erence 1.0 -

Aplanarity, A 1.0 - Oblateness, O 1.0 -

Sphericity, S 1.0 -

Thrust, T 1.0 - Heavy jet mass 1.0 -

Total jet broadening 1.0 - Wide jet broadening 1.0 -

C-Parameter 1.0 - Thrust major, M 1.0 -

Table A.2: ALEPH_2002_S4823664 [39]

Observable Weight

gen. mult.

η scaled momentum 1.0 -

ω scaled momentum 1.0 -

Table A.3: ALEPH_1996_S3486095 [40]

Observable Weight Observable Weight

gen. mult. gen. mult.

Sphericity, S (charged) 1.0 - Aplanarity, A (charged) 1.0 -

1-Thrust, 1 −T (charged) 1.0 - Thrust minor,m (charged) 1.0 -

C parameter (charged) 1.0 - Oblateness, O = M −m (charged) 1.0 -

Scaled momentum, xp =
|p |

|p
beam

|
(charged) 1.0 - Rapidity w.r.t. thrust axes, yT (charged) 1.0 -

In-plane pT in GeV w.r.t. sphericity axes (charged) 1.0 - Out-of-plane pT in GeV w.r.t. sphericity axes (charged) 1.0 -

Log of scaled momentum, log

(
1

xp

)
(charged) 1.0 - Charged multiplicity distribution 1.0 -

Mean charged multiplicity 750 750 Mean charged multiplicity for rapidity |Y | < 0.5 750 750

Mean charged multiplicity for rapidity |Y | < 1.0 750 750 Mean charged multiplicity for rapidity |Y | < 1.5 750 750

Mean charged multiplicity for rapidity |Y | < 2.0 750 750

Mean π 0
multiplicity 10 10 Mean η multiplicity 10 10

Mean η′ multiplicity 10 10 Mean KS + KL multiplicity 10 10

Mean ρ0
multiplicity 10 10 Mean ρ (782) multiplicity 10 10

Mean ϕ multiplicity 10 10 Mean K∗± multiplicity 10 10

Mean K∗0 multiplicity 10 10 Mean Λ multiplicity 10 10

Mean Σ multiplicity 10 10 Mean Ξ multiplicity 10 10

Mean Σ(1385) multiplicity 10 10 Mean Ξ(1530) multiplicity 10 10

Mean Ω∓ 10 10
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Table A.4: ALEPH_1991_S2435284 [41]

Observable Weight

gen. mult.

Total charged multiplicity 1.0 -

Table A.5: DELPHI_1999_S3960137 [42]

Observable Weight Observable Weight

gen. mult. gen. mult.

ρ0
scaled momentum 1.0 - f 0

(980) scaled momentum 1.0 -

f2(1270) scaled momentum 1.0 -

Table A.6: DELPHI_1996_S3430090 [31]

Observable Weight Observable Weight

gen. mult. gen. mult.

In-plane p⊥ in GeV w.r.t. thrust axes 1.0 - Out-of-plane p⊥ in GeV w.r.t. thrust axes 1.0 -

In-plane p⊥ in GeV w.r.t. sphericity axes 1.0 - Out-of-plane p⊥ in GeV w.r.t. sphericity axes 1.0 -

Rapidity w.r.t. thrust axes, yT 1.0 - Rapidity w.r.t. sphericity axes, yS 1.0 -

Scaled momentum xp =
|p |

p
beam

1.0 - Log of scaled momentum, log

(
1

xp

)
1.0 -

Mean out-of-plane p⊥ in GeV w.r.t. thrust axis vs. xp 1.0 - Mean p⊥ in GeV vs. xp 1.0 -

1-Thrust 1.0 - Thrust major, M 1.0 -

Thrust minor,m 1.0 - Oblateness, O = M −m 1.0 -

Sphericity, S 1.0 - Aplanarity, A 1.0 -

Planarity, P 1.0 - C parameter 1.0 -

D parameter 1.0 - Heavy hemisphere masses, M2

h /E
2

vis
1.0 -

Light hemisphere masses, M2

l /E
2

vis
1.0 - Di�erence in hemisphere masses, M2

d /E
2

vis
1.0 -

Wide hemisphere broadening, Bmax 1.0 - Narrow hemisphere broadening, B
min

1.0 -

Total hemisphere broadening, Bsum 1.0 - Di�erence in hemisphere broadening, B
di�

1.0 -

Energy-energy scaled momentum, EEC 1.0 - Asymmetry of the energy-energy correlation, AAEC 1.0 -

Mean charged multiplicity 750 750 Mean π+/π− multiplicity 10 10

Mean π 0
multiplicity 10 10 Mean K+/K− multiplicity 10 10

Mean K0
multiplicity 10 10 Mean η multiplicity 10 10

Mean η′ multiplicity 10 10 Mean D+ multiplicity 10 10

Mean D0
multiplicity 10 10 Mean B+/B−/B0

multiplicity 10 10

Mean f0(980) multiplicity 10 10 Mean ρ multiplicity 10 10

Mean K∗ (892)+/K∗ (892)− multiplicity 10 10 Mean K∗ (892)0 multiplicity 10 10

Mean ϕ multiplicity 10 10 Mean D∗ (2010)+/D∗ (2010)− multiplicity 10 10

Mean f2 (1270) multiplicity 10 10 Mean K∗
2
(1430)0 multiplicity 10 10

Mean p multiplicity 10 10 Mean Λ0
multiplicity 10 10

Mean Ξ− multiplicity 10 10 Mean Ω− multiplicity 10 10

Mean ∆(1232)++ multiplicity 10 10 Mean Σ(1385)+/Σ(1385)− multiplicity 10 10

Mean Ξ(1530)0 multiplicity 10 10 Mean Λ0

b multiplicity 10 10

Table A.7: DELPHI_1995_S3137023[43]

Observable Weight

gen. mult.

Ξ− scaled momentum 1.0 -

Σ± (1385) scaled momentum 1.0 -

Table A.8: OPAL_2004_S6132243[44]

Observable Weight Observable Weight

gen. mult. gen. mult.

Thrust, 1 −T , at 91 GeV 1.0 - Heavy hemisphere mass, MH , at 91 GeV 1.0 -

C parameter at 91 GeV 1.0 - Total hemisphere broadening, Bsum , at 91 GeV 1.0 -

Wide hemisphere broadening, Bmax , at 91 GeV 1.0 -

Thrust major, T
maj

, at 91 GeV 1.0 - Thrust minor, T
min

, at 91 GeV 1.0 -

Aplanarity, A, at 91 GeV 1.0 - Sphericity, S , at 91 GeV 1.0 -

Oblateness, O , at 91 GeV 1.0 - Light hemisphere mass, ML , at 91 GeV 1.0 -

Narrow hemisphere broadening, B
min

, at 91 GeV 1.0 - D parameter at 91 GeV 1.0 -

Moments of 1 −T at 91 GeV 1.0 - Moments of MH at 91 GeV 1.0 -

Moments of C at 91 GeV 1.0 - Moments of Bsum at 91 GeV 1.0 -

Moments of Bmax at 91 GeV 1.0 - Moments of y23 at 91 GeV 1.0 -

Moments of T
maj

at 91 GeV 1.0 - Moments of T
min

at 91 GeV 1.0 -

Moments of S at 91 GeV 1.0 - Moments of O at 91 GeV 1.0 -

Moments of ML at 91 GeV 1.0 - Moments of B
min

at 91 GeV 1.0 -
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Table A.9: OPAL_2000_S4418603 [45]

Observable Weight

gen. mult.

K0
scaled momentum 1.0 -

Table A.10: OPAL_1998_S3780481 [46]

Observable Weight Observable Weight

gen. mult. gen. mult.

uds scaled momentum 1.0 - c events scaled momentum 1.0 -

b events scaled momentum 1.0 - All events scaled momentum 1.0 -

uds events ln(1/xp ) 1.0 - c events ln(1/xp ) 1.0 -

b events ln(1/xp ) 1.0 - All events ln(1/xp ) 1.0 -

uds events mean charged multiplicity 750 750 c events mean charged multiplicity 750 750

b events mean charged multiplicity 750 750 All events mean charged multiplicity 750 750

Table A.11: OPAL_1998_S3749908 [47]

Observable Weight Observable Weight

gen. mult. gen. mult.

Photon scaled momentum 1.0 - Photon scaled momentum, ln(1/xp ) 1.0 -

π 0
scaled momentum 1.0 - π 0

scaled momentum, ln(1/xp ) 1.0 -

η scaled momentum 1.0 - η scaled momentum, ln(1/xp ) 1.0 -

ρ± scaled momentum 1.0 - ρ± scaled momentum, ln(1/xp ) 1.0 -

ω scaled momentum 1.0 - ω scaled momentum, ln(1/xp ) 1.0 -

η′ scaled momentum 1.0 - η′ scaled momentum, ln(1/xp ) 1.0 -

a±
0

scaled momentum 1.0 - a±
0

scaled momentum, ln(1/xp ) 1.0 -

Table A.12: OPAL_1998_S3702294 [48]

Observable Weight Observable Weight

gen. mult. gen. mult.

f0 (980) scaled momentum 1.0 - f2 (1270) scaled momentum 1.0 -

ϕ (1020) scaled momentum 1.0 -

Table A.13: OPAL_1997_S3608263 [49]

Observable Weight

gen. mult.

K∗0 scaled momentum 1.0 -

Table A.14: OPAL_1997_S3396100 [50]

Observable Weight Observable Weight

gen. mult. gen. mult.

Λ0
scaled momentum 1.0 - Λ0

scaled momentum, ln(1/xp ) 1.0 -

Ξ− scaled momentum 1.0 - Ξ− scaled momentum, ln(1/xp ) 1.0 -

Σ+ (1385) scaled momentum 1.0 - Σ+ (1385) scaled momentum, ln(1/xp ) 1.0 -

Σ− (1385) scaled momentum 1.0 - Σ− (1385) scaled momentum, ln(1/xp ) 1.0 -

Ξ0 (1530) scaled momentum 1.0 - Ξ0 (1530) scaled momentum, ln(1/xp ) 1.0 -

Λ0 (1520) scaled momentum 1.0 - Λ0 (1520) scaled momentum, ln(1/xp ) 1.0 -
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Table A.15: OPAL_1996_S3257789 [51]

Observable Weight Observable Weight

gen. mult. gen. mult.

J/Ψ scaled momentum 1.0 - J/Ψ Multiplicity 10 10

Ψ′ Multiplicity 10 10

Table A.16: OPAL_1995_S3198391 [52]

Observable Weight

gen. mult.

∆++ scaled momentum 1.0 -

Table A.17: OPAL_1994_S2927284 [53]

Observable Weight Observable Weight

gen. mult. gen. mult.

π± momentum 1.0 - K± momentum 1.0 -

p, p̄ momentum 1.0 -
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Table A.18: PDG_HADRON_MULTIPLICITIES [54]

Observable Weight Observable Weight

gen. mult. gen. mult.

Mean π+ multiplicity 10 10 Mean π 0
multiplicity 10 10

Mean K+ multiplicity 10 10 Mean K0
multiplicity 10 10

Mean η multiplicity 10 10 Mean η′(958) multiplicity 10 10

Mean D+ multiplicity 10 10 Mean D0
multiplicity 10 10

Mean D+s multiplicity 10 10 Mean B+,B0

d multiplicity 10 10

Mean B+u multiplicity 10 10 Mean B0

s multiplicity 10 10

Mean f0 (980) multiplicity 10 10 Mean a+
0
(980) multiplicity 10 10

Mean ρ0 (770) multiplicity 10 10 Mean ρ+ (770) multiplicity 10 10

Mean ω (782) multiplicity 10 10 Mean K∗+ (892) multiplicity 10 10

Mean K∗0 (892) multiplicity 10 10 Mean ϕ (1020) multiplicity 10 10

Mean D∗+ (2010) multiplicity 10 10 Mean D∗+s (2112) multiplicity 10 10

Mean B∗ multiplicity 10 10 Mean J/Ψ(1S ) multiplicity 10 10

Mean Ψ(2S ) multiplicity 10 10 Mean ϒ(1S ) multiplicity 10 10

Mean f1 (1285) multiplicity 10 10 Mean f1 (1420) multiplicity 10 10

Mean χcl (3510) multiplicity 10 10 Mean f2 (1270) multiplicity 10 10

Mean f ′
2
(1525) multiplicity 10 10 Mean K∗0

2
(1430) multiplicity 10 10

Mean B∗∗ multiplicity 10 10 Mean D+s1
multiplicity 10 10

Mean D+s2
multiplicity 10 10 Mean p multiplicity 10 10

Mean Λ multiplicity 10 10 Mean Σ0
multiplicity 10 10

Mean Σ− multiplicity 10 10 Mean Σ+ multiplicity 10 10

Mean Σ± multiplicity 10 10 Mean Ξ− multiplicity 10 10

Mean ∆++ (1232) multiplicity 10 10 Mean Σ− (1385) multiplicity 10 10

Mean Σ+ (1385) multiplicity 10 10 Mean Σ± (1385) multiplicity 10 10

Mean Ξ0 (1530) multiplicity 10 10 Mean Ω− multiplicity 10 10

Mean Λ+c multiplicity 10 10 Mean Λ0

b multiplicity 10 10

Mean Λ(1520) multiplicity 10 10
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