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Abstract
We consider localized perturbations of four-form q-theory [1–3] at the equilibrium point (µ = µ0

or q = q0) and find the standard linearized Einstein equation. The on-shell graviton mass, in

particular, vanishes.
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The main equations to be used have been derived in Ref. [2] and will be referred to
explicitly, but the notation of the composite pseudoscalar F will be changed to q.

The action is given by Eq. (2.1) of Ref. [2] with the Ansatz G(q) = GN = constant.
Recall that the 4-form field strength can be written solely in terms of partial derivatives ∂κ
instead of covariant derivatives ∇κ,

Fκλµν ≡ ∇[κAλµν] = ∂[κAλµν] , (1)

where a pair of square brackets around spacetime indices stands for complete anti-
symmetrization (without additional normalization factor). Now, q is defined by

q(x) ≡ − 1

24

1√
−g(x)

Fκλµν(x) ϵ
κλµν , (2)

with Levi–Civita symbol ϵκλµν .
The only term in the action involving the q-field is a potential-type term:

Ipot =

∫
R4

d4x
√
−g ϵ(q) , (3)

with energy density

ϵ(q) = Λbare + ϵdyn(q) . (4)

The following Ansatz for the function ϵdyn of the dynamic q-field was used in Ref. [3]:

ϵdyn(q) = q2 + (EP )
8/q2 , (5)

with the Planck energy EP ≡
√
1/GN ≈ 1.22 × 1019 GeV. Other choices for ϵdyn(q) are

certainly possible.
The gravitational field equation, given by Eq. (2.3) of Ref. [2] for G(q) = GN ,

1

8πGN

(
Rµν −

1

2
Rgµν

)
= ρV (q) gµν − T M

µν , (6)

has a source term with the standard energy-momentum tensor T M
µν of the matter fields and

a cosmological-constant-type term with gravitating energy density

ρV (q) ≡ ϵ(q)− q dϵ(q)/dq . (7)

The equilibrium configuration has a constant value q0 of the q-field, so that

ρV (q0) = 0 . (8)

Using Cartesian spacetime coordinates (x0, x1, x2, x3) = (t, x, y, z), the equilibrium con-
figuration has the following fields:

gµν(x) = gµν(x) = ηµν ≡ [diag(−1, 1, 1, 1)]µν , (9a)

Aλµν(x) = Aλµν(x) , (9b)

q(x) = q(x) = q0 , (9c)

with, for example, the 3-form gauge field

Aλµν =

{
−4 q0 t ϵλµν , for {λµν} = P{1, 2, 3} ,

0 , otherwise ,
(10)

with P standing for any permutation.
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Now consider localized perturbations hµν(x) and aλµν(x):

gµν(x) = ηµν + hµν(x) , (11a)

Aλµν(x) = Aλµν(x) + aλµν(x) . (11b)

Then, the Maxwell-type field equation, given by Eq. (2.5) of Ref. [2] for G(q) = GN ,

∂µ

(
dϵ(q)

dq

)
= 0 , (12)

requires q to stay unchanged. Specifically, the relevant combination (−g)−1/2 Fκλµν from (2)
must have a linear perturbation proportional to a constant C1,

(−1
2
h λ
λ ) q0 ϵκλµν + ∂[κ aλµν] ≡ δ1q ϵκλµν = C1 ϵκλµν . (13)

For localized perturbations, this constant C1 vanishes and

δ1q = 0 , (14)

for

∂[κ aλµν] =
1
2
q0 h

λ
λ ϵκλµν . (15)

Hence, aλµν is determined by hµν , which, in turn, is determined by the Einstein equation
(6).

In fact, the remaining equation is precisely the standard linearized Einstein equation for
hµν , possibly with matter-fields perturbations but still with ρV (q) = ρV (q0) = 0. There is,
thus, no on-shell graviton mass. Physically, we can have a single binary-star system emitting
gravitational waves, which propagate in the same way as standard GR without cosmological
constant (Λ = 0). In our linearized theory with dynamic vacuum energy (needed to cancel
Λbare), the binary-star system generates outgoing gravitational waves but no outgoing waves
of q-fields (consistent with the fact that the 3-form gauge field has no propagating degrees
of freedom [8, 9]).

Final remarks:

1. In equilibrium, the appropriate constant value q0 of the dynamic q-field [3] allows
for the cancellation of a bare cosmological constant Λbare. The resulting spacetime
is Minkowskian. The introduction of a sufficiently small amount of matter with a
localized distribution then perturbs the metric by a contribution hµν(x). But the 3-
form gauge field perturbation aλµν(x) can adjust itself, according to (15), in order to
keep the q-field at the constant value q0 needed for the perfect cancellation of Λbare.

2. The t-behavior of (10) may be compared with that of Dolgov’s theory [4, 5] having an
asymptotic vector-field component A0 ∼ (Q0/2) t. But the latter theory ruins the local
Newtonian gravitational dynamics [6], which can only be restored by the introduction
of a further vector field Bµ with a special structure of the potential term of the action
density [7]. How does four-form q-theory manage to keep the Newton-Einstein gravity
theory unharmed to leading order? The short answer appears to be gauge invariance.
Indeed, the Dolgov theory with a single massless vector field Aν(x) has no gauge
invariance and the basic dynamic variable is A ν

µ ≡ ∇µA
ν ≡ ∂µA

ν + Γν
µρ A

ρ. The
four-form q-theory with a three-form field Aλµν(x) does have gauge invariance and the
basic gauge-invariant dynamic variable (1) has a curl-type structure, with the affine
connection terms Γν

µρ cancelling out.
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