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Dark matter from dark energy in q-theory
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A constant (spacetime-independent) q-field may play a crucial role for the cancellation of Planck-scale
contributions to the gravitating vacuum energy density. We now show that a small spacetime-dependent
perturbation of the equilibrium q-field behaves gravitationally as a pressureless perfect fluid. This makes the
fluctuating part of the q-field a candidate for the inferred dark-matter component of the present universe. For
a Planck-scale oscillation frequency of the q-field perturbation, the implication would be that direct searches
for dark-matter particles would remain unsuccessful in the foreseeable future.
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1. INTRODUCTION

A condensed-matter-type approach to the cosmolog-
ical constant problem [1] is given by q-theory [2, 3, 4, 5].
The aim of the q-theory formalism is to describe the
thermodynamics and dynamics of the deep quantum
vacuum without detailed knowledge of the microscopic
(Planck-scale) degrees of freedom. Instead, an effec-
tive theory is considered with one or more conserved
q-fields. For constant (spacetime-independent) q-fields,
the thermodynamics leads to an exact cancellation of
the quantum-field zero-point-energies in equilibrium,
which partly solves the cosmological constant problem.

It was already noted in Ref. [3] that a rapidly-
oscillating q-field could give a significant contribution
to the inferred dark-matter component of our present
universe. Here, we expand on this dark-matter aspect
of q-theory.

2. SETUP

Consider the particular realization of q-theory based
on a 3-form gauge field A with a corresponding 4-form
field strength F ∝ q (see Refs. [2, 3] and further ref-
erences therein). The action is now taken to include a
kinetic term for the q-field [6],

S = −
∫
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√
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Fαβγδ = q
√
−g ϵαβγδ , Fαβγδ = q ϵαβγδ/

√
−g , (1c)

where the functions ϵ(q) and K(q) in (1a) involve only
even powers of q, as q is a pseudoscalar according to
(1c) with the Levi–Civita symbol ϵαβγδ. In the 4-form
realization, the mass dimension of q is 2. Here, and else-
where, we use natural units with c = ~ = 1 and take the
metric signature (− + ++). For the curvature tensors,
we use the same conventions as in Ref. [3].

The Lagrange density L SM in the action (1a) in-
volves the fields of the standard model (SM) of elemen-
tary particle physics. In principle, it is also possible to
replace Newton’s gravitational constant GN by a func-
tion G(q), but we will not do so in the present article as
we already have explicit q derivatives in the action. Note
that the energy density ϵ(q) in the integrand of (1a) may
contain a constant term Λbare of arbitrary sign.

With the definition

C(q) ≡ K(q) q2 , (2)

the equations of motion for the 3-form gauge field can
be written as a generalized Maxwell equation,

∇β
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dq
− 1
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∇α q∇αq − C(q)� q

)
= 0 . (3)

The solution of this generalized Maxwell equation is
given by

dϵ(q)

dq
− 1

2

dC(q)

dq
∇α q∇αq − C(q)� q = µ . (4)

with an integration constant µ.
The Einstein equation from (1a) reads
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The contribution of the 3-form gauge field to the energy-
momentum tensor is given by

T
(q)
αβ = − gαβ

(
ϵ(q)− µ q +

1

2
C(q)∇α q∇αq

)
+C(q)∇α q∇β q , (6)

where the solution (4) with integration constant µ has
been used to simplify the expression.

Three remarks on the q-field energy-momentum
tensor are in order. First, for constant (spacetime-
independent) q-fields, the energy-momentum tensor
(6) has a cosmological-constant-type term − gαβ Λeff(q)
with a gravitating vacuum energy density ρV (q) differ-
ent from energy density ϵ(q) of the action,

Λeff(q)
∣∣
q=const.

= ρV (q) = ϵ(q)− q
dϵ(q)

dq
, (7)

where µ has been replaced by dϵ/dq according to (4).
Second, for nonconstant q-fields, we observe that

terms with (dC/dq) (∇ q)2 and C � q have been ab-
sorbed completely by the constant µ in (6) and that
the two remaining terms with C (∇ q)2 have the same
structure as if q were a fundamental (pseudo-)scalar.

Third, in a cosmological context with q = q(t), the q-
derivative terms in the action (1a) allow the vacuum en-
ergy density ρV (q) to change with cosmic time t even for
constant gravitational coupling, G(q) = GN (compare
with the discussion in the second paragraph of Sec. II
in Ref. [3]). For the moment, we postpone the study of
these relaxation effects.

3. EQUILIBRIUM Q-FIELD

In equilibrium, the cosmological constant Λbare

(from quantum-field zero-point-energies, cosmological
phase transitions, or other origins) is cancelled by a
spacetime-independent q-field of appropriate magnitude
q0. This cancellation mechanism by the composite pseu-
doscalar q-field is essentially different from a possible
cancellation mechanism by a fundamental pseudoscalar
field ϕ; see, in particular, the discussion of Sec. 2 in
Ref. [4].

Specifically, we have for the equilibrium state

q(x) = constant = q0 , (8a)

µ = µ0 = dϵ/dq
∣∣
q=q0

, (8b)

ϵ(q0)− µ0 q0 = 0 . (8c)

According to (6) and (7) for constant q, the last equality
(8c) corresponds to the nullification of the gravitating
vacuum energy density [2],

Λeff(q0) ≡ ρV (q0) = 0 . (9)

A further stability condition is given by the positivity
of the inverse isothermal vacuum compressibility [2],

(
χ0

)−1 ≡

[
q2

d2ϵ(q)

dq2

]
q=q0

> 0 . (10)

Without additional matter, the Einstein equation
(5) for the equilibrium q-field (8) gives Minkowski space-
time with the metric

gαβ(x)
∣∣
equil.

= ηαβ =
[
diag(−1, 1, 1, 1)

]
αβ

, (11)

for standard Cartesian coordinates (x0, x1, x2, x3) =
(t, x, y, z).

The question is still what the orders of magnitude
are of q0 and 1/χ0. If we assume that the theory (1a)
without the SM term only contains a single energy scale,
then that scale must be of order of the Planck energy

EP ≡ (GN )−1/2 ≈ 1.22× 1019 GeV . (12)

In that case, we have

q0
?∼ (EP )

2 , (13a)

1/χ0
?∼ (EP )

4 , (13b)

where the question marks are to remind us that these
estimates are based on an assumption. For definiteness,
we will phrase the rest of the discussion in terms of the
Planck-scale estimates (13), but the discussion can be
readily adapted if the relevant energy scale is signifi-
cantly different from the Planck energy scale EP .

The outstanding dynamical question is how the equi-
librium state is reached. It appears that energy ex-
change between the vacuum q-field and the matter fields
plays a crucial role. For the special case of massless-
particle production, it has been found that the equi-
librium value q0 is reached dynamically and that the
final metric corresponds to the one of Minkowski space-
time [5]. As the present article is explorative, we will
simply start from the equilibrium state.

4. PRESSURELESS PERFECT FLUID

Now consider a small spacetime-dependent change
of the equilibrium q-field,

q(x) = q0 + q0 ξ(x) , (14)

in terms of a dimensionless real scalar field ξ(x) with
|ξ(x)| ≪ 1. Also take

K(q) = constant = (q0)
−3 , (15a)

q0 > 0 , (15b)
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so that C(q0) from (2) is positive.
The reduced Maxwell equation (4) for µ = µ0 gives

the following Klein–Gordon equation [6]:

� ξ − 1

q0

[
q2

d2ϵ(q)

dq2

]
q=q0

ξ = 0 , (16)

where higher-order ξ terms have been omitted. Neglect-
ing, at first, the spatial derivatives of ξ, the solution of
(16) is a rapidly-oscillating homogeneous function,

ξ(t) = aξ sin
(
ω t+ φξ

)
, (17a)

ω2 = (q0)
−1(χ0)

−1 ?∼ (EP )
2 , (17b)

where the small amplitude aξ and the phase φξ in (17a)
are determined by the boundary conditions and where
the last estimate in (17b) follows from (13).

For a time-dependent homogeneous perturbation
ξ(t) in (14), the energy-momentum tensor (6) becomes

T
(q)
00 =

1

2
q0 (∂t ξ)

2 +
1

2
(χ0)

−1ξ2 , (18a)

T
(q)
11 =

1

2
q0 (∂t ξ)

2 − 1

2
(χ0)

−1ξ2 . (18b)

Note that the structure of (18) is the same as that of
a fundamental scalar field ϕ(t), which agrees with the
second remark at the end of Sec. 2.. With the rapidly-
oscillating solution (17), we get

T
(q)
00 =

1

2
(χ0)

−1 (aξ)
2 , (19a)

T
(q)
11 = T

(q)
22 = T

(q)
33 = 0 , (19b)

T
(q)
01 = T

(q)
02 = T

(q)
03 = 0 , (19c)

where we have added the results for the other compo-
nents.

At this moment, recall that a perfect fluid has an
energy-momentum tensor of the form

Tαβ = P gαβ + (ρ+ P )UαUβ , (20)

with gαβ = ηαβ and Uα = (1, 0, 0, 0) in Minkowski
spacetime. From (19), we then conclude that the homo-
geneous ξ perturbation of the vacuum q-field behaves as
a perfect fluid with the following values for the energy
density and pressure:

ρ (q−perturbation) =
1

2
(χ0)

−1 (aξ)
2 , (21a)

P (q−perturbation) = 0 , (21b)

where aξ with |aξ| ≪ 1 is determined by the initial
boundary conditions [in a cosmological context, taken

at the moment when the homogeneous vacuum energy
density ρV (t) has reached its final near-zero value; see
Sec. 5 for further discussion].

Next, consider additional space-dependence of the ξ
field with a typical length-scale

L ≫ c/ω
?∼ ~ c/EP ∼ 10−35 m , (22)

where ~ and c have been temporarily reinstated and the
estimate (17b) for ω has been used. (For applications
in a cosmological context, the length-scale L must be
less than the cosmological length-scale c/H0 ∼ 1026 m.)
The corrections to (19) will then be small, namely of
order q0 ξ

2/L2, which is a factor (Lω)−2 ≪ 1 times the
leading term (19a). For such large-scale perturbations,
there will be, to high precision, a pressureless perfect
fluid and this fluid will cluster gravitationally, just as
dark matter with standard Newtonian gravitation and
dynamics.

5. CONCLUSION

In the present article, we have shown that a small
perturbation of the equilibrium q-field behaves gravi-
tationally as a pressureless perfect fluid. As such, the
fluctuating part of the q-field is a candidate for the in-
ferred dark-matter component of the present universe
(see, e.g., Sec. 26 of Ref. [7] for a review).

There are, however, many open questions. The main
question concerns the amount of dark matter (DM) vs.
that of dark energy (DE). The presently observed uni-
verse is very close to equilibrium, ρV, obs ≪ (EP )

4, but
still somewhat away from it as ρV, obs ̸= 0, which gives
in our framework qobs = q0 + δq with 0 < |δq| ≪ |q0|.
We, therefore, need to find a mechanism which results
in the small constant perturbation δq of the q-field for
the present universe. Several possible mechanisms have
been explored, including effects from TeV-mass particle
decays [8, 9, 10] or from eV-mass neutrinos [11].

A final, definitive calculation of the appropriate δq
and the corresponding ρV = −PV > 0 (to be interpreted
as the inferred “dark-energy” component of the present
universe) is not yet available. The same can be said
of a further perturbative component ξ(x) in the q-
field, q(x) = q0 + δq + q0 ξ(x), which would determine
the present amount of dark matter. Experimentally,
we have ρDE/ρDM ∼ 3 and ρDE + ρDM ∼ ρcritical ≡
3H2

0/8πGN (see, e.g., Secs. 26 and 27 of Ref. [7]).
Another open question concerns the effects on the

clustering of subleading terms in the q-field energy-
momentum tensor coming from the spatial derivatives
of the perturbation ξ(x). A further issue is the ultimate
origin of the required perturbations in the dark-matter
energy density with length scales obeying (22), which
may or may not involve inflation-type processes.
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To conclude, even though we still need to work out
many details, we do have a clear prediction. Our pro-
posal is to identify dark matter with an oscillating com-
ponent of the q-field, most likely having a Planck-scale
frequency. If correct, this implies that direct detection
of dark-matter particles will fail, at least in the foresee-
able future with the currently available energies.
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