
So� Physics at the LHC

Masterarbeit

von

Patrick Kirchgaeßer

am Institut für Theoretische Physik

der Fakultät für Physik

Referent: PD. Dr. S. Gieseke

Korreferent: Prof. Dr. D. Zeppenfeld

November 2016





Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-

deren als die angegebenen Hilfsmittel benutzt, die wörtlich oder inhaltlich übernomme-

nen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für

Technologie (KIT) zur Sicherung guter wissenschaftlicher Praxis in der aktuell gültigen

Fassung beachtet habe.

Karlsruhe, den 21. November 2016

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Patrick Kirchgaeßer)

Als Masterarbeit anerkannt.

Karlsruhe, den 21. November 2016

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(PD. Dr. S. Gieseke)





Contents

1. Introduction 1

2. Prerequisites 3

2.1. QCD Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Asymptotic freedom and con�nement . . . . . . . . . . . . . . . . . . . . 4

2.3. Regge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Monte Carlo event generators 9

3.1. Hard scattering process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Parton shower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1. Single branching . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2. Multiple branchings . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.3. Initial state showering . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.4. Shower algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3. Hadronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1. Gluon splitting and cluster formation . . . . . . . . . . . . . . . . 15

3.3.2. Cluster �ssion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.3. Cluster and particle decays . . . . . . . . . . . . . . . . . . . . . 18

4. Multiple parton interactions 21

4.1. Semi-hard interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2. Soft interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5. Multiperipheral particle production 29

5.1. Multiperipheral kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1. General tuning procedure . . . . . . . . . . . . . . . . . . . . . . 40

5.3.2. Tuning to minimum bias data . . . . . . . . . . . . . . . . . . . . 41

i



Contents

5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4.1. Rapidity gap analysis . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.2. Analysis of non-single-di�ractive events . . . . . . . . . . . . . . 46

5.4.3. Extrapolation to 13 TeV . . . . . . . . . . . . . . . . . . . . . . . 47

5.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6. Colour reconnection 49

6.1. Colour reconnection models in Herwig 7 . . . . . . . . . . . . . . . . . . 50

6.1.1. Plain colour reconnection . . . . . . . . . . . . . . . . . . . . . . 52

6.1.2. Statistical colour reconnection . . . . . . . . . . . . . . . . . . . . 53

6.1.3. E�ect of colour reconnection on the new softMPI model . . . . . 53

6.2. Extensions to colour reconnection . . . . . . . . . . . . . . . . . . . . . . 53

6.2.1. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1. Tuning to hadron colliders . . . . . . . . . . . . . . . . . . . . . . 58

6.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.1. Rapidity gap analysis . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4.2. Analysis of non-single-di�ractive events . . . . . . . . . . . . . . 63

6.4.3. Baryon ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7. Summary and outlook 67

Bibliography 69

A. Tuning 75

B. Eikonal approximation 79

ii



1. Introduction

The goal of modern particle physics is to strive towards a more sound understanding

of nature. One big step in that direction was achieved with the discovery of the Higgs

boson at the Large Hadron Collider (LHC) in 2012, the last missing piece of the Standard

Model of particle physics. In order to open the doors for future discoveries, improvements

of theoretical predictions and an understanding of all aspects of hadronic collisions are

essential.

In this regard Monte Carlo event generators play an important role. They simulate the

outcome of particle collisions which can be compared to data measured in experiments at

the LHC. Large parts of the event generation depend on perturbative calculations. These

high precision calculations are limited to a regime in which perturbation theory is valid.

Many aspects of the event generation fall outside that regime and have to be modeled

by theoretical considerations and phenomenological constraints. One example is hadro-

nisation which describes the transition from quarks and gluons to hadrons. Another ex-

ample is the simulation of the underlying event. Hadrons are composite objects made of

quarks and gluons. During a collision there can be several interactions among the con-

stituents. Experimental observations indicate that more than one pair of partons may

interact during one hadronic collision. These additional interactions are called multiple

parton interactions and contribute signi�cantly to the underlying event. These interac-

tions typically occur at smaller transverse momenta than the main hard interaction but

still lie within the perturbative regime. In order to describe multiple parton interactions

outside the perturbative regime, so called soft interactions, non-perturbative models have

to be applied.

In the �rst part of this thesis we implement a new model for such soft multiple parton

interactions, based on the ideas from Regge theory, in the Monte Carlo event generator

Herwig 7 [1]. In the second part we investigate and implement additional possibilities of

colour reconnection as an extension to the hadronisation model applied in Herwig 7.

Both models are fully compatible with Herwig 7 and can be seen as an extension and

alternative to already existing models.
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1. Introduction

Ch. 2 explains theoretical concepts with a focus on strong interactions and outlines the

ideas behind Regge theory. The next chapter explains the di�erent steps of the simulation

of a particle collision with the event generator Herwig 7. In Ch. 4 we introduce multi-

ple parton interactions in the conext of Herwig 7 and Ch. 5 covers the implementation

and analysis of the new model for soft multiple parton interactions. In Ch. 6 we investi-

gate colour reconnection and discuss the implemented extensions to the model before we

summarise the �ndings of this work and give a brief outlook on future topics in Ch. 7.
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2. Prerequisites

This thesis deals with the implementation of non-perturbative models in the event gen-

eration of Herwig 7 [1]. In order to embed these models in the overall picture of particle

physics we give a brief outline of particle physics theory. Until the success of quan-

tum �eld theories it was tried to describe the interactions among particles in a non-

perturbative framework called Regge theory [2]. Regge theory can be seen as a comple-

mentary approach to the subject and many of its ideas and results are of crucial impor-

tance in particle physics. In modern elementary particle physics the Standard Model (SM)

is used to describe the fundamental interactions of particles. The SM is the combination of

two quantum �eld theories, Quantum Chromodynamics (QCD) and the electroweak the-

ory. It describes all known fundamental particles and correctly postulated the existence

of the Higgs boson which was discovered at the LHC in 2012 [3, 4]. QCD describes the el-

ementary interactions among partons such as quarks and gluons. Observed in nature are

hadrons which orginate from these elementary processes at the parton level. The forma-

tion of hadrons happens at the soft scaleQ0 ≈ O (1 GeV) where perturbation theory is not

valid anymore and cannot be understood from �rst principles. In order to describe non-

perturbative e�ects they have to modeled based on phenomenological considerations.

In Sec. 2.1 and 2.2 we descuss the behaviour of the QCD Lagrangian which describes

the physics of strong interactions at di�erent energy scales. In Sec. 2.3 we outline the

ideas behind Regge theory and explain its importance for modern particle physics.

2.1. QCD Lagrangian

Here we discuss the component of the Standard Model that describes the theory of strong

interactions. The QCD Lagrangian is based on the non-abelian SU (3)C gauge group and

is given by

LQCD =
∑

Ψ=u,d ,s,...

Ψ̄(iγ µDµ −mΨ)Ψ −
1

4

FaµνFaµν + Lgauge + Lghost , (2.1)
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2. Prerequisites

where Dµ is the covariant derivative

Dµ = ∂µ − iдsT
aGa

µ , (2.2)

and Ψ are the massive quark �elds which transform under SU (3)C as colour triplets Ψ =

(Ψ1,Ψ2,Ψ3). The �eld strength tensor Faµν is given by

Faµν = ∂µG
a
ν − ∂νG

a
µ + дs f

abcGb
µG

c
ν , (2.3)

where дs is the strong coupling constant andGa
µ are the eight massless gluon �elds which

correspond to the eight SU (3)C generatorsT a
. The f abc are the structure constants de�ned

by the commutator relations of the generators of the SU (3)C group,[
T a,Tb

]
= i f abcT c . (2.4)

In the fundamental representation of SU (3)C the eight generators are the Gell-Mann ma-

trices T a
ij =

λai j
2

.

In order to de�ne the gluon propagator a particular gauge choice has to be made which

is done via the gauge �xing term Lgauge. The term Lghost is a complex scalar �eld which

is needed to cancel unphysical degrees of freedom that would otherwise propagate in

covariant gauges.

The �rst term in Eq. (2.1) describes the kinetic energy of the quarks and the interactions

with the gluons. It is important to note that the �avour of the quarks is not changed by

the gluons. In contrast to abelian gauge theories self interactions between gluons are

contained in the terms proportional to F 2

µν which lead to asymptotic freedom.

2.2. Asymptotic freedom and confinement

Asymptotic freedom [5, 6] means that the coupling of the strong interaction αs = д
2

s /4π

becomes small at high energies or short distances. This scale dependence of the coupling

is expressed by the Renormalisation Group Equation (RGE),

β (αs ) = Q
2

dαs
dQ2
. (2.5)

In this equation β can be expanded as a power series in αs ,

β (αs (Q
2)) = −αs (Q

2)2(b1 + b2αs (Q
2) + ...) , (2.6)

4



2.3. Regge theory

where b1 =
33−2nf

12π , b2 =
153−19nf

24π 2
and the variable n f is the number of active �avours. In

QCD n f is typically ≤ 6 which leads to a vanishing coupling constant at asymptotically

large energies which is called asymptotic freedom. If the expansion of the β function in

Eq. (2.6) is truncated after the quadratic term α2

s the solution to Eq. (2.5) reads

αs (Q
2) =

αs (µ
2)

1 + αs (µ2)b1 ln(Q
2

µ2
)
. (2.7)

The value of the coupling constant αs cannot be calculated but has to be measured. A

typical choice for µ is the pole mass of the Z -boson µ2 = M2

Z . The coupling at this scale

has been measured to be αs (M
2

Z ) ≈ 0.12. With this value for αs (M
2

Z ) Eq. (2.7) exceeds

unity forQ2 < O (0.1−1 GeV) and perturbation theory can no longer be applied. Another

parametrisation of Eq. (2.7) is

αs (Q
2) =

1

b1 ln
Q2

Λ2

QCD

, (2.8)

where ΛQCD is a dimensionful parameter which depends on the renormalisation scheme

and the order in which the β function is computed. This equation de�nes the scale where

the coupling constant diverges. Perturbation theory is only valid for values of Q2
much

larger than Λ2

QCD
. For a 4-loop beta function in the MS scheme it has the value ΛMS

QCD
=

220 MeV. Note: In 2016 αs was calculated at 5-loop accuracy in Ref. [7].

Experimental observations indicate that the only observed states are colour singlet

states under SU (3)C , namely mesons and baryons. This phenomenon is called (colour)
con�nement.

2.3. Regge theory

Before strong interactions were considered in a �eld theoretical approach, Regge theory

was used very successfully in describing the scattering of strongly interacting particles

[2, 8]. The starting point is the partial wave expansion of the amplitude for a two body

scattering process a + b → c + d ,

A (s,t ) =
∞∑
l=0

(2l + 1)al (t )Pl (1 +

2s

t
) , (2.9)

where al are the partial wave amplitudes, Pl are the Legendre polynomials and the index

l denotes the orbital angular momentum. Eq. (2.9) can be converted to a contour integral

5



2. Prerequisites

in the complex angular momentum plane using the Sommerfeld-Watson transformation

[8]. In the Regge limit, where s � |t | the amplitude vanishes for |l | → ∞ where the

asymptotic behaviour of the Legendre polynomial was exploited in order to extract the

high energy behaviour of the scattering amplitude. In this limit only the sum over the

residues of the Regge poles at lk = αk (t ) remain and the Legendre polynomials can be

approximated by ( 2s
t )

l
. Only the leading Regge pole with the largest value of the real part

of α (t ) has to be considered which leads to a power-like behaviour of the amplitude,

A (s,t )
s→∞
→ β (t )η(t )sα (t ) , (2.10)

where the position of the leading Regge pole is denoted by α (t ). The function β (t ) is the

residue and η(t ) is the signature factor which is given by

η(t ) = −
1 + τe−iπα (t )

sin iα (t )
. (2.11)

Amplitudes for t-channel processes with positive t are expected to have poles correspond-

ing to the exchange of physical particles of spin j and mass m, α (t = m2) = j. In Ref. [9]

it was found that by plotting light mesons against their square mass the relationship be-

tween spin j and squared massm2
is linear,

α (t ) = α (0) + α ′t . (2.12)

This function α (t ) is called Regge trajectory or Reggeon where α (0) is the intercept and

α ′ the slope of the Reggeon. With the values of α (0) and α ′ the asymptotic behaviour of

Eq. (2.10) is de�ned.

With the optical theorem the asymptotic behaviour of the total cross section σtot can

be calculated from a given Regge amplitude such as Eq. (2.10). The total cross section for

that process reads,

σtot ≈
1

s
=A (s,t = 0) ∝ sα (0)−1 . (2.13)

From the values that were obtained for the trajectory of ρ-mesons in Ref. [9] follows,

α (t ) = 0.55 + 0.86 GeV
−2t . (2.14)

With these values the total cross section (Eq. (2.13)) decreases with s . In Ref. [10] Pomer-

anchuk proved from general assumptions that the cross section vanishes asymptotically

for any process in which charge is exchanged. In experiments, on the other hand, it was

6



2.3. Regge theory

observed that the total cross section rises slowly as s increases. In order to attribute the

rise of the total cross section to a Regge trajectory, a Reggeon with intercept α (0) > 1

and quantum numbers of the vacuum has to be considered. This trajectory is named

Pomeron and denoted by P. It is therefore concluded that the trajectory of the Pomeron

dominates the scattering amplitude at high energies. In Ref. [11] Donnachie and Land-

sho� parameterised the total cross section of pp and pp̄ collisions in terms of Reggeon and

Pomeron trajectories. According to this parameterisation the pomeron intercept has the

value αP(0) = 1.0808. In Ref. [12, 13] it is shown that a Pomeron exchange can be inter-

preted as ladders of particles. Final state particles corresponding to a Pomeron exchange

are strongly ordered in rapidity. This interpretation of the Pomeron will be the basis for

the implementation of the new model for soft multiple parton interactions which will be

described in detail in Ch. 5.

We also quickly outline the connection between Pomeron exchanges and the eikonal

formalism upon which the model for multiple parton interactions of Herwig 7 is based.

The amplitude for n-pomeron exchanges can be written in terms of the born amplitude

[14]

A (n) (s,b) =
1

2i

(−χ (s,b))n

n!

, (2.15)

where χ (s,b) = −2iA (1) (s,b) is the eikonal function. It can be shown that the cross

section for exactly k cut Pomerons in the eikonal model reads

σk (s ) =

∫
d

2b
(2χ )k

k!

exp(−2χ ) . (2.16)

The inelastic cross section can be calculated by adding up all cross sections with at least

one pomeron exchanged,

σinel(s ) =
∞∑
k=1

σk (s ) =

∫
d

2b (1 − e−2χ ) . (2.17)

With the total cross section,

σtot(s ) = 2

∫
d

2b (1 − e−χ ) , (2.18)

it follows for the elastic cross section

σel(s ) =

∫
d

2b (1 − e χ )2 , (2.19)

7
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and at small momentum transfer the hadronic elastic scattering cross section can be pa-

rameterised by

dσel(t )

dt
≈

[
dσel

dt

]
t=0

e−Bel |t | , (2.20)

where Bel is the elastic slope parameter. In the eikonal model the slope of the elastic cross

section is given by [15]

Bel(s,t = 0) =
1

σtot(s )

∫
d

2b (1 − e χ ) . (2.21)
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3. Monte Carlo event generators

Herwig 7 [1] is a multi-purpose Monte Carlo event generator that simulates high-energy

particle collisions. The simulation needs to cover all aspects of the collision between

particles, including the hard scattering process, the parton shower, multiple scattering

between partons and the hadronisation of particles. The di�erent steps of a simulation

for a pp collision are shown in Fig. 3.1. The hadronic cross section for the scattering of

two partons a and b into n �nal states is calculated according to

σQCD =
∑
a,b

∫
1

0

dxadxb

∫
dΦn f

h1

a (xa,µF ) f
h2

b
(xb ,µF ) ×

1

2s
|Mab→n |

2(Φn; µF ; µR )

× Hadronisation,

(3.1)

where f ha (x ,µ ) is the PDF which states the probability of �nding a parton a with momen-

tum fraction x inside its parent hadron h at energy scale µF . The squared matrix element

|Mab→n |
2(Φn; µF ; µR ) denotes all allowed processes as a sum of Feynman diagrams that

can happen in the hard scattering process and dΦn denotes the di�erential phase space

element for n-particles appearing in the �nal state.

While the hard scattering process and the parton shower are based on perturbation the-

ory one has to rely upon models in order to simulate the hadronisation and the transition

from the unstable particles to the particles that can be observed in the detector.

This chapter gives an overview about the di�erent steps of the event generation with

Herwig 7. The generation of the hard scattering process is explained in Sec. 3.1. Sec. 3.2

describes the physics and the algorithms that are used to simulate the parton shower and

Sec. 3.3 covers the hadronisation model.

3.1. Hard scattering process

One of the key components of an event generator is the generation of the hard scattering

process with high transverse momentum transfer between the involved particles. While

the determination of the matrix element at e+e− collisions is relatively straightforward,

9



3. Monte Carlo event generators

p1

p2

Parton shower

fh1
a (xa, µF )

fh2
b (xb, µF )

Hadronisation Final state particles

Hard process

Proton remnant

Decay

γ

K

π

µ

p

n

e+/e−

Figure 3.1.: Shown is a sketch of all parts that contribute to the hadronic cross section in

a pp collision. The �avour and the momenta of incoming partons are chosen

according to proton PDFs. The hard process produces the primary outgoing

fundamental particles, the parton shower evolves the energy of these particles

down to the hadronic scale by radiating o� particles and the hadronisation de-

scribes the formation of hadrons out of quarks and gluons, which then proceed

to decay into the observed �nal state particles.

the fact that hadrons itself are composite objects makes the calculation of cross sections at

hadron colliders such as the LHC a very complicated venture. At app collision, the �avour,

the momenta and the partons who are involved in the collision have to be determined via

Parton Distribution Functions (PDFs).

In Herwig 7 the user can decide which processes to take into account. A limited selec-

tion of matrix elements is already implemented in the library of Herwig 7 and with an

interface to external matrix element providers like MadGraph [16] or VBFNLO [17] it is

possible to include more matrix elements than the default ones. A standard format for the

exchange of data between di�erent programs is speci�ed by the Les Houches Accord [18].

3.2. Parton shower

In Herwig 7 the hard scattering process is calculated up to Next-to-leading order (NLO)

QCD. Some Next-to-Next-to-leading order (NNLO) corrections are available but beyond

that the complexity of the calculation grows exponentially. The parton shower approx-

imation resums the e�ects of higher order corrections of perturbative QCD. It starts at

the energy scale of the hard scattering process Q2
and evolves the particles down to the

10



3.2. Parton shower

hadronisation scale Q2

0
∼ 1 GeV. Two di�erent shower algorithms are implemented in

Herwig 7, the angular ordered q̃-shower and the dipole shower which can be used as an

alternative.

3.2.1. Single branching

In order to outline a formula for additional parton radiation we start with the cross section

for the process e+e− → qq̄ = σqq̄ which can be calculated to leading order in perturbation

theory. The di�erential cross section for the next-to-leading-order process, e+e− → qq̄д =

σqq̄д, where one of the quarks emits a gluon is given by [19]

dσqq̄д

d cosθdz
≈ σqq̄CF

αs
2π

2

sin
2 θ

1 + (1 − z)2

z
, (3.2)

where CF is the colour factor. In Eq. (3.2) we see that the cross section σqq̄д is propor-

tional to the leading order process σqq̄ . The rest of the equation can be interpreted as the

probability for additional gluon emission. Eq. (3.2) has the following divergences:

• θ → 0 which means that the emitted gluon is collinear to the quark,

• θ → π which means that the gluon is back to back to the quark and collinear to the

antiquark,

• z → 0 the energy of the emitted gluon is going to zero.

First we focus on the collinear region where θ → 0 or θ → π . The term that is respon-

sible for the divergence can be written as the sum of two distributions that are describing

the divergence for one of the two collinear regions,

2

sin
2 θ
≈

1

1 − cosθ
+

1

1 − cos
¯θ
, (3.3)

where
¯θ describes the angle between the gluon д and the antiquark q̄. With this separa-

tion the di�erential cross section can be written as the sum over independent emission

distributions for each parton,

dσqq̄д ≈ σqq̄
∑

partons

αs
2π

dθ 2

θ 2
dz

1 + (1 − z)2

z
, (3.4)

where we have picked the opening angle θ between the gluon and the quark as the or-

dering variable. Other phase space parameterisations with variables that are proportional

11



3. Monte Carlo event generators

to θ lead to a mathematically-identical expression. Other used parameterisations are the

virtuality of the o�-shell quark propagator q2
, or the thransverse momentum of the gluon

k2

⊥. Because of

dθ 2

θ 2
=

dq2

q2
=

dk2

⊥

k2

⊥

(3.5)

these expressions lead to an identical result up to the leading logarithmic approximation.

It can be shown that the structure of Eq. (3.4) is completely general. The di�erential cross

section of any hard process with cross section σ0 for parton i with an additional parton j

that has momentum fraction z is given by

dσ ≈ σ0

∑
partons,i

αs
2π

dθ 2

θ 2
dzPji (z,ϕ)dϕ , (3.6)

where Pji (z,ϕ) are �avour and in general spin-dependent functions called the splitting
functions. The spin-averaged splitting functions Pji (z,ϕ) are given by,

Pqq (z) =
4

3

1 + z2

1 − z
,

Pдq (z) =
4

3

1 + (1 − z)2

z
,

Pдд (z) = 3

z4
+ 1 + (1 − z)4

z (1 − z)
,

Pqд (z) =
1

2

(z2
+ (1 − z)2) .

(3.7)

Eq. (3.6) can be used to write an iterative algorithm. The �rst step is to use it on the hard

process and generate one splitting. Treat the splitting as the new hard process and then

generate more splittings. At this stage the divergences are still not accounted for. The

absolutely collinear splitting were both partons �y in the same direction has no actual

physical e�ect. They cannot be distinguished from a single parton with the same quan-

tum numbers by any physical measurement. Therefore it is reasonable to produce only

distributions of resolvable partons above some cuto� scale Q0. This cuts o� the soft and

collinear divergences and gives a resolvable �nite emission probability.

3.2.2. Multiple branchings

In order to calculate multiple branchings we pick the virtuality of the internal quark

propapagtor q2
as the ordering variable. The factor multiplied to σ0 in Eq. (3.6) can then

be seen as the probability for the emission of a parton of type i in the energy range q2
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3.2. Parton shower

and q2
+ dq2

,

dPi =
αs
2π

dq2

q2

∫
1−Q2

0
/q2

Q2

0
/q2

dzPji (z) , (3.8)

where the limits on z come from the condition that the emitted partons have to be resolv-

able. The probability of having no resolvable branching between the scales Q0 and Q is

called the Sudakov form factor and has the form,

∆i (Q
2,Q2

0
) = exp

−
∫ Q2

Q2

0

dk2

k2

αs
2π

∫
1−Q2

0
/k2

Q2

0
/k2

dzPji (z)

 . (3.9)

The Monte Carlo implementation of the parton shower is based on the Sudakov form

factor. According to Ref. [19] one possibility to calculate the scale q′ at which the next

branching is happening is to choose a random number R between [0,1] and solve the

equation

∆i (Q
2,q′2) = R (3.10)

for q′. If q′2 > Q2

0
a branching is generated at scale q′2 and the z value is chosen according

to Pij (z). If the value of q′2 is lower than the cuto� scale Q2

0
the evolution is terminated.

The algorithm is then applied recursively for each of the products of the branching.

3.2.3. Initial state showering

Apart from �nal state radiation one also has to consider the showering of the particles be-

fore the hard collision takes place. In Monte Carlo event generators initial state radiation

is extremely ine�cient because the correct kinematics are needed in order to produce a

certain hard process of interest. The usual way how the simulation of initial state radi-

ation is handled is that the event generation starts by selecting a hard process and then

uses the parton shower algorithm to add additional radiation. In order to simulate initial

state radiation the Sudakov form factor (Eq. (3.9)) from the �nal state shower is replaced

by a Sudakov form factor which explicitly depends on the PDFs of the colliding hadrons,

∆i (Q
2,q2

;x ) = exp

−
∫ Q2

Q2

0

dk2

k2

αs
2π

∫
1−Q2

0
/k2

Q2

0
/k2

dzPji (z)
x/z fj (x/z,k

2)

x fi (x ,k2)

 . (3.11)

The evolution takes the correct probability to �nd a particular �avour with the sampled

values of momentum fraction and scale q into account. The emitted partons from the

initial state shower will go on to produce �nal state parton showers.
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3. Monte Carlo event generators

With the extra factor in Eq. (3.11) the parton shower will terminate mostly at a stage

where a valence (anti-)quark has been produced. Their PDFs dominate at high x and

low Q2
. If the parton shower does not terminate on a valence (anti-)quark, additional

branchings are performed in order to force that a valence quark is extracted from the

hadron.

3.2.4. Shower algorithms

Two shower algorithms are implemented in Herwig 7. The angular ordered q̃-shower and

the dipole shower.

3.2.4.1. Angular-ordered shower

In order to simulate the angular ordered shower, Herwig 7 uses the coherent branching

algorithm derived in Ref. [20]. The evolution scale is the variable q̃ de�ned as,

q̃ =
2E2

a (1 − cosθbc ) (1 + cosθa )
2

(1 + cosθb ) (1 + cosθc )
, (3.12)

for branchings a → bc where θb and θc are the angles between the children b,c and the

shower progenitor a. θa is the angle between parent a and its shower progenitor and Ea

denotes the energy of parent a. For small emission angles the evolution variable can be

approximated as

q̃ ≈ Eaθbc . (3.13)

As long as no gluons are involved the initial condition of the colour �ow is unique. In

order to treat the colour information of gluons in the event a random choice is made

between the two possible con�gurations of colour lines.

3.2.4.2. Dipole shower

In the Nc → ∞ limit [21] the colour structure of the event can be decomposed in a set

of colour lines. Each colour line connects a coloured parton with an anticoloured par-

ton and forms a colour-anticolour dipole. The shower is then generated according to

the dipole radiation pattern of a pair of partons. Each dipole splits into two new dipoles

when it emits a gluon. These dipoles can split again until some cuto� Q2

0
is reached and

the shower is terminated. Each emission with a �nite transverse momentum results in

a recoil of the system. Since a gluon carries both colour and anticolour and is thereby

connected to two dipoles, the recoil may a�ect the subsequent evolution of neighbour-
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3.3. Hadronisation

ing dipoles. In order to prevent that, the emission of the highest transverse momentum

from any dipole is generated �rst and this transverse momentum gives the upper limit

for the following evolution of dipoles. The total emission probability is the sum of the

two splitting functions each associated with one leg of the colour-anticolour dipole. The

implememtation of the dipole shower is based on the Catani-Seymor subtraction kernel

[22].

3.3. Hadronisation

After the parton shower perturbatively splitted the partons in the event from the scale of

the hard interaction Q2
down to some infrared cuto� scale Q2

0
a model is required that

converts the partons to hadrons at the energy scale of ΛQCD . In Herwig 7 this is done

via the cluster model [23]. The cluster model is based on the precon�nement property

of the angular-ordered parton shower [24], which states that the colour structure of the

parton shower at any scale Q2

0
is such that colour singlet combinations of partons can

be formed with an asymptotically invariant mass distribution. The mass distribution of

the colour singlets is independent of the properties of the hard scattering process or the

parton shower itself.

In the Nc → ∞ limit the colour structure of a QCD shower can be represented on a

plane as a set of colour lines each connecting a coloured parton with an anticoloured par-

ton [21]. In this limit the gluons in the shower carry both colour and anticolour and are

connected to two other partons. The remaining gluons are split non-perturbatively into

quark-antiquark pairs and clusters are then formed from colour connected quarks and an-

tiquarks. Clusters that are too heavy in order to decay directly into hadrons are �ssioned

into cluster pairs and the resulting clusters decay into excited hadrons which successively

decay into the observed particels. The whole event, ranging from the hard process to the

decay of the clusters into �nal state particles including colour lines is depicted in Fig. 3.2

for a e+e− collision.

3.3.1. Gluon splitting and cluster formation

The gluons that are left once the parton shower has terminated are split non-perturbatively

into quark-antiquark pairs where only the light �avours, up, down and strange are al-

lowed with di�erent weights. For the splitting into quarks the gluon needs to have at

least twice the mass of the lightest quarkmд > 2mq . The splitting д → qq̄ is done isotrop-

ically in the rest frame of the gluon. After the gluon splitting the event only contains
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3. Monte Carlo event generators

Figure 3.2.: Sketch of a whole process as simulated by Herwig. Shown is the Z -Boson

from the e+e− collision at

√
s = 91 GeV. The clusters are formed from colour

connected quarks and antiquarks which �ssion into smaller clusters and decay

into �nal state particles.

colour connected quarks and antiquarks. These colour connected quark pairs are formed

into colourless singlets, called clusters where the momenta of the clusters is calculated

as the sum of the momenta of the constituents pC =
∑

i pi . From now on we refer to the

clusters that are formed from partons that originate from the parton shower as primary

clusters.

According to the precon�nement property [24] the invariant mass of these clusters

is independent of the hard scattering process, the centre-of-mass energy or the parton

shower and the distribution of the clusters peaks at low invariant masses of the order

O (1 − 3 GeV). For e+e− collisions at

√
s = 91.2 GeV the invariant mass distribution of

the primary clusters is shown in Fig. 3.3 and we see that the precon�nement property is

satis�ed fairly well.

3.3.2. Cluster fission

The primary clusters can be seen as highly excited hadron resonances which decay ac-

cording to the allowed phase space and �avour of the constituents into the observed

hadrons.
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Figure 3.3.: Invariant mass distribution of primary clusters from a e+e− collision at

√
s =

91.2 GeV. The distribution peaks at small masses and has a long tail towards

higher masses. The peak at ∼ 91 GeV comes from events without initial- or

�nal state radiation.

In Fig. 3.3 we see that there is a small fraction of clusters that is too heavy to decay

directly into hadrons. These clusters need to be split into lighter clusters before they can

decay. The condition to decide whether a cluster needs to undergo �ssion is

MClpow ≥ Cl

Clpow

max
+ (m1 +m2)

Clpow , (3.14)

where M is the invariant mass of the cluster andm1,m2 are the masses of the constituent

quarks. Clpow and Clmax are free parameters of the model which have di�erent values

for di�erent quark �avours. If Eq. (3.14) is satis�ed a light quark-antiquark pair is created

from the vacuum where the �avour is again selected only from light quarks. The �ssion of

one cluster of mass M into two lighter clusters of respective masses M1 and M2 is shown

in Fig. 3.4. Once the quark �avour is selected the original cluster with mass M �ssions

into two new clusters with one of the original quarks in each of the new clusters. The

masses of the two new clusters are chosen according to

M1 =m1 + (M −m1 −mq )R
1/P ,

M2 =m2 + (M −m2 −mq )R
1/P ,

(3.15)
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3. Monte Carlo event generators

where mq is the mass of the quark from the vacuum, M1,2 are the masses of the two new

clusters after the �ssion and P controls the distribution of cluster masses according to

which the masses are sampled. Again P has distinct values for di�erent quark �avours.

The con�guration of new cluster masses M1 and M2 is accepted if the sum of the new

cluster masses is smaller than the original cluster mass, M1 +M2 ≤ M , and the sum of the

constituent masses of the new clusters is less than the mass of the new clusters.

q1

q1

q̄2

q̄2

q̄

q

M

M1

M2

Figure 3.4.: Cluster �ssion of a parent cluster of mass M into two child clusters of masses

M1 and M2. The quarks q and q̄ are sampled from light �avour quarks (u, d, s)

and have the same mass.

If one of the clusters contains a particle from the beam remnant in a hadronic collision

the mass of the two new clusters is sampled from an exponential distribution

Mi =mi +mq + x , (3.16)

where x is sampled between 0 and M −m1 −m2 − 2mq according to

dP

dx2
= e−bx , (3.17)

where b determines the slope of the mass distribution.

3.3.3. Cluster and particle decays

Once all heavy clusters are �ssioned, the clusters decay into pairs of excited hadrons,

where the type of the hadrons depends on the available phase space, the �avour and the

spin of the constituents.

After the decay products are determined by the properties of the cluster, the cluster de-

cays isotropically in its rest frame. A cluster that contains a parton from the perturbative
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3.3. Hadronisation

stage of the event retains the direction of that parton but undergoes a Gaussian smearing,

where the polar angle is sampled via

cosθsmr = 1 + Clsmr log(R ) , (3.18)

Clsmr is a free parameter distinct for di�erent quark �avours. The azimuthal angle ϕ

is distributed uniformly between 0 and 2π . If the cluster is too light in order to decay

into two new hadrons, it decays into the lightest allowed hadron instead. Energy and

momentum is reshu�ed between neighbouring clusters in order to give the hadron the

correct physical mass. The hadrons that originate from cluster decays are excited hadron

states which decay into the �nal state particles that can be observed in the detector.
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4. Multiple parton interactions

In order to fully describe the collision between hadrons additional activity in one hadron

collision has to be considered. This additional source of hadronic activity is known as

the underlying event. From the experimental point of view the underlying event is de-

�ned as everything that is not related to the hard scattering process of the collision. For

large centre-of-mass energies the probability of having more than one partonic interac-

tion accompanying the main hard scattering becomes signi�cant. These interactions are

modeled as multiple parton interactions and are the dominant contribution to the under-

lying event at high energies.

The currently used model to simulate multiple parton interactions is based on the

eikonal model from Refs. [25, 26, 27, 28]. It consists of a perturbative part and a non-

perturbative part where the non-perturbative part has been introduced in Ref. [29]. Mul-

tiple parton interactions are modeled as perturbative and non-perturbative scatterings

between gluons. We di�er between the two types depending on their transverse momen-

tum: i) The interactions above a certain transverse momentum pmin

⊥ are simulated as QCD

2 → 2 processes and are referred to as semi-hard interactions. ii) Below pmin

⊥ the inter-

actions are modeled as elastic gluon scatterings and are referred to as soft interactions.

With this model it was possible to show reasonable results when applied to underlying

event or minimum bias data [30], but it failed in some other aspects which will be dis-

cussed in Ch. 5. In this chapter we summarise the physics and the implementation of the

multiple parton interaction model used in the current version of Herwig 7. For a more

detailed description we refer to the Herwig++ manual [31] and to App. B where we show

the eikonal approximation for a quantum mechanical amplitude.

4.1. Semi-hard interactions

The cross section for inclusive jet production σ inc

jet
can be calculated within perturbative

QCD. The hadronic cross section rises with centre-of-mass energy s because of the high

values of the PDFs at small momentum fractions x . The calculated cross section may

exceed the total pp or pp̄ cross section already at intermediate energies as it was shown
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4. Multiple parton interactions

in Ref. [32]. This seemingly violation of unitarity is resolved by interpreting the jet cross

section as the inclusive jet cross section σ inc

hard
in respect of the luminosity of the incoming

partons [25]. The jet cross section exceeds the total cross section by a factor equal to the

mean multiplicity of multiple interactions. If per collision 〈ndijet〉 jet pairs are produced

on average with transverse momentum larger than pmin

⊥ , we have

σ inc

hard
(s,pmin

⊥ ) = 〈ndijet〉 · σinel(s,p
min

⊥ ) , (4.1)

where σinel is the cross section for having one or more jet pairs above pmin

⊥ .

In Ref. [25] it was shown that the e�ects of unitarisation corrections can be modeled

in an eikonal formalism through the appearance of multiple parton scatterings.

The cross sections for multiple parton scatterings can be calculated within an eikonal

model. With the eikonal approximation it is possible to relate the cross section for hadron-

hadron collisions to the more elementary interactions among these partons. One ap-

proach followed by Durand and Pi [26, 28] determines the total and elastic cross sections

using the eikonal formalism in terms of the average number of elementary interactions

〈n(b,s )〉 at �xed impact parameter b = b and centre-of-mass energy s .

The model assumes that at �xed impact parameter b the individual interactions are

independent of each other. Furthermore it uses the simpli�cation that the distribution

of partons within hadrons factorises in terms of b and the longitudinal momentum frac-

tion x . Note: There are other approaches that propose PDF’s that are dependent of the

impact parameter presented in Ref. [33]. Such an approach is implemented in Pythia in

Ref. [34] but is not pursued here since the models implemented in Herwig 7 rely on the as-

sumptions from Refs. [35, 25]. Following Refs. [26, 28] the average number of elementary

interactions, 〈n(b,s )〉, in a hadron-hadron collision is given by

〈n(b,s )〉 = A(b)σ inc

hard
(s,pmin

⊥ ) , (4.2)

where σhard is the inclusive cross section for hard interactions above a minimum value

for the transverse momentum pmin

⊥ and A(b) describes the overlap of the two colliding

hadrons. The overlap function A(b) must satisfy∫
d

2bA(b) = 1 . (4.3)

Assuming that the PDFs of the overlapping hadrons factorise in terms of x and b and

estimating theb dependent functions using the electromagnetic form factors of the proton
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results in the following parameterisation of the overlap function,

A(b,µ ) =
µ2

96π
(µb)3K3(µb) , (4.4)

where K3 is the modi�ed Bessel function of the third kind. Assuming further that the

di�erent interactions are uncorrelated leads to a Poissonian distribution for the average

number of hard interactions given by Eq. (4.2)

Pk =
〈n(b,s )〉k

k!

exp(−〈n(b,s )〉) . (4.5)

The cross section for jet production due to k uncorrelated interactions is the Poissonian

from Eq. (4.5) integrated over the impact parameter space.

σk (σ
inc

hard
) =

∫
d

2b Pk (A(b,µ ) · σ
inc

hard
) =

∫
d

2b
(A(b,µ ) · σ inc

hard
)k

k!

e−A(b,µ )σ
inc

hard . (4.6)

If one compares this cross section with the cross section for k cut Pomerons (Eq. (2.16))

σk (s ) =

∫
d

2b
(2χ )2

k!

exp(−2χ ) , (4.7)

from Sec. 2.3 the two formulas coincide if the eikonal is chosen as

χhard(s,b) =
1

2

A(b,µ )σ inc

hard
(s,pmin

⊥ ) , (4.8)

and one can conclude that multiple hard interactions correspond to cut pomerons in the

eikonal formalism. At large centre-of-mass energies, s , and small interaction lengths,

the probability that a gluon carrying a small momentum fraction x is involved in the

scattering process increases rapidly according to the PDF. This means that multiple parton

interactions will most likely involve the scattering of gluons o� each other. The additional

semi-hard interactions are implemented as gluon scatterings according to the QCD matrix

element with p⊥ > pmin

⊥ . From these semi-hard gluons, parton showers are generated.

4.2. So� interactions

In Ref. [36] it was shown that the semi-hard model for multiple parton interactions was

able to describe underlying event data from Tevatron when the leading jet has a p⊥ higher

than 20 GeV. The model however failed to describe low-p⊥ jet producton and minimum
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bias analyses, where a low cut on the transverse momentum is applied. The apparent

reason for this was the lacking of partonic interactions below pmin

⊥ .

In Ref. [30] the semi-hard model was extended to the soft regime p⊥ < pmin

⊥ where

perturbation theory is no longer valid.

Follwing Refs. [28, 35, 26], the starting point is to generalise the eikonal formalism to

include soft interactions, where the total eikonal function χtot is taken as the sum of a

hard eikonal function χhard and a soft eikonal function χsoft,

χtot(b,s ) = χhard(b,s ) + χsoft(b,s ) , (4.9)

where the hard part has the same form as in Eq. (4.8)

χhard =
1

2

A(b,µ )σ inc

hard
(s ) (4.10)

and the soft part is given by

χsoft =
1

2

Asoft(b,µsoft)σ
inc

soft
(s ) , (4.11)

where σsoft is the non-perturbative cross section for soft interactions below pmin

⊥ . The

simplest choice is to assume, that the soft overlap function Asoft has the same structure

as Ahard in Eq. (4.10) but depends on the parameter µsoft. In analogy to Eq. (4.7) the cross

section of having exactly h semi-hard and n soft interactions is given by

σh,n (s ) =

∫
d

2bPh,n (b,s ) , (4.12)

where Ph,n is generalised to the cross section for h semi-hard and n soft uncorrelated

interactions,

Ph,n =
2χhard(b,s )

h

h!

2χsoft(b,s )
n

n!

e−2χtot (b,s ) . (4.13)

The parameter µsoft is dynamically �xed to describe the elastic t-slope from Eq. (2.21)

correctly at the used centre-of-mass energy. The other parameter of the soft model, σsoft,

cannot be calculated by perturbation theory, instead σsoft is chosen such that the total

cross section that was obtained by the parameterisation of Ref. [11] is correctly described.
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4.3. Implementation

The soft interactions are modeled as elastic scatterings among gluons. The generation

of the additional soft interactions starts once all perturbative evolution has terminated.

After the hard process and the parton shower the number of additional interactions is cal-

culated according to Eq. (4.13). While the semi-hard interactions are generated as gluonic

QCD 2 → 2 scatterings, the soft interactions are implemented as a non-perturbative re-

menant decay. The gluons are radiated from the two remnants that remain after the hard

scattering was simulated and are elastically scattered o� each other as shown in Fig. 4.1.

R1

R2

g3

g4

g1

g2

Figure 4.1.: Picture of the simulation of soft a elastic scattering of gluons that get radiated

o� the hadron remnant R1 and R2.

The four-momenta in the lab frame of the incoming gluons is given by

p
µ
д1,2
=




√
x2

1,2s

4

+m2

д,0,0,±

√
x2

1,2

s
4




T

, (4.14)

where s is the centre-of-mass energy, mд is the gluon mass and x1,2 is the longitudinal

momentum fraction of the gluon. The four-momenta of the incoming gluons is entirely

determined by x1,2 which is sampled according to a f (x ) = 1/x distribution between xmin

and xmax, where xmin is an arbitrary cuto� to exclude the singularity at 0 and xmax is the

maximum available energy in the hadron remnant. The four-momenta of the outgoing

gluons can be parameterised in the centre-of-mass frame by

p
µ
д1,2
=

(√
p2

⊥ + p2

z +m2

д,±p⊥ cosϕ,±p⊥ sinϕ,pz

)T
, (4.15)
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where the transverse momentum p⊥ is sampled below pmin

⊥ from a distribution that is

parameterised with a Gaussian distribution according to

dσ inc

soft

dp2

⊥

= Ae−βp
2

⊥ . (4.16)

The two parameters A and β of the Gaussian distribution are �xed by two constraints:

i) The soft cross section has to match the total soft cross section which was �xed to de-

scribe σtot

1
and the elastic slope parameter bel of Eq. (2.21)

∫
dp2

⊥

dσ inc

soft

dp2

⊥

!

= σ inc

soft
. (4.17)

ii) The di�erential transverse momentum distribution has to match the perturbative dis-

tribution at p⊥ = p
min

⊥

dσ inc

hard

dp2

⊥

������p⊥=pmin

⊥

!

=
dσ inc

soft

dp2

⊥

������p⊥=pmin

⊥

. (4.18)

The azimuthal angle ϕ is sampled from a uniform distribution ϕ ∈ (0,2π ) and with p⊥,

the longitudinal momentum pz is �xed by momentum conservation

p2

z =
(pд1

+ pд2
)2

4

− p2

⊥ −m
2

д . (4.19)

After the kinematics are generated in the centre-of-mass frame the gluons are boosted

back to their corresponding lab frames and then the remnant momanta are reshu�ed such

that they remain on their original mass shell. After successful reshu�ing of momenta,

the available energy for the next soft interaction is determined and the process is iterated

until the requested number of soft interactions is reached or there is no more energy

available in the remnants.

In Fig. 4.2 we show the two possible colour connections for two soft interactions. A

line with an arrow to the right corresponds to a colour line and a line with an arrow to the

left is an anticolour line. Gluons are depicted with the colour and the anticolour line. The

remnants always have anticolour. Either the gluons are connected to each other or the

gluons are connected to the remnant were one colour line is automatically connected to

the previous process, which can be e.g the hard scattering or a previous soft interaction.

1
In the new model σtot also includes di�ractive events.
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g

g

R

R

(a)

g

g

R
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Figure 4.2.: Shown are the two possible colour connections between the gluons and the

remnants. A colour line is depicted as an arrow to the right while an anti-

colour line is depicted as an arrow to the left. The gluons can be connected

to the remnant (a) or they can be connected to each other (b). In the �rst

case one colour line of the gluon may be connected with an anti colour line

of a previous soft interaction or a di�erent part of the process like the hard

scattering process.
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The soft model for multiple particle interactions (see Sec. 4.2) was implemented in order

to describe the soft part of the underlying event for low-p⊥ jet production. It also achieved

good results in describing minimum bias data from Tevatron [30]. Nevertheless the model

has some shortcomings when extrapolated to higher energies and compared to LHC data:

While it was shown that a systematic re-tuning of the parameters of the multiple parton

interaction model in combination with a model for colour reconnection indeed resulted

in a better description of minimum bias data [37, 38], it leads to an enhancement in the

large pseudorapidity gap region ∆η [39, 40]. This is certainly a �aw of the used model,

since Herwig 7 had no implementation of di�raction which is responsible for the main

contribution to the large ∆η region. Probing all possible colour connections between the

gluons and the beam remnants in order to reduce the amount of events with large rapid-

ity gaps resulted in a small decrease but none of the considered topologies was able to

produce the required fall o� that is necessary to describe the non-di�ractive part of the

data correctly [39]. By separately running the semi-hard and the soft model we found

out that the soft model for multiple parton interactions is responsible for the increase of

the cross section in the large ∆η region. Therefore we propose a fundamental change to

the model in order to describe the non-di�ractive part of the cross section correctly. The

model we propose should have two main properties: i) From minimum bias analyses it is

known that the distribution of soft particles is approximately uniform in rapidity in the

kinematic range available. ii) The non-di�ractive part of the cross section should be pro-

portional to e−a∆η where a is some a priori unknown constant. In Ref. [13] it was shown

that these features can be described by a model with multiperipheral particle production.

When incorporating this model into Herwig 7 small changes have to be made in order to

account for the speci�c peculiarities of the event generator but the idea and the physics

stay the same.

This chapter is organised as follows. The model for multiperipheral particle production

and the kinematic implications are discussed in Sec. 5.1. The implementation of the model

in Herwig 7 is explained in Sec. 5.2. In Sec. 5.3 we tune the parameters of the model to
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5. Multiperipheral particle production

minimum bias data and in Sec. 5.4 we show the results of the tuning procedure with cross

checks to other analyses.

5.1. Multiperipheral kinematics

The model we implemented in Herwig 7 is inspired by the model for multiperipheral

particle production presented in Ref. [13]. Multiperipheral particle production is a 2→ N

process where the N resulting particles are ordered in rapidity. In Ref. [13] it was shown

that multiperipheral particle production can be achieved when three main features are

incorporated into the model:

i) The produced particles are ordered in rapidity.

ii) The momenta of the produced particles are correlated.

iii) The sub-energies si,i+1 = (pi +pi+1)
2

are of the order O (GeV). Large si,i+1 correspond

to di�ractive processes.

Note: The second part of point iii) does not apply to our implementation because we

model the multiperipheral particle production as non-perturbative gluon emissions. A

large subenergy si,i+1 between the gluons would correspond to a large cluster which will

lead to a high multiplicity. Di�ractive processes are taken care of by the di�raction model

from Ref. [39]. A process with multiperipheral particle production is shown in Fig. 5.1. pA

and pB are the incoming particles that interact with each other and the pi are the outgoing

particles. The internal "virtual" particles are denoted by qi . In the following we will refer

to a 2→ N process with multiperipheral particle production as a particle ladder. The goal

of this section is to investigate the kinematic properties of the particle ladder and derive

some relations that will be useful for the implementation of this model in Herwig 7.

In order to investigate the kinematic properties, it is instructive to separate the mo-

menta in a transverse pi ⊥ and a longitudinal component pi z . Hence we write for internal

momenta qi and for external momenta pi

pi = (pi ⊥,pi z ) , (5.1)

qi = (qi ⊥,qi z ) . (5.2)
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p1

p2

p3

p4

p5

pN

q1

q2

q3

pA

pB

q4

Figure 5.1.: Graph of a multiperipheral amplitude.

The energies are

Ei =
√
m2

i + p2

i ⊥ + p2

i z , (5.3)

ωi =

√
q2

i + q2

i ⊥ + q2

i z . (5.4)

In high energy particle collisions almost all particles move in a narrow cone along the

collision axis which is de�ned as the z-axis of the collision. Due to the large centre-

of-mass energy

√
s � m most particles are ultrarelativistic. Therefore it is reasonable

to assume that the longitudinal component of the momentum is large compared to the

transverse component,

p2

i z �m2

i + p2

i ⊥ , (5.5)

q2

i z � q2

i + q2

i ⊥ , (5.6)

and

|q2

i | ∼ p
2

i ⊥ ∼ q2

i ⊥ ∼m
2 . (5.7)
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5. Multiperipheral particle production

The energies can be written as

Ei ≈ |pi z | +
m2

i + p2

i ⊥

2|pi z |
, (5.8)

ωi ≈ |qi z | +
q2

i + q2

i ⊥

2|qi z |
. (5.9)

It is convenient to use light cone variables [41], where the light cone coordinates are

de�ned by a change of variables that explicitly depend upon the choice of the z-axis.

These coordinates show nicely the small and large components of the momentum. In

high energy particle collisions there is a natural choice of the z-axis, the collision axis.

For the momenta pi and qi the light cone coordinates are de�ned as

pi + := Ei + pi z , pi − := Ei − pi z , (5.10)

qi + := ωi + qi z , qi − := ωi − qi z . (5.11)

With the Eqs. (5.5-5.9) the light cone coordinates can be written as

pi + = 2pi z , pi − =
m2

i + p2

i ⊥

2pi z
, (5.12)

qi + = 2qi z , qi − =
q2

i + q2

i ⊥

2qi z
. (5.13)

With these formulas we can describe the kinematics of the splitting processes in the mul-

tiperipheral particle ladder. The splitting for one virtual state qi is shown in Fig. 5.2. The

virtual state qi splits into one particle pi+1 and one virtual state qi+1,

qi → qi+1 + pi+1 . (5.14)

The momentum fraction which is given to pi+1 and qi+1 is de�ned by the variable xi+1. In

terms of light cone coordinates this is described by,

qi,+ → qi+1,+ + pi+1,+ = xi+1qi,+ + (1 − xi+1)qi,+ . (5.15)

With Eqs. (5.12) and (5.13) this can be written in terms of longitudinal momenta,

xi+1 = qi+1 z/qi,z = 1 − pi+1 z/qi,z . (5.16)
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qi, z

pi+1, z = (1− xi+1)qi ,z

qi+1, z = xi+1qi, z

Figure 5.2.: Splitting of one virtual state qi . The particle pi+1 and the virtual state qi+1 are

each getting a fraction of the longitudinal momentum of the virtual state qi .

In order to account for momentum conservation it is clear that the sum of the longitudi-

nal momentum of particle pi+1 and the virtual state qi+1 must be equal to the longitudinal

momentum of the virtual state qi

qi,z = pi+1,z + qi+1,z (5.17)

⇒ qi,z − qi+1,z = pi+1,z
!

> 0 . (5.18)

It follows that the momentum qi , carried away by the (i + 1)-th virtual state, has to be

smaller than the momentum qi of the i-th virtual state

qi,z > qi+1,z . (5.19)

This can be expressed as an ordering of the z-component of the momenta of the virtual

states qi

q0 z = pAz > q1 z > q2 z > ... > qN−1,z > qN z = −pB z , (5.20)

where qN is the last particle in the ladder which is equal to pB . All pi z can be written in

terms of xi which was de�ned in Eq. (5.16),

p1 z = (1 − x1)pAz ,

p2 z = (1 − x2)x1 pAz ,

...

pi z = (1 − xi )xi−1...x2x1 pAz ,

(5.21)
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5. Multiperipheral particle production

and also all qi z

q1 z = x1 pAz ,

q2 z = x2 x1 pAz ,

...

qi z = xi xi−1...x2 x1 pAz .

(5.22)

For i = N in Eq. (5.22), it follows that pB + is the product of

pB+ = −qN+ = −


N∏
i=1

xi

pA+ . (5.23)

If we assume that the momentum fractions xi for each splitting are roughly equal with an

average value of 〈xi〉 ∼ 1/C , where C is some constant, the average number of particles

〈N 〉 in one multiperipheral ladder follows from Eq. (5.23) in the lab frame of particle B

[13],

C〈N 〉 =
pA+

pB+

=
s

m2

B

, (5.24)

where we used pA+ = s/mB and pB+ =mB . Taking the logarithm on both sides and sorting

for 〈N 〉, this equation leads to a formula for the average number of particles per ladder,

〈N 〉 =
1

lnC
ln



s

m2

B


 . (5.25)

Another useful relation can be obtained when taking the rapidity of the i-th particle

into account. With Eqs. (5.12) the rapidity of particle i can be written as,

yi =
1

2

ln

(
Ei + piz
Ei − piz

)
=

1

2

ln

(
pi+
pi−

)
= ln

2pi +

mi ⊥
= ln

4pi z
mi ⊥

. (5.26)

where mi⊥ =

√
m2

i + p2

i⊥ is the transverse momentum of particle i . For every particle

pi produced in the ladder the longitudinal momentum decreases. If we assume that the

transverse mass remains approximately constant, mi⊥ ∼ mi+1,⊥ ∼ const ., the rapidity

(5.26) decreases with each produced particle. The condition (5.20) translates then directly

into an ordering in terms of rapidity of the produced particles,

y1 > y2 > ... > yN−1 > yN . (5.27)
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5.2. Implementation

The picture we have now is that the colliding particlespA andpB result in a 2→ N process

where the N particles are ordered in rapidity.

For two consecutive particles within the ladder, the rapidity di�erence ∆yi,i+1 is calcu-

lated according to,

∆yi,i+1 = yi − yi+1

= ln

(
2pi+
mi⊥

)
− ln

(
2pi+1,+

mi+1,⊥

)
= ln

(
pi+
pi+1,+

)
+ ln

(
mi+1,⊥

mi⊥

)
≈ ln

(
pi+
pi+1

)
,

(5.28)

where we assumed thatmi⊥ ≈mi+1,⊥ ≈ const . and xi ≈ xi+1 ≈ x ≈ const .. In combination

with Eq. (5.21), Eq. (5.28) results in a very simple form for the rapidity di�erence between

two neighbouring particles within one ladder,

∆yi,i+1 ≈ ln

(
(1 − x )xipA+

(1 − x )xi+1pA+

)
= ln

(
1

x

)
= ∆y . (5.29)

The total rapidity di�erence ∆Y between the incoming particlesA and B can be calculated

in a similar manner,

∆Y ≈ ln

(
pA+

pB+

)
= ln

(
s

mB

)
. (5.30)

With Eq. (5.29) where ∆yi,i+1 ≈ const . ≈ ∆y, we can express ∆Y in terms of the number

of particles in one ladder,

(N + 1)∆y = ∆Y . (5.31)

Combining Eqs. (5.29) and (5.30) leads to a formula for the average momentum fraction

x ,

x = e−
∆Y

(N+1) . (5.32)

If x would be chosen exactly as in Eq. (5.32) the N particles will be distributed equally in

rapidity.

5.2. Implementation

This section describes the implementation of the multiperipheral model in Herwig 7. In

order to interfere as little as possible with other parts of the event generator we keep the

structure of the old model for multiple parton interactions as explained in Ref. [42]. The
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5. Multiperipheral particle production

multiperipheral model is entirely implemented as a decay of the hadron remnants that

are left after the hard scattering process. To simulate minimum bias events the hard scat-

tering is implemented as a toy process to trigger the decay of the beam remnants. This is

implemented as a �ctitious dummy process between two quarks with no momentum and

no colour transfer. The semi-hard part of the old model for multiple parton interactions

is preserved while the multiperipheral particle production replaces the previous soft part.

The number of soft interactions, Nsoft, that are calculated from Eq. (4.13) are treated as

particle ladders in the new model. Assuming that the number of particles in each ladder

is uncorrelated, we sample the number of particles (Npoissonian) from a Poissonian distri-

bution around Navg, where Navg is obtained from Eq. (5.25). We note that the number of

particles in the ladder decreases with the production of every new ladder because the re-

maining energy in the remnants decreases which leads to a smaller Navg in Eq. (5.25). The

generation of ladders continues until Nsoft ladders are produced or until the number of

particles in the ladder is zero. In Fig. 5.4a we show the di�erence between the calculated

number of ladders Nsoft and the actual number of ladders Nladder, that were generated. We

see that in almost every case Nsoft equals Nladder.

The kinematics of the particles in the ladder is then generated as a splitting process from

Eq. (5.21). Here we explain the general procedure for the generation of the kinematics in

the �rst ladder as an example.

For minimum bias events the ’hard’ scattering process is modeled as a toy process with

as little e�ect as possible as explained in Ref. [31]. Only light quarks are extracted from

the hadrons and they are scattered with no exchange of momentum and no exchange

of colour. The longitudinal momentum fraction of the quarks is determined by xmin. In

order to get a valence-like distribution we arbitrarily set the value to xmin = 0.11
1
. The

remaining longitudinal momenta of the hadronic remnants is then

pA,z = (1 − xmin) pBeam,1 ,

pB,z = (1 − xmin) pBeam,2 .
(5.33)

The extraction of a quark has no e�ect on the direction of the beam remnant. Therefore

pA/B,⊥ = 0. After the scattering the extracted quarks are colour connected to the respective

remnants. The number of soft interactions are calculated according to Eq. (4.12) and the

number of particles in the �rst ladder are sampled from a Poissonian distribution around

Navg from Eq. (5.25).

1
The value is also motivated by the requirement that we want the extracted quark and the remnant to

have roughly the same rapidity because they remain colour connected and form a cluster.

36



5.2. Implementation

The kinematics of the particles in the ladder is implemented as a stepwise splitting

process from both remnants pA and pB similar to Sec. 4.3. This is shown in Fig. 5.3, where

the indices A,B indicate from which remnant the particles originate.

pB pB1

pB2

pA1

pA2

pA3

pB3

qA1

qA2

qA3

qB1

qB2

qB3

pA

Figure 5.3.: Emission of a ladder of soft particles from the beam remnants pA and pB . The

emission is simulated as a splitting process from the two remnants. pA1 and

pB1 are the remaining remnants from which the next ladder is produced.

The remnants are split into the �rst particles in the ladder pA1, pB1 and the virtual states

qA1, qB1,

pA → qA1 + pA1 ,

pB → qB1 + pB1 .
(5.34)

The total four-momenta of pA1, pB1, qA1, qB1 are calculated according to

pA1 = (1 − x1) pA qA1 = x1pA ,

pB1 = (1 − x1) pB qB1 = x1pB ,
(5.35)

where x1 is sampled from a Gaussian distribution around the calculated x from Eq. (5.32).

The simplest choice is to use the same x for both splittings in Eq. (5.35). Next we chose a

mass m = mA1 = mB1 for the virtual particles
2

. The following steps are all performed in

the centre-of-mass frame of the two virtual states qA1 and qB1. The transverse momentum

of the virtual states, p⊥ = qA1,⊥ = qB1,⊥, is sampled from a Gaussian distribution that is

parameterised as explained in Ch. 4.3 as,

dσ inc

soft

dp2

⊥

= Ae−βp
2

⊥ , (5.36)

2
Here we also need to rescale the energy in order not to violate energy-momentum conservation.
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5. Multiperipheral particle production

where the upper limit of p⊥ is given by pmin

⊥ and the azimuthal angle which de�nes the

direction of p⊥ is sampled uniformly between 0 and 2π . With the total four-momentum

qA1/B1, the mass mq and the transverse momentum p⊥, the longitudinal momentum of

the virtual states qA1,z = qB1,z = pz is �xed by energy-momentum conservation in the

centre-of-mass frame,

pz =

√
(qA1 + qB1)2

4

− p2

⊥ −m
2

q . (5.37)

Once the kinematic is de�ned, the virtual states qA1, qB1 are split into the second particles

in the ladder pA2, pB2 and the next virtual states qA2, qB2. This procedure is repeated until

the calculated number of particles, Npoissonian, is reached or until there is no more energy

available in the virtual states. Due to momentum conservation the momentum of the

last two particles from each remnant, qA/B,i and pA/B,i are of the same order if x ≈ 0.5.

Note that the �rst particles in the ladder are the remaining remnants from which the next

ladder is generated. At every new splitting process the conservation of energy is checked

with

qi < (1 − xi+1)qi + xi+1qi . (5.38)

Energy-momentum conservation might be violated because x is sampled from a Gaussian

distribution and the term ln( mi⊥
mi+1,⊥

) is neglected in Eq. (5.28). If conservation of energy-

momentum is violated the step is rejected and tried again until a maximum number of

tries is reached. Once the maximum tries are exceeded, the ladder is intercepted.

In Fig. 5.4b we show the di�erence between the calculated number of particles from the

Poissonian distribution and the actual number of particles that are created in the ladder

and see that in ∼ 80% of ladders, all particles are created.

Once all particles are produced or the ladder gets intercepted the colour connections are

set according to Fig. 5.5. Each arrow represents a colour line and in order to form clusters

each colourline has to be connected to an anticolour line. Note that the �rst two virtual

states have to be quarks in order to get the correct colour connections. All following

particles are gluons. A gluon carries both, colour and anticolour and is connected to

two other partons. The proton remnants are connected to the hard scattering part of

the event. With this algorithm we generate Nsoft ladders with colour connected particles

ordered equally in rapidity.

The only new parameter in this model is a factor nLadder that we introduce in Eq. (5.25)

〈N 〉 = nLadder ln(
s

m2

B

) , (5.39)
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which calculates the number of particles in the ladder. This parameter steers the produc-

tion of more smaller clusters that are closer in rapidity or less larger clusters.

In order to explain the data and the whole cross section available correctly the new

model for soft interactions is combined with the di�raction model from Ref. [39]. For

simplicity we refer to the combination of the new model for soft multiple parton interac-

tionsl and the model for di�raction as the "softMPI" model.

(a) (b)

Figure 5.4.: (a) Comparison between the number of soft interactions and the number of

ladders created. (b) Di�erence between the number of particles calculated by

the Poissonian and actually created in the ladder for

√
s = 7 TeV. We obtain

similar results for

√
s = 900 GeV.

5.3. Tuning

In the last section we described the implementation of a new model for the production

of soft multiple parton interactions. Here we tune the free parameters of the model to a

small set of minimum bias observables at

√
s = 900 GeV and

√
s = 7 TeV centre-of-mass

energy using the current version of the PROFESSOR tuning software [43]. All analyses

were done with the help of Rivet [44]. The tuning results in two slightly di�erent sets of

parameters for 900 GeV and 7 TeV. The di�erence can be seen as an energy dependence

of the model. We refer to the di�erent sets of parameters as MB-900 and MB-7. With the

tuned parameters we �nd an overall better description for the observables which were

tuned to as well as for all other observables of the minimum bias analysis which were not

considered in the tuning procedure. The description improves signi�cantly compared to

the old model. The new model is also able to describe obervables from other analyses
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P

q

q̄

g

g

g

g

Remnant1

Remnant2

PBeam, 1

PBeam, 2

Cluster

Figure 5.5.: Colour connections between the particles in the multiperipheral ladder and

between the remnant and the hard scattering part of the event. A colour

line is represented as an arrow towards the right and an anti-colour line is

represented as an arrow towards the left. A colour line is connected to an

anti-colour line such that clusters are formed from neighbouring particles in

rapidity. The toy process is denoted by P.

which are explicitly not considered in the tuning procedure particularly the rapidity gap

analyses measured by CMS and ATLAS [40, 45].

5.3.1. General tuning procedure

Since we changed the soft part of the model for multiple parton interaction, we need to

re-tune all parameters that a�ect this model directly. In Ref. [37] an energy dependent

parameterisation for pmin

⊥ was adapted,

pmin

⊥ (s ) = pmin

⊥,0

(√
s

E0

)b
, (5.40)

with E0 = 7 TeV. The main parameters of the model therefore are:

• pmin

⊥,0 parameter of the pmin

⊥ parameterisation of Eq. (5.40),

• b parameter of the pmin

⊥ parameterisation of Eq. (5.40),

• µ2
inverse hadron radius squared used in the calculaton of the overlap function,

Eq. (4.4),

• pReco reconnection probability of the plain colour reconnection model [37],
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• nLadder ladder multiplicity that in�uences the number of particles in one ladder.

We also decide to tune the probability for colour reconnection because we expect this

parameter to have a signi�cant e�ect on the clusters that originate from the ladders. Fur-

ther we leave the remaining hadronisation parameters untouched which were tuned to

data from LEP experiments [31]. According to Ref. [43] the tuning of 5 parameters with

a 4-dimensional interpolation requires at least 126 runs and since an oversampling of at

least a factor of 3 is advised we generate 500 runs. Every run consists of 500000 events

with randomly selected parameter values in the ranges given in Tab. (5.1).

A subset of these 500 runs is then used 350 times to interpolate the generator response.

For each of these run combinations the χ 2/Ndof value is calculated and real Monte Carlo

runs were performed in order to check if the interpolation indeed predicted the right

value of χ 2/Ndof . The parameter set that resulted in the smallest value of χ 2/Ndof was

then used for further work.

5.3.2. Tuning to minimum bias data

Minimum bias is an experimental term that refers to a minimal possible trigger require-

ment necessary to include ineleastic collisions. These minimum bias measurements in-

clude both, di�ractive and non-di�ractive processes. With the softMPI model Herwig

should be able to describe inclusive minimum bias data completely. We tune the new

model to data from the ATLAS collaboration at

√
s = 900 GeV and

√
s = 7 TeV [38]. For

the tuning procedure we use eight di�erent observables with equal weights:

• The Pseudorapidity distributions for Nch ≥ 1, Nch ≥ 2 , Nch ≥ 6, Nch ≥ 20,

• The transverse momentum of charged particles for Nch ≥ 1, Nch ≥ 2 , Nch ≥ 6,

• The average charged transverse momentum vs. number of charged particles for

Nch ≥ 1.

In App. A the results of the tuning procedure for di�erent run combinations are shown

for 900 GeV and 7 TeV.

Except for the parameter b at 7 TeV all other parameters are distributed around one

value, indicating that the used observables are very sensitive to the tuned parameters.

A broader distribution means less sensitivity but a more �exible parameter choice. It

is especially important to note that pmin

⊥,0 and b have approximately the same value for

900 GeV and 7 TeV, showing that the parameterisation of the pmin

⊥ (s ) parameter from of

Eq. (5.40) is sensible. The inverse proton radius µ2
, which controls the matter distribution
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inside the proton and the reconnection probability pReco seem to favor di�erent values

indicating an energy dependence of these parameters. The newly introduced parameter

nLadder favours values around nLadder ≈ 0.7 for

√
s = 7 TeV and values around nLadder ≈ 1.1

for

√
s = 900 GeV. This seemingly energy dependence will be discussed later in Sec. 5.4.3.

The tuned parameters, their default values and the results of the tuning procedure are

listed in Tab. 5.1. With the newly introduced softMPI model and the tuned parameters

the description of all minimum bias observables improves signi�cantly although we only

tuned to a small subset of available observables. The results for the Monte Carlo runs

with the tuned parameters for 900 GeV and 7 TeV are shown in Figs. 5.6 and 5.7. Here we

only show the two most inclusive η distributions, the distribution for the charged particle

p⊥ and the charged particle p⊥ versus the number of charged particles Nch. It is especially

noteworthy that the new model �ts the charged particle p⊥ distribution almost perfectly

in the range where we expect the new softMPI model to contribute signi�cantly. Also the

onset of the charged particle p⊥ versus the number of charged particles improves which

is due to di�raction. The tail of this distribution seems to underestimate the p⊥ value but

the tune results in an overall better description of the observables.

Default Range MB-900 MB-7

pReco 0.4276 0.0 − 1.0 0.647048 0.445557

pmin

⊥,0 /GeV 4.39 1.0 − 5.0 3.407673 3.145333

µ2 /GeV
2

2.30 0.0 − 2.0 1.548230 1.101560

b 0.366 0.0 − 2.0 0.444223 0.709107

nLadder none 0.0 − 2.0 1.155612 0.700985

Table 5.1.: Parameter values and ranges used in the tuning of the new softMPI model.

Shown are the tunes resulting in the smallest χ 2/Ndof value for 900 GeV and

7 TeV centre-of-mass energy

√
s .

5.4. Results

In this section we discuss the results when we apply our new model to other observables.

This is an important cross check for the validity of the model. We will see that the model

is not only able to describe the observables it was explicitly tuned to, but also manages to

achieve good overall results in the whole range of minimum bias related analyses avail-

able.
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Figure 5.6.: Comparison of the default tune from Herwig 7.0 with the best tune (MB-7) for

the new softMPI model to minimum-bias data from ATLAS [38] at

√
s = 7 TeV.

5.4.1. Rapidity gap analysis

The total cross section of hadronic collisions can be decomposed into two main compo-

nents,

σtot = σel + σinel , (5.41)

where σel is the elastic- and σinel is the inelastic-cross section. The elastic cross section

describes proton scattering where the protons remain intact after the collision. The in-

elastic cross section σinel consists of all events where the proton gets destroyed. σinel can

be separated into di�ractive (D) and non-di�ractive events (ND). The di�ractive events
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Figure 5.7.: Comparison of the default tune from Herwig 7.0 with the best tune (MB-900)

for the new softMPI model to minimum-bias data from ATLAS [38] at

√
s =

900 GeV.

can be further separated into single-di�ractive (SD) and double-di�ractive processes (DD)

σinel = σSD + σDD + σND . (5.42)

In the detector di�ractive processes are associated with colourless exchanges resulting

in a large rapidity interval without any hadronic activity which is referred to as the rapid-
ity gap. The rapidity gap is used to characterise di�ractive events since the direct analysis

of the dissociated systems is di�cult and many of the �nal state particles are not within

detector sensitivity.
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5.4. Results

In Refs. [40] and [45] the cross section with respect to the forward pseudorapidity gap

∆ηF is measured. ∆ηF is de�ned as the larger of two pseudorapidity regions in which no

particles are produced. ∆η ranges from −4.9 to +4.9 at ATLAS and from −4.7 to +4.7 at

CMS, which is restricted by the geometry of the detectors. All particles with p⊥ > pcut

⊥

are analysed where pcut

⊥ is varied from 200 GeV to 800 GeV. This observable can be de-

composed into a ND- and a SD/DD part of the cross section where small gap sizes are

mainly dominated byND contributions and for a smallpcut

⊥ the large rapidity gap region is

dominated by SD andDD events. TheND part is characterised by the experimental obser-

vation that the average rapidity di�erence between neighbouring particles is around 0.15

with larger rapidity gaps due to �uctuations in the hadronisation process. This leads to

a cross section that decreases exponentially with larger rapidity gaps σND ∼ exp(−a∆ηF )

where a is some unknown constant. The large rapidity gaps are due to the colourless

exchange of di�ractive events which gives rise to a constant cross section σD ≈ const ..

Together with the di�raction model from Ref. [39] Herwig 7 is able to describe the mea-

surement of the rapidity gap cross section from ATLAS [40] and CMS [45] correctly (see

Fig. 5.8). While the data from CMS is described very well, the simulation overestimates

the data provided by ATLAS despite quite similar cuts. This might indicate some dis-

crepancies between the two analyses but nevertheless the prediction of the new softMPI

model is within acceptable range.
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Figure 5.8.: Pseudo rapidity gap distribution for a low p⊥ cut from ATLAS [40] (a) and

CMS [45] (b). Shown is the comparison between the old model from Herwig 7

and the 7 TeV minimum bias tune of the new softMPI model.
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5.4.2. Analysis of non-single-di�ractive events

The analysis presented in Ref. [46] is based on an event selection which is corrected ac-

cording to the SD, DD and ND events predicted by PYTHIA 6 [47]. Therefore this analysis

is automatically biased by these predictions. It is none the less useful to see how our new

softMPI model with the MB-7 tune performs with respect to these observables.

Although we note signi�cant improvement in the region of low multiplicity the new

model fails to describe the data correctly (see Fig. 5.9). It is interesting to note that in

Ref. [46] it was found that the event generators systematically underestimated the in-

crease of the multiplicity distribution while our model (and also the old default model)

overestimate it. The multiplicity distribution is mainly in�uenced by the mass distribu-

tion of the clusters. The higher the cluster mass, the more particles get produced from the

cluster. We expect a change in the colour reconnection model to have signi�cant impact

on these distributions which will be presented in Ch. 6.

In Ref. [48] a similar analysis was performed in order to study the transverse momen-

tum distributions of non-single-di�ractive events using the same corrections according to

the predictions by PYTHIA. The new model shows a signi�cant improvement and seems

to describe the data correctly except for the ultra low p⊥ < 0.4 GeV region (see Fig. 5.10).
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Figure 5.9.: Multiplicity distributions for the very central region |η | < 0.5 (a) and the most

inclusive measurement by CMS [46] (b). MB-7 are all non-single-di�ractive

simulations while H7.0 uses the old model for multiple parton interactions

and lacks a model for di�raction completely.
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Figure 5.10.: p⊥ distributions for |η | < 2.4 (a) and |η | = 1.9 (b) measured by CMS [48]. MB-

7 are all non-single-di�ractive simulations while H7.0 uses the old model for

multiple parton interactions and lacks a model for di�raction completely.

5.4.3. Extrapolation to 13 TeV

With the energy update of the LHC to 13 TeV in 2015 new sets of data are available. This

data at the new energy frontier serves as an excellent cross check for our new model.

In order to test the energy extrapolation we compare it to data provided by the ATLAS

collaboration [49] at

√
s = 13 TeV. Although we used the same set of parameters as for

√
s = 7 TeV, the new model improves the description of the data compared to the old

model signi�cantly as shown in Fig. 5.11.

In Sec. 5.3.2 it was noted that we could not describe the data at 900 GeV and 7 TeV with

the same set of parameters because the ladder multiplicitynLadder favours di�erent values.

A tuning procedure to 13 TeV resulted in almost identical values for the parameters as for

7 TeV. Especially the ladder multiplicity is with nLadder ≈ 0.65 in the same range as for

7 TeV. It is interesting to note that with the tuned parameters we obtain for the average

number of partons produced per ladder the following values,

〈n900 GeV〉 = 10.7,

〈n7 TeV〉 = 9.5,

〈n13 TeV〉 = 10.2.

(5.43)

Although the parameters seem to be energy dependent the produced number of particles

per ladder is on average the same for all energies investigated.
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Figure 5.11.: Most inclusive η distribution for p⊥ > 500 MeV (a) and average p⊥ distri-

bution for all particles with p⊥ > 500 MeV (b) measured by ATLAS [49] at
√
s = 13 TeV. The runs for softMPI were done with the tuned set of parmame-

ters for 7 TeV. H7.0 uses the old model for multiple parton interactions.

5.5. Conclusion

We have introduced a new model for soft multiple parton interactions inspired by mul-

tiperipheral particle production. In this region the soft emission of gluons is no longer

described by an elastic two to two scattering, rather we use a more sophisticated model

inspired by the ideas of Regge theory. The model is implemented as the production of

ladders of n-particles that are ordered equally in rapidity. The parameters of the new soft

part of the multiple parton interaction model in combination with the new nLadder pa-

rameter and the model for di�raction were tuned to minimum bias data at

√
s = 900 GeV

and

√
s = 7 TeV. With the tuned parameters the new model improves the description of

all minimum bias observables signi�cantly. We also showed that the 7 TeV tune is able

to describe 13 TeV data. The new soft model is able to describe the cross section in the

low rapidity gap region ∼ e−∆η
F

correctly. Furthermore in non-single-di�ractive event

analyses, the model improves the description of multiplicity distributions and gives the

correct description of the p⊥ distributions.
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6. Colour reconnection

In order to describe the full structure of a particle scattering process additional soft e�ects

that are not accessible by perturbation theory have to be considered. Such e�ects include

hadronisation, multiple parton interactions and particle fragmentation. In general these

non-perturbative e�ects are based on phenomenological considerations. The basis for

the hadronisation model in Herwig 7 is the cluster model [23] (see Sec. 3.3) which forms

colourless singlets from colour connected particles. The fragmentation of these clusters

into hadrons depends on the invariant cluster mass and the �avour of the quarks inside

the cluster. Colour connections between the partons in an event are determined by the

NC → ∞ approximation which leads to a planar representation of quark lines [21]. Every

parton is connected to another parton and gluons, carrying both colour and anti colour

are connected to two other partons.

The goal of colour reconnection is to study whether di�erent connection topologies,

other than the prede�ned colour connection, are possible between the partons.

A good example for the e�ect of colour reconnections is the process

e+e− →W +W − → (q1q̄2) (q3q̄4) , (6.1)

which was extensively studied at LEP-2. Due to the small lifetime of the W -bosons the

decay vertices of the two W ’s are less than 0.1 fm apart from each other which leads to

a large spacetime overlap of the decaying products. Therefore the hadronic systems are

in contact which may lead to colour interchange between the di�erent systems and one

quark of theW +
boson may hadronise together with the antiquark of the otherW −

boson,

(q1q̄2) (q3q̄4) → (q1q̄4) (q3q̄2) . (6.2)

This e�ect was �rst studied by Gustafson, Peterson and Zerwas [50] and non-perturbative

models for colour reconnection were proposed by Sjöstrand and Khoze [51]. Hadronic

collisions consist of a much more complicated structure than e+e− collisions. In a pp

collision for example the hard scattering is accompanied by multiple parton interactions

that all reside within the proton radius which leads to a signi�cant increase in hadronic
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activity. Models for colour reconnection have shown to be indespensable for describing

LHC and Tevatron data. For example the distribution of mean transverse momentum

〈p⊥〉 of charged particles over the number of charged particles Nch, can only be described

when colour reconnection e�ects are taken into account. In Fig. 6.1 this e�ect is shown

with data from ATLAS [38]. If each interaction would be independent, 〈p⊥〉 would be

independent of Nch. Colour reconnection reduces the multiplicity in the event while p⊥

remains the same and is shared among the produced hadrons which results in a rise of the

〈p⊥〉(Nch) distribution. In the context of our work we already implemented a new model

for the soft part of the multiple parton interaction model and achieved good results in

describing minimum bias and underlying event data. Due to the multiperipheral ladder

structure we have more smaller clusters and expect the e�ects of colour reconnections to

be less signi�cant than in the old model for multiple parton interactions. Also in recentpp

collision data from the LHC [52] an underestimation of Hyperons (Λ) was found in sim-

ulations done with PYTHIA which triggered the studies performed in Ref. [53]. A similar

de�ciency can be found in simulations by Herwig 7, which indicates that the production

mechanism of strange quarks has to be reconsidered.

In this chapter we consider additional allowed colour reconnection topologies comple-

mentary to the implemented models in combination with the new model for softMPI (see

Ch. 5) and investigate the e�ects on di�erent observables.

In Sec. 6.1 we brie�y summarise and explain the existing models for colour reconnec-

tion before we describe the implemented extensions in Sec. 6.2. In Sec. 6.3 we re-tune the

parameters of the new softMPI model with the new parameters of the extended colour re-

connection model to data from pp collisions and discuss the e�ects on baryon production.

Finally, in Sec. 6.4 we present our results and give a quick summary.

6.1. Colour reconnection models in Herwig 7

In Herwig 7 colour reconnection is implemented directly before the cluster �ssion (see

Sec. 3.3.2) takes place. Colour reconnection allows to rearrange clusters in a way that

would not be allowed by the given colour connections of the original topology and results

therefore in a di�erent cluster con�guration. This is shown in Fig. 6.2 for an event with

three clusters. The properties of a cluster are de�ned by the invariant cluster mass, which

is given by

M2 =m2

1
+m2

2
+ 2(E1E2 − p

1
· p

2
) , (6.3)
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Figure 6.1.: Comparison of Herwig 7 with and without colour reconnection (CR) to the

〈p⊥〉(Nch) distribution measured by ATLAS [38] at 900 GeV for all particles

with p⊥ > 500 MeV.
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(a)

(b)

Figure 6.2.: Shown are two possible cluster con�guration of simple event with three clus-

ters. (a) Original con�guration. (b) Con�guration after colour reconnection.

wheremi are the masses of the constituents, Ei are the energies and pi are the momenta.

The �ssion and the decay of the clusters directly depend on the invariant mass of the

clusters which therefore directly in�uences the particle multiplicity.

Two algorithms for colour reconnection are implemented in Herwig 7, the plain colour

reconnection and the statistical colour reconnection [37]. Both algorithms try to �nd

con�gurations of clusters that would reduce the sum of invariant cluster masses, which

is referred to as the colour length

λ =

Ncl∑
i=1

M2

i . (6.4)

6.1.1. Plain colour reconnection

This algorithm is used by the default settings of Herwig 7. One quark is randomly picked

from the list of clusters and the cluster it contains, A, is compared to all other clusters

in that list. For every cluster the invariant masses of the original cluster con�guration

MA +MB and the masses of the possible new clusters MC +MD are calculated. The cluster

con�guration that resulted in the lowest sum of cluster masses MC + MD is accepted for

reconnection with a probability pReco. If the reconnection is accepted the clusters A and

B are replaced by the new con�guration of clusters C and D. This algorithm works out

clusters with smaller invariant masses than the original con�guration and therefore re-

places heavy clusters with lighter ones resulting in a shift of the mass distribution towards

lighter clusters.
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6.2. Extensions to colour reconnection

6.1.2. Statistical colour reconnection

In the common approaches colour reconnection can be seen as a minimisation problem

of the colour length λ. In order to �nd the global minimum of λ all possible combinations

of clusters have to be considered. In hadronic pp collisions a brute force approach is an

impossible venture due to the large amount of clusters originating from the hard process

and multiple parton interactions. A more sophisticated approach was implemented in

Ref. [37]. The statistical Colour Reconnection algorithm aims to �nd a con�guration of

clusters that results in a preferably low value of λ. For this a simulated annealing algo-

rithm [54] is applied to �nd a good approximation of the global minima. The algorithm

selects random pairs of clusters and accepts the reconnection if the new con�guration

lowers λ. If the reconnection would raise λ it is accepted with a probability∝ exp(− λ2−λ1

T ),

where T is the control parameter of the annealing algorithm that allows to accept steps

that would raise λ. With the possibility to accept reconnections that would raise λ, the

algorithms is able to escape local minima and converges to a con�guration with a mini-

mum value of λ. In Ref. [37] it was shown that in order to describe the data the algorithm

prefers a quick cooling that does not result in the global minimum.

6.1.3. E�ect of colour reconnection on the new so�MPI model

It is interesting to see how colour reconnection changes the colour connections from the

new softMPI model. If we recall Ch. 5, the gluons emitted in one ladder are ordered in

rapidity and connected to the nearest neighbours. Since the multiperipheral ladder model

creates more lighter clusters we expect the e�ects of colour reconnection on this model

to be less signi�cant than on the old model for multiple parton interactions.

In Fig. 6.3 we show the invariant mass distribution of clusters before and after colour

reconnection for the old multiple parton interaction model and for the new softMPI model.

The e�ect of colour reconnection on the new softMPI is much less signi�cant than on

the old model. The peak of the distribution is already at relatively low cluster masses

O (1 − 3 GeV) which can be seen in Fig. 6.4. This is due to the fact that within the ladder

mainly clusters with low invariant masses are getting produced.

6.2. Extensions to colour reconnection

The only constraint upon forming a cluster is that the cluster has to be a colourless sin-

glet under SU (3)C . In SU (3)C a coloured quark is represented as a triplet (3) and an an-

ticoloured antiquark is represented as an antitriplet (3̄). For the discussion it is useful to
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Figure 6.3.: Invariant mass distributions of clusters before and after colour reconnection

for the old (a) and the new model for multple parton interactions (b). The

simulations for the new softMPI model were done without di�ractive events.
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Figure 6.4.: Comparison of the invariant mass distribution between the two models for

multiple parton interactions after colour reconnection.
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6.2. Extensions to colour reconnection

note that two triplets can be represented as an anti-triplet and two anti-triplets can be

represented as a triplet,

3 ⊗ 3 = 6 ⊕ 3̄ ,

3̄ ⊗ 3̄ = 6 ⊕ 3 .
(6.5)

The �nal cluster is a combination of these coloured quarks where only combinations are

allowed that result in a singlet representation. For the extension to the colour recon-

nection model considered in this work we consider the following allowed con�gurations

based on the SU (3)C structure of QCD. We begin with the normal cluster con�guration

which will be referred to as mesonic cluster. This cluster consists of a quark and an anti-

quark. In SU (3)C a 3 and a 3̄ can be in an octet or a singlet state,

3 ⊗ 3̄ = 8 ⊕ 1 . (6.6)

It is therefore possible for a quark-antiquark pair to form a singlet. If one considers the full

SU(3)C the probability of a quark and an antiquark having the correct colours to form a

singlet would be 1/9. Next we consider another cluster con�guration which we will refer

to as baryonic cluster. A baryonic cluster consists of three quarks or three antiquarks

where the possible representations are,

3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 ,

3̄ ⊗ 3̄ ⊗ 3̄ = 10 ⊕ 8 ⊕ 8 ⊕ 1 .
(6.7)

The probability for three quarks to have the correct colour in order to form a singlet would

be 1/27 under full SU (3)C .

As explained before the colour reconnection models in Herwig 7 are implemented in

such a way that a rearrangement of clusters is considered if it results in a lower sum of

the invariant cluster masses λ. For baryonic clusters such a condition for reconnection is

no longer reasonable. As an alternative we consider a reconnection mechanism based on

the rapidity, y.

The rapidity y is de�ned as

y =
1

2

ln

(
E + pz
E − pz

)
, (6.8)

and is usually calculated with respect to the z-axis. If a particle has little momentum along

the de�ned axis, the rapidity goes towards zero and if a particle moves basically in the

same direction as the axis, the rapidity goes to in�nity. This way the rapidity indicates
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Figure 6.5.: Representation of rapidity based colour reconnection where the quark axis

of one cluster is de�ned as the z-axis in respect to which the rapidities of

the consituents from the possible reconnection candidate are calculated. MA

and MB are the invariant masses of the original clusters. MC and MD are the

invariant masses of the clusters after reconnection.

Figure 6.6.: Representation of clusters that might lead to baryonic reconnection. The black

arrows indicate the direction of the quarks. A reconnection is considered if all

quarks moving in the same direction and all antiquarks moving in the same

direction.

in which direction a particle is moving relative to a certain axis which will be useful in

deciding whether two particles are moving in the same direction or not. A reconnection

algorithm based on the rapidity of the particles will consider clusters for reconnection

if the constituents are �ying in the same direction. If we recall the squared invariant

mass of a cluster from Eq. (6.3) we see that the invariant mass of a cluster containing

two quarks �ying in the same direction will be lower than a cluster where the quarks

�y in opposite directions. A reconnection will therefore directly reduce the number of

particles that are produced due to cluster �ssion. A visualisation of the rapidity based

colour reconnection is depicted in Fig. 6.5. Here the z-axis is de�ned as the quark axis of

the cluster. A simpli�ed sketch for baryonic reconnection is shown in Fig. 6.6. Here we

consider reconnection if the quarks and the anti-quarks are �ying in the same direction.

A reconnection of this kind produces two baryonic clusters.
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6.3. Tuning

6.2.1. Algorithm

The starting point for the new rapidity based model is the prede�ned colour con�guration

that emerges once all perturbative evolution by the parton shower has �nished and the

remaining gluons are split non-perturbatively into quark anti-quark pairs. In the next step

a list of clusters is created from all colour connected quarks and anti-quarks. The colour

reconnection algorithm then allows to change this prede�ned con�guration of clusters.

The �nal algorithm for rapidity based colour reconnection consists of the following steps:

We shu�e the list of clusters in order to prevent the bias that comes from the order in

which we consider the clusters for reconnection. We pick a cluster from that list and boost

into the rest-frame of that cluster. The quark and the anti-quark in that cluster are now

�ying back to back and we de�ne the direction of the anti-quark as the positive direction

of the quark axis. In the next step we loop over all remaining clusters and calculate the

rapidity of the cluster constituents with respect to the quark axis of cluster A in the rest-

frame of this cluster. Depending on the calculated rapidities of the constituents of cluster

B, the cluster B falls into one of two categories:

Mesonic: y (qB ) > 0 > y (q̄B ) .

Baryonic: y (q̄B ) > 0 > y (qB ) .

If the rapidities of the constituents of cluster B fall into none of the categories listed above

the cluster is not considered for reconnection. In the next step the category and the sum

of the absolute values is saved |y (qB ) | + |y (q̄B ) | for the clusters with the two largest sums.

If the cluster with the largest sum has the label mesonic then accept the reconnection with

a probability given by the parameter pReco and if the clusters with the two largest sums

have the label baryonic then consider them for baryonic reconnection with probability

pRecoBaryonic. These two reconnection probabilities are the parameters of the model and

are tuned to data in the next section. If two baryonic clusters are formed, the clusters

are removed from the list and not considered for further reconnection. This removal of

clusters might bias the colour reconnection algorithm since it strongly depends on the

order of clusters.

6.3. Tuning

In the e+e− environment we expect little changes with the new colour reconnection model

due to the missing hadronic activity one faces at pp collisions. The new colour reconnec-

tion model doesn’t change the colour structure signi�cantly which is already well de�ned
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6. Colour reconnection

by the parton shower. This was con�rmed by comparing Herwig 7 with the old and with

the new model for colour reconnection to a wide range of experimental data from LEP. In

Fig. 6.7 we show an example of the e�ect of the new model compared with the old model

for colour reconnection. We conclude that the description of the data is of the same quality

and even improves the description in some cases. We keep the hadronisation parameters

that were tuned to LEP data (see Ref. [31]) at their default values. In the next step we tune

to data from hadron colliders where we follow a similar tuning procedure as presented in

Sec. 5.3.1.
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Figure 6.7.: Comparison between the new and the old colour reconnection model. Shown

are two exemplary measurements from the DELPHI detector at LEP [55]. The

value for pRecoBaryonic was set to 0.5.

6.3.1. Tuning to hadron colliders

The tuning of the new model for colour reconnection in combination with the model for

the new softMPI consists of 6 main parameters, 5 of which were already explained in Sec.

5.3. The only new parameter of the model is the reconnection probability for baryonic

clusters pRecoBaryonic. In Fig. 6.8 we can see the in�uence of the new model for di�erent

values of pRecoBaryonic on the non-single-di�ractive observables discussed in Sec. 5.4.2,

where we used the parameters of Tab. 5.1. We already achieve a very good description

of the data when applying the new model for colour reconnection. As expected the new

reconnection model in�uences the hadronic multiplicities for large n signi�cantly.
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Figure 6.8.: Charged hardon multiplicities for di�erent pseudo rapidity regions. Only non-

single-di�ractive events were simulated. The run for softMPI were performed

with the new model for soft multiple parton interactions in combination with

double di�ractive events. The runs newCR02 and newCR05 were performed

with the new softMPI model in combination with the new model for colour

reconnection were we used 0.2 and 0.5 for the baryonic reconnection proba-

bility pRecoBaryonic.

For the tuning we follow an iterative tuning procedure. We tune the two parameters

of the new model to observables which are especially sensible to the e�ects of colour

reconnection, the charged hadron multiplicity distributions and the 〈p⊥〉(Nch) distribution

of Ref. [46] for all non-single-di�ractive events.

We �x the parameters of pReco and pRecoBaryonic to the best values we get from the tun-

ing and proceed to tune the other parameters of the model to the same minimum bias

observables from Sec. 5.3. The results of this tune are shown for the most sensible ob-

servables in Figs. 6.9 and 6.10 where we compare the softMPI model in combination with

the new and the old model for colour reconnection with the old MPI model of Herwig 7.

Small di�erences can be seen in Fig. 6.9a. The new colour reconnection model gives the

desired rise of the transverse momentum with respect to the number of charged particles.

In Fig. 6.9b the new model gives a good description of the data between Nch = 25 and

Nch = 120. For higher Nch the distribution diverges from the data but this can be seen as

missing statistics in the high Nch region. For Nch < 25 on the other hand, although the

new model reduces the p⊥ per number of charged particles, it still is too large by a factor

of ≈ 0.2. If we compare this region to the corresponding region in Fig. 6.9a we note a
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6. Colour reconnection

similar behaviour but not as signi�cant. We conclude that ultra soft particles that are not

included for p⊥ > 500 MeV carry too much transverse momentum on average.

In Fig. 6.10a we show the charged multiplicity as a function of the pseudorapidity η

for p⊥ > 100 MeV and Nch ≥ 20. The new model improves the description in the central

pseudo-rapidity region. In Fig. 6.10b we show the charged multiplicity distribution for

Nch ≥ 20 and p⊥ > 100 MeV. We note the di�erences in the tail of the multiplicity dis-

tribution which is due the e�ect of the possibility for baryonic colour reconnection that

reduces the multiplicities. The new model still overestimates the tail but performs signif-

icantly better than softMPI in combination with the old model for colour reconnection

and the old model for multiple parton interactions of Herwig 7.

The model achieves very good results for the tuned observables and also for all other

observables provided by ATLAS [38], which are not considered in the tuning procedure.

With the additional possibility of having cluster reconnections that result in baryonic

cluster we are able to describe the tails of the multiplicity distributions correctly. We also

note slight improvements in the 〈p⊥〉(Nch) distribution.
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Figure 6.9.: Measurement of the average p⊥ as a function of multiplicity for two di�erent

cuts for p⊥ and Nch ≥ 1. (a) p⊥ > 500 MeV and Nch ≥ 1. (b) p⊥ > 100 MeV and

Nch ≥ 2. The measurement was performed by the ATLAS collaboration [38].

The values of the tuned parameters in comparison with the tune presented in Sec. 5.3

are listed in Tab. 6.1. The baryonic reconnection probability seems to be quite high with a

value of 0.45, but seems reasonable if we consider that the case of baryonic reconnection

does not happen often. The other parameters are in the same region as the previous tune
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Figure 6.10.: Charged multiplicity as a function of pseudo-rapidity η for p⊥ > 100 MeV

and Nch > 20 (a), multiplicity distribuiton for p⊥ > 100 MeV and Nch ≥ 20.

newCR is the softMPI model in combination with the new model for colour

reconnection.

which indicates that the new model for colour reconnection is a reasonable extension to

the softMPI model.

Default Range old CR new CR

pReco 0.4276 0.0 − 1.0 0.4455 0.5535

pRecoBaryonic none 0.0 − 1.0 none 0.4935

pmin

⊥,0/GeV 4.39 1.0 − 5.0 3.1453 3.084

µ2/GeV
2

2.30 0.0 − 2.0 1.1015 1.163

b 0.366 0.0 − 2.0 0.7091 0.7772

nLadder none 0.0 − 2.0 0.7009 0.7336

Table 6.1.: Parameter values and ranges used in the tuning of the softMPI model in com-

bination with the new model for colour reconnection. Shown are the tunes

resulting in the smallest χ 2/Ndof value for 7 TeV centre-of-mass energy

√
s .

6.4. Results

We tuned the two parameters of the new model to sensible observables for colour recon-

nection. We �xed these two parameters to their best value and re-tuned the parameters of

the softMPI model to minimum bias data which results in an overall good description of
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Figure 6.11.: Pseudo rapidity gap distribution for a low p⊥ cut from ATLAS [40] (a) and

CMS [45] (b). Shown is the comparison between the softMPI model in com-

bination with the new model for colour reconnection and the old model from

Herwig 7.

the considered observables. Next we compare the new model with the tuned parameter

values to other important observables as in Sec. 5.4.

6.4.1. Rapidity gap analysis

In Fig. 6.11 we show the rapidity gap distributions with the new model for colour recon-

netion. While in Fig. 6.11a the data is almost perfectly described by the new model the

data in Fig. 6.11b is underestimated in the mid-range of the ∆ηF region for low p⊥ cuto�s.

Now the measurement by ATLAS is better described than the measurement by CMS but

the quality of description is quite high for both observables. The new model reduces the

amount of events in the large ∆ηF region which is more in align with the property of the

soft model for multi parton interactions that the contribution from non-di�ractive events

should be proportional to e−∆η
F
. We also note that the contribution in the large ∆ηF re-

gion for the softMPI model is due to the old colour reconnection model preferring cluster

combinations that may result in a smaller invariant mass but create large gaps between

the clusters which should only come from di�ractive events.
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Figure 6.12.: Multiplicity distribution for the most inclusive measurement by CMS (a).

Average p⊥ as a function of hadron multiplicity (b). The runs newCR and

softMPI are non-single-di�ractive simulations while H7.0 uses the old model

for multiple parton interactions and lacks a model for di�raction completely.

6.4.2. Analysis of non-single-di�ractive events

In Fig. 6.12a we see the expected fall o� for high multiplicities. In combination with

the new model for colour reconnection the softMPI model is able to describe the region

20 < n < 120 fairly well compared to the model with the old colour reconnection. For

n > 120 the model underestimates the data but is still within error bars. For Fig. 6.12b

the same behaviour as for Fig. 6.9b is observed. The rise of p⊥ with number of charged

particles is better described for non-single-di�ractive events. Especially the new model

agrees with the data forn > 20 and seems necessary to describe the rise ofp⊥with number

of particles.

6.4.3. Baryon ratios

In Fig. 6.13a we see the e�ect of the new colour reconnection model on the transverse

momentum distribution of Λ baryons. The new model as well as the old model under-

estimate the production of Λ baryons in all p⊥ regions signi�cantly. The new model for

colour reconnection increases the amount of baryons produced in the central p⊥ region

but the e�ect is still not large enough. Especially the number of Λ baryons in the low p⊥

region is o� by a large factor. This underestimation is not only a property of Λ baryons,

also other hadrons containing strangeness are underestimated systematically as shown
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Figure 6.13.: Multiplicity distributions for the very central region |η | < 0.5 (a) and the

most inclusive measurement by CMS [46] (b). MB-7 are all non-single-

di�ractive simulations while H7.0 uses the old model for multiple parton

interactions and lacks a model for di�raction completely.

in Fig. 6.13b for the case of Kaons. This was also pointed out in Ref. [56]. The ratio Λ/Ks

increases in the low p⊥ region but is still well below the data. Here we just point out that

the new model gives a lever on the rate of baryons and mesons. A systematic retuning of

parameters responsible for strangeness production might lead to a better description of

these observables.

6.5. Conclusion

We introduced additional allowed possibilities for colour reconnection based on the SU (3)C

structure of QCD in Herwig 7. The tuning to sensible observables for colour reconnection

and minimum bias data resulted in an improved description of all considered observables.

We especially found that the possibility of baryonic reconnection reduces the multiplici-

ties in the tail of the number of charged particle distributions signi�cantly which is nec-

essary to describe non-single-di�ractive analyses. The e�ects in terms of reduction of

invariant cluster mass is quite low for the softMPI model since the majority of clusters

in the ladder consists of quarks which are already close in rapidity. The description of

the rapidity gap analysis improves due to the new colour reconnection model because it

reduces the contribution from events with large ∆η.
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6.5. Conclusion

The description of hadrons containing strange quarks remains an ongoing construc-

tion site. The new colour reconnection model gives a lever on the production of hadrons

but neither Λ nor K multiplicities are described satisfactorily. This might indicate that

the production mechanism for strange baryons and mesons has to be reconsidered which

could be done during gluon splitting, cluster �ssion and cluster decay. Also colour recon-

nection models which depend on the �avours of the constituents would be possible.
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7. Summary and outlook

The aim of this work was to implement a new model for soft multiple parton interactions

in Herwig 7. The model is based on multiperipheral particle production where one soft

interaction produces a ladder of particles that are ordered in rapidity. It was shown that

the invariant mass distribution of the clusters coming from that ladder already peaks at

low masses of the order O (GeV) which means that the property of precon�nement is

already fairly well satis�ed.

In combination with di�raction the parameters of the new model for soft interactions

were tuned to minimum bias data. With these new models Herwig 7 is for the �rst time

able to describe minimum bias analyses completely. It was further shown that important

observables such as the rapidity gap are now well described. It is possible to extrapolate

the new model to 13 TeV and get very good results with a similar set of parameters as for

7 TeV. The new model showed some deviations when compared to non-single-di�ractive

analyses of charged hadron multiplicities. This issue is tackled in form of a new model

for colour reconnection which is based on a rapidity picture rather than a direct compar-

ison of invariant cluster masses. We introduced additional reconnection topologies like

baryonic cluster formation and a re-tune of the model for multiple parton interactions in

combination with the new model for colour reconnection was performed. It was shown

that a combination with the new model for soft multiple parton interactions results in a

better description of data and the deviation of charged hadron multiplicities is resolved.

Also other important observables from minimum bias analyses which were not consid-

ered in the tuning procedure are described well. With the possibility of baryonic colour

reconnections a lever on hadronic ratios was introduced. It was shown that the baryonic

multiplicities can be improved but are still far from satisfactorily described. Especially the

description of strange hadron observables lacks signi�cantly in accuracy which indicates

that the production mechanism of strangeness has to be reconsidered.

This thesis serves as the �rst step in rebuilding the underlying event model in Herwig 7.

The new model for soft multiple parton interactions will be part of the new release, Her-

wig 7.1 and it will be interesting to see its application in analyses. The new model for

colour reconnection will probably �nd its way into Herwig 7 in the near future. Ongoing
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7. Summary and outlook

work is also considered with a dynamical approach to colour reconnection with input

from a perturbative point of view.

Although the e�ects of colour reconnection on the new model are less signi�cant in

terms of reduction of invariant cluster mass, colour reconnection still seems to be indis-

pensable in order to describe data from hadronic collisions. The onset of the 〈p⊥〉(Nch)

observables remains di�cult to describe for a low cut on p⊥ .

With the end of the data taking period of LHC run 2 we are con�dent that more 13 TeV

analyses concerned with the underlying event will be available soon. With these analyses

we will get further insights of the intricacies of our new models and are hopeful to solve

ongoing issues.
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A. Tuning

The following plots show the tuning results of the outcome of the tuning procedure for

the �ve tuned parameters in Sec. 5.3 for 900 GeV and 7 TeV in comparison.
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Figure A.1.: Scatterplots of the tuning results for di�erent subsets of generator runs (black

crosses) or of all generator runs (green dot). The red dot marks the minimum

value of χ 2/Ndof .
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Figure A.2.: Scatterplots of the tuning results for di�erent subsets of generator runs (black

crosses) or of all generator runs (green dor). The red circle dot the minimum

value of χ 2/Ndof .
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Figure A.3.: Scatterplots of the tuning results for di�erent subsets of generator runs (black

crosses) or of all generator runs (green dot). The red dot marks the minimum

value of χ 2/Ndof .
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B. Eikonal approximation

Here we describe the eikonal approximation of a quantum mechanical amplitude follow-

ing Ref. [57]. In the high energy limit of non relativistic potential scattering, the scattering

amplitude can be simpli�ed using the eikonal approximation. The Starting point is the

Schrödinger equation [
∇2 −U (r) + k2

]
Ψ(r) = 0 , (B.1)

which describes the motion of two spinless particles that interact via the potential U (r).
In order to solve the equation we use the ansatz for a plane wave moving in forward

direction

Ψ(r) = ϕ (r)eik·r , (B.2)

where ϕ (r) is some unknown function. With the following two assumptions: i) The en-

ergy of the particle is much larger than the interaction potential, E � |U (r ) |. ii) The

wavelength of the particle is much smaller than the interaction range, ka � 1, the parti-

cle is scattered predominantly at small angles. Inserting the ansatz into the Schrödinger

equation Eq. (B.1) leads to (
∇2

+ 2ik∇ −U
)
ϕ (r) = 0 . (B.3)

If we assume that the wave comes from −∞ and that at high energiesψ andU are smooth

functions of r , the term ∇2ϕ can be neglected and Eq. (B.3) simpli�es to

[
2ik∂z −U (x ,y,z)

]
ϕ (x ,y,z) = 0 , (B.4)

where we used k = kêz . This equation can be solved by

ϕ (x ,y,z) = exp

[
−

i

2k

∫ z

−∞

U(x ,y,z′)dz
′

]
. (B.5)

Inserting ϕ (x ,y,z) into the ansatz (B.2) for Ψ, we obtain

Ψ(x ,y,z) = exp

[
ikz −

i

2k

∫ z

−∞

U (x ,y,z′)dz′
]
. (B.6)
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B. Eikonal approximation

Eq. (B.6) can be written in a more customary way using the impact parameter represen-

tation r = b + zêz , where b is the impact parameter. We �x the wavevector k in the

direction of the z-axis (k = k êz ), and rewrite Eq. (B.6) as

Ψ(r) = exp

[
ik · r −

i

2k

∫ z

−∞

U (b,z′)dz′
]
. (B.7)

Now the scattering amplitude f (k,k’) can be calculated from the formula

f (k,k′) = −
1

4π

∫
e ık′rU (r′)Ψ(r′)d3r′, (B.8)

which leads to

f (k,k′) = −
1

4π

∫ ∞

−∞

dz

∫
d

2be−i (k
′
−k)·(b+zêz )U (b,z′) × exp

[
−

1

2k

∫ z

−∞

U (b,z)dz′
]
.

(B.9)

For small angles, k = k′ is valid and the momentum transfer is expressed as q = k’ − k.

Where the modulo of q is q = 2k sin(θ
2
). Because q is almost orthogonal to k we can use

q · r ≈ q · b. With these relations, Eq. (B.9) reduces to

f (k ,θ ,ψ ) = −
1

4

∫ ∞

−∞

dz

∫
d

2be (−iq·b)U (b,z) × exp

[
−

i

2k

∫ z

−∞

U (b,z′)dz′
]
. (B.10)

The integration over z can be performed using the identity

2ik
∂

∂z
exp

[
−

i

2k

∫ z

−∞

U dz′
]
= U exp

[
−

i

2k

∫ z

−∞

U dz′
]
, (B.11)

and we obtain a function for the amplitude de�ned in terms of the two dimensional inte-

gration over the impact parameter b,

f (k ,θ ,ψ ) =
ik

2π

∫
d

2b e−iq·b
(
1 − ei χ (b)

)
, (B.12)

where χ in Eq. (B.12) is referred to as the eikonal function and reads

χ (b) = −
1

2k

∫
+∞

−∞

U (b,z)dz. (B.13)

The total cross section σtot consists of an elastic and an inelastic contribution

σtot = σel + σinel. (B.14)
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From the formula for the elastic cross section
dσel

dΩ = | f (k ,θ ,ψ ) |
2

we obtain,

σel =

∫
d

2b |1 − ei χ (b) |2 (B.15)

and with the optical theorem, that relates the total cross section σtot to the imaginary part

of the forward elastic amplitude, follows

σtot = 2

∫
d

2b<(1 − ei χ (b) ). (B.16)

Combining the total and the elastic cross sections, Eqs. (B.16,B.15), one immediately ob-

tains a relation for the inelastic cross section σinel

σinel =

∫
d

2b
[
2<(1 − ei χ (b) ) − |1 − ei χ (b) |2

]
. (B.17)
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