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Abstract

For the upcoming high luminosity phase of the Large Hadron Collider, precise predictions
for the production of two Higgs bosons are essential. Especially promising in this context
are effective field theories, because they allow incorporating large classes of beyond
Standard Model physics in the calculations with relatively little effort. Both, high
precision predictions for the Standard Model and effective field theory calculations in
vector boson fusion, are available. However, no next-to-leading order calculation in
quantum chromodynamics of this process within an effective field theory framework is
available yet.

In this work, the next-to-leading order quantum chromodynamics corrections to the
production of two Higgs bosons in the vector boson fusion channel in the Higgs effective
field theory (HEFT) are presented. As a first step towards this goal, the full set
of leading-order operators in the Higgs effective field theory is reduced to the ones
relevant to this process. Next, to make the numerical calculations more feasible, several
improvements in the amplitude generation and kinematics calculations are implemented
in the one loop provider GoSam, significantly improving the program’s overall runtime
performance. Finally, GoSam is used together with the Monte Carlo event generator
Whizard to perform the numerical study of the vector boson fusion process, which
includes a parameterization of the total cross section for arbitrary anomalous coupling
values. Lastly, some differential distributions are presented for several values of the
anomalous couplings.
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Zusammenfassung

Für die bevorstehende high-luminosity Phase des Large Hadron Colliders sind präzise
Vorhersagen für die Produktion von zwei Higgs Bosonen unverzichtbar. Besonders viel-
versprechend sind in diesem Kontext effektive Feldtheorien, die es erlauben eine große
Klasse von Theorien jenseits des Standardmodells mit verhältnismäßig wenig Aufwand
in die Rechnungen miteinzubeziehen. Beides, präzise Vorhersagen im Standardmodell
und Rechnungen in effektiven Feldtheorien für den Vector Boson Fusion Prozess, sind
verfügbar. Rechnungen mit next-to-leading order Präzision in der Quantenchromody-
namik innerhab einer effektiven Feldtheorie Frameworks sind jedoch bisher nicht für
diesen Prozess verfügbar.

In dieser Arbeit werden die next-to-leading order Korrekturen der Quantenchromody-
namik für die Produktion von zwei Higgs Bosonen im Vector Boson Fusion Kanal im
Kontext der Higgs effektiven Feldtheorie (HEFT) berechnet. Für diesen Zweck wird
zuerst die volle Menge der leading-order Operatoren der Higgs effektiven Feldtheorie
auf die für den Prozess relevanten reduziert. Um die folgenden Rechnungen praktikabler
zu machen, werden auch einige Verbesserungen in der Erzeugung der Amplituden
und der Berechnung der kinematischen Größen in dem One-Loop-Provider GoSam
implementiert, welche die Laufzeit des Programms deutlich reduzieren. Letztendlich
wird GoSam zusammen mit dem Monte Carlo Event Generator Whizard benutzt, um
die numerische Studie des Vector Boson Fusion Prozesses durchzuführen, welche eine
Parametrisierung des totalen Wirkungsquerschnitts für beliebige Werte der anomalen
Kopplungen enthält. Letztendlich werden noch einige kinematische Verteilungen für
verschiedene Werte der anomalen Kopplungen präsentiert.
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1 Introduction

Since the discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012
[1, 2], the particle spectrum of the Standard Model (SM) is complete. One of the
main objectives of the LHC physics program has been the precise measurements of its
properties ever since. Today, many of the couplings involving a single Higgs boson are
known with a precision of ∼ 10% [3]. At the same time, the couplings involving two or
more Higgs bosons remain largely unexplored with the currently available experimental
datasets. However, some of these couplings, e.g. the Higgs self-coupling, are essential to
the structure of the electroweak symmetry breaking (EWSB) mechanism, which is why
their measurement is one of the principal goals of the High Luminosity LHC (HL-LHC)
physics program. These measurements can not only serve to verify the SM though,
they can equally also reveal deviations from it. Since these couplings are currently
only weakly constrained, they can incorporate a wide range of beyond Standard Model
(BSM) physics.

The multi-Higgs couplings can best be probed in the production process of two Higgs
bosons, to which four distinct production modes contribute sizeably [4]. Of these modes,
mostly the dominant production process, gluon fusion, has recently received attention
in terms of EFT studies (e.g. [5, 6, 7, 8]). For vector boson fusion (VBF), the second
most important production process, some EFT studies have also been performed in e.g.
[9, 10]. However, so far high precision predictions for this process are only available
in the SM [11, 12, 12, 13, 14, 15], while the mentioned EFT calculations are only at
leading order accuracy. The aim of this work is now to somewhat bridge this gap by
providing the production of two Higgs bosons in the VBF channel at next-to-leading
order (NLO) precision in quantum chromodynamics (QCD) with anomalous couplings
given in terms of the Higgs Effective Field Theory (HEFT).

The thesis starts in chapter 2 with a review of the SM, which is then extended
systematically within the Effective Field Theory (EFT) approach in the subsequent
section. This especially includes the Lagrangian used in the later calculations, which is
derived in section 2.2.2, followed by a sketch of the steps to calculate observables from
the model in section 2.3. Chapter 3 is then dedicated to GoSam, the program used
to supply the scattering amplitude for the actual numerical study. Several changes in
version 3 of GoSam are described, which predominantly serve to improve the program’s
performance. Finally, the calculation of the production of two Higgs bosons in the VBF
channel at NLO QCD in HEFT are presented in chapter 4.
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2 Theoretical Background

In this chapter, a description of the various theoretical methods used in the later
chapters of this work is given. First, the Standard Model of particle physics (SM) is
reviewed in section 2.1, which also serves to give the sign conventions used in this thesis.
Then, in section 2.2, the Effective Field Theory (EFT) approach to parameterize low
energy deviations from the SM in a largely model independent way is described. This
includes overviews of the two most common EFTs in current LHC physics, the Standard
Model Effective Field Theory (SMEFT) in section 2.2.1 and the Higgs Effective Field
Theory (HEFT) in section 2.2.2. Finally, section 2.3 gives a summary of how collider
observables can actually be calculated from the previously given models.

2.1 The Standard Model of Particle Physics

The starting point for most particle physics calculations is the SM or extensions thereof,
as is the case here. Therefore, as a first step, the SM is reviewed. This section follows
the notations and sign conventions of [16].

The SM consists of two parts, Quantum Chromodynamics (QCD), describing the
strong interaction, and the electroweak (EW) interaction. More formally, the SM is
constructed as a quantum field theory (QFT) invariant under local transformations of
the three gauge groups

𝑆𝑈(3)𝑐 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌. (2.1)
Here, 𝑆𝑈(3)𝑐 corresponds to QCD and 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 represents the EW interaction.
Gauge invariance under a general 𝑆𝑈(𝑁) gauge group with coupling constant 𝑔 and
generators 𝑇 𝑎 can then be insured by including a gauge field 𝐹 𝑎

𝜇 , which is introduced
into the covariant derivative as

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝑇 𝑎𝐹 𝑎
𝜇 . (2.2)

To write the kinetic energy of the gauge field, the field strength tensor

𝐹 𝑎
𝜇𝜈 = 𝜕𝜇𝐹 𝑎

𝜈 − 𝜕𝜈𝐹 𝑎
𝜇 + 𝑔𝑓𝑎𝑏𝑐𝐹 𝑏

𝜇𝐹 𝑐
𝜈 (2.3)

is introduced, where the gauge group’s structure constant is defined by [𝑇 𝑎, 𝑇 𝑏] =
𝑖𝑓𝑎𝑏𝑐𝑇 𝑐.

To complete the specification of the SM, its particle content has to be defined. There
are three generations of fermions, indexed by 𝑖, each containing an up-type quark 𝑢𝑖, a
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2 Theoretical Background

Table 2.1: Representations and charges under the SM gauge groups for the SM fermions and
scalar bosons.

𝑄𝑖 𝑢𝑖
𝑅 𝑑𝑖

𝑅 𝐿𝑖 𝑒𝑖
𝑅 Φ

𝑆𝑈(3)𝑐 3 3 3 1 1 1

𝑆𝑈(2)𝐿 2 1 1 2 1 2

𝑈(1)𝑌
1
6

2
3 −1

3 −1
2 −1 1

2

down-type quark 𝑑𝑖, a charged lepton 𝑒𝑖 and a neutral lepton 𝜈𝑖. The quarks live in
the fundamental representation of QCD’s 𝑆𝑈(3)𝑐, which means a quark carries a color
charge with three possible values. The only other particle interacting with color charges
is QCD’s gauge boson itself, the gluon 𝐺𝑎

𝜇, living in the adjoint representation with eight
possible states. The situation becomes slightly more complicated with the electroweak
interaction, since it is not parity-conserving. Let 𝜓𝐿/𝑅 denote left- and right-handed
fermions. The left-handed particles are then grouped in 𝑆𝑈(2)𝐿 doublets

𝑄𝑖 = (𝑢𝑖
𝐿

𝑑𝑖
𝐿

) and 𝐿𝑖 = (𝜈𝑖
𝐿

𝑒𝑖
𝐿

) , (2.4)

the right-handed field are 𝑆𝑈(2)𝐿 singlets 𝑢𝑖
𝑅, 𝑑𝑖

𝑅 and 𝑒𝑖
𝑅. Finally, the fermions are

charged under the 𝑈(1)𝑌, with 𝑌 being the hypercharge. All these representations and
charges are summarized in table 2.1. The 𝑆𝑈(2)𝐿 gauge bosons are denoted by 𝑊 𝐼

𝜇,
the 𝑈(1) gauge boson by 𝐵𝜇.

So far, all fields are massless. Simply introducing mass terms is not possible here
though, since a mass term for any field but the Higgs doublet would break the gauge
symmetry. The existence of massive particles is dictated by nature however, requiring
a more intricate mechanism to introduce the needed mass terms. This can be done
through spontaneous symmetry breaking, which respects the gauge symmetry and only
breaks it through the vacuum state. For this mechanism, a complex scalar 𝑆𝑈(2)𝐿
doublet Φ is introduced, which is called the Higgs doublet. This field is then coupled
to the remaining fields such, that they acquire a mass when the Higgs doublet acquires
a non-zero vacuum expectation value (vev). All in all, the total SM Lagrangian before
symmetry breaking reads

LSM = − 1
4

𝐺𝑎
𝜇𝜈𝐺𝑎,𝜇𝜈 − 1

4
𝑊 𝐼

𝜇𝜈𝑊 𝐼,𝜇𝜈 − 1
4

𝐵𝜇𝜈𝐵𝜇𝜈

+ ∑
𝜓

̄𝜓𝐷𝜇𝛾𝜇𝜓 − (�̄�𝑦𝑑Φ𝑑𝑅 + �̄�𝑦𝑢Φ̃𝑢𝑅 + �̄�𝑦𝑒Φ𝑒𝑅 + h.c.)

+ (𝐷𝜇Φ)†(𝐷𝜇Φ) − 𝑉 (Φ)

(2.5)
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2.1 The Standard Model of Particle Physics

where the sum over the generations is implicit, Φ̃ = 𝑖𝜎2Φ∗ is the charge-conjugated
Higgs-doublet and the 𝜓-sum runs over all fermions. The Lagrangian also includes the
in general complex Yukawa matrices 𝑦𝑢/𝑑/𝑒 and the Higgs potential, which reads

𝑉 (Φ) = −𝜇2Φ†Φ + 𝜆 (Φ†Φ)2 (2.6)

in the SM.

Spontaneous Symmetry Breaking When 𝜇2 and 𝜆 are positive, the Higgs potential
assumes its minimum at a non-zero value,

|Φmin|2 = 𝜇2

2𝜆
=∶ 𝑣2

2
. (2.7)

At this point, the choice of the vacuum state is arbitrary among those fulfilling this
relation. The symmetry breaking has to obey the observations made in nature however,
especially the photon not acquiring a mass. According to Goldstone’s theorem, one
massless Goldstone boson will appear for each generator broken by the ground state.
When those fields are coupled to gauge bosons, they appear as longitudinal degrees of
freedom of these gauge bosons, which thus acquire a mass. Therefore, for the photon
to stay massless, one generator must remain unbroken in the vacuum. If the ground
state is chosen as Φ0 = (0 𝑣), it is invariant under

𝑄Φ0 = (𝜏3 + 𝑌 ) (0
𝑣) = (1 0

0 0) (0
𝑣) = (0

𝑣) = Φ0 (2.8)

where 𝜏3 = 𝜎3/2 is the third generator of 𝑆𝑈(2). The operator 𝑄 then represents the
unbroken symmetry, which is the electromagnetic 𝑈(1)em. It is most convenient to
parameterize the full Higgs doublet as

Φ = 1√
2

𝑒𝑖𝜎𝑖𝜙𝑖/𝑣 ( 0
𝑣 + ℎ) , (2.9)

where 𝜎𝑖 are the Pauli matrices. This parameterization can be understood as starting
with the field (0, 𝑣+ℎ) and then applying an arbitrary local 𝑆𝑈(2) gauge transformation
on it, which is parameterized by the fields 𝜙𝑖. In this form, the 𝜙𝑖 immediately drop
from the Higgs potential, then reducing to

𝑉 (Φ) = 𝑉 (ℎ) = 𝑣2𝜆ℎ2 + 𝜆𝑣ℎ3 + 𝜆
4

ℎ4 + const. (2.10)

This introduces a mass term for the previously massless field ℎ, as well as some self-
coupling terms. The parameterization (2.9) also allows to easily see the impact of the
symmetry breaking on the remaining terms of the SM Lagrangian. The Lagrangian is
constructed to be invariant under 𝑆𝑈(2)𝐿×𝑈(1)𝑌, therefore a gauge transformation can
be performed on the gauge fields 𝑊 𝐼 and 𝐵 to exactly remove the 𝑆𝑈(2) transformation
of (2.9) everywhere in the Lagrangian. Therefore, the all following considerations can
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2 Theoretical Background

take place in the unitary gauge without loss of generality, where the Goldstone bosons
are not present. The Higgs doublet’s kinetic term reads

(𝐷𝜇Φ)†(𝐷𝜇Φ) = 1
2

(𝜕𝜇ℎ)(𝜕𝜇ℎ) + 𝑣2

4
(𝑔2𝑊 +

𝜇 𝑊 −,𝜇 + 𝑔2 + 𝑔′2

2
𝑍𝜇𝑍𝜇) (1 + ℎ

𝑣
)

2
(2.11)

after symmetry breaking, where

𝑊 ±
𝜇 = 𝑊1 ∓ 𝑖𝑊2√

2
and (𝑍𝜇

𝐴𝜇
) = (cos 𝜃𝑤 − sin 𝜃𝑤

sin 𝜃𝑤 cos 𝜃𝑤
) (𝑊 3

𝜇
𝐵𝜇

) . (2.12)

The angle diagonalizing the mass matrix of 𝑊 3 and 𝐵 is the Weinberg angle 𝜃𝑤, which
is defined as

tan 𝜃𝑤 = 𝑔′

𝑔
. (2.13)

Equation (2.11) includes mass terms for the physical 𝑊 ± and 𝑍 bosons, as well as
couplings between two of these gauge bosons and one or two Higgs bosons. In summary,
the generated boson masses read

𝑀ℎ =
√

2𝜆𝑣, 𝑀𝑊 = 𝑔𝑣
2

, 𝑀𝑍 =
√𝑔2 + 𝑔′2

2
= 𝑔𝑣

2 cos 𝜃𝑤
= 𝑀𝑊

cos 𝜃
. (2.14)

Finally, also the fermions acquire a mass term when equation (2.9) is inserted into
the Yukawa terms of the SM Lagrangian. The Yukawa couplings are not diagonal
in general, because of which the generated mass matrix is also not diagonal. The
Yukawa matrices are not even necessarily diagonalizable, which is why a singular value
decomposition with a subsequent field redefinition of the fermions must be used to
diagonalize the mass terms. This field redefinition changes the Lagrangian however,
introducing a remnant unitary matrix in the charged weak current, which is called
Cabibbo-Kobayashi-Maskawa (CKM) matrix. Since it can be complex in general, it breaks
the CP-invariance of the SM. After the diagonalization procedure, the fermion masses
read

𝑚𝑓 =
𝑣𝑦𝑓√

2
(2.15)

where 𝑦𝑓 is the diagonal Yukawa coupling to the fermion 𝑓.

In the form of (2.5), the Lagrangian can not be used for perturbative calculations
yet. This description includes unphysical degrees of freedom for the gauge bosons,
which results in non-invertible equations for their propagators. Therefore, to perform
calculations, gauge fixing and ghost terms need to be included in the Lagrangian as
well, which then cancel the unphysical degrees of freedom. These are assumed to be
included implicitly in the remaining thesis.

2.2 Effective Field Theories

In its near 50-year history, no significant numerical deviation from the SM has ever
been observed conclusively. It is not without its deficiencies though, as there are some

6



2.2 Effective Field Theories

internal puzzles in the SM, like the strong CP problem or the hierarchy problem. And in
addition to the more subtle theoretical problems, there are several phenomena entirely
undescribed by the SM, most notably gravity and the apparent existence of dark matter.
The SM can therefore not be universally valid, its agreement with data at the currently
probed energy scales is nonetheless excellent. It can therefore sensibly be used as the
starting point to construct theories allowing slight deviations from the SM, which can
be done in a largely model-independent way as an EFT. This section is largely based
on [17].

Starting from a top-down approach, assume that the full UV theory is known. In
order for the theory to allow predictions at arbitrarily large energies, it must be
renormalizable. However, the behavior of the UV theory below a certain cutoff scale Λ
can be approximated as a non-renormalizable theory. The effective low energy theory
will contain all particles propagating below the cutoff scale, all other particles are
integrated out, i.e. they are replaced by a generally infinite number of non-renormalizable
operators describing their influence on the propagating fields. All appearing operators
have to respect the symmetries of the UV theory, through which also all coefficients,
called Wilson coefficients, are determined.

The general form of the Lagrangian of one such theory can also be constructed without
restricting oneself to a specific UV theory though, with a bottom-up approach. A specific
EFT is determined by the symmetries it’s operators have to obey and the fields able to
appear, after which all possible operators up to a certain power can be written down.
The Wilson coefficients can then be regarded as free parameters, which means a priori
any UV theory obeying the specified symmetries can be approximated by the EFT.
This approximate description of the UV theory holds below a certain scale, which is
determined by the UV theory and the maximum power of considered EFT operators.
When sufficient data is available, the Wilson coefficients can be determined by fitting
predictions of the EFT to data. Since the Wilson coefficients are fully determined
by the UV theory, the set of non-vanishing Wilson coefficients can be compared with
different theories to determine which UV theory is not able to describe the observed
data. This procedure therefore allows choosing viable theories without requiring to
calculate predictions for each theory, but only the theory’s Wilson coefficients.

Another critical aspect of the bottom-up approach is the number of considered operators.
The number of possible operators will generally be large, but many of them are not
independent. The Lagrangian is invariant under a variety of operations, which allows
some operators to be mapped onto others. Two important tools for this are integration
by parts and field redefinitions. Integration by parts allows shifting derivatives inside
operators, producing one or more operators with the derivative at different positions,
whereas field redefinitions allow absorbing some combinations of operators in others.
Applying both can reduce the final number of operators significantly, producing a basis
of the operators at the given order.

The EFT formalism has been applied to a large variety of problems over the years, with
some well known examples being Fermi theory describing the low energy four-fermion
approximation of the weak interaction and chiral perturbation theory describing the

7



2 Theoretical Background

interactions between hadrons as low energy limit of QCD. For current LHC physics,
especially two EFTs are frequently used: SMEFT and HEFT.

2.2.1 Standard Model Effective Field Theory

The present LHC observations are well described by the SM, which is the foundation
of SMEFT. It assumes the only propagating fields to be the SM fields, and requires the
SM gauge symmetries to be obeyed by all operators. The EFT expansion is ordered
in terms of the operators’ canonical dimensions, which is composed of the dimensions
of the appearing fields and differential operators. Since the Lagrangian must have
dimension four, the dimension of all operators with 𝑑 > 4 has to be reduced to four
by multiplying them with an energy scale Λ4−𝑑. This scale is conventionally called
new physics scale Λ, since it controls the energy at which the EFT starts to noticeably
deviate from the SM. In Summary, the SMEFT Lagrangian reads

LSMEFT = LSM +
∞

∑
𝑑=5

1
Λ𝑑−4 ∑

𝑖
𝐶(𝑑)

𝑖 𝑂(𝑑)
𝑖 (2.16)

where 𝑖 enumerates all operators 𝑂𝑖 appearing at a certain operator dimension 𝑑 and
𝐶𝑖 are the Wilson coefficients.

The first BSM contributions in this Lagrangian appear at dimension 5, which contains
only a single type of non-redundant operator (e.g. [18]). This operator violates lepton
number conservation and generates Majorana mass terms for the neutrinos. Both
potentially play an important role in extensions of the SM, e.g. generating the neutrino
masses in order to explain neutrino oscillations. Compared to what is probed at the
LHC though, these effects are generally associated with different physics. Therefore,
the dimension five terms are usually dropped for LHC studies. Here, the considerations
conventionally begin at dimension 6, which contains 2499 baryon and lepton number
conserving operators in 59 classes [19]. With increasing dimension, the number of
operators grows exponentially [20], already reaching 44 807 at dimension 8 (note that the
counting is slightly different from before, as hermitian conjugates are counted separately
here). Constraining a number of parameters this large to reasonable accuracy requires
a massive amount of data, which is why often only the more controllable number of
dimension 6 operators is used.

One important aspect of the Higgs sector in the SMEFT is the correlations between
some couplings. Consider the purely bosonic sector, i.e. the couplings between
the Higgs boson and the electroweak vector bosons. The Higgs doublet is in the
fundamental representation of 𝑆𝑈(2)𝐿, the electroweak vector bosons are in the adjoint
representations of 𝑆𝑈(2)𝐿 and 𝑈(1) respectively. Therefore, in order to build a valid
operator containing only these fields, the Higgs doublet always has to appear in the form
Φ†Φ. In unitary gauge and after symmetry breaking, this equates to the expression
(𝑣 + ℎ)2. It is therefore impossible to couple a single Higgs boson to a purely bosonic
operator without also producing a di-Higgs coupling at the same time. Hence, every
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2.2 Effective Field Theories

single-Higgs vertex is correlated with the associated di-Higgs vertex in the purely
bosonic sector of SMEFT. This fact plays an important role in the distinction of
SMEFT and HEFT.

2.2.2 Higgs Effective Field Theory

The second EFT for LHC physics described here is the HEFT, which is also the theory
used in the calculations of chapter 4. HEFT builds upon largely the same principles
as SMEFT: it also enforces the SM’s 𝑆𝑈(3)𝑐 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 gauge symmetry and
particle content. It relaxes one of the SM’s assumptions though, the organization of the
weak Goldstones and the Higgs boson in a complex 𝑆𝑈(2)𝐿 doublet. Its specific form is
motivated by two requirements, the first one being the introduction of the longitudinal
polarizations of the weak vector bosons. This requires three Goldstones, since three
degrees of freedom are required for the longitudinal polarizations. Only introducing
these three Goldstones does not produce a fully consistent UV theory though, since
the amplitude of diagrams with these Goldstones as external states grows with energy,
eventually violating unitarity of the S-matrix. This immediately leads to the second
requirement, exact unitarity at all energies. This is ensured by also introducing the
Higgs boson, which cancels the amplitude’s piece growing with energy.

The form of the Goldstones cannot be altered, since it would at the same time impact
the electroweak symmetry breaking. The existence of a scalar Higgs boson is also
experimentally verified, the requirement of it ensuring exact unitarity can be relaxed
though. The theory is constructed as an EFT, which is assumed to be valid only up
to a certain energy anyway. Breaking unitarity above that scale does not matter in
the context of the EFT then, merely the actual UV model has to repair the unitarity
somewhere above the cutoff scale. Therefore, in the HEFT, the Goldstones and the
Higgs are independent, leading to a more general coupling structure. To construct the
HEFT Lagrangian, first separating the Goldstones and the Higgs in the SM Lagrangian
is illustrative. In the parameterization of equation (2.9), the Higgs potential is already
independent of the Goldstones. For the kinetic term, consider only the case without
gauge fields for simplicity. Then, by introducing the unitary matrix U = exp(𝑖𝜎𝑖𝜙𝑖/𝑣)
and the unit vectors ̂𝑒1,2 in the respective direction, the Higgs doublet can be written

Φ = 1√
2

U(ℎ + 𝑣) ̂𝑒2. (2.17)

Inserting this into the kinetic term yields

(𝜕𝜇Φ)† (𝜕𝜇Φ) = 1
2

̂𝑒⊤
2 ((𝜕𝜇U)(ℎ + 𝑣) + U(𝜕𝜇ℎ))† ((𝜕𝜇U)(ℎ + 𝑣) + U(𝜕𝜇ℎ)) ̂𝑒2

= 1
2

(𝜕𝜇ℎ)(𝜕𝜇ℎ) + 1
2

( ̂𝑒⊤
2 ((𝜕𝜇U)†(𝜕𝜇U)) ̂𝑒2) (ℎ + 𝑣)2

+ 1
2

( ̂𝑒⊤
2 ((𝜕𝜇U)†U + U†(𝜕𝜇U)) ̂𝑒2) (𝜕𝜇ℎ)(ℎ + 𝑣).

(2.18)
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2 Theoretical Background

The second and third term can further be simplified by evaluating the derivative
explicitly,

𝜕𝜇U =
𝑖𝜎𝑖(𝜕𝜇𝜙𝑖)

𝑣
U. (2.19)

This immediately implies

(𝜕𝜇U)†U + U†(𝜕𝜇U) =
𝑖(𝜕𝜇𝜙𝑖)

𝑣
(U†𝜎𝑖U − U†𝜎𝑖U) = 0. (2.20)

The second term can be expresses in a more convenient form by using

(𝜕𝜇U)†(𝜕𝜇U) = 1
𝑣2 (𝜕𝜇𝜙𝑖)(𝜕𝜇𝜙𝑗) (U†𝜎𝑖𝜎𝑗U) =

(𝜕𝜇𝜙𝑖)(𝜕𝜇𝜙𝑖)
𝑣2 𝟙 (2.21)

and therefore
̂𝑒⊤
2 ((𝜕𝜇U)†(𝜕𝜇U)) ̂𝑒2 = 1

2
⟨(𝜕𝜇U)†(𝜕𝜇U)⟩ (2.22)

where ⟨⋯⟩ denotes the 𝑆𝑈(2) matrix trace. Thus, the final form of the kinetic term
reads

Lℎ,kin = 1
2

(𝜕𝜇ℎ)(𝜕𝜇ℎ) + 𝑣2

4
⟨(𝜕𝜇U)†(𝜕𝜇U)⟩ (1 + ℎ

𝑣
)

2
. (2.23)

The Higgs and the Goldstones are essentially separate in this form, the only remnant
of the grouping as a doublet is the appearance of the Higgs only in the form (𝑣 + ℎ)2.
A similar procedure can also be performed on the Yukawa couplings, after which the
whole Lagrangian is essentially separated in terms of Goldstones and the Higgs.

For the HEFT, the appearance of U is kept unchanged in order to also keep the
structure of the symmetry breaking. The Higgs is now a gauge singlet though, which
allows it to generally couple arbitrarily to each gauge invariant operator. With this
change, the leading order HEFT Lagrangian reads [21]

LLO = − 1
4

𝐺𝑎
𝜇𝜈𝐺𝑎,𝜇𝜈 − 1

4
𝑊 𝐼

𝜇𝜈𝑊 𝐼,𝜇𝜈 − 1
4

𝐵𝜇𝜈𝐵𝜇𝜈 + ∑
𝜓

̄𝜓𝐷𝜇𝛾𝜇𝜓

− 𝑣√
2

(𝑄Y𝑑(ℎ)U ̂𝑒2𝑑𝑅 + 𝑄Y𝑢(ℎ)U ̂𝑒1𝑢𝑅 + 𝐿Y𝑒(ℎ)U ̂𝑒2𝑒𝑅 + h.c.)

+ 1
2

(𝜕𝜇ℎ)†(𝜕𝜇ℎ) + 𝑣2

4
⟨(𝐷𝜇U)†(𝐷𝜇U)⟩F (ℎ) − 𝑉 (ℎ)

(2.24)

where

𝑉 (ℎ) = 𝑣4
∞

∑
𝑘=2

𝑣𝑘 (ℎ
𝑣

)
𝑘

, F(ℎ) = 1 +
∞

∑
𝑘=1

𝑓𝑘 (ℎ
𝑣

)
𝑘

, Y𝑋(ℎ) = 𝑦𝑋 +
∞

∑
𝑘=1

𝑦𝑋
𝑘 (ℎ

𝑣
)

(2.25)
are arbitrary power series in ℎ/𝑣 with the normal SM Yukawa matrices 𝑦𝑋. The
Lagrangian is now given in terms of the fundamental object U, on which the covariant
derivative acts as

𝐷𝜇U = 𝜕𝜇𝑈 − 𝑖𝑔𝑊 𝐼
𝜇𝜏𝐼U + 𝑖𝑔′𝐵𝜇U𝜏3 (2.26)
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2.2 Effective Field Theories

with 𝜏𝐼 = 𝜎𝐼/2 being the generators of 𝑆𝑈(2). In principle, the kinetic terms in
(2.24) could also be dressed with a function of the same form as F(ℎ), these are not
considered though. For the kinetic terms of the Higgs and the fermions, these functions
can be absorbed into the existing functions F(ℎ) and Y𝑋(ℎ) of equation (2.24) by field
redefinitions of the Higgs and fermions respectively. For the kinetic terms of the gauge
bosons, the reason is more phenomenological. Their field strengths are assumed to not
couple strongly to the Higgs, which is why these terms are discarded for the leading
Lagrangian. They are included in the higher order Lagrangians again, though.

Generally, the organization of the HEFT Lagrangian into orders is less straight forward
than in SMEFT. Since the Lagrangian is constructed in terms of adimensional objects
F(ℎ) and U, a scheme based on canonical dimension to determine which operators
are to be included at which order is not appropriate here. Instead, a more complex
counting-scheme has to be employed. Following [22], the EFT expansion is organized
as a loop-expansion. This follows from assuming that the NLO operators contribute
with at least the size of the one-loop contributions of the LO operators, which arises
naturally in strongly coupled UV scenarios. This results in the identification Λ ≈ 4𝜋𝑣,
where Λ is the EFT cutoff scale, which can also be reformulated as a dimension-based
approach by introducing the chiral dimension. It is assigned according to

[𝜕𝜇]𝑐 = 1, [𝜙]𝑐 = [ℎ]𝑐 = 0 [𝑋𝜇𝜈]𝑐 = 1, [𝜓]𝑐 = 1
2

, [𝑔]𝑐 = [𝑦]𝑐 = 1. (2.27)

Here, 𝜙 is a generic Goldstone boson, 𝑋𝜇𝜈 a gauge field strength tensor, 𝜓 a fermion,
𝑔 a gauge coupling and 𝑦 a Yukawa coupling. Applying this to (2.24), all appearing
operators posses chiral dimension 2. In turn, this implies that all operators with chiral
dimension 2 should be included in the LO Lagrangian. There is one other operator
satisfying this requirement,

L𝛽 = 𝛽𝑣2 ⟨U† (𝐷𝜇U) 𝜏3⟩ ⟨U† (𝐷𝜇U) 𝜏3⟩ . (2.28)

For phenomenological reasons, this operator is also included only at next-to-leading
order though. In unitary gauge, this operator reduces to

L𝛽 ∼ ⟨(−𝑖𝑔𝑊 𝐼
𝜇𝜏𝐼 + 𝑖𝑔′𝐵𝜇𝜏3)𝜏3⟩ ⟨(−𝑖𝑔𝑊 𝐼,𝜇𝜏𝐼 + 𝑖𝑔′𝐵𝜇𝜏3)𝜏3⟩ ∼ 𝑍𝜇𝑍𝜇 (2.29)

with ⟨𝜏𝐼𝜏𝐽⟩ = 𝛿𝐼𝐽/2 and 𝑍𝜇 ∼ 𝑔𝑊 3
𝜇 − 𝑔′𝐵𝜇. This operator therefore influences the

𝑍-mass, but not the 𝑊-mass. This then manifests in a change of the 𝜌 parameter,

𝜌 = 𝑀2
𝑊

𝑀2
𝑍 cos2 𝜃𝑤

, (2.30)

which is equal to one in the leading order SM according to equation (2.14). The 𝜌
parameter also receives contributions from higher order perturbative corrections in the
SM. After this is accounted for, the value for purely BSM contributions is [3]

𝜌BSM = 1.000 31(19). (2.31)
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2 Theoretical Background

For this reason, the parameter 𝛽 of the operator (2.29) must be small, which is why it
is assumed to be subleading to the other contributions of (2.24).

The calculation of chapter 4 includes the one-loop contributions in QCD. Therefore, in
the loop-based counting scheme, the operators of the NLO Lagrangian should a priori
contribute at the same order. However, the one-loop contributions themselves are also
ordered in the coupling constants, which makes the electroweak one-loop contributions
subleading to the QCD ones. Since the considered EFT operators for this process
only act in the electroweak sector, the corresponding NLO operators acting in the
same sector are also considered to be of the same order as the perturbative electroweak
NLO contributions. They are hence also considered subleading to the QCD one-loop
contributions and therefore not included in this study. Note that this might not actually
be the case, since the NLO electroweak contributions are of a similar order as the QCD
ones [11]. Nevertheless, they are not included to keep the scope of this calculation
reasonable. In summary, only the Lagrangian (2.24) is considered in the remainder of
this thesis. Additionally, no Yukawas appear in the VBF process, which is why they
are also discarded. Finally, since two Higgs bosons are produced, only operators with a
fixed number of Higgs bosons are relevant here. Therefore, the functions F and 𝑉 are
truncated, yielding as only relevant non-SM operators

L ⊃ 𝑣2

4
⟨(𝐷𝜇U)†(𝐷𝜇U)⟩ (1 + 2𝑔HVV

ℎ
𝑣

+ 𝑔HHVV
ℎ2

𝑣2 ) − 𝑔HHH𝜆𝑣ℎ3. (2.32)

The operators are normalized such, that in the SM 𝑔HVV = 𝑔HHVV = 𝑔HHH = 1. In
summary, the SM vertices are modified by:

• All vertices coupling two Goldstone, 𝑊 or 𝑍 bosons to one Higgs boson are modified
by a factor of 𝑔HVV.

• All vertices coupling two Goldstone, 𝑊 or 𝑍 bosons to two Higgs bosons are
modified by a factor of 𝑔HHVV.

• The triple-Higgs self coupling is modified by a factor of 𝑔HHH.

Since this constitutes only a reweighing of SM contributions without new Lorentz
structures, this description is equal to the 𝜅-framework often used in experimental
analyses. For an arbitrary coupling 𝑐, the 𝜅 value is defined as

𝜅𝑐 = 𝑐
𝑐SM

(2.33)

where 𝑐SM is the SM’s prediction for the coupling 𝑐. Therefore, comparisons with
experimental bounds are easily possible by identifying 𝜅𝜆 = 𝑔HHH, 𝜅𝑉 = 𝑔HVV and
𝜅2𝑉 = 𝑔HHVV.

Comparing this picture with SMEFT, there is one important distinction in the allowed
deviations from the SM. The SMEFT can also lead to deviations from the SM in all
three couplings relevant here, but they are not independent. As described at the end
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of the previous section, the Higgs boson can only appear in the form (𝑣 + ℎ)2 in the
SMEFT’s bosonic sector. For the present couplings, this requires

𝑔SMEFT
HVV = 𝑔SMEFT

HHVV , (2.34)

which is the principal fact able to discriminate between HEFT and SMEFT in nature
when considering the vector boson fusion process.

2.3 Calculation of Hadronic Cross Sections

So far, the relevant theories and their Lagrangians were described. However, there
are still many steps between a theory given in terms of a Lagrangian and an actual
measurement at a collider. What is usually performed are scattering experiments,
in which the most straight forward observable is the counting rate ̇𝑁 of a scattering
process. There are two kinds of contributions to this quantity, the first ones being
collider-specific quantities, e.g. the number of particles per colliding bunch. The second
kind are the purely fundamental physical ones, which is the part of actual interest. For
this reason, the counting rate is separated as

̇𝑁 = 𝐿 ⋅ 𝜎, (2.35)

where 𝐿 is the luminosity, which contains all collider-specific information. The second
part, the cross section 𝜎 contains the fundamental physics described by the model. The
cross section for a hard scattering process 𝑖 → 𝑓 is given by

𝜎(𝑖 → 𝑓) = 1
𝐹

∫ |M𝑓𝑖|2 dΦ (2.36)

where 𝐹 is the incoming particle flux, M𝑓𝑖 is the matrix element of the process and

dΦ = (4𝜋)4𝛿 (𝑝𝑖 − 𝑝𝑓)
𝑛

∏
𝑘=1

1
2𝐸𝑘

d3 ⃗𝑝𝑘
(2𝜋)3 (2.37)

is the 𝑛-particle final state phase space. Here, 𝑝𝑖/𝑓 is the sum of the incoming/outgoing
momenta and 𝑛 is the number of outgoing particles. This expression for the cross section
holds for incoming particles with known momenta, which leads to another complication
for hadron colliders. There, the colliding particles are composite states, hence the
incoming particles for the hard scattering process are constituents of the hadrons, not
the hadrons themselves. Calculating the hard process then requires knowledge of the
kind of the extracted partons and the momenta they carry. This can only be given
in terms of a probability density function, in this context called parton distribution
function (PDF), and not even this function can be calculated from first principles. In
the low-energy context of the hadrons, the perturbative expansion of QCD does not
converge, making the whole perturbative approach break down. Therefore, the PDFs
have to be determined experimentally. The PDF is given as 𝑓𝑖(𝑥, 𝜇), where 𝑖 is the
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extracted parton, 𝑥 is the fraction of momentum the parton carries and 𝜇 is the scale
at which the hadron is probed. The total hadronic cross section then reads

𝜎 = ∑
𝑖,𝑗

∫ 𝑓𝑖(𝑥1, 𝜇)𝑓𝑗(𝑥2, 𝜇)𝜎part(𝑖(𝑥1𝑝1) + 𝑗(𝑥2𝑝2) → 𝑋; 𝜇) d𝑥1d𝑥2 (2.38)

where 𝜎part is given by equation 2.36 and 𝑖, 𝑗 sum over all partons that can be extracted
from the incoming hadrons.

When performing this calculation, two distinct computationally expensive tasks have to
be performed: computing the matrix element M𝑓𝑖 and performing the high-dimensional
phase space integration. In the setup used in the following chapters, both tasks are
performed by separate programs. The matrix element is provided by a one-loop provider
(OLP) program, which is discussed further in chapter 3. The remaining part of the
calculation is handled by a Monte Carlo event generator, which handles integrating
the phase space and generating events from it. They are called Monte Carlo event
generators, because both of the aforementioned tasks are handled with algorithms
based on random numbers. First, the total cross section must be calculated. For a
2 → 𝑛 process, the dimension of the phase space scales as 𝐷 = 3𝑛 − const. This
leads to very high-dimensional integrations already at a moderate amount of outgoing
particles, which limits the algorithms for reasonably fast integration greatly. Analytical
integration can be discarded right away due to the complexity of a general scattering
amplitude, leaving only numerical integration. For low-dimensional integrations, many
efficient integration algorithms are available, but the situation becomes much more
sparse for high-dimensional integrals. Here, the only algorithms computing the integral
with reasonable accuracy and in reasonable time are based on MC integration. An
arbitrary integral over an integration volume Ω can be computed as

𝐼 = ∫
Ω

𝑓(𝑥) d𝑑𝑥 = lim
𝑁→∞

Ω
𝑁

𝑁
∑
𝑘=1

𝑓(𝑥𝑘) (2.39)

where the points 𝑥𝑘 are sampled uniformly in the integration volume. The variance
of the sum on the r.h.s. scales with 𝜎2

𝐼 ∼ 1/
√

𝑁, independently of the integration
volume’s dimension. Because of this scaling MC integration performs better than other
integration methods in many dimensions, which are affected much more strongly by
the curse of dimensionality. Plain MC integration is still very inefficient though, the
efficiency of the procedure can be improved significantly by not sampling the points 𝑥𝑘
uniformly, however. Let 𝑥𝑘 be sampled from a probability density function 𝑝(𝑥) in Ω,
then

𝐼 = lim
𝑁→∞

1
𝑁

𝑁
∑
𝑘=1

𝑓(𝑥𝑘)
𝑝(𝑥𝑘)

. (2.40)

The variance of this estimate vanishes when 𝑝(𝑥) = 𝑓(𝑥)/𝐼, i.e. when the 𝑥𝑘 are
distributed according to 𝑓(𝑥) itself. This would require already knowing 𝐼 though,
which is not obviously available yet. An approximation of this can still be used however,
by sampling 𝑥𝑘 according to a distribution that approximates 𝑓(𝑥). The variant of MC
integration most often used in event generators is VEGAS [23], which approximates
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the integrand through piecewise uniform distributions. This approximation is improved
throughout the procedure, which is separated into distinct sampling steps. In each step,
the function is sampled a number of times. These samples are then used to improve
the approximation of 𝑓(𝑥) for the next step. This way, statistics is accumulated
while simultaneously improving the integration grid, which is what VEGAS calls the
boundaries of the piecewise uniform distributions. Finally, after the integration is
finished, the integration grid can also be used to improve the efficiency of sampling
from differential cross sections.

These algorithms are implemented in Whizard [24], which is the MC event generator
used in the study of chapter 4.
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3 Modernizing GoSam

At the heart of a scattering calculation is the scattering amplitude, which is then
further process by an MC event generator to determine total and differential cross
sections. At the Born and one-loop level, many tools are available to largely automate
the numerical evaluation of the scattering amplitude. These programs are generally
referred to as one-loop providers, some available OLPs are e.g. GoSam [25, 26],
MadGraph5_aMC@NLO [27], OpenLoops [28], RECOLA [29, 30] and VBFNLO
[31, 32]. For this calculation, the OLP GoSam is chosen because it generates the whole
process code dynamically and thus places a priori no restrictions on the used model or
the considered process. In practice, however, there are still technical restrictions like
maximum tensor ranks of the appearing loop integrals limiting the choice of model and
process. These are not the only problems limiting the usage of GoSam for arbitrary
calculations though, the largest obstacle is often simply the runtime of GoSam and
the generated process code.

This time obstacle is partly addressed in the new release GoSam-3.0, which improves
both the time GoSam requires to generate the process library and the generated code’s
runtime performance. The changes made from GoSam-2 to GoSam-3 concerning
performance are described in sections 3.2 and 3.3. Before the specifics of the new
version are described though, the general workflow of GoSam is reviewed in section
3.1.

3.1 The Structure of a Calculation in GoSam

To properly situate the internal changes in version 3 of GoSam, this section sketches
how a calculation is actually performed in GoSam. The general workflow for GoSam-
3.0 is the same as in previous versions, which is described in [25, 26]. A schematic
drawing of the whole workflow is depicted in figure 3.1.

As a first step, the physics of the theory has to be supplied. This is done in the form
of a model containing most notably the particles, vertices and parameters. GoSam
itself ships with some built-in models covering the most frequently used models, e.g.
the SM. Often, however, a more customized model is required. For this purpose,
GoSam supports the UFO-Format [33, 34]. This allows to supply an arbitrary model
to GoSam in a Python based format. There are also tools to automatically generate the
UFO-Model from a physical Lagrangian, e.g. the Mathematica package FeynRules
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Figure 3.1: Schematic structure of GoSam’s calculation workflow. Green nodes are part of
GoSam or are generated by GoSam, blue nodes are external programs.

[35], which is also what is commonly used alongside GoSam. This is also the only
component of figure 3.1 not included in the GoSam installation itself.

With the model known, the GoSam Python code processes the process specification.
A process specification consists of one or more sets of incoming and outgoing particles
together with the orders in the coupling constants. One such set of incoming and
outgoing particles is called subprocess. The first simplification is already done at this
stage. By considering only the external particles, crossing symmetry can be used to
relate different subprocesses with each other. This allows some subprocesses to be
expressed as another subprocess with crossed momenta, enabling GoSam to reuse the
code generated for one subprocess also for crossed subprocesses with minimal additional
effort.

The next step is now to derive the amplitude expressions for each individual subprocess.
GoSam is a Feynman diagram based OLP, therefore the first step in the amplitude
generation is to generate all possible Feynman diagrams contributing to the given
subprocess. This step is delegated to an external program, QGRAF [36]. GoSam
translates the subprocess specification into a format suitable for QGRAF, which then
generates the Feynman diagrams and outputs them in a format that can be further
processed. Since the process specification only contains the coupling orders, QGRAF
generally also generates all diagrams at those orders. This can be undesired when
only a subset of the possible diagrams are to be taken into account. For this purpose,
there are two possibilities to restrict the diagrams GoSam processes further. The first
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one are the filters inherent to QGRAF, which allow restricting e.g. the number of
a specific vertex or a specific propagator in the generated diagrams. For even more
sophisticated selection, QGRAF’s output can be post-processed with Python filters.
These allow to supply arbitrary Python code operating on a diagram, deciding whether
the given diagram is to be kept or discarded. After the full set of Feynman diagrams for
the subprocess is known, GoSam performs some more simplifications on them, most
notably diagram grouping. Not all diagrams are necessarily completely independent,
some might e.g. share a common subdiagram. These shared components are identified
and only processed once instead of for every diagram, significantly increasing the
computational efficiency.

As the next step in the calculation, the Feynman diagrams have to be translated to
their mathematical expressions. This task is performed with the symbolic manipulation
toolkit FORM [37]. Using a specific style specification, QGRAF’s output is a list of
diagram objects built of external particles, vertices and propagators in FORM’s syntax.
Each of these components is then replaced with its mathematical representation by
FORM. The resulting expressions are not usable for numerical evaluation yet though,
first they need to be simplified and, in the case of one loop diagrams, the loop integration
has to be carried out. Note that, for one-loop amplitudes, GoSam only constructs
the numerator of the integrand, since this is the only part required for the integral
reduction later on.

First, each diagram D is decomposed in a process specific color basis |𝑐𝑖⟩,

D = ∑
𝑖

C𝑖 |𝑐𝑖⟩ . (3.1)

The |𝑐𝑖⟩ consist only of products (𝑇 𝑎1 ⋯ 𝑇 𝑎𝑁)𝑖𝑗 of the generators and Kronecker deltas.
To reach this form, the relations

𝑖𝑇𝑅𝑓𝑎𝑏𝑐 = Tr (𝑇 𝑎𝑇 𝑏𝑇 𝑐) − Tr (𝑇 𝑎𝑇 𝑐𝑇 𝑏) and 𝑇 𝑎
𝑖𝑗𝑇 𝑎

𝑘𝑙 = 𝑇𝑅 (𝛿𝑖𝑙𝛿𝑘𝑗 − 1
𝑁𝐶

𝛿𝑖𝑗𝛿𝑘𝑙) (3.2)

are used to remove all structure constants and color-contracted generators. Next, the
partial amplitudes C𝑖 are further decomposed in the external helicities. The partial
amplitudes can thus be calculated for given values of all external helicities and summed
to get the full partial amplitude. One such partial amplitude with given external
helicities is called helicity amplitude. With fixed helicities, the spinors of the massless
fermions can be expressed in the convenient spinor bracket notation,

𝑢+(𝑝) = 𝑣−(𝑝) = |𝑝⟩, 𝑢−(𝑝) = 𝑣+(𝑝) = |𝑝] ,
�̄�+(𝑝) = ̄𝑣−(𝑝) = ⟨𝑝|, �̄�−(𝑝) = ̄𝑣+(𝑝) = [𝑝| .

(3.3)

The remaining wave functions are also expressed in terms of these spinor brackets.
Massive fermions are written using a light cone decomposition,

𝑝𝜇
𝑖 = 𝑙𝜇𝑖 + 𝑝2

𝑖
2𝑝𝑖 ⋅ 𝑘

𝑘𝜇 (3.4)
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where 𝑘𝜇 is an arbitrary lightlike reference vector. The spinors of massive fermions can
then be expressed as

𝑢+(𝑝) = |𝑙⟩ +
√𝑝2

⟨𝑝𝑘⟩
|𝑘] , 𝑣−(𝑝) = |𝑙⟩ −

√𝑝2

⟨𝑝𝑘⟩
|𝑘] , … (3.5)

with similar expressions for the other variations. Lastly, also the vector boson’s
polarization vectors are written in terms of the spinor brackets,

𝜀+
𝜇(𝑝) =

⟨𝑞| 𝛾𝜇 |𝑙]
√

2 ⟨𝑞𝑙⟩
, 𝜀−

𝜇(𝑝) =
[𝑞| 𝛾𝜇 |𝑙⟩
√

2 [𝑞𝑙]
and 𝜀0

𝜇(𝑝) = 1
√𝑝2

(2𝑙𝜇 − 𝑝𝜇) , (3.6)

where 𝑙 = 𝑝 in the massless case and the light cone decomposition of equation (3.4)
otherwise. Additionally, 𝑞 is an arbitrary reference vector and, since massless vector
bosons cannot be longitudinally polarized, 𝜀0

𝜇 is only defined in the massive case.

At this point, the amplitude consists of constants, momenta, spinor brackets and Dirac
matrices sandwiched between spinor brackets. Before the terms with the Dirac matrices
can be further simplified, the regularization scheme has to be specified. GoSam uses
dimensional regularization for both UV and IR divergences. More specifically, GoSam
uses the dimensional reduction (DRED) scheme. In this scheme, the external vectors,
i.e. momenta and polarization vectors, are kept four-dimensional and the Dirac algebra
is also performed in four dimensions. Only the integration momentum is promoted
to 𝐷 = 4 − 2𝜀, but since the Dirac algebra is performed in four dimensions, this
fact appears only at the end of the reduction. Then, the 𝐷-dimensional integration
momentum 𝑞 is split into a four-dimensional part ̂𝑞 and a remainder ̃𝑞. With ̃𝑞2 =∶ −𝜇2,
the simplifications can be fully performed in four dimensions and at the very end, the
squared momentum is replaced by

𝑞2 → ̂𝑞2 − 𝜇2. (3.7)

The actual Dirac algebra and further simplifications of the spinor bracket expressions
are performed with the FORM library spinney [38]. This reduction is based on the
Chisholm identities. Consider two strings of Dirac matrices Γ = 𝛾𝜇1 … 𝛾𝜇𝑛 and Γ′,
then

⟨𝑝𝑖| Γ𝛾𝜇Γ′ |𝑝𝑗⟩ 𝛾𝜇 = 2Γ′ |𝑝𝑗⟩ ⟨𝑝𝑖| Γ − 2Γ⃖ |𝑝𝑖⟩ ⟨𝑝𝑗| Γ⃖′ (3.8)

where Γ⃖ is the same as Γ but with a reversed order of the Lorentz indices. Similar
identities also exist for other combinations of angle and square spinor brackets. Finally,
by applying the Chisholm identities together with

𝛾𝜇Γ𝛾𝜇 = −2Γ⃖ and 𝛾𝜇Γ𝛾𝜈𝛾𝜇 = 2 (𝛾𝜈Γ + Γ⃖𝛾𝜈) , (3.9)

the spinor chains and traces of multiple Dirac matrices are expressed through terms
containing fewer Dirac matrices. Lastly, contractions with Levi-Civita tensors are
also written as combinations of spinor chains. After repeatedly applying all these
identities, the amplitude is expressed through only a few fundamental objects: spinor
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brackets like ⟨𝑝𝑖𝑝𝑗⟩, [𝑝𝑖𝑝𝑗] and ⟨𝑝𝑖| 𝛾𝜇 |𝑝𝑗], scalar products between four-dimensional
momenta, constant parameters and the symbols 𝜇2 and 𝜀 from the dimensional reduction
scheme.

For tree-level amplitudes, the end of the reduction is almost reached here. As a last
step, the expressions for all diagrams are summed, once again simplified by FORM
and finally written in a numerically more efficient form. Numerically more efficient
here means that the expressions are rearranged with a Horner scheme to reduce the
number of elemental numerical operations and subsequently a common subexpression
elimination is applied to avoid evaluating the same subexpression multiple times. The
final amplitude is then emitted as Fortran code through an appropriate template.

For one-loop diagrams, the amplitude consists of a loop integral over an optimized
numerator at this stage. The actual loop integration is not handled by GoSam, but
rather by an integral reduction library interfaced to GoSam. In version 1 of GoSam,
two integral libraries were available, Golem [39] and Samurai [40] (which is also
the origin of the name GoSam). In a later version, a third integral reduction library
became available, Ninja [41]. Golem and Samurai are still available in GoSam-3,
but Ninja is generally faster and more stable compared to the two other options. For
this reason, Ninja is generally preferred for calculations with GoSam-3. Since it is
the preferred option, only Ninja is sketched in the following.

Ninja is based on integrand reduction by Laurent expansion as described in [42]. With
N0( ̂𝑞, 𝜇2) being the optimized numerator in DRED and 𝑟𝑖 being a combination of
external momenta, the general loop integral reads

A = ∫ N0( ̂𝑞, 𝜇2)
∏𝑛−1

𝑖=0 𝐷𝑖
d𝐷𝑞 with 𝐷𝑖 = ( ̂𝑞 − 𝑟𝑖)2 − 𝑚2

𝑖 − 𝜇2. (3.10)

The method is based on now decomposing the loop integral in terms of a basis of scalar
integrals, schematically

A =
4

∑
𝑘=1

𝑛−1
∑

𝑖1<⋯<𝑖𝑘

∑
𝑗

𝑐(𝑖1⋯𝑖𝑘)
𝑗 𝐼𝑖1⋯𝑖𝑘

[𝑓𝑗( ̂𝑞, 𝜇2)] (3.11)

with
𝐼𝑖1⋯𝑖𝑘

[𝑓( ̂𝑞, 𝜇2)] = ∫ 𝑓( ̂𝑞, 𝜇2)
𝐷𝑖1

⋯ 𝐷𝑖𝑘

d𝐷𝑞. (3.12)

The appearing scalar integrals are process independent and known analytically. They
are provided to Ninja by a master integral library, in the case of GoSam, OneLOop
[43] is used. The remaining task of Ninja is therefore to provide the process dependent
coefficients 𝑐(𝑖1⋯𝑖𝑘)

𝑗 . With the Laurent expansion method, only the numerator is required
to be supplied. The coefficients are then extracted from the numerator by evaluating
it at specific unitarity-cuts, i.e. at loop momenta where one or more propagators 𝐷𝑖
vanish. The coefficient 𝑐(𝑖1⋯𝑖𝑘)

𝑗 with 𝑘 indices can be extracted from the numerator
with 𝑘 cut propagators, hence single-, double-, triple- and quadruple-cuts are required
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to find all needed coefficients. For each such cut (𝑖1 ⋯ 𝑖𝑘), there are solutions ̂𝑞± (only
̂𝑞+ for the single-cut) of the loop momentum at which the numerator is evaluated.

Then, schematically, the coefficients can be extracted through Laurent expansions of
the general form

(
N0( ̂𝑝±, 𝜇2)

∏𝑗≠𝑖1⋯𝑖𝑘
𝐷𝑗( ̂𝑝±, 𝜇2)

− 𝐹)∣
𝑋→∞

= 𝑓 (𝑋; {𝑐(𝑖1⋯𝑖𝑘)
𝑗 }) . (3.13)

In the actually performed expansions, the expression 𝐹 in the bracket can contain
coefficients obtained by cutting more than 𝑘 propagators, the variable 𝑋 is defined
by the parameterization of ̂𝑝± and is dependent on the considered cut. Finally, 𝑓
is a Laurent series in 𝑋 containing the 𝑐(𝑖1⋯𝑖𝑘)

𝑗 as coefficients. By performing these
expansions starting with the quadruple cut, all 𝑐(𝑖1⋯𝑖𝑘)

𝑗 can be determined. Ninja
provides the Laurent expansions through a numerical polynomial division for every
phase space point. GoSam therefore provides the optimized numerator as Fortran
code in the format required by Ninja, which then computes the coefficients for the
phase space point requested by the generated process library.

The reduction and simplification of the amplitude is complete at this point, but not
all ingredients for the numerical evaluation are present. The amplitude is expressed
through components like spinor brackets and scalar products, for which functions for
numerical evaluation have to be provided as well. This is what is labeled as Fortran
auxiliary functions in figure 3.1, which provide components like the kinematics, the
color basis and some more utility functions. With the auxiliary part and the generated
amplitude as the process library, linked to Ninja and OneLOop, full numerical
evaluation of tree-level and one-loop amplitudes is possible.

3.2 Improving the Code Generation and Compile Times

After execution of the GoSam Python code concludes, its output consists of a process
library skeleton containing the auxiliary functions, the final selection of diagrams and
some FORM and Python code to handle the reduction and final Fortran code generation.
The amount of generated Fortran code grows rapidly with the size of the considered
process, easily reaching several tens of thousands of source files. This necessitates the
use of a powerful build system to handle the generation and compilation of these many
Fortran source files. Up to version 3, GoSam provided two options for the build system:
GNU Make [44] and GNU Autotools1. The actual code generation and compilation
is specified in one or more Makefiles, which is Make’s configuration format. These
Makefiles could be generated in two ways, either directly by the GoSam Python code
or by Autotools. Autotools is a high level build system, which takes as input a general

1Autotools consists of several distinct programs like Automake and Autoconf, all of which can be
found on https://www.gnu.org/software
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configuration and a list of target files. It then generates a Makefile taking care of
building the specified targets.

Make and Autotools are both very well-known and reliable build systems, although
they clearly show their age in many places for very large projects like GoSam’s process
libraries. A first version of Make was published in 1979, the different parts of Autotools
were developed in the 1990s. Both dates are many years before the first multi-core
processor was available, which is why both tools were originally designed to run serially
on a single CPU core. Make was later equipped with the option to run multiple
jobs in parallel, however, depending on the Makefile generated by Autotools, actually
building a project in parallel can prove challenging. Additionally, the configuration
for Autotools can quickly become cumbersome and verbose for large projects. For
all of these reasons, GoSam-3 instead uses a modern build system more suitable for
building large project efficiently: meson2. meson takes the role of Autotools, being the
high-level build system that generates the configuration for a low-level build system,
which then takes care of actually building the targets. meson’s default low-level build
system is Ninja3 (not to be confused with the Ninja integral reduction library of
section 3.1). Both are fundamentally designed to build large projects as fast as possible,
and do so as automatically as possible. This includes, for example, automatically
resolving dependencies between source files, which has to be done manually in Autotools
projects.

In GoSam-3, meson is used for two purposes: building the dynamically generated
process library, and building GoSam itself. The latter was previously done with an
installation script gosam_installer.py, which used a pre-packaged version of the most
of GoSam’s dependencies called gosam-contrib. In version 3, GoSam’s meson build
definition directly downloads, builds and installs every dependency required to run a
GoSam calculation. This leads to a drastic reduction of the time required to install
GoSam: on an Intel Core i5-6500 4-core processor, installing GoSam-3 takes roughly
150 s compared to roughly 400 s for GoSam-2, even though both are configured to use
all four cores. The picture is similar for meson’s second use in GoSam, building the
process library. GoSam ships with a number of examples, each of which showcases
some features of the program. There are 33 examples shared between GoSam versions 2
and 3, providing a good overview of all available features. For this reason, the examples
are also a good measure for performance differences between the GoSam versions.
For a given example, running make test executes the Python code, generates the
process library, compiles everything and finally compares the squared amplitude to a
reference value at a given phase space point. Computing the amplitude at a phase space
point takes milliseconds in the worst case, hence the runtime of the whole procedure
is completely dominated by the time it takes GoSam to generate and compile the
process library. The runtime of make test for most examples on an AMD Ryzen 7900X
processor is shown in figure 3.2. Only the example WpWpjj is omitted, because it takes
an order of magnitude longer to run compared to the other examples. Also note that

2The meson build system is available from https://mesonbuild.com/
3The Ninja build system is available from https://ninja-build.org/
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these measurements were not run in a strictly controlled environment and are therefore
subject to runtime fluctuations due to operating system scheduling, processor clock
speed fluctuations, etc. The runtimes in figure 3.2 are therefore only to be seen as
estimates of what performance differences can be expected between GoSam-2 and
GoSam-3, but not as rigorous performance metrics.

For the short running processes, e.g. udene, hyy, etc., the runtime difference is small,
the reason being that these processes are also not fully parallelized by meson. For
small processes, the runtime is mostly dictated by the runtime of the FORM reduction.
Concerning the compilation, each source file can be processed simultaneously by meson,
the code generation is only parallelized in the helicities and subprocesses though. This
means that, for 𝑁sp subprocesses and 𝑁hel helicities per subprocess, the maximum
number of utilized jobs during code generation is 𝑁sp(𝑁hel + 1). The additional one in
the bracket is the contribution of the common auxiliary files (kinematics, color, etc.),
which is also generated in parallel once per subprocess. Many of the examples are
explicitly restricted to a single helicity in order to limit the runtime, at the same time also
limiting the number of utilized jobs. In addition to the limited parallelization for some
examples, the setup between the versions is also not completely identical. While the
examples in GoSam-2 only produce a static library, GoSam-3 additionally generates
a shared library, adding a step to the compilation and thus slightly increasing the
runtime. In contrast to this, there are many examples showing significant improvements.
This applies especially to the longer running examples, which benefit greatly from
the parallelization and increased efficiency of meson. This is also the picture that
generally holds for actual phenomenological studies, since these usually contain many
subprocesses and are not restricted to specific helicities.

In summary, by transitioning the build infrastructure to the modern meson build
system, building and installing the generated process library and GoSam itself is more
user-friendly and is able to much more efficiently saturate the capabilities of modern
CPUs, significantly reducing the real runtime of a calculation in GoSam-3.

3.3 Improving the Runtime

After the process library is generated and compiled, GoSam’s purpose concludes. The
process library provides the squared scattering amplitude at a given phase space point,
but calculating the (differential) cross section requires integrating the squared amplitude
over the phase space. Since the phase space is high-dimensional for multi-leg processes,
this can usually only be done by MC integration, requiring the squared amplitude
to be evaluated millions of times for a reasonable estimate of the total cross section.
Therefore, even if a single evaluation of the squared amplitude takes only milliseconds,
the total time spent in the process library can quickly pile up to massive amounts
during phase space integration. For this reason, making the evaluation of the squared
amplitude as fast as possible is essential for large phenomenological studies.
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Figure 3.2: Runtime of make test for all shared examples of GoSam-3.0 and GoSam-2.0,
except WpWpjj. Some example names are abbreviated to shrink the axis labels. A single run
of make test includes running the Python code, generating and compiling the source and
evaluation of a single phase space point.
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Before describing changes specific to GoSam, there are some purely technical changes
in version 3 to improve the runtime. There are many optimizations available in the
Fortran compiler, grouped into optimization levels. GoSam-2 uses optimization level
2 by default, GoSam-3 uses optimization level 3. This results in some additional
compiler optimizations, which can slightly improve the runtime. As second technical
change, GoSam-3 allows choosing the target architecture4, which determines the set
of CPU instructions used in the compiled program. Over time, many new instructions
were added to CPUs, allowing some single instructions to perform tasks previously
composited of multiple instructions. This reduces the required time for some tasks,
but also makes older CPUs unable to execute the program correctly. Thus, the target
architecture should always be chosen as the oldest out of all CPUs on which the program
is supposed to be executed.

As mentioned in section 3.1, GoSam already takes great care to generate efficiently
evaluable amplitude code. With a Horner scheme reduction and a common subexpression
evaluation, the number of elemental arithmetic operations is reduced. The amplitude
code itself is not the only component contributing to the execution time though, the
auxiliary functions also play an important role. To improve the runtime in GoSam-3,
changes have been made especially in two areas of the auxiliary functions, the model
and the kinematics.

Looking at the model first, the principal change here is reducing the amount of duplicated
code. Originally, GoSam was designed to handle a single subprocess at a time, which
is what GoSam still does in standalone mode. Subsequently, it was equipped with an
OLP mode, which allows simultaneous processing of multiple subprocesses through
the BLHA interface [45, 46]. Because of this chronological order, the OLP mode
is implemented such that GoSam-2 treats each subprocess like in standalone mode,
notably generating the auxiliary files once for each subprocess. This is required for some
files like color.f90 and kinematics.f90, since they are specific to the subprocess.
Other files, however, are identical for all subprocesses and do not need to be generated
multiple times. This applies also to model.f90, since all subprocesses in OLP mode
are generated from the same model specification. Different subprocesses could be in
general assigned different values of the parameters of an identical model, requiring
each subprocess to have its own model. However, this is not intended in the BLHA2
interface, which only provides the OLP_SetParameter function to change parameters in
all subprocesses simultaneously. Therefore, generating an identical model.f90 for each
subprocess is not required, but in itself also not a problem. Generating some identical
files for each subprocess only impacts the compilation time slightly, the runtime of
a calculation is not impacted at all. The runtime is only impaired in combination
with changing a parameter value at each phase space point, e.g. when using running
couplings. A model consists of external and internal parameters, values of external
parameters are defined, the values of internal parameters are calculated from the
external ones. When the values of an external parameter is changed, the internal

4A full list of possible target architectures for gfortran is available on https://gcc.gnu.org/
onlinedocs/gcc/x86-Options.html
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parameters dependent on the altered external parameter have to be recalculated. For
simplicity, GoSam does not check which internal parameters have to be recalculated
and just recalculates all of them. In GoSam-2, this happens for each subprocess at
each phase space point. The time for setting a model parameter can then pile up,
contributing a substantial part to a phase space integration for fast amplitudes. In
GoSam-3, some files, including model.f90, are shared between all subprocesses, thus
reducing the time spent on changing the value of a model parameter by a factor given
by the number of subprocesses.

Substantial changes are also made in the second aforementioned area, kinematics. After
the reduction described in section 3.1 terminates, the amplitudes is given in terms of
spinor brackets and scalar products. These are evaluated once per phase space point
and can then be used multiple times when calculating the squared helicity amplitudes.
In GoSam, this is referred to as kinematics and is implemented in kinematics.f90.
More specifically, three types of fundamental objects are calculated:

⟨𝑝𝑞⟩ = Spaa(p, q), [𝑝𝑞] = Spbb(p, q) and ⟨𝑝| 𝛾𝜇 |𝑞] = Spab3_vec(p, q). (3.14)

Here, 𝑝 and 𝑞 can be any lightlike external momenta with 𝑝 ≠ 𝑞. If the polarization
vectors are evaluated numerically (the extension numpolvec, enabled by default), spinor
brackets between polarization vectors and momenta are calculated as well. Before the
helicity amplitude expressions are generated, it is a priori not known which spinor
brackets will appear. For this reason, GoSam-2 calculates all possible spinor brackets.
Let 𝑛 be the number of external particles, then the number of distinct pairs of external
momenta is 𝑁 = 𝑛(𝑛 − 1)/2 ∼ 𝑛2. This is the number with which the amount of each
type of spinor bracket scales, rapidly increasing with the number of external particles.
Depending on the considered process, the actual number of required spinor brackets
can be much smaller though. Because of this, GoSam-2 can spend large amounts of
time calculating spinor brackets that are never used, possibly substantially impairing
the overall runtime. For this reason, GoSam-3 takes care to only calculate the required
spinor brackets. Like e.g. color.f90, kinematics.f90 is now dynamically generated
during the code generation step instead of from a static template by the Python
code. This is done after the amplitude expressions are generated, allowing the script
generating kinematics.f90 to only include the spinor brackets actually appearing in
the amplitude.

In addition to reducing the number of calculated spinor brackets, the actual time to
calculate a spinor bracket of the kind ⟨𝑝| 𝛾𝜇 |𝑞] is reduced in GoSam-3. In GoSam-2,
the bulk of this calculation happens in the function Spab3_mcfm, which, as the name
suggests, is derived from the implementation in MCFM [47]. This function calculates

Spab3_mcfm(p, k, q) = ⟨𝑝| 𝛾𝜇 |𝑞] 𝑘𝜇, (3.15)

then

Spab3_vec(p, q) = ⟨𝑝| 𝛾𝜇 |𝑞] = ⟨𝑝| 𝛾𝜈 |𝑞] (𝑒𝜇)𝜈 = Spab3_mcfm(p, e𝜇, q) (3.16)
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where (𝑒𝜇)𝜈 = 𝑔𝜈
𝜇. In this implementation, the function Spab3_mcfm is evaluated once

for each spacetime component, unnecessarily recalculating intermediate results each
time. This calculation is simplified in GoSam-3, which calculates ⟨𝑝| 𝛾𝜇 |𝑞] directly.
This reduces the runtime of a call to the function Spab3_vec from roughly 120 ns in
GoSam-2 to roughly 50 ns in GoSam-3.

Lastly, the number of reevaluations of the whole kinematics per phase space point is
reduced in GoSam-3. GoSam does not actually derive expressions for all possible
helicities, but rather uses symmetries to map helicities onto each other. This generally
amounts to permutations and reflections of momenta, which requires the kinematics
to be reevaluated. Therefore, some helicity amplitudes share their kinematics, some
helicity amplitudes have different kinematics. For this reason, the kinematics are
reevaluated for each helicity amplitude in GoSam-2, even if they are unchanged. The
number of evaluations is reduced in GoSam-3, in which the calculation of the helicity
amplitudes is ordered such, that all helicities sharing the same kinematics are evaluated
after each other. The kinematics are then only reevaluated once a helicity with a
different kinematic configuration is reached. Depending on the considered process, this
significantly reduces the time spent on kinematics.

The joint impact of all these changes can be seen in figure 3.3, which shows the runtime
of GoSam-2 relative to GoSam-3’s runtime for a call to samplitude across the
examples. In GoSam, samplitude is the function calculationg the squared amplitude
summed over the helicities at a given phase space point. The measurements are, again,
taken on an AMD Ryzen 7900X processor and are only to be seen as estimates of
possible differences. The runtime of all examples is improved in GoSam-3, but the
spread of runtime differences is large. The impact of the changes depends especially on
two factors, the number of external particles and the complexity of the amplitude. The
number of spinor brackets and helicities increases with the number external particles,
which is why the changes generally become more effective with many external particles.
At the same time though, the complexity of the amplitude increases, which also
increases the time spent on calculating the actual amplitude. The relative impact of the
kinematics on the total runtime thus decreases, making improvements in the kinematics
on the total runtime less severe. This is also why the impact is generally lower for
one-loop amplitudes, since their evaluation with Ninja generally takes much longer
than evaluating a Born amplitude. This is very well represented in the examples, for
which some processes like yyyy and ggtt show only very slight improvements. These
are one-loop amplitudes which have a long total runtime and require almost all possible
spinor brackets, keeping the impact of GoSam-3’s changes small. Most other one-loop
examples see an improvement between 10% and 50%, with the bulk improving around
20%. However, there are also some outliers with larger differences among the one-loop
examples, e.g. udene and eeuu. These are relatively simple processes with only few
contributing diagrams, resulting in fast amplitudes where the kinematics’ runtime
significantly contribute. The most significant improvements can be seen in the tree-level
processes though, gguudd, gggg-tree, ddzzdd and tttt. For them, GoSam-2 requires
several times the runtime of GoSam-3 to evaluate the amplitude, reaching up to
around 23 times longer for tttt.
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GoSam-3.0 and GoSam-2.0. Some example names are abbreviated for smaller axis labels.
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In spite of the large improvements in some amplitudes, the impact on runtimes of full
phenomenological calculations is somewhat smaller. The largest runtime improvements
are reached in Born amplitudes, which are generally much faster to evaluate than one-
loop amplitudes, which obtain only smaller improvements. However, the improvements
can have a large impact in the real corrections, which are tree-level amplitudes with
an additional final state parton, contributing at the same order as the one-loop pieces.
Since the dimension of their phase space is higher, they have to be evaluated many
more times than the Born and one-loop contributions, which is why they can also
contribute greatly to the total runtime of a phenomenological study. All in all though,
the actual runtime difference between GoSam-2 and GoSam-3 significantly depends
on the concrete process.
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4 Di-Higgs Production in Vector
Boson Fusion

With the preliminaries of the numerical tools out of the way, this chapter will describe
the actual phenomenological study of this work, the production of two Higgs bosons
in the Vector Boson Fusion channel at the LHC. First, in section 4.1, the stage is set
with a description of the studied process. Section 4.2 then continues with a general
validation of the used simulation tool chain, which is compared to several other available
SM tools. Finally, in the last two sections of this chapter, the results of this study
are presented, starting with the total cross section in section 4.3 and closing with the
differential distributions in section 4.4.

4.1 Process Specification

Similar to the single Higgs production case, there are four principal channels contributing
to the production of two Higgs bosons at the LHC: Gluon Fusion (ggF), Vector Boson
Fusion (VBF), double Higgs-Strahlung (VHH) and the associated production with
top quarks (tHH) [4]. The production modes are listed in the order of their total
cross sections, which are shown in figure 4.1 as a function of the total center of mass
energy. The most important production channel is ggF, which has a cross section
roughly an order of magnitude larger than all other channels combined at the LHC’s
center of mass energy. This makes ggF the prime channel to study in context of EFTs,
as has been done in e.g. [5]. The ggF channel also comes with many complications
though, especially it being loop-induced and therefore requiring two-loop amplitudes
for NLO predictions. Compared to ggF, VBF has the obvious disadvantage of having a
significantly smaller total cross section. Still, the VBF channel is very interesting to
study, as it allows not only to probe the Higgs trilinear coupling 𝑔HHH, but also the
coupling of two vector bosons to two Higgs bosons, 𝑔HHVV. And, since it also contains
𝑔HVV, it allows testing for a possible correlation between 𝑔HVV and 𝑔HHVV, which would
immediately discriminate between a realization of SMEFT or HEFT in nature.

Generally, the considered process in this study is the electroweak production of two
Higgs bosons and two jets,

𝑝𝑝 → 𝐻𝐻𝑗𝑗 at O(𝛼4) ⋅ O(𝛼(0,1)
S ), (4.1)
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4 Di-Higgs Production in Vector Boson Fusion

Figure 4.1: Total production cross sections of two Higgs bosons for the relevant channels as a
function of the total center of mass energy. Figure taken from [4].

where 𝛼0
S is in the LO contributions and 𝛼1

S in the NLO contributions. The diagrams
contributing at leading order are shown in figure 4.2. The upper diagram shows the
general form of the 𝑡-channel contribution, the lower subdiagrams show the possible
replacements for the gray blob in the upper diagram. In addition to the 𝑡-channel
contribution, also 𝑢-channel and 𝑠-channel contributions are fully included. This is in
contrast to the conventional definition of VBF, which does not include the 𝑠-channel
contribution. They are in fact part of the double Higgs-Strahlung production mode, i.e.
VHH where the produced vector boson decays to quarks. They are suppresses by the
VBF cuts though, which require the jets to be strongly separated.

At next-to-leading order in QCD, a single gluon propagator is added for the virtual
corrections. Like at leading order, no diagram selection is performed and all diagrams
at the given orders of the coupling constants are included. This constitutes two classes
of diagrams, the first one being the LO diagrams with a gluon propagator inserted to
generate a loop. This includes vertex corrections with a triangle loop and diagrams
with pentagon or hexagon loops, formed by connecting the two quark lines with the
gluon. Examples of both are shown in the upper two diagrams in figure 4.3. The
second class of diagrams are ones like the lower one in figure 4.3, which do not have a
direct analog at leading order. Here, the quark lines are only connected by the gluon
and the Higgs bosons are produced through a purely electroweak loop, which is only
attached to one quark line. This also includes diagrams where the Higgses are produced
in a bubble-like subdiagram, which is only attached to the quark line with a single
propagator. Using e.g. FeynCalc [48], the total contribution of these diagrams can be
seen to vanish analytically, which is why they are filtered away to improve GoSam’s
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Figure 4.2: Feynman diagrams contributing to the VBF channel at leading order. They gray
blob in the upper diagram can be substituted for any of the lower subdiagrams.

reduction time. For the real corrections, a single real gluon is simply attached to any
of the four quark legs.

Model-wise, a modified version of the default FeynRules Standard Model1 in Feynman
gauge is used. This also includes the default settings, more specifically a diagonal
CKM-Matrix and massless quarks. Additionally, only first and second generation quarks
are considered. The model is modified in order to describe the HEFT Lagrangian, with
the changes described in section 2.2.2. The input parameters are chosen to be

1
𝛼(𝑀𝑍)

= 127.9, 𝐺𝐹 = 1.166 37 × 10−5, 𝑀𝑍 = 91.1876 GeV, 𝑀𝐻 = 125.0 GeV

Γ𝑍 = 2.4952 GeV, Γ𝑊 = 2.085 GeV and Γ𝐻 = 4.07 MeV.
(4.2)

All other parameters are derived from these, except for 𝛼𝑆, which is taken from the PDF,
for which PDF4LHC21_mc (LHAPDF [49] ID 93000) is used. The central renormalization
and factorization scale is chosen identically to [11],

𝜇0 = √𝑀𝐻
2

√𝑀2
𝐻

4
+ 𝑝2

⊥,𝐻𝐻, (4.3)

1https://feynrules.irmp.ucl.ac.be/wiki/StandardModel
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Figure 4.3: Some diagrams contributing to the VBF channel at next-to-leading order in QCD.

where 𝑝⊥,𝐻𝐻 is the transverse momentum of the di-Higgs system. The scale uncertainties
are then estimated by varying the renormalization and factorization scales with respect
to this central scale. For this purpose a three-point scale variation scheme is employed,
i.e. 𝜇𝐹 = 𝜇𝑅 = 𝜉𝜇0 with 𝜉 ∈ {0.5, 1, 2}.

Finally, some cuts are applied to the jets. They are clustered with the anti-𝑘𝑡 algorithm
[50] implemented in FastJet [51] and a radius parameter 𝑅 = 0.4. Let 𝑗1 be the jet with
the highest transverse momentum and 𝑗2 the one with the second-highest transverse
momentum, together called tagging jets. First, some generic jet cuts are applied to both
tagging jets:

𝑝⊥,𝑗 > 20 GeV and |𝑦𝑗| < 4.5. (4.4)

Additionally, to separate the VBF contribution from e.g. QCD background or the VHH
contribution, specific VBF cuts are applied,

𝑚𝑗1𝑗2
> 600 GeV and Δ𝜂(𝑗1, 𝑗2) > 4.0. (4.5)

Concerning the values of the EFT parameters 𝑔HHH, 𝑔HVV and 𝑔HHVV, the considered
ranges are chosen roughly according to current experimental bounds [52, 53],

𝑔HHH ∈ [−1, 6], 𝑔HVV ∈ [0.9, 1.1], 𝑔HHVV ∈ [0.5, 1.5]. (4.6)

34



4.2 Validation of the Standard Model Calculation

For the phenomenological study, points (𝑔HHH, 𝑔HVV, 𝑔HHVV) are chosen to explore this
EFT-space volume.

4.2 Validation of the Standard Model Calculation

As a first step, the validity of the matrix elements provided by GoSam is checked. This
is done by comparing the results produced by Whizard+GoSam with other available
tools. Since no calculation of this process in HEFT is available yet, the comparison is
only done for the SM, i.e. 𝑔HHH = 𝑔HVV = 𝑔HHVV = 1.

At leading order in the SM, several tools are available for the calculation of this process.
Whizard+GoSam is compared with a selection of them: MadGraph5_aMC@NLO
(MG5), VBFNLO and OpenLoops. MG5 and VBFNLO each provide their own MC
integrator and event generator, OpenLoops is interfaced through Whizard. Each
tool is initialized with the parameters given in 4.1, a different scale is chosen though.
For better comparability, a static central scale is chosen,

𝜇0 = 2𝑀𝐻. (4.7)

MG5 and OpenLoops use an identical process definition and also contain all possible
diagrams at the relevant coupling order. This is not the case for VBFNLO, which
implements the process only in the VBF approximation [54]. For the total cross sections,
the tools yield

𝜎GS = 0.7165(3) fb, 𝜎OL = 0.714(2) fb,
𝜎MG5 = 0.7146(3) fb, 𝜎VBFNLO = 0.721 28(8) fb

(4.8)

where GS represents GoSam and OL represents OpenLoops. At high precision,
there is a very slight disagreement between MG, GoSam and VBFNLO. Since all
of these tools use different MC event generators, the difference is most likely due
to slight differences in e.g. technical cuts, or a different jet clustering algorithm in
MG. VBFNLO deviates the most from the three other tools, which can also be seen
in the 𝑝⊥ distributions of the Higgs bosons, depicted on the right side in figure 4.4.
GoSam, OpenLoops and MG show good agreement, while VBFNLO shows a clear
excess in high-𝑝⊥, which is unlikely to be solely due to statistical uncertainty. This,
together with the slightly larger cross section, might be caused by the approximations
made in VBFNLO and technical differences compared to the other tools. For all other
considered distributions, all tools agree within the statistical uncertainties, e.g. in the
𝑚HH-distribution depicted on the left side of figure 4.4.

At next-to-leading order, comparisons with MG5 and VBFNLO are not easily possible.
MG5 cannot handle the appearing penta- and hexagon integrals, VBFNLO cannot
generate NLO events on its own. For this reason, comparisons are only done with
OpenLoops at NLO. The resulting total cross sections then read

𝜎GS = 0.750(5) fb and 𝜎OL = 0.743(6) fb, (4.9)
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Figure 4.4: Distributions of the invariant mass of the Di-Higgs system and transverse
momentum of all Higgs bosons calculated with GoSam+Whizard, OpenLoops+Whizard,
VBFNLO and MadGraph5_aMC@NLO.

still being in good agreement at next-to-leading order.

In addition to comparing GoSam and OpenLoops through (differential) cross sections,
they are also directly compared on matrix element level. For this, a random phase
space point is generated and the amplitude at this point is requested from GoSam
and OpenLoops. In the BLHA2 convention [45], this generally returns four values,
𝐴2, 𝐴1, 𝐴0 and 𝑇 ∶= |MBorn|2. For tree-level processes, 𝐴2 = 𝐴1 = 𝐴0 = 0. For each
value, the relative difference

Δ𝑋 = 𝑋GS − 𝑋OL
𝑋GS + 𝑋OL

(4.10)

is calculated. With 106 points for each of the Born-, real- and loop-components, the
orders of magnitude of the mean relative differences read

ΔBorn
𝑇 ∼ 10−15, ΔReal

𝑇 ∼ 10−15,
ΔLoop

𝐴2
∼ 10−14, ΔLoop

𝐴1
∼ 10−13, ΔLoop

𝐴0
∼ 10−8.

(4.11)

Therefore, the amplitudes provided by GoSam and OpenLoops show excellent agree-
ment for all components. Hence, in summary, all tools show good agreement with
GoSam, which is thus considered validated for this process.

4.3 Parameterization of the Total Cross Section in
Terms of the Anomalous Couplings

The first type of result from the present calculation is the total cross section. It is
calculated for twelve parameter points within the volume given at the end of section 4.1.
The points are chosen based on a parameter scan performed at the leading order, with

36



4.3 Parameterization of the Total Cross Section in Terms of the Anomalous Couplings

Table 4.1: LO and NLO results for the total cross section at
√

𝑠 = 13.6 TeV. The asymmetrical
errors are calculated with a three-point scale variation, the symmetrical error is the MC
integration error. For the ratio in the last column, only the MC error is given.

𝑔HHH 𝑔HVV 𝑔HHVV 𝜎NLO in fb 𝜎LO in fb 𝜎NLO/𝜎LO

1 1 1 0.752+0.010
−0.031 ± 0.009 0.814+0.096

−0.068 ± 0.003 0.923(11)
-1 0.9 1.5 2.10+0.01

−0.05 ± 0.01 2.290+0.308
−0.245 ± 0.004 0.916(6)

-1 1.05 1.3 3.35+0.01
−0.10 ± 0.03 3.70+0.34

−0.29 ± 0.01 0.907(8)
0 1 1 1.89+0.01

−0.02 ± 0.02 2.10+0.19
−0.17 ± 0.01 0.900(9)

1 0.9 1 0.375+0.001
−0.012 ± 0.004 0.408+0.050

−0.039 ± 0.001 0.921(10)
1 1 0.5 4.38+0.01

−0.18 ± 0.03 4.80+0.54
−0.46 ± 0.01 0.913(6)

1 1 1.5 1.50+0.02
−0.03 ± 0.01 1.660+0.218

−0.177 ± 0.003 0.902(6)
2 0.9 1.4 3.81+0.06

−0.05 ± 0.02 4.23+0.48
−0.40 ± 0.01 0.900(6)

2 1 1 0.616+0.019
−0.028 ± 0.007 0.683+0.069

−0.059 ± 0.003 0.902(11)
3 1.1 0.5 4.32+0.01

−0.06 ± 0.03 4.74+0.59
−0.49 ± 0.01 0.911(6)

4 0.95 0.5 2.40+0.01
−0.06 ± 0.01 2.62+0.28

−0.23 ± 0.01 0.914(8)
6 1.1 1 9.83+0.01

−0.30 ± 0.07 10.90+0.94
−0.84 ± 0.03 0.903(7)

the values chosen in table 4.1 exhibiting distinct shape deviations from the SM. Table
4.1 shows the LO and NLO cross sections at

√
𝑠 = 13.6 TeV as well as the 𝐾-factor

𝐾 = 𝜎NLO/𝜎LO. As an immediate observation, the total cross section depends strongly
on the couplings. The 𝐾-factor, on the other hand, is largely constant O(−10%) with
respect to the anomalous couplings. The independence of the 𝐾-factor on the EFT
couplings can be understood by considering the analytical structure of the amplitude.
Schematically, at leading-order the amplitude can be decomposed as

M ∼ 𝐽𝜇
𝑞 𝐽𝜈

𝑞′𝑉𝜇𝜈 (4.12)

where 𝐽 is a quark current and 𝑉 is the tensor describing the 𝑉 𝑉 → 𝐻𝐻 subdiagram.
The anomalous couplings only appear in the tensor 𝑉, while the currents 𝐽 are inde-
pendent of them. As argued in e.g. [55], the dominant NLO QCD contributions to the
(single or double) VBF process are the vertex corrections like the upper left diagram in
figure 4.3. These only appear in the currents 𝐽, i.e. the NLO QCD corrections and the
differences due to the anomalous couplings are essentially factorized in the amplitude.
For this reason the EFT dependence mostly cancels in the 𝐾-factor, leaving only the
contribution from the NLO QCD corrections independently of the coupling values.

Also, a clear reduction of the scale dependence compared to the LO values can be
observed in table 4.1. The scale variation changes the LO cross sections of order ∼ 10%,
while the NLO cross sections only change on the order of ∼ 3%.
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Table 4.2: Fit results for the coefficients of equation (4.14) at
√

𝑠 = 13.6 TeV and with the
central scale given by equation (4.3). The uncertainties are those obtained in the fitting
procedure.

Parameter 𝜇𝐹 = 𝜇𝑟 = 𝜇0/2 𝜇𝐹 = 𝜇𝑟 = 𝜇0 𝜇𝐹 = 𝜇𝑟 = 2𝜇0

𝐴0 0.7011(46) 0.6889(35) 0.6830(30)
𝐴1 22.15(12) 21.71(9) 21.55(8)
𝐴2 11.86(7) 11.59(5) 11.55(4)
𝐴3 −6.139(42) −6.025(33) −5.984(27)
𝐴4 3.865(29) 3.786(23) 3.773(19)
𝐴5 −31.44(18) −30.75(14) −30.56(11)

To generally describe the dependence of the total cross section on the anomalous
couplings, consider the diagrams in figures 4.2. As indicated in the lower subdiagrams,
the different diagrams have distinct dependencies on the anomalous couplings. The
amplitude can therefore be parameterized as

M = 𝛼 𝑔HVV𝑔HHH + 𝛽 𝑔2
HVV + 𝛾 𝑔HHVV (4.13)

with coefficients 𝛼, 𝛽 and 𝛾. This form for the amplitude also holds at NLO QCD.
The total cross section is then proportional to this expression squared, yielding the
parameterization

𝜎
𝜎SM =𝐴0 𝑔2

HHH𝑔2
HVV + 𝐴1 𝑔4

HVV + 𝐴2 𝑔2
HHVV

+ 𝐴3 𝑔HHH𝑔3
HVV + 𝐴4 𝑔HHH𝑔HVV𝑔HHVV + 𝐴5 𝑔2

HVV𝑔HHVV.
(4.14)

with coefficients 𝐴𝑖. This formula is exact, which is why the coefficients could in
principle be determined by choosing six points of table 4.1 and analytically inverting
the resulting linear system. However, due to the MC error on the cross sections, this
results in large uncertainties on the coefficients. The simplest method to reduce this
is by including all points of table 4.1, which is done with a fit. This is performed
with iminuit [56, 57] separately for each considered scale, the resulting coefficients are
shown in table 4.2.

This parameterization can now be used to investigate the dependence of the total cross
sections on the anomalous couplings in the whole considered parameter space. Figure
4.5 shows the dependence of the cross section on a single anomalous coupling, where
all other couplings are kept at the SM value. The impact of the different parameters
varies strongly, with 𝑔HHH having by far the largest impact, while 𝑔HVV has the smallest
impact. This is mostly a result of the size of the respective parameter ranges though.
The vector boson couplings are far more constrained than the triple-Higgs coupling,
allowing the latter to deviate much more from the SM value. Nonetheless though, all
couplings can significantly alter the cross section.
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Figure 4.5: Total cross section at NLO relative to the Standard Model value when a single
anomalous coupling is varied. The uncertainty band shows the scale uncertainty.
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Figure 4.6: Ratio of the normalized cross section to the LO values, (𝜎NLO/𝜎SM
NLO)/(𝜎LO/𝜎SM

LO ).
The uncertainty band shows the scale uncertainty.

Looking at the ratio to the LO values (𝜎NLO/𝜎SM
NLO)/(𝜎LO/𝜎SM

LO ) in figure 4.6 next, the
picture is as argued before: the 𝐾-factor is mostly flat. Varying a single parameter over
its whole parameter space only impacts the ratio at most ∼ 2%, with the completely
flat 𝐾-factor being included in the scale band for each coupling.
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Figure 4.8: Pseudorapidity separation and invariant mass distributions of the di-Higgs system
at LO and NLO in the SM. The error bars show the MC error, the error bands show the
uncertainties due to the scale variation.

So far, only variations of a single coupling were considered. In figure 4.7, the simulta-
neous variation of two couplings is depicted. The left column contains the total cross
section relative to the SM value at NLO, the right column the ratio of the cross section
to the LO value. Each row then shows the respective quantity in the 𝑔HVV-𝑔HHH plane,
the 𝑔HHVV-𝑔HVV plane and the 𝑔HHVV-𝑔HHH plane. In each case, the third coupling
is set to its SM value again. The 𝐾-factor is still mostly flat, in agreement with the
previous observations. The largest deviations from the LO is for very large values of
𝑔HHH and simultaneously small 𝑔HVV or large 𝑔HHVV, which is of order ∼ 3%. The
strong dependence of the cross sections on the couplings can be seen in the left column,
which shows deviations of more than 20 times the SM value for large 𝑔HHH and 𝑔HHVV.
There are also possible deviations in the other direction though, will a roughly 50%
decrease of the total cross section for small 𝑔HVV.

4.4 Differential Results

Finally, several differential distributions are produced for each combination of anomalous
couplings given in table 4.1. For this purpose, NLO events are generated at

√
𝑠 =

13.6 TeV with Whizard and then analyzed with Rivet [58]. But before considering
any anomalous couplings, some LO distributions can be compared to the respective
NLO one. This is shown in the SM for the rapidity separation Δ𝜂 = 𝜂(𝐻1) − 𝜂(𝐻2) of
the two Higgs bosons and the di-Higgs invariant mass 𝑚𝐻𝐻 = √(𝑝𝐻1

+ 𝑝𝐻2
)2 in figure

4.8. Both of these distributions show only mild shape differences between the LO and
NLO histograms, which can be seen as representative for all generated distributions.
The NLO QCD corrections mostly manifest themselves in the overall normalization
due to the smaller cross section. They also show the expected decrease of the scale
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Figure 4.9: Rapidity separation, invariant mass and 𝑅-separation distributions of the di-Higgs
system and 𝑝⊥ distribution of any Higgs boson at NLO QCD. The anomalous couplings are
given as (𝑔HHH, 𝑔HVV, 𝑔HHVV) in the legend. The error bars show the MC error, the error
bands show the uncertainties due to the scale variation.

uncertainty when going to NLO QCD, in accordance with the observation of the scale
uncertainty on the total cross section in section 4.3.

Much larger shape deviations can be observed when the couplings are varied, as can
be seen in figure 4.9. Here, distributions of several observables of the di-Higgs system
are shown. The strongest deviation from the SM distribution can be observed in the
pseudorapidity separation of the Higgs bosons. In the SM, the most Higgs boson pairs
are produced with a pseudorapidity separation of ∼ 2.5 and a clear local minimum
at Δ𝜂 ∼ 0. This is in contrast to the situation with anomalous couplings, where
the distribution is skewed toward Higgs pairs with smaller pseudorapidity separation
for variations in any of the three couplings. A clear local maximum forms in all
shown scenarios for Δ𝜂 ∼ 0. This behavior can be understood by again considering
the diagrams in figure 4.2. The contribution of the leftmost diagram is enhanced
for large self-couplings, leading to an excess in less separated Higgs pairs, since they
originate in the same three-point vertex. The situation is more subtle for the other
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4.4 Differential Results

two couplings. As mentioned in e.g. [10], a cancellation happens between the second
and third subdiagrams. If either of the two Higgs-vector boson couplings is varied,
this cancellation fails and the amplitude grows with energy. This violates S-matrix
unitarity and has to be repaired by the UV-complete theory above the cutoff scale
Λ. In the present observables however, this manifests in a large excess of high energy
events, which can also clearly be seen in the 𝑝⊥ distribution of the Higgs bosons in
figure 4.9. This therefore also leads to the di-Higgs systems being more boosted on
average, resulting in the smaller pseudorapidity separation.

The changes in the pseudorapidity separation can also be observed in the 𝑅-separation
Δ𝑅 = √Δ𝜂2 + Δ𝜙2 of the Higgs bosons, which is shown in the lower left histogram
in figure 4.9. This distribution is, like the pseudorapidity separation, skewed towards
smaller Δ𝑅 values. Due to a simultaneous increase in Δ𝜙 for anomalous values of
the Higgs-vector boson couplings though, another interesting feature can be observed.
Increasing the self coupling only increases the abundance of low Δ𝑅 events, while a
peak develops around Δ𝑅 ∼ 3 for variations of the other two couplings. The large Δ𝑅
region is essentially untouched by changes in the couplings.

Finally, figure 4.9 also contains the invariant mass 𝑚HH of the di-Higgs system. The
behavior with respect to the couplings is similar to before, changes in the Higgs-vector
boson couplings manifest themselves in an excess of high energy events compared to
the SM. The self-coupling on the other hand mostly influences low invariant mass
events. By varying both at the same time, an interesting feature can be generated in
the 𝑚HH distribution: a local minimum forms at 𝑚HH ∼ 450 GeV with the coupling
values shown in figure 4.9.

In summary, variations of the three couplings 𝑔HHH, 𝑔HVV and 𝑔HHVV within their
current experimental bounds can have a substantial influence on the cross sections
and shapes of distributions in the VBF process. Additionally, completely new features
can develop in the distributions, with some depending on the interplay of multiple
anomalous couplings.
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5 Summary and Outlook

In this thesis, the NLO QCD corrections to the VBF production of two Higgs bosons at
the LHC within the HEFT were calculated. For this purpose, the relevant operators at
the considered order of the HEFT were identified for this process. This model was used
to calculate the total cross section and some differential distributions for several values
of the anomalous couplings. The total cross sections at these points were then used
to fit the coefficients of a parameterization of said cross section for arbitrary coupling
values. Additionally, to make all these calculations more feasible, several improvements
were implemented in the OLP GoSam to reduce the time taken to construct the
amplitude and evaluate it for a given phase space point.

However, even though many improvements were implemented in GoSam, there is still
much possibility for further improvement. Two areas of interest in this context are
caching of intermediate results and further reduction of unnecessary recalculations in
the kinematics routines. One important optimization implemented within the scope
of this thesis was the reuse of results for helicities sharing the same kinematics. The
kinematics of crossed helicities are also connected by permutations and reflections of
momenta though. For this reason, much of the existing kinematical results could be
reused for other helicities in a future version of GoSam, further reducing unnecessarily
spent time.

Turning to the VBF process, only the hard subprocess of an LHC collision is considered
presently. The Higgs bosons and the highly energetic partons are not what is measured
in the detector at the end, though. Therefore, a first natural extension of this calculation
would be to include Higgs decays. This could be done by using the present setup to
generate events with in general off-shell Higgs bosons, which can then in a further step
be decayed by another program. A similar post-processing can be done for the highly
energetic final state jets, which could be evolved down to a lower energy scale with a
parton shower.

Apart from adding more components of a full LHC collision, the process itself could
also be calculated to higher accuracy. Currently, only the NLO QCD corrections are
included, even though the NLO electroweak corrections in the SM are only slightly
smaller. Doing this consistently would require a large additional effort though. GoSam
is unable to perform the electroweak renormalization automatically, which would have
to be done manually. Also, as mentioned in 2.2.2, the NLO HEFT operators have to
be included with the NLO electroweak corrections. This would therefore also increase
the number of variable parameters significantly, and make the renormalization even
more complex at the same time.
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5 Summary and Outlook

However, already at the present stage, significant deviations of the SM predictions can
be observed for anomalous couplings within the current experimental bounds, leading
to very promising prospects for future experimental analyses at the (HL-)LHC.
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