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CHAPTER 1

Introduction

One of the outstanding problems in today’s physics is to explain the baryon asym-
metry of the universe (BAU). The Planck experiment determines the BAU to [1]

nB
s
≡ YB = (8.59± 0.11) · 10−11 (1.1)

where nB is the baryon number and s the entropy density of the universe. In the
general understanding of the universe, where it starts with a total balance of baryons
and anti-baryons in the big bang, a dynamical production mechanism is needed
for the net baryon number. To enable such a dynamical mechanism, Sakharov
[2] proposed three sufficient conditions, which a model needs to fulfill in order to
explain the BAU. As a first point, the model has to include baryon number violating
processes. This is already possible in the Standard Model (SM) through the chiral
anomaly [3]. At finite temperature, the tunneling between two vacua is viable via a
sphaleron at a sufficient rate, which results in the B + L violation (B is the baryon
and L the lepton number), while B − L is still conserved. The second Sakharov
condition concerns the requirement of additional CP and C violation, otherwise the
corresponding anti process would wash out the generated baryons and one ends
in a symmetric universe again. The last condition is the departure from thermal
equilibrium. This prevents thermal suppression due to the Boltzmann factor.
For many years now, electroweak baryogenesis (EWB) has been considered as a
possible solution which simultaneously fulfills the Sakharovs conditions and provides
promising and testable predictions for the Large Hardron Collider (LHC) due to the
strong connection to the electroweak sector. In this mechanism, the baryons are
produced by the electroweak phase transition (EWPT), which occurs in the early
universe. At the beginning of the universe, the SU(2) × U(1) gauge symmetry is
still unbroken. Since the temperature decreases with the evolution of the universe,
bubbles with the broken gauge symmetry start to form. Two vacua coexist and CP-
violating processes at the bubble wall with top quarks and sphalerons will produce
baryons inside the bubbles [4]. If the phase transition (PT) occurs fast enough,
the produced baryons cannot be washed out again via sphaleron interactions at the
bubble wall. In order to secure the baryon number, the PT must be of strong first
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order. This condition can be translated in the baryon wash out condition [5]

ξC ≡
〈φC〉
TC
≥ 1 . (1.2)

The critical temperature TC is defined as the temperature at which the two vacuum
states of the symmetric and broken phase are degenerate, 〈φC〉 describes the corre-
sponding field configuration of the broken phase at this critical point.
Although the three Sakharov conditions can be fulfilled in the SM, the CP-violation
in the Cabibbo-Kobayashi-Maskawa (CKM) matrix is not sufficient [6]. In addition,
with the discovery of the SM Higgs boson at the LHC [7], it is known that the Higgs
boson is too heavy to enable a strong first order PT in the SM [8, 9]. For all these
reasons, physics beyond the SM is needed. For example, additional scalar degrees
of freedom can strengthen the PT, such that EWB is possible.
In this work, we study the implications of the strong first order electroweak phase
transition (SFOEWPT) for an extended Higgs sector and its phenomenology. There
is already a large number of studies of extended Higgs sector models in combination
with an EWPT, which includes an additional Higgs doublet, like the two-Higgs dou-
blet model (2HDM) [10–14], or singlet extensions which consider the SM Higgs sector
plus a gauge singlet [15–17]. There are also studies which consider supersymmetry
like the minimal supersymmetric [18–20] and the next-to-minimal supersymmetric
extension of the SM [21, 22].
In this thesis we investigate the Next-to-Two Higgs Doublet Model (N2HDM), which
is a CP-conserving 2HDM extended with an additional real singlet. This will allow
us to see effects induced by additional doublets and singlets at the same time without
the restriction of supersymmetry. The degrees of freedom after electroweak symme-
try breaking are the neutral and charged would-be Goldstone bosons G0 and G±,
respectively, the CP-odd pseudoscalar A, the charged Higgs boson H± and the three
CP-even Higgs bosons.
In order to describe the interplay between the SFOEWPT and the collider phe-
nomenology, we will use the baryon washout condition, given in Eq. (1.2), to quan-
tify if an SFOEWPT is possible in a specific parameter setting. For that purpose,
we have calculated the effective potential at finite temperature including two-loop
thermal effects by using the daisy resummation. We chose the renormalisation pre-
scription introduced in [14], which allows us to use one-loop masses and mixing
angles as direct input for the parameter scan. We will use numerical minimisation
algorithms to find the global electroweak minimum of the effective potential in order
to determine the critical field configuration 〈φC〉 and the critical temperature TC .
The demand of a first order EWPT will constrain the viable parameter phase space,
which survives the collider and theoretical constraints. This will allow us to link
collider phenomenology with cosmology and leads to testable predictions for future
collider experiments.
The outline of this work is as follows: In Chapter 2 we start with a review of the
theoretical background, which is needed to cover the calculations, including finite
temperature field theory and the effective potential at one-loop approximation and at
finite temperature. We will furthermore make some comments on subtle problems of
the finite temperature field theory and introduce the resummation prescription used
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in this work. Afterwards, in Chapter 3, we introduce our notation and the N2HDM.
We will show schematically the diagonalisation of the extended Higgs sector and
present the calculation of the mass spectrum. In Chapter 4 the renormalisation
prescription is described in detail and in Chapter 5, we will give details on the nu-
merical analysis. In Chapter 6 we will discuss the phenomenological implications of
the EWPT for the N2HDM. At the end, in Chapter 7, we will give our conclusion.
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CHAPTER 2

Theoretical Background

In the following chapter we will introduce the theoretical basics needed to cover the
calculations in this thesis. For more detailed explanations, we will refer to the lit-
erature where appropriate. The chapter starts with an introduction to field theory
at finite temperature and derives an analytic expression for the one-loop effective
potential. This effective potential takes the one-loop quantum corrections into ac-
count which allows us to investigate the electroweak symmetry breaking patterns at
one-loop approximation. We will also treat the Debye-corrections which allow us to
go beyond the one-loop approximation.

2.1 Field Theory at Finite Temperature

There are different ways to formulate a field theory at finite temperature. In principle
it is possible to perform all calculations in each of the proposed formalisms, but it is
convenient to use the imaginary time formalism for our purposes. Hence, we follow
the introduction of [23].
To describe a system that is capable of exchanging energy and particles with a heat
bath, the grand canonical ensemble with its partition function is needed,

Z(T ) = Tr ρ(β) = Tr exp (−βH) , (2.1)

where β is the inverse temperature (in natural units), ρ the density matrix and H
describes the Hamiltonian of the system with the chemical potential µ,

H = H − µ . (2.2)

In a statistical ensemble only the thermal averages are observable. They are defined
for an operator O as

〈O〉β =
1

Z(β)
Tr ρ(β)O . (2.3)

Using the cyclicity of the trace leads to the so called Kubo-Martin-Schwinger equa-
tion for two Heisenberg-operators O1 and O2 at times t and t′

〈O1(t)O2(t′)〉β =Z−1 Tr e−βHO1(t)O2(t′) (2.4)
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=Z−1 Tr e−βHO1(t)e+βHe−βHO2(t′)

=Z−1 TrO1(t+ iβ)e−βHO2(t′)

= 〈O2(t′)O1(t+ iβ)〉β .

As can be read off Eq. (2.4), in thermal field theory the time is no longer a real
quantity, which will be a crucial aspect of the following discussion. One of many
reasons for this is that it is possible to identify the partition function as the func-
tional representation of the path integral, if one allows complex time. Treating the
temperature as a new time scale of the physical system will induce a periodicity in
the complex time plane. To motivate the transition from the simple Euclidean space
R4 to the periodic space R3×S1, it is easier to consider the operator approach. For
that, we define the thermal n point Greens function as

Gβ(x1 . . . xn) = 〈TCφ(x1) . . . φ(xn)〉 (2.5)

with the path order operator TC . This operator orders the fields φ(xi) along the path
C ⊂ C, which corresponds to the time plane. Suppose one has a parameterization
z(τ) for the path C with monotonically increasing and real τ , then this triggers the
following correspondence for the step-functions1,

ΘC(t− t′) = Θ(τ − τ ′) . (2.6)

With this in mind it is possible to split the Greens function as

Gβ(x− y) = G+
β (x− y)ΘC(x0 − y0) + G−β (x− y)ΘC(y0 − x0) (2.7)

in two different time-ordered regions with

G+
β (x− y) = 〈φ(x)φ(y)〉β = G−β (y − x) . (2.8)

Then, we insert a complete set of eigenstates H |n〉 = En |n〉, taking ~x = ~y = 0 so
that

G+
β =

〈
φ(x0,~0)φ(y0,~0)

〉
β
∼
∑
n,m

∣∣ 〈m|φ(0) |n〉
∣∣2e−iEn(x0−y0)eiEm(x0−y0+iβ) . (2.9)

The extra exponent∼ βEm originates from the thermal average definition in Eq. (2.3).
In order to have a well defined Greens function, G+

β needs to converge. Therefore
one can conclude

− β 6 Im(x0 − y0) 6 0 (2.10)

and in a completely analogous way for G−β ,

0 6 Im(x0 − y0) 6 β . (2.11)

Finally one obtains
− β 6 Im(x0 − y0) 6 β (2.12)

1Note that t is complex. Therefore ΘC refers to the path ordered case and Θ to the well known
step function.
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for the whole Greens function. By choosing the Matsubara integration contour [24]
t→ −iτ and using the periodicity of the Greens function for bosonic fields (+) and
fermionic fields (−) in Eq. (2.4), it can be shown that,

Gβ(τ ≤ 0) = ±Gβ(τ + β) , (2.13)

where +(−) corresponds to bosonic (fermionic) fields. Since the Greens functions are
periodic in τ , the corresponding Fourier transformation contains discrete sums over
frequencies and we can write a general expression for the time part of the Greens
function,

Gβ(τ) =
1

β

∑
n

e−iωnτGβ(ωn) (2.14)

and

Gβ(ωn) =
1

2

∫ β

−β
dτeiωnτGβ(τ) (2.15)

with frequencies

ωn =
πn

β
. (2.16)

By using Eq. (2.13) it can be proven that the two point function vanishes for odd n
in the bosonic case and for even n in the fermionic case,

Gβ(ωn) =
1

2

∫ 0

−β
dτeiωnτGβ(τ) +

1

2

∫ β

0

dτeiωnτGβ(τ) (2.17)

=± 1

2

∫ 0

−β
dτeiωnτGβ(τ + β) +

1

2

∫ β

0

dτeiωnτGβ(τ)

=± 1

2

∫ β

0

dτeiωn(τ−β)Gβ(τ) +
1

2

∫ β

0

dτeiωnτGβ(τ)

=
1

2

(
1± e−iωnβ

) ∫ β

0

dτeiωnτGβ(τ)

=
1

2
(1± (−1)n)

∫ β

0

dτeiωnτGβ(τ) .

As a consequence, we introduce the so-called Matsubara frequencies,

ωn =

{
2πn
β

for bosons
(2n+1)π

β
for fermions

(2.18)

and we can formulate an expression for a two-point Greens function,

Gβ(~x, τ) =
1

β

∑
n

∫
d3k

(2π)3
e−i(ωnτ−~k~x)Gβ(~k, ωn) . (2.19)

This Fourier decomposition can be used to obtain the propagator of the fields, for
example for a real scalar field in Euclidean space time(

∂2

∂τ 2
+∇2 −m2

)
Gβ(~x, τ) = −δ(3)(x)δ(τ) .
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It is solvable in the momentum space with

Gβ(~k, ωn) =
1

ω2
n + ~k2 +m2

. (2.20)

As a more convenient way of obtaining Feynman rules, the path integral formalism
can be taken into account. For this we look at the zero temperature transition
amplitude in its functional representation〈

φ(~x1, t1)
∣∣φ(~x2, t2)

〉
∼
∫
DφeiS (2.21)

with the common action

S[φ] =

t2∫
t1

dt

∫
d3xL (2.22)

and fixed boundaries

φ( ~x1, t1) = φ1 (2.23)

φ( ~x2, t2) = φ2 . (2.24)

We already saw the periodicity of the Greens function in the time component, hence
the fields must fulfill those periodic boundary conditions as well,

φ(~x, β) = ±φ(~x, 0) . (2.25)

Identifying
t1 − t2 = −iβ (2.26)

one can write the partition function of the theory in a path integral representation

Z(β) = Tr e−βH =

∫
Dφ
〈
φ
∣∣e−βH∣∣φ〉 = N ′

∫
Dφe−SE (2.27)

with the Euclidean action2

SE =

∫ β

0

dτ

∫
d3xLE . (2.28)

To end this short motivation for thermal field theory, we rephrase the Matsubara
formalism. It enables the formulation of the partition function of a quantum theory
by its path integral. The Wick rotation of the time axes to its complex axis conse-
quently allows to obtain a theory in Euclidean space time. The boundary conditions
are not given at t = ±∞ anymore, but at a finite interval, which is defined by the
temperature β = T−1 in natural units. This transition

R4 → R3 × S1 (2.29)

also requires that the fields satisfy (anti-) periodic boundary conditions with a period
of β. The Feynman rules can be read off the path integral. The vertices and therefore

2To be consistent with literature we neglect the contribution of the chemical potential.
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the couplings remain the same as in the T = 0 theory. The only difference between
T = 0 and T 6= 0 lies in the propagators, which are now derived from the quadratic
part of the Euclidean Lagrangian in a periodic R3×S1. For example in a real scalar
field theory

D(ωn, ~k) =
1

ω2
n + ~k2 +m2

(2.30)

pE = (p0, ~p)→ (ωn, ~p) (2.31)∫
d4kE
(2π)4

→ 1

β

∑
n

∫
d3k

(2π)3
(2.32)

with the Matsubara frequencies ωn, given in Eq. (2.18).

2.2 The Effective Potential

We want to investigate the electroweak symmetry breaking pattern at the elec-
troweak phase transition. At a first sight, the classical Higgs potential dictates
the behavior of the electroweak symmetry breaking, however quantum effects may
change some aspects of the potential. For example a broken symmetry may be re-
stored under radiative corrections [25]. To include such quantum corrections, the
effective potential can be investigated. This effective potential, which we will see
later, will give the true vacuum state at its minimum taking into account quantum
corrections. Unfortunately no closed form for the effective potential exists and it
has to be calculated order by order. In the following we will introduce the effective
action at zero temperature, derive the effective potential and show one simple way
to calculate the one-loop approximation.

2.2.1 Effective Action at zero Temperature

For simplicity, we consider a field theory with only scalar fields. The derived aspects
can be generalized for all kinds of theories. For more detailed explanations, the
excellent review of finite temperature field theory [5] is recommended.
The generating functional in path integral representation

Z[J ] =

∫
Dφ exp

(
i

∫
d4x(L(x) + J(x)φ(x))

)
= eiW [J ] (2.33)

with the generating functional for connected Greens functions W [J ] can be used to
show that an expansion of W [j] in j(x) produces the connected Greens functions
G(c) [26]

iW [j] =
∞∑
n=0

in

n!

∫
d4x1 . . . d

4xnj(x1) . . . j(xn)Gc(n)(x1, . . . , xn) . (2.34)
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In an analogous way one can expand the Legendre transformed effective action

Γ[φ̄] = W [j]−
∫
d4xφ̄(x)j(x) (2.35)

in terms of the field variable

φ̄ =
δW [j]

δj(x)
(2.36)

by using

Γ[φ̄] =
∞∑
n=0

1

n!

∫
d4x1 . . . d

4xnφ̄(x1) . . . φ̄(xn)Γ(n)(x1, . . . , xn) (2.37)

with the one-particle-irreducible correlation functions Γ(n)(x1 . . . xn). Another way
to expand the effective action is done by

Γ
[
φ̄
]

=

∫
d4x

[
−Veff (φ̄) +

1

2
(∂µφ̄)2Z(φ) + . . .

]
, (2.38)

where the effective potential Veff is introduced. The expansion in Eq. (2.38) can be
understood as an expansion in external momenta. For a translation invariant theory,
the field configuration φ is a constant field configuration in space-time

φ = φcl. = const. . (2.39)

This allows to reformulate Eq. (2.37) as

Γ[φcl.] =
∞∑
n=0

1

n!
φncl.Γ

(n)(pi = 0)

∫
d4x . (2.40)

Comparing it to Eq. (2.38), while using that the field configuration is constant, we
obtain a diagrammatic expression for the effective potential

Veff (φcl.) = −
∞∑
n=0

1

n!
φncl.Γ

(n)(pi = 0) . (2.41)

Unfortunately, in most cases it is not possible to calculate this expression because of
the summation over infinite Feynman diagrams. Therefore we need to express Veff
order by order. In the following we derive the first order of the effective potential.
To start, an arbitrary rescaling of the Lagrangian for a single scalar field [27] is
considered

L(φ, ∂µφ, a) = a−1L(φ, ∂µφ) . (2.42)

The factor a does not need to be small, in fact it can have a magnitude of order one.
For convenience we take

a = ~ . (2.43)

Let P be the power of ~ , I the number of internal lines and V the number of vertices
in a given diagram. The relation of these quantities is given by

P = I − V (2.44)
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and can be related to the number of loops of the diagram by

L = I − V + 1 (2.45)

to yield the final expression

P = L− 1 . (2.46)

According to these considerations we can conclude that a perturbative expansion in
terms of loops can be directly related to an expansion in powers of ~.
The idea is now to expand the effective potential in orders of ~

Veff = V 0 + ~V (1) +O(~2) (2.47)

to obtain an expression for the first order loop expansion. To continue we need the
action

SJ ≡ S +

∫
d4xJ(x)φ(x) (2.48)

with the external source term ∼ J(x)φ(x). The solution of the Euler-Lagrange
equation

δSJ(φ)

δφ(x)

∣∣
φ=φ0

= 0 (2.49)

is denoted by φ0. Now an expansion of φ around φ0 given by

φ(x) = φ0(x) +
√
~ϕ (2.50)

can be used to expand the action around its minimum,

SJ(φ) = SJ(φ0 +
√
~ϕ) (2.51)

= SJ(φ0) +
~
2

∫
d4xd4yϕ(x)

δ2SJ
δφ(x)δφ(y)

∣∣
φ=φ0

ϕ(y) +O(~2)

= SJ(φ0)− ~
2

∫
d4x

∫
d4yϕ(x)D−1(x, y)ϕ(y) + · · · .

In the last step we defined the inverse propagator D−1(x, y) in the presence of a
background field. Considering Eq. (2.21)

Z [J ] =

∫
Dϕ exp

(
i

~
SJ(φ0 +

√
~ϕ)

)
(2.52)

=

∫
Dϕ exp

[
i

~

(
SJ(φ0)− ~

2

∫
d4xd4yϕ(x)D−1(x, y)ϕ(y) +O(~2)

)]
= exp

(
i

~
SJ(φ0)

)[
detD−1

]−1/2
,

one can write the generating functional for the connected Feynman diagrams as

W [J ] = SJ(φ0) +
i~
2

Tr lnD−1 . (2.53)
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If we neglect quantum effects and accordingly the loop expansion, the classical field
configuration is simply given by the vacuum expectation value (VeV)

φcl. =
δW

δJ(x)
= 〈0|Φ(x)|0〉J . (2.54)

To be consistent, the solution φ0 must converge in the ~ → 0 limit to the classical
solution. We expand the classical field configuration in the following sense

φcl.(x) = φ0(x) + φ1(x) +O(~2) (2.55)

where φ1 is the dynamical field and of order ~. Finally we can write the effective
action as

Γ [φcl.] = W [J ]−
∫
d4xφcl.(x)J(x) (2.56)

= SJ(φ0) +
i~
2

Tr lnD−1 −
∫
d4x(φ0 + φ1)J +O(~2)

= S(φ0) +

∫
d4xφ0J +

i~
2

Tr lnD−1 −
∫
d4x(φ0 + φ1)J +O(~2)

= S(φ0)−
∫
d4xφ1J +

i~
2

Tr lnD−1 +O(~2)

= S(φcl.) +
i~
2

Tr lnD−1 +O(~2) .

In the last step the classical Euler Lagrange equation is used to rewrite the action. In
Eq. (2.38) we have already shown that for a constant field configuration the effective
action can be related to the effective potential times the phase space Ω. Using this

Γ[φcl] = −ΩVeff (φcl.) = −ΩV 0(φcl) +
i~
2

Tr lnD−1 , (2.57)

allows to find a formula for the one-loop effective potential

V (1)(φcl) = − i~
2

Ω−1 Tr lnD−1 . (2.58)

Note that the inverse propagator is the propagator of the theory shifted by the
constant classical field configuration. This will induce effective masses meff , which
in general depend on the field value φcl. The Tr can be rewritten in a more convenient
way in the momentum space

Tr lnD−1 =

∫
d4x

〈
x| lnD−1|x

〉
(2.59)

=

∫
d4x

∫
d4k

(2π)4
ln
(
−k2 +m2

eff

)
= Ω

∫
d4k

(2π)4
ln
(
−k2 +m2

eff

)
and after the Wick rotation k0 → ik4 and the limit ~ = 1, we obtain the final result
for the one loop effective potential with the Euclidean momentum vector kE at zero
temperature

V (1) =
1

2

∫
d4kE
(2π)4

ln
(
k2
E +m2

eff

)
. (2.60)
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2.2.2 The Effective Potential at Finite Temperature

The next section of this work illustrates how the one-loop effective potential at finite
temperature for a single scalar field can be obtained. The thereby gained results can
be generalized to an extended Higgs sector. For a more detailed discussion we refer
to [24].
Let ϕ be a scalar field with the mass mϕ. According to Eq. (2.60), the one-loop
contribution to the effective potential is given by

V (1)
ϕ =

1

2

∫
d4k

(2π)4
ln
[
kµkµ +m2

ϕ

] T 6=0−→ T

2

∑
n

∫
d3k

(2π)3
ln
[
ω2
n + ~k2 +m2

ϕ

]
. (2.61)

For the next step we use a common trick [28] to calculate the Bose sum to reduce
the problem to a three dimensional integral. We note that we can write the sum
with the definition ω2

k = ~k2 +m2
ϕ as

Bos∑
n

ln
(
ω2
n + ω2

k

)
=

Bos∑
n

ln
(
ω2
n + 1/β2

)
+

∫ ωk

1
β

du
Bos∑
n

2u

u2 + ω2
n

(2.62)

and define

ν(u) =
Bos∑
n

ln
(
ω2
n + u2

)
. (2.63)

Differentiating ν shows that

∂ν

∂u
=

Bos∑
n

2u

ω2
n + u2

(2.64)

and using the identity∑
n∈Z

y

y2 + n2π2
= coth(y) , ωn = 2πnT , (2.65)

one can rewrite the formula as

∂ν

∂u
= β

(
1 + 2

1

eβu − 1

)
. (2.66)

Bearing this in mind, the sum can be calculated as follows

Bose∑
n

ln
(
ω2
n + ω2

k

)
=

Bose∑
n

ln
(
ω2
n + 1/β

)
+

∫ ωk

1
β

duβ

(
1 + 2

1

eβu − 1

)
(2.67)

=
Bose∑
n

ln
(
ω2
n + 1/β

)
+ βωk + 2 ln

(
1− e−βωk

)
+ (ωk-independent const.)

= βωk + 2 ln
(
1− e−βωk

)
+ (ωk-independent const.) .

In this step a typical phenomenon that occurs while evaluating such Bose sums
can be seen. The integral is split in two parts, one temperature independent and
temperature dependent part,

V (1)
ϕ =

∫
d3k

(2π)3

ωk
2

+

∫
d3k

(2π)3

1

β
ln
(
1− e−βωk

)
+ (ωk-independent const.) . (2.68)
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The temperature independent part is called Coleman-Weinberg contribution VCW .
It is UV divergent and must be renormalized. This is done by using the MS scheme
and the fact that

ωk =

√
~k2 +m2

ϕ = lim
ε→0

−i

2π

∫ ∞
−∞

dk0 ln
(
−k2

0 + ~k2 +m2
ϕ − iε

)
. (2.69)

This allows to rewrite VCW in the Minkowski metric and using the common calcula-
tion to renormalise this term. One obtains [29]

V MS
CW =

m4
ϕ

64π2

(
ln

(
m2
ϕ

µ2

)
− 3

2

)
(2.70)

where µ is the mass scale introduced in the MS scheme. It is convenient to write
the temperature dependent part as

VT =

∫
d3k

(2π)3

1

β
ln
(
1− e−βωk

)
=

1

2π2β4
JB[m2

ϕβ
2] (2.71)

with the thermal bosonic function JB defined as

JB[m2β2] =

∫ ∞
0

dx x2 ln
[
1− exp(

√
x2 + β2m2)

]
. (2.72)

For a complete description of an extended Higgs sector one needs to calculate the
contribution of the vector bosons and fermions to the effective potential. Because
there is nothing special new, only subtleties, we refer to the literature and give only
the result:

V
(1)
eff = Vtree + V 1 ≡ Vtree + VCW + VT , (2.73)

with Vtree as the tree level potential and the Coleman-Weinberg contribution

VCW =
∑
i

ni
64π2

(−1)2sim4
i

[
ln

(
m2
i

µ2

)
− ci

]
, (2.74)

where the sum is over all particles in the theory, ni are the number of degrees of
freedom, si the spin, mi the mass of the particle i, µ is the scale of the electroweak
symmetry breaking and ci is the renormalization constant of the MS scheme, which
is given by

ci =

{
5
6
, i = W±, Z, γ

3
2
, otherwise

. (2.75)

The temperature dependent part reads

VT =
∑
i

ni
T 4

2π2
J

(i)
± , (2.76)

with the thermal bosonic J− and the fermionic J+ function

J±[m2/T 2] = ∓
∫ ∞

0

dx x2 ln
[
1± exp(

√
x2 +m2/T 2)

]
. (2.77)
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Using Eq. (2.77) for numerical calculations would be very time consuming so that
in this work we use a high and low temperature expansion instead of this quantity.
We follow [14] and use for small x2 ≡ m2/T 2

J+(x2, n) = −7π4

360
+
π2

24
x2 +

1

32
x4(log x2 − c+) (2.78)

− π2x2

n∑
l=2

(
− 1

4π2
x2

)l
(2l − 3)!!ζ(2l − 1)

(2l)!!(l + 1)

(
22l−1 − 1

)
,

J−(x2, n) = −π
4

45
+
π2

12
x2 − π

6
(x2)3/2 − 1

32
x4(log x2 − c−) (2.79)

+ π2x2

n∑
l=2

(
− 1

4π2
x2

)l
(2l − 3)!!ζ(2l − 1)

(2l)!!(l + 1)
,

with
c+ = 3/2 + 2 log π − 2γE and c− = c+ + 2 log 4 , (2.80)

where γE denotes the Euler-Mascheroni constant, ζ(x) the Riemann ζ-function and
n!! the double factorial. For the low temperature limit (large x2) we use

J±(x2, n) = − exp(−(x2)1/2)
(π

2
(x2)3/2

)1/2
n∑
l=0

1

2ll!

Γ(5/2 + l

5/2− l (x2)−l/2 , (2.81)

with the Euler-Gamma function Γ(x). To have a continuous transition between
both approximations, we first determine the point where the derivatives can be
continuously connected and afterwards we add a small finite shift to the small x2

expansion. In this way both approximations are connected continuously. The point
of the transition x± and the shift δ± reads [14]

x2
+ = 2.2161 , δ+ = −0.015603 , (2.82)

x2
− = 9.4692 , δ− = 0.0063109 , (2.83)

where +(−) refers to the fermionic (bosonic) approximation. In order to achieve
a two percent agreement of the approximation to the numerical evaluation of the
integral in Eq. (2.77), we include terms of up to order n = 4 in J+ and n = 3 in J−
in the small x2 approximation. In the large x2 approximation both types J± are in
the two percent range by including terms of up to order n = 3.

2.3 Resummation in Hot Field Theory

Our aim is to examine how the temperature affects the perturbative expansion of
the quantum field theory and how additional contributions induced by hard thermal
loops can be controlled. Therefore this chapter at first addresses the real scalar field
theory in order to point out explicit problems in the usual self-coupling expansion.
Then the so called Debye-corrections or daisy resummation are introduced and finally
the resummation prescription used in this work will be discussed.
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2.3.1 The Real Scalar Field

Starting with the Lagrangian for a real scalar field φ,

L =
1

2
(∂µφ)2 +

µ

2
φ2 − λ

4
φ4 , (2.84)

we perform the spontaneous symmetry breaking

φ = v + χ , (2.85)

where v is the VeV and χ the dynamical field. The tree level minimum is simply
given by

〈v〉tree =
µ

λ1/2
(2.86)

and the tree level mass of the field χ is

m2(v) = 3λv2 − µ2 . (2.87)

To go beyond the tree level, we need to calculate the effective potential. This
will allow us to gain an insight into the next-to-leading order. Considering finite
temperature, the only temperature dependent part of the effective potential is VT
given in Eq. (2.71). For simplicity, we take the high temperature limit of the integral
in Eq. (2.78). For the leading contribution this results in [30]

VT (v) = T 4

[−π2

90
+
m2(v)

24T 2
− m3(v)

12πT 3
+O(m4/T 4)

]
. (2.88)

Note that m2 ∼ λ and therefore the next-leading order in λ is not λ2 as one would
expect, but ∼ λ3/2. Considering higher order contributions, we need to take into
account contributions of order λ3/2. It was shown in [6] that this order is given by
the ring corrections which corresponds to the Debye corrections.
Unfortunately, as shown in [5], the perturbative expansion breaks down at the phase
transition at one-loop approximation, and in addition one suffers from infrared di-
vergencies caused by the Matsubara zero modes (n = 0) of the bosons

Veff ∼ ln(D−1)
~p→0−→∞ . (2.89)

We therefore need to include the dominant next-to-leading contributions, the ring
corrections. These corrections can be obtained as first-order corrections to the mean-
field result at one-loop, which is simply a self energy correction in the infrared limit
and hard thermal loop approximation [24]. This limit implies that loop momenta
and masses are small compared to the temperature scale.

Our next point of interest is the calculation of the one-loop corrections to the
polarization tensor of the scalar field. The needed diagram is shown in Fig. 2.1.
Defining ω2

k = ~k2 +m2 leads to

π(1)(ωn, ~k) = π(1)(0) = 3λT
∑
n

∫
d3k

(2π)3

1

ω2
n + ω2

k

(2.90)
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Figure 2.1: One-loop contribution to the polarization tensor of the scalar field.

= 3λT

∫
d3k

(2π)3

1

2ωk

d

dωk

∑
n

ln
(
ω2
n + ω2

k

)
= 3λ

[∫
d3k

(2π)3

1

2ωk
+

∫
d3k

(2π)3

1

ωk(eβωk − 1)

]
(2.91)

where we used Eq. (2.67) to perform the summation. The first term can be dropped
due to the UV regularisation and the second will give in the limit m/T � 1

π(1)(0) = λ
3T 2

12
. (2.92)

This limit is sufficient because in [6] it was demonstrated that the ring corrections
are small unless m/T � 1; therefore we can use the hard thermal approximation
of Eq. (2.92). If the dominant two loop contribution, the ring corrections, shall be
considered, the resummed polarization tensor has to be taken into account. This
is equivalent to the replacement of the bare mass with the thermal mass in the
propagator

m0 → m = m0 + π(1)(0) . (2.93)

The diagrammatic approach can be seen in Fig. 2.2. On the left side we see the
dominant two-loop contributions given by the hard thermal loops with m/T � 1 and
on the right side we see the resummed propagator. The resummed propagator can
be obtained by replacing the tree level mass by its thermal mass in the propagator.
In [31] it is shown that the replacement of the thermal mass will indeed produce an
additional cubic mass term in the VT potential and therefore it is of the requested
order of λ3/2. In [32] it is suggested to replace all masses by their thermal masses,
an approach we will further on refer to as Parwani method. This method admixes
higher-order contributions which at one-loop level could lead to a non consistent
description of the expansion. Another approach is provided in [33]. Here the different
Matsubara modes, namely the heavy (n 6= 0) and zero (n = 0) modes, are handled
independently. The motivation behind this approach can be seen in the one-loop
integral I(m) in d = 4− 2ε dimensions if the different Matsubara modes are splitted
in the zero and heavy modes

I(m) = I0 + In6=0 . (2.94)

The zero mode part reads

I0 = µ2εT

∫
d3−2ε

(2π)3−2ε

1

k2 +m2
=

Γ (−1/2 + ε)

(4π)3/2

[
4πµ2

m2

]ε
mT

ε→0−→ − 1

4π
mT (2.95)
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m/T ≪ 1

m/T ≪ 1 m/T ≪ 1

m/T ≪ 1

(a) (b)

Figure 2.2: Diagrammatical approach to the one-loop effective potential. On the left
side the dominant two loop contribution with hard thermal loops, the so
called ring diagrams. On the right side the resummed effective potential
with thermal masses.

and the heavy modes can be evaluated to

In 6=0 = 2µ2εT
∞∑
n=1

∫
d3−2ε

(2π)3−2ε

1

(2πnT )2 + k2 +m2
(2.96)

= 2µ2εT
∞∑
n=1

∞∑
l=0

∫
d3−2ε

(2π)3−2ε

(−1)lm2l

[(2πnT )2 + k2]l+1

=
1

12
T 2 − 1

16π2
m2

[
1

ε
+ ln(

µ2

T 2
)− 2cb

]
+ T 2

∞∑
l=2

( −m2

4π2T 2

)l
(2l − 3)!!

(2l)!!
ζ(2l − 1) +O(ε) .

The heavy modes can be treated as a perturbative expansion in m2, while the zero
mode breaks this expansion due to the factor3 ∼ m. Therefore it is suggested in [33]
to only resum the static zero modes of the theory and not mix different orders. In
a generic framework with an arbitrary scalar sector and an SM Yukawa sector and
gauge symmetries, this method results in a replacement within the thermal integral
expression as follows,

J
(k)
± =


J−(

m2
k

T 2 )− π
6

(m3
k/T

3 −m3
k/T

3) , k = WL, ZL, γL,Φ
0,Φ±

J−(
m2
k

T 2 ) k = WT , ZT , γT

J+(
m2
k

T 2 ) k = fermion .

(2.97)

3Note that m2 ∼ λ and therefore an expansion in m2 corresponds to the expansion in the
self-coupling λ.
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(a) Π
(S)
ij (b) Π

(V )
ij (c) Π

(F )
ij

Figure 2.3: The three different contributions to the Higgs polarization tensor at one-
loop level with the external legs i and j.

WL, ZL and γL are the longitudinal modes of the SU(2) × U(1) gauge bosons, re-
spectively, T denotes the transversal modes. Φ0 denotes neutral scalars and Φ±

charged scalars. We refer to this method as Arnold Espinosa method. Although
some instabilities were observed in the phase transition while using this method, we
still consider this method to be more consistent. In addition to that it also allows
for a comparison to the existing literature on this subject.

2.3.2 Thermal Masses

In the following we want to calculate the thermally corrected masses of the Higgs
and gauge bosons in a generic framework. The thermal masses are required by
the Eq. (2.97). As a first step the polarisation tensors of the corresponding fields
are needed in order to calculate the thermal mass corrections. Suppose we have a
Higgs sector with N additional scalar degrees of freedom and a gauge and fermion
sector like in the SM. The Higgs sector is described by a potential V . The three
different diagram types for the Higgs corrections are shown in Fig. 2.3. We compute
the Higgs polarization tensor in the gauge basis and label the involved Higgs fields
in the gauge basis with the indices i, j, k, which each run from 1 to N . The first
diagram (2.3a) can then be written as

Π
(S)
ij =

N∑
k=1

Πk
ij =

N∑
k=1

κkij
∑∫
P

1

ω2
n + ~p2

, (2.98)

where we introduced the shorthand notation∑∫
P

≡ 1

β

∑
n

∫
d3p

(2π)3
(2.99)

and

κkij = −1

2

∂4V

∂φi∂φj∂
2
φk

(2.100)

for the quartic couplings. Note that the symmetry factor is already absorbed in κkij.
In a complete analogous way to Eq. (2.92) one can compute Eq. (2.98) yielding

Π
(S)
ij = κkij

T 2

12
. (2.101)

19



The gauge boson contribution, shown in Fig. 2.3b, to the Higgs polarisation tensor
can be written as (a = 1, 2, 3)

Π
(V )
ij =

∑
a

Π
Wa
µ

ij + Π
Bµ
ij . (2.102)

Defining the involved quartic coupling as

κVij =
1

2

∂4L
∂i∂j∂2

V

, (2.103)

where ∂V ≡ ∂
∂Wa

µ
or ∂V ≡ ∂

∂Bµ
, the calculation of the diagram results in4

Π
(V )
ij =κVijT

∑
n

∫
d3p

(2π)3

δµν
ω2
n + ~p2

(
δνµ −

pµpν
ω2
n + ~p2

)
(2.104)

=κVijT
∑
n

∫
d3p

(2π)3

1

ω2
n + ~p2

(
4− ω2

n + ~p2

ω2
n + ~p2

)
=3κVijT

∑
n

∫
d3p

(2π)3

1

ω2
n + ~p2

=κVij
T 2

4
.

For the fermion contribution, depicted in Fig. 2.3c and denoted as Π(F ), we consider
only the top and bottom contribution because of the small Yukawa couplings of the
other quarks. The general form of the fermion contribution Π(F ) depends on the
assumptions of the model. Hence, we only show the explicit expression Π(F ) for the
N2HDM later on. The full Higgs polarisation tensor is the sum of all contributions

Π
(H)
ij = Π

(S)
ij + Π

(V )
ij + Π

(F )
ij . (2.105)

The daisy resummed propagator is equivalent to the replacement of the bare masses
with the thermal masses which are the eigenvalues of the thermally corrected mass
matrix

M = M0 + δMT ≡M0 − Π(H) . (2.106)

The leading-order mass matrix M0 can be obtained by the second derivative of the
Higgs potential with respect to the fields in the gauge basis.

4Note that we use the Landau gauge, which is considered as the most elegant way to calculate
the effective potential, because in this gauge the ghost contribution drops out. There remains the
open question of the gauge dependence of the effective potential. For discussions of this issue, see
e.g. [34–37].
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CHAPTER 3

The N2HDM

In the following chapter we will introduce the notation used in this thesis and the
N2HDM. We will calculate the mass spectrum and introduce the different types of
the model. Afterwards we will present the results obtained by applying the formulas
introduced in Chapter 2, including the VeV configuration used in the analysis, the
effective couplings needed for the Debye corrections and the thermal masses.

3.1 The N2HDM Higgs Sector

The N2HDM consists of a CP-conserving two Higgs Doublet model (2HDM) with
a softly broken Z2 symmetry extended by a real singlet field S. The extension
of a 2HDM by a real scalar singlet which does not obtain a VeV and in this way
providing a stable dark matter (DM) candidate is discussed in [38–49]. A scenario
with a finite singlet VeV but with certain approximations is given in [50]. In this
work we investigate the most general N2HDM introduced in [51]. An additional
singlet S under the gauge group SU(2)L×UY is added to the CP-conserving 2HDM
Lagrangian. To reduce the number of free parameters in the model, we take a real
singlet and apply an additional Z′2 symmetry, so that

S → −S (3.1)

is a symmetry of the Lagrangian. The Lagrangian reads as follows:

LN2HDM = (DµΦ1)† (DµΦ1) + (DµΦ2)† (DµΦ2) + (∂µS)2 − V , (3.2)

with the two Higgs doublets Φ1,Φ2 and the covariant derivative Dµ in terms of the
gauge couplings g, g′ corresponding to the SU(2)L × U(1)Y gauge group,

Dµ = ∂µ + i
g

2
σaW

µ,a + i
g′

2
Bµ, a = 1, 2, 3 , (3.3)
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where σa stands for the Pauli matrices and the SU(2)×U(1) gauge fields are given by
Bµ and W µ,a. The Higgs potential is given by the real CP-conserving softly broken
Z2 symmetric 2HDM potential plus a real singlet potential [51]

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12

(
Φ†1Φ2 + h.c.

)
+
λ1

2

(
Φ†1Φ1

)2

+
λ2

2

(
Φ†2Φ2

)2

(3.4)

+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +
λ5

2

(
(Φ†1Φ2)2 + h.c.

)
+

1

2
m2
SS

2 +
λ6

8
S4 + λ7

(
Φ†1Φ1

)
S2 + λ8

(
Φ†2Φ2

)
S2 ,

where the mass parameters m11, m22, m12 and mS as well the coupling parameters
λ1 . . . λ8 are real due to the required CP-conservation. To prevent flavour chang-
ing neutral currents (FCNC) another Z2 symmetry for the Higgs doublets [52] is
introduced,

Φ1 → Φ1 , Φ2 → −Φ2 . (3.5)

This symmetry is softly broken by the m2
12 term and can be extended to the Yukawa

sector. Since we are considering a CP-conserving model, the VeVs v1, v2 and vS that
can be acquired by the neutral components of the Higgs doublets and singlet, must
also be real. We can then express the Higgs doublets in terms of the real component
fields of the charged fields, ξ1,2 and χ1,2, respectively, the neutral CP-even and CP-
odd fields, ρ1,2,S and η1,2, respectively,

Φ1 =
1√
2

(
ξ1 + iχ1

v1 + ρ1 + iη1

)
, Φ2 =

1√
2

(
ξ2 + iχ2

v2 + ρ2 + iη2

)
, (3.6)

S = vS + ρS . (3.7)

For later use, we call the field basis

Bgauge = {ξ1, ξ2, χ1, χ2, η1, η2, ρ1, ρ2, ρS} (3.8)

the gauge basis and the corresponding mass eigenstates the physical basis.
There are three different vacuum configurations. The normal vacuum has no CP and
no charge breaking (CB) components. In the charge breaking vacuum, the field ξ2

obtains a non-zero VeV. In the CP-breaking vacuum the CP-odd neutral component
of the neutral field, ρ2, acquires a VeV. For the 2HDM, it has been proven, that
the normal vacuum, if it exists, is always the global minimum [53]. This does not
generalize to the N2HDM, however. For a counterexample for a deeper CP and CB
vacuum, we refer to [51]. In the following we investigate the diagonalisation of the
Higgs sector at zero temperature and for vanishing CP- and charge breaking VeVs
so that the VeV configuration reads

〈Φ1〉
∣∣
T=0

=
1√
2

(
0
v1

)
, 〈Φ2〉

∣∣
T=0

=
1√
2

(
0
v2

)
, 〈S〉

∣∣
T=0

= vS . (3.9)
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The minimum conditions of the potential read

∂V

∂vi

∣∣
〈Φi〉

= 0, i = 1, 2, S , (3.10)

where the brackets denote the VeV configuration in Eq. (3.9), lead to the following
relations

v2

v1

m2
12 −m2

11 =
1

2

(
v2

1λ1 + v2
2λ345 + v2

Sλ7

)
, (3.11a)

v1

v2

m2
12 −m2

22 =
1

2

(
v2

1λ345 + v2
2λ2 + v2

Sλ8

)
, (3.11b)

−m2
S =

1

2

(
v2

1λ7 + v2
2λ8 + v2

Sλ6

)
, (3.11c)

with the shorthand notation λ345 = λ3 + λ4 + λ5. These relations can be used to
express the parameters m2

11,m
2
22 and m2

S in terms of v1, v2 and the self-couplings
λ1 . . . λ8. Using the parametrisations for the Higgs doublets and the singlet given by
Eq. (3.6) and Eq. (3.7) in the potential, the mass matrix can be obtained from the
second derivative with respect to the fields in the gauge basis. Due to the CP and
charge conservation, the 9 × 9 mass matrix splits into three blocks, a 4 × 4 block
for the charged fields, a 2× 2 block for the neutral CP-odd fields and a 3× 3 block
for the neutral CP-even fields. The charged and CP-odd sector do not differ from
the 2HDM case, because the singlet does not mix with the charged nor the CP-odd
fields. Like in the 2HDM, we introduce the rotation matrix

Rβ =

(
cos β sin β
− sin β cos β

)
, (3.12)

with

tan β =
v2

v1

(3.13)

to diagonalize the charged and pseudoscalar sector. The charged sector reads(
G±

H±

)
= Rβ

1√
2

(
ξ1 ± iχ1

ξ2 ± iχ2

)
(3.14)

with the charged massless Goldstone boson G± and the charged Higgs boson H±,
respectively, the pseudoscalar sector(

G0

A

)
= Rβ

(
η1

η2

)
, (3.15)

with the neutral massless Goldstone boson G0 and the pseudoscalar A. The remain-
ing 3× 3 submatrix M2

scalar for the CP-even scalar sector reads

M2
scalar =

 v2λ1c
2
β +m12tβ v2λ345cβsβ −m12 vvSλ7cβ

v2λ345cβsβ −m12 v2λ2s
2
β +m12ctβ vvSλ8sβ

vvSλ7cβ vvSλ8sβ v2
Sλ6

 (3.16)
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in which we already used Eqs. (3.11) to trade the mass terms m11, m22, m12 for v,
vS and tan β. We furthermore used v =

√
v2

1 + v2
2 and introduced the short-hand

notation sin β = sβ, cos β = cβ, tan β = tβ, cot β = ctβ. Introducing the mixing
angles α1, α2, α3

− π

2
≤ α1,2,3 <

π

2
(3.17)

and the rotation matrix

R =

 cα1cα2 sα1cα2 sα2

− (cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 − (cα1sα3 + sα1sα2cα3) cα2cα3

 (3.18)

allows for the diagonalisation ofM2
scalar, yielding the three mass eigenstatesH1, H2, H3, H1

H2

H3

 = R

 ρ1

ρ2

ρS

 (3.19)

with the mass eigenvalues

RM2
scalarR

T = diag(m2
H1
,m2

H2
,m2

H3
) . (3.20)

We define the mixing angles in a way that we have the mass hierarchy

mH1 ≤ mH2 ≤ mH3 . (3.21)

To summarize the Higgs sector, we have 12 free parameters and seven physical Higgs
bosons in total. The free parameters are chosen such that we have as many physical
parameters as possible. The Lagrangian parameters m2

11,m
2
22,m

2
S, λ1...8 and m2

12

can be expressed in the physical basis v, vS, tan β,mH1...3 ,mA,mH± , α1...3 and m2
12

by using the minimum conditions in Eq. (3.11). We use the physical basis in our
analysis.
By imposing the Z2 symmetry in Eq. (3.5) four different types of the model that
are summarised in Table 3.1 are possible. A complete introduction of all required
couplings, Feynman rules and a phenomenological discussion of the N2HDM is given
in [51].

3.2 The Effective Potential in the N2HDM

In this section we will present the results obtained by applying the formulas in-
troduced in Chapter 2 to the N2HDM. At first we need to comment on the VeV
configuration defined in Eq. (3.9). As mentioned in the introduction of the N2HDM,
normal electroweak vacua are always the global minimum of the potential in a 2HDM.
This statements only holds for leading-order calculations. By considering the effec-
tive potential at one-loop approximation, we include next-to-leading order (NLO)
effects. This can affect the stability of the vacuum so that it is reasonable to allow
for a CP or even for a charge breaking vacuum to evolve. In addition we consider
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u-type d-type leptons Q uR dR L lR

Type I Φ2 Φ2 Φ2 + - - + -
Type II Φ2 Φ1 Φ1 + - + + -

lepton-specific Φ2 Φ2 Φ1 + - + + -
flipped Φ2 Φ1 Φ2 + - - + +

Table 3.1: The left column shows to which corresponding quark type the Higgs dou-
blet is coupled. To force this specific coupling, a Z2 symmetry has to be
enforced on the quark multiplet. The right column shows which Z2 parity
is assigned for the fermions. Q and L are the quark and lepton doublet,
uR the up-type quark singlet, dR the down-type singlet and lR the lepton
singlet. All fields, except for S, are even under the Z′2 symmetry.

finite temperatures which can in principle also affect the stability of the vacuum.
We denote the VeVs at finite temperature by ωi and require

ωi
∣∣
T=0

= vi , i = 1, 2, S . (3.22)

For these reasons, we consider the following more general VeV configuration in our
analysis in order to quantify the stability of the normal electroweak vacuum,

〈Φ1〉T =
1√
2

(
0
ω1

)
, 〈Φ2〉T =

1√
2

(
ωCB

ω2 + iωCP

)
, (3.23)

〈S〉T = ωS , (3.24)

where 〈ϕ〉T indicates the vacuum expectation value of ϕ at the temperature T . ω1, ω2

and ωS correspond to the v1, v2 and vS introduced in Eq. (3.6), respectively, ωCP
and ωCB denote the contribution of the CP-violating and charge breaking VeV, see
Eq. (3.22).
In the N2HDM, there are neutral scalars Φ0 = H1, H2, H3, A,G

0 and charged scalars
Φ± = H+, H−, G+, G−, leptons l+,l−, quarks q, q and longitudinal and transversal
gauge bosons VL = ZL,W

+
L ,W

−
L , γL and VT = ZT ,W

+
T ,W

−
T , γT

1. The degrees of
freedom mentioned in Eq. (2.74) are given by

nΦ0 = 1, nΦ± = 1, nVT = 2, nVL = 1,
nl+ = 2, nl− = 2, nq = 6, nq̄ = 6 .

The effective couplings in Eq. (2.100) which are needed to calculate the Debye-
corrections to the scalar masses read for the N2HDM scalar contribution

κkij =


−
(
3λ1 + 2λ3 + λ4 + 1

2
λ7

)
δij φi ∈ Φ1

−
(
3λ2 + 2λ3 + λ4 + 1

2
λ8

)
δij φi ∈ Φ2

−3
2
λ6 − 2(λ7 + λ8) (i, j) = (9, 9) = (ρS, ρS)

(3.25)

1Due to the finite temperature the photon and Goldstone bosons can acquire an effective
thermal mass. Therefore, we need to consider the longitudinal modes as well. In addition a non-
zero ωCB can cause a mass difference in the charged particles and a non-zero photon mass. As
commented later we exclude these scenarios.

25



and for the vector boson contribution

κVij =

{
−1

4
(3g + g′) δij i ∈ {1, . . . , 8}

0 i = 9 = ρS .
(3.26)

With the Eq. (2.101) and Eq. (2.104) and the fermionic contribution

Π
(F )
ii (0) =


−y2bT

2

4
i = 1, 3, 5, 7

−y2t T
2

4
i = 2, 4, 6, 8

0 i = 9 ,

(3.27)

the scalar polarization tensor can be calculated by using Eq. (2.105). Note that we
use Eq. (3.8) to label the corresponding Higgs fields in the gauge basis with the
indices 1 . . . 9.
Due to the missing singlet coupling to the gauge bosons, the thermal mass corrections
of the gauge bosons do not differ from those of the 2HDM. With the thermal VeV
ω2 = ω2

1 + ω2
2, they are given by [14]

m2
W =

g2

4
ω2 + 2g2T 2 , (3.28a)

m2
γ = (g2 + g′2)

(
T 2 +

ω2

8

)
− 1

8

√
(g2 − g′2)2 (64T 4 + 16T 2ω2) + (g2 + g′2)2ω4 ,

(3.28b)

m2
Z = (g2 + g′2)

(
T 2 +

ω2

8

)
+

1

8

√
(g2 − g′2)2 (64T 4 + 16T 2ω2) + (g2 + g′2)2ω4 .

(3.28c)

Since we are allowing a charge and a CP-breaking VeV at finite temperature, the
presented formulas for the bosons masses hold only for ωCB = ωCP = 0. Note that
in the analysis a numerical computation of the boson masses with their full mass
matrix is used to obtain the mass values. The numerical results are compared to
the values obtained by using Eqs. (3.28). We do not expect to see the generation of
CP-violation, due to the CP-conserving potential proposed in Eq. (3.4), nor a CB
effect. The comparison of both approaches allows for checking if ωCP or ωCB evolve
or have an effect on the masses.
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CHAPTER 4

Renormalisation

In this chapter we introduce the renormalisation prescription used in this work. We
follow the prescription given in [14].
In the effective potential approach there already is a one-loop contribution at zero
temperature, the Coleman-Weinberg potential. Using the approach with the effective
potential, includes NLO corrections in the masses. A comparison between simulated
data and experimental constraints requires that the loop-corrected masses and mix-
ing angles are taken into account. Since the loop-corrected masses are obtained from
the effective potential which itself is subject to constraints, this requires an iterative
procedure, which costs a lot of computing time. In order to perform an efficient
parameter scan, in the renormalization procedure a finite counter term potential to
fix the leading-order masses and mixing angles to their one-loop corrected values is
proposed. Thereby the one-loop masses and mixing angles can directly be used as
input parameters, which will increase significantly the speed of the parameter scan.
The UV divergencies are already absorbed in the MS scheme in VCW so that we are
able to modify this renormalisation prescription by introducing a counter term for
each parameter of the tree level potential

Vren. = V + VCT = Vtree + VCW + VT + VCT (4.1)

where VCT reads

VCT =δm2
11|Φ1|2 + δm2

22|Φ2|2 − δm2
12

(
Φ†1Φ2 + Φ†2Φ1

)
+
δm2

s

2
|S|2 (4.2)

+
δλ1

2

(
|Φ1|2

)2
+
δλ2

2

(
|Φ2|2

)2
+ δλ3|Φ1|2|Φ2|2 + δλ4

(
Φ†1Φ2

)2

+
δλ5

2

(
(Φ†1Φ2)2 + (Φ†1Φ2)2

)
+
δλ6S

4

8
+
δλ7

2
Φ2

1S
2 +

δλ8

2
Φ2

2S
2

+δT1 (ρ1 + v1) + δT2 (ρ2 + v2) + δTS (ρS + vS)

+δTCP (η2 + vCP ) + δTCB (ξ2 + vCB) .

In addition we introduced a tadpole counterterm δTi for each field which acquires a
VeV. For the renormalisation conditions we impose the ansatz

∂φiV
(1)(T = 0) = ∂φiVtree, i ∈ (1, .., 9) , (4.3a)
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∂φi∂φjV
(1)(T = 0) = ∂φi∂φjVtree, i, j ∈ (1, .., 9) . (4.3b)

Using this ansatz the minimum remains stable at one-loop level and zero tem-
perature, because Eq.(4.3a) implies the following renormalisation conditions (i =
1, . . . , 9)

∂φiVCT (φ)
∣∣
〈φ〉T=0

= −∂φiVCW (φ)
∣∣
〈φ〉T=0

(4.4)

with φi ∈ Bgauge and 〈φ〉T=0 is the electroweak minimum defined in Eq. (3.9). To
keep the leading-order masses and mixing angles at one-loop, we use Eq. (4.3b) to
conclude

∂φi∂φjVCT (φ)
∣∣
〈φ〉T=0

= −∂φi∂φjVCW (φ)
∣∣
〈φ〉T=0

. (4.5)

Applying Eq. (4.4) and Eq. (4.5) to the N2HDM results in 29 non-trivial equations
with 17 counterterm parameters. The system is overconstrained and can not be
solved. To regularize this equation system we apply two additional conditions on
the counterterm parameter sample

δλ4 = 0 and δTS = 0 . (4.6)

δλ4 only occurs as δλ4 + δλ5 in these equations, so that setting it to zero does
not change physics. Putting δTS to zero is motivated by physics, because the tad-
pole counterterms need to vanish anyway. This results in a unique solution for the
counterterm parameter set and in additional identities between the first and second
derivatives, for example

∂η1∂η2VCW − ∂χ1∂χ2VCW +
v1

v2

(∂η1∂η1VCW − ∂ξ1∂ξ1VCW ) = 0 . (4.7)

All identities are checked numerically in the analysis and all identities are satisfied up
to a numerical fluctuations of orderO(10−9). The unique solution for all counterterm
parameters reads

δm2
11 =

1

2

[
vs
v1

HCW
ζ1,ζS

+
v2

v1

(
HCW
ζ1,ζ2
−HCW

η1,η2

)
+ 2HCW

η1,η1
− 5HCW

η1,η1
+HCW

ζ1,ζ1

]
, (4.8a)

δm2
22 =

1

2

[
vs
v2

HCW
ζ2,ζS

+HCW
ζ2,ζ2
− 3HCW

η2,η2
+
v1

v2

(
HCW
ζ1,ζ2
−HCW

η1,η2

)
+ 5

v2
1

v2
2

(
HCW
η1,η1
−HCW

η1,η1

)]
,

(4.8b)

δm2
12 = HCW

η1,η2
+
v1

v2

(
HCW
η1,η1
−HCW

η1,η1

)
, (4.8c)

δλ1 =
1

v2
1

(
2HCW

η1,η1
−HCW

η1,η1
−HCW

ζ1,ζ1

)
, (4.8d)

δλ2 =
1

v2
2

(
HCW
η2,η2
−HCW

ζ2,ζ2

)
+ 2

v2
1

v4
2

(
HCW
η1,η1
−HCW

η1,η1

)
, (4.8e)

δλ3 =
1

v2
2

(
HCW
η1,η1
−HCW

η1,η1

)
+

1

v1v2

(
HCW
η1,η2
−HCW

ζ1,ζ2

)
, (4.8f)

δλ4 = 0 , (4.8g)

δλ5 =
2

v2
2

(
HCW
ψ1,ψ1

− 2HCW
η1,η1

)
, (4.8h)
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δm2
S =

1

2

(
HCW
ζS ,ζS

+
v2

vs
HCW
ζ2,ζS

+
v1

vs
HCW
ζ1,ζS
− 3

vS
NCW
ζS

)
, (4.8i)

δλ6 =
1

v3
s

(
NCW
ζS
− vsHCW

ζS ,ζS

)
, (4.8j)

δλ7 = − 1

vsv1

HCW
ζ1,ζS

, (4.8k)

δλ8 = − 1

vsv2

HCW
ζ2,ζS

, (4.8l)

δT1 = HCW
η1,η1

v1 +HCW
η1,η2

v2 −NCW
ζ1

, (4.8m)

δT2 =
v2

1

v2

(
HCW
η1,η1
−HCW

ψ1,ψ1

)
+HCW

η1,η2
v1 +Hη2,η2v2 −NCW

ρ2
, (4.8n)

δTS = 0 , (4.8o)

δT3 =
v2

1

v2

HCW
ζ1,ψ1

+HCW
ζ1,ψ2

v1 −NCW
ψ2

, (4.8p)

δTCB = −NCW
ρ2

1 . (4.8q)

Here we used a shorthand notation for the first derivative of the Coleman-Weinberg
potential

NCW
φi
≡ ∂φiVCW (4.9)

and for the second derivative

HCW
φiφj

= ∂φi∂φjVCW . (4.10)

Reference [54] provides the needed formulas for the first and second derivatives of
VCW expressed in terms of the leading-order couplings and masses.
To take into account numerical fluctuations we require that the EW minimum re-
mains at one-loop within the interval

|vEW − v1−loop| ≤ 2 GeV . (4.11)

As the conditions on VCT only enforce vEW to be a local minimum we have to check
numerically if it is still the global one. The range of 2 GeV is chosen by hand
and the exact value does not have an influence on our results. Indeed it is not
guaranteed that the electroweak vacuum remains at its leading-order value vEW at
NLO. We investigate this NLO vacuum stability after performing the renormalisation
prescription presented here. In the following analysis we call a parameter point
stable, when the electroweak vacuum fulfills Eq. (4.11) at NLO. For a more detailed
explanation of the analysis, see Chapter 5.
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CHAPTER 5

Numerical Analysis

In order to quantify the strength of the phase transition of a given parameter point,
it is necessary to calculate

ξC =
〈φC〉
TC

. (5.1)

〈φC〉 is the field configuration of the broken ground state at the critical temperature.
The critical temperature is defined as the temperature at which two degenerate vacua
coexist, the symmetric one at v = 0 and the broken phase at v 6= 0. A sufficient
condition for the electroweak phase transition is to require [29]

ξC ≥ 1 . (5.2)

In the following section we present the numerical analysis for the calculation of this
quantity.

5.1 Minimisation of the Potential

We implemented the formulas for the effective potential and the model, following
the previous chapters, in a C++ class used by the in house program in order to
calculate the effective potential at a given VeV configuration {ωi} and at a given
temperature T . To find the global minimum1, we use two different algorithms for the
numerical minimisation. This enables us to cross check both algorithms with respect
to numerical instabilities. The first one is the CMA− ES algorithm [55]. We use
10−5 for the relative tolerance between two solutions found by this algorithm. The
other algorithm is the local Nelder-Mead-Simplex algorithm from the GNU Scientific
Library [56] (GSL multimin fminimizer nmsimplex2), also with a tolerance of 10−5.
For the GSL algorithm we produce 500 random VeV configurations in the interval

ω1,2,CP,CB ∈ [−500, 500] GeV, ωS ∈ [1, 1000] GeV (5.3)

1Metastable vacua and tunnneling is out of scope of this work.
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and use the GSL algorithm to find the next local minimum. Since the selection of the
interval of ωS has no effect on the numerical calculation of the global minimum, we
choose the same parameter range for ωS as chosen in the ScannerS parameter setting.
Among the 500 obtained solutions of the GSL algorithm, the solution with the lowest
value of the effective potential is chosen as the global minimum. The solutions of
the CMA-ES and GSL algorithms are compared numerically and the lower value
of the effective potential is taken as the solution for the ground state for the given
temperature. Although we allow the CP and CB VeV to evolve at finite temperature,
we observe that in all scanned parameter points up to numerical fluctuations the
CB and CP VeVs do not acquire any significant values2. To determine TC we use a
bisection method starting at the temperature TS = 0 and ending at TE = 300 GeV.
We determine the global electroweak minimum and its corresponding electroweak
VeV

v2
EW,T = ω2

1 + ω2
2 + ω2

CP + ω2
CB 6= 0 (5.4)

at each temperature step and look for the temperature interval where the vEW,T
jumps to zero. At this point there exist two degenerated ground states, the sym-
metric state (vEW,T = 0) and the broken state (vEW,T 6= 0). We stop the bisection
as soon as the corresponding temperature interval gets smaller than 10−2 GeV and
define the beginning of the temperature interval as TC , respectively, vEW,TC = vC .
In addition to that we exclude points that acquire an electroweak VeV, which does
not obey ∣∣vEW − 246.22 GeV

∣∣ ≤ 2 GeV (5.5)

at zero temperature or which do not acquire a zero-valued electroweak VeV at TE.
Once TC is determined, the corresponding VeV configuration 〈φC〉 can be extracted
by

vC = 〈φC〉 . (5.6)

5.2 Constraints and Parameter Scan

In our numerical analysis we will discuss type I and type II N2HDM. For our param-
eter scan we use parameter points which are already physical in the sense that they
obey theoretical and experimental constraints. As theoretical constraints we require
that the tree level potential is bounded from below [52], that tree level perturba-
tive unitarity holds and that the electroweak minimum is the global one. All these
requirements are implemented in ScannerS and discussed in [51] for the N2HDM.
ScannerS provides the possibility to check for recent collider constraints, like elec-
troweak precision constraints with the oblique parameters S,T and U calculated with
the general formulas provided by [57, 58]. A 2σ compatibility with the SM fit [59]
including the full correlations is demanded. In addition, ScannerS enables to check

2Since we do not take into account CP-violation in our model for example through a CP-
violating CKM, we did not expect to observe CP-violation in our analysis. The CB effects are
observed for few parameter points, but all these points are excluded consistently in our analysis,
because they are unphysical.
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for the exclusion bounds arising from Tevatron, LEP and LHC. For this it uses an in-
terface with HiggsBounds v4.3.1 [60–62] which is used for a compatibility check with
all 2σ exclusion limits from LEP, Tevatron and LHC Higgs searches. The needed
cross section ratios are provided by N2HDECAY [51, 63] and the dominant produc-
tion cross sections via gluon fusion (ggF) and b-quark fusion (bbF) are obtained at
next-to-next-to-leading order QCD from SusHi v1.6.0 [64, 65].
The check of the compatibility of the discovered Higgs signal with respect to the SM-
like Higgs boson is obtained by using the individual signal strengths fit of Ref. [66].
This approach is used for simplicity. A global fit to current Higgs data is likely
to give a stronger bound than this approach. The fermion initiated cross section
normalized to the SM is given by

µF =
σN2HDM(ggF ) + σN2HDM(bbF )

σSM(ggF )
, (5.7)

where the bbF contribution of the SM in the normalization is neglected, because
it is small compared to gluon fusion. The production through vector boson fusion
(VBF) or associated production with a vector boson (VH) normalized to the SM
reads

µV =
σN2HDM(V BF )

σSM(V BF )
=
σN2HDM(V H)

σSM(V H)
. (5.8)

For the check of the properties of the SM-like Higgs boson we use

µxx = µF
BRN2HDM(h125 → xx)

BRSM(HSM → xx)
, (5.9)

where HSM denotes the SM Higgs boson with mass 125.09 GeV. Recent studies on
Rb [67, 68] and B → Xsγ [69–71] give 2σ exclusion bounds in the mH± − tan β
plane. These bounds enforce in the type II model3 [72]

mH± ≥ 580 GeV . (5.10)

For the type I model the constraint on the charged Higgs boson is more strongly
dependent on tan β so that the bounds on the charged mass are weaker. For our
analysis, we then use the parameter points obtained with ScannerS which fulfill the
above described theoretical and experimental constraints. The scan ranges of the
physical parameters are given in Tables 5.1 and 5.2 for type I and II, respectively. We
force one CP-even Higgs boson to be the SM-like Higgs boson with a mass of mh125 =
125.09 GeV [73], which we refer to as h125. We do not take into account degenerate
Higgs signals and therefore scenarios with non-SM-like Higgs bosons within the mass
window of 125 GeV±5 GeV are excluded. The remaining two non-SM-like CP-even
Higgs bosons are labeled as h↓ and h↑ where h↓ denotes to the mass eigenstate
with the lower mass4 compared to h↑. Their masses are labeled as m↓ and m↑,
respectively. Now three different mass hierarchies are possible

3These studies consider the 2HDM. Since the charged and pseudoscalar sector of the 2HDM
and the N2HDM are identical, the experimental constraints hold also for the N2HDM.

4Remember the implied mass hierarchy mH1
≤ mH2

≤ mH3
.
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mh125 m↓ m↑ mA mH± m2
12

in GeV in GeV2

125.09 30-1000 30-1000 30-1000 30-1000 0-105

Table 5.1: Parameter ranges for the type I N2HDM used in ScannerS.

mh125 m↓ m↑ mA mH± m2
12

in GeV in GeV2

125.09 30-1000 30-1000 30-1000 580-1000 0-105

Table 5.2: Parameter ranges for the type II N2HDM used in ScannerS.

1. mh125 ≤ m↓ ≤ m↑

2. m↓ ≤ mh125 ≤ m↑

3. m↓ ≤ m↑ ≤ mh125

which we call mass order M1, M2 and M3.
The SM parameter we are using in the analysis are given in the following: We use

the fine structure constant taken at the Z boson mass scale [74, 75]

α−1
EM(M2

Z) = 128.962 (5.11)

and the masses for the massive gauge bosons are chosen as

mW = 80.385 GeV and MZ = 91.1876 GeV . (5.12)

For the lepton masses we choose

me = 0.510998928 MeV, mµ = 105.6583715 MeV, mτ = 1.77682 GeV , (5.13)

and for the light quark masses

mu = md = ms = 100 MeV . (5.14)

To be consistent with the CMS and ATLAS analyses, we take the on-shell top quark
mass as [76]

mt = 172.5 GeV (5.15)

and the recommended charm and bottom quark on-shell masses

mc = 1.51 GeV and mb = 4.92 GeV . (5.16)

For simplicity we take the CKM as unit matrix. Finally the electroweak VeV is set

vEW = 1/

√√
2GF = 246.22 GeV . (5.17)
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5.3 General Idea of the Analysis

In the following we present the general idea of our analysis. We start with a sample of
physical parameter points provided by ScannerS. These points are compatible with
the described theoretical and experimental constraints. As a first step we check
the vacuum stability at NLO. For this purpose we check if the global minimum of
the one-loop effective potential remains at the electroweak VeV, using Eq. (5.5).
Unstable points are considered as unphysical and are excluded from the analysis. In
addition we observe that some of the points generate a vCB of the order of a few
GeV. These points with a charge breaking VeV configuration are excluded as well
because they are unphysical. Points with

|vCB| ≥ 1 GeV (5.18)

are excluded. This threshold will exclude all non-physical points but at the same
time it is not sensitive to numerical fluctuations, which have a magnitude of order
O(10−4). With our chosen renormalisation prescription the NLO corrections to
the Higgs self-couplings might get large so that the unitarity constraint applied in
ScannerS can be spoiled at NLO. These unitarity constraints have been derived for
the tree-level couplings for the N2HDM in [51]. They read

|λ3 − λ4| < 8π , (5.19a)

|λ3 + 2λ4 ± 3λ5| < 8π , (5.19b)

|1
2

(
λ1 + λ2 +

√
(λ1 − λ2)2 + 4λ2

4

)
| < 8π , (5.19c)

|1
2

(
λ1 + λ2 +

√
(λ1 − λ2)2 + 4λ2

5

)
| < 8π , (5.19d)

|1
2
a1,2,3| < 8π , (5.19e)

where a1,2,3 are the real solutions of

4
(
−27λ1λ2λ6 + 12λ2

3λ6 + 12λ3λ4λ6 + 3λ2
4λ6 + 6λ2λ

2
7 − 8λ3λ7λ8 − 4λ4λ7λ8 + 6λ1λ

2
8

)
+ x

(
36λ1λ2 − 16λ3λ4 − 4λ2

4 + 18λ1λ6 + 18λ2λ6 − 4λ2
7 − 4λ2

8

)
+ x2 (−6(λ1 + λ2)− 3λ6) + x3 = 0 . (5.20)

In a first rough approximation we insert the one-loop corrected self-couplings ex-
tracted from the loop-corrected effective potential in the unitarity constraints in
Eq. (5.19). This approach allows for an approximate estimate of the unitarity sta-
bility without calculating the full NLO 2→ 2 scattering matrix. To further constrain
the phase space, we require that the retained parameter points provide a sufficiently
strong phase transition of first order. This can be achieved by imposing Eq. (5.2).
Points with ξC ≤ 1 cannot produce a net baryon number that would explain the
baryon asymmetry observed today; therefore we are considering these points to be
unphysical as well. The phenomenology of the phase space of the N2HDM provid-
ing a strong first order electroweak phase transition will be discussed in detail. In
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addition, the remaining points will be investigated with respect to the trilinear self-
couplings between the massive particles. Using the formulas for the third derivatives
of VCW [54], the trilinear couplings are calculated between all massive Higgs states
and compared to their tree level values and to the SM value.
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CHAPTER 6

Results

In the following we present the results of the analysis. We consider both type I and
type II of the N2HDM. The phenomenology of the mass hierarchy M1 is discussed
in detail, while the other mass hierarchies M2 and M3 are not presented to the same
extent, because our used parameter sample does not provide a sufficient number of
parameter points. In our parameter sample only one point provides a strong first
order electroweak phase transition with the mass hierarchy M3 so that this point
will be discussed exceptionally.

6.1 NLO Constraints

We first present the results of the NLO vacuum stability check. An overview of the
sample size is given in Table 6.1. In both types around ∼ 20% of the M1 sample is
lost due to the NLO vacuum stability while in the second mass order M2 almost half
of the parameter space is lost. A significant difference between both types can be
observed in the NLO unitarity check through our approximate approach presented
in Chapter 5.3. In the type I N2HDM ∼ 20% of the remaining parameter points
are excluded due to the NLO unitarity constraint, on the other hand in the type
II N2HDM almost all parameter points with a stable electroweak vacuum obey the
NLO unitarity requirement. In Fig. 6.1 two examples, one for the type I and one for
type II, of the allowed mass regions of the N2HDM are shown with the black points
denoting the full sample that fulfills the theoretical and valid collider constraints.
The grey points passed the NLO vacuum stability check, the blue ones obey the
NLO unitarity and the orange coloured points provide an SFOEWPT. Overall the
NLO check does not have any significant visible effects on the phase space. The two
presented examples, however, show an observable and exceptional effect on the phase
space. The mass plane in Fig. 6.1a shows the mass differences of the CP-even non-
SM Higgs bosons h↑ and h↓ compared to the charged Higgs boson mass. In the mass
region m↑ −mH± . −350 GeV only few parameter points remain which provide a
stable electroweak vacuum and fulfill NLO unitarity. In Fig. 6.1b the mass plane mA

and mH± for the type II model is shown. The mass region mA ≤ 340 GeV is quite
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Model ScannerS NLO stable vacuum NLO unitarity SFOEWPT

TI M1 464571 371440(∼= 80.0%) 282751(∼= 76.1%) 1583(∼= 0.6%)
TI M2 31750 18508(∼= 58.3%) 14888(∼= 80.4%) 66(∼= 0.4%)
TI M3 3677 1726(∼= 46.7%) 1406(∼= 81.1%) 1( ≈ 1h)

TII M1 495118 424551(∼= 85.2%) 412468(∼= 97.2%) 3713(∼= 0.9%)
TII M2 4732 2331(∼= 49.3%) 2271(∼= 97.4%) 97(∼= 4.3%)
TII M3 52 0 0 0

Table 6.1: Overview of the sample size for the three different mass orders
M1, M2 and M3: starting with the provided ScannerS sample which ful-
fills theoretical and experimental constraints, followed by the remaining
sample size which provides a stable electroweak NLO vacuum and NLO
unitarity. Finally in the last column the sample size with an SFOEWPT
is shown. In brackets the percentage of the remaining sample size with
respect to the previously applied constraint is given.

interesting for phenomenological reasons. The pseudoscalar with mA . 340 GeV has
a significant branching ratio into Zh [14]. These relatively large branching ratios
allow for collider searches in this mass region, and quite some parameter space has
already been excluded experimentally [77–79]. By requiring a stable electroweak
vacuum, the smallest masses of mA are almost excluded, while the NLO unitarity
forces mA ≥ 200 GeV. The impact of the PT will be discussed later.

6.2 Electroweak Phase Transition

In the following we present the implications of the requirement of the electroweak
phase transition. We start with rather pedagogical examples to show the effects of
the finite temperature on the effective potential. For this purpose we take a valid
type I N2HDM parameter point given by

m↓ = 172.2 GeV, m↑ = 903.5 GeV, mA = 512.2 GeV, mH± = 145.9 GeV, (6.1a)

tan β = 1.36, α1 = 1.36, α2 = −0.06, α3 = −0.03, (6.1b)

vC = 180.8 GeV, TC = 120.7 GeV (6.1c)

and show the evolution of the effective potential for different temperatures in Fig. 6.2.
In order to see the evolution of the effective potential Veff in terms of the electroweak
VeV, we choose the electroweak path

{0, 0, 0, 0, vminS } → {ωmin1 , ωmin2 , ωminCP , ω
min
CB , v

min
S } . (6.2)

Since we keep vS fixed at this path, we are able to see the evolution of the effective
potential induced only by the electroweak VeV. We choose vS to be fixed at its zero
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Figure 6.1: Black points denote the full ScannerS sample. Grey points passed the
NLO vacuum stability check and the blue points obey the NLO unitar-
ity checks. The orange points provide an SFOEWPT. Left: The mass
differences m↑ −mH± versus m↓ −mH± for the type I in the mass order
M1; right: the pseudoscalar mass mA versus the charged mass mH± for
the type II in the mass order M1.

temperature value for that we minimised the effective potential at zero temperature
and denote the VeV configuration as

vmini = ωmini

∣∣
T=0

, i = 1, 2, CP,CB, S . (6.3)

Starting at zero temperature the effective potential has a potential barrier between
its symmetric and broken phase, while the broken phase it is still deeper. Increasing
the temperature leads to decreasing the electroweak VeV, which is given by

ω2
EW = ω2

1 + ω2
2 + ω2

CP + ω2
CB . (6.4)

Increasing the temperature the global minimum gets enhanced, until it is degenerate
with the symmetric phase. For temperatures T ≥ TC the potential is symmetric
and only one minimum exists, the symmetric phase at {ω} = (0, vminS ). For a
clearer overview of the VeV evolution see Fig. 6.3. In the upper plot of Fig. 6.3 the
evolution of the electroweak (blue) and the singlet VeV (orange) as a function of the
temperature can be seen. The electroweak VeV starts at the standard value at zero
temperature vEW = 246.22 GeV and slowly decreases with increasing temperature.
At the critical temperature, the global minimum jumps from the broken phase to
the symmetric one, observable through the jump from vC to zero at TC . At this
parameter point, the singlet VeV does not show any significant signs of evolution
with increasing temperature, but this does not hold as a general statement. There
are parameter points which show a singlet VeV evolution. The evolution of the
electroweak VeV with its jump at TC is typical for a phase transition of first order.
For a phase transition of second order, we would observe a continuous transition
from vEW to zero.
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as a function of the temperature; lower half: The CP (orange) and CB
(blue) VeV as a function of the temperature.

In the lower plot of Fig. 6.3 the charge (blue) and CP-breaking (orange) VeVs ωCB
and ωCP with rising temperature are displayed. Note that the axis is multiplied with
10−5 so that the magnitude of ωCB and ωCP is of order O(10−5) and can be explained
as numerical fluctuations. In our numerical analysis we chose 0.5 GeV as threshold
for the electroweak VeV, such that a electroweak VeV configuration with

ωEW =
√
ω2

1 + ω2
2 + ω2

CP + ω2
CB ≤ 0.5 GeV (6.5)

is set to zero. Therefore all ωCP and ωCB are zero above the critical temperature.
We observe in our analysis, that ωCP does not gain any significant values at zero or
finite temperature, so that we can conclude that the CP-conservation is a symmetry,
which remains stable at finite temperature in the N2HDM. Note that we did not
include CP violation in the CKM matrix, which we set to unity. Only a few points
acquired a CB VeV ωCB of order of some GeV, but these points are excluded from
our analysis, because they are unphysical.

6.2.1 Mass order M1 and Type I

In this section we address the implication of the electroweak phase transition on
the parameter sample of type I with the mass order M1. To start this discussion,
first the relevant particles and physical parameters of interest shall be elucidated:
In the N2HDM we have five non-SM Higgs bosons: the pseudoscalar A, the charged
H± and two neutral scalar Higgs bosons h↓, h↑. All of them are massive particles,
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Figure 6.4: Type I and mass order M1: The mass differences mA − mH± versus
m↓−mH± . Left: the ScannerS sample with all parameter points fulfilling
theoretical and experimental constraints; right: Grey points correspond
to the ScannerS sample and the coloured points provide an SFOEWPT.
The colour code denotes the relative frequency normalized to the largest
bin.

masses of which can in principle be measured at the LHC. Due to the electroweak
precision variables, the charged mass is the strongest constrained mass parameter.
In type I, small charged masses are still possible but forced to be degenerate with
another non-SM Higgs boson by the S, T and U parameters. This behavior can
be observed in Fig. 6.4a, where the relative frequencies of the ScannerS sample of
the mass differences mA −mH± versus m↓ −mH± are shown for type I. The colour
code denotes the relative frequency normalized to the largest bin. Most points in
Fig. 6.4a have a small mass difference which indicates the mass degeneracy of the
charged Higgs boson mass with the corresponding particle. Nevertheless, there is
still some allowed phase space with a finite mass gap. Considering the requirement
of an SFOEWPT in Fig. 6.4b, the same mass configuration is displayed with the
whole ScannerS sample denoted by the grey points. Parameter points providing an
SFOEWPT are shown with the colour code indicating the relative frequencies. The
phase transition favors the mass degeneracy of mA with mH± and a mass gap of
around 200 GeV between m↓ and mH± , while the other scenario mH± ≈ m↓ is still
possible. Apart from a few exceptions, in this scenario only points with enhanced
pseudoscalar masses survive the requirement of an SFOEWPT.
In Fig. 6.5 the mass differences mA−mH± versus m↑−mH± are shown. The colour
code denotes the relative frequencies normalised to the largest bin. On the left side
the full ScannerS sample, while on the right side the parameter points providing
an SFOEWPT (coloured) are shown. The grey points in the background indicates
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Figure 6.5: Type I and mass order M1: The mass differences mA − mH± versus
m↑−mH± . Left: the ScannerS sample with all parameter points fulfilling
theoretical and experimental constraints; right: Grey points correspond
to the ScannerS sample and the coloured points provide an SFOEWPT.
The colour code denotes the relative frequency normalized to the largest
bin.

the ScannerS sample. As can be inferred from Fig. 6.5a, the oblique parameters ac-
counting for the EW precision data force the mass differences between mA and mH±

to be small if the charged mass gets larger than m↑. The favored mass configuration
of the ScannerS sample indicates that the masses mA,mH± and m↑ are all close to
each other. By requiring the SFOEWPT two branches are forming in the mass plane
given in Fig. 6.5b. The first one is at mA ≈ mH± , where a shift of the density to a
larger mass gap between m↑ and mH± around 250 GeV is observable. The second
branch is at mA −mH± ≈ 230 GeV. These points are corresponding to the branch
with m↓ −mH± ≈ 0 GeV in Fig. 6.4b.
In Figs. 6.6a and 6.6b the mass plane m↓ versus mA is displayed. Here a significant
change is visible in the relative frequency density if an SFOEWPT is required. On
the left side the full parameter sample of ScannerS is provided. On the right side one
sees that CP-even scalar masses m↓ around 400 GeV are favored by the SFOEWPT,
while the mass interval from 180 GeV up to 1000 GeV is allowed by theoretical and
experimental constraints. In addition, the pseudoscalar masses around 600 GeV are
favored by an SFOEWPT. In [80] it was suggested to use the decay A → ZH as
a benchmark process. Here the authors claim that the SFOEWPT strongly favors
the mass regions in which mA ≥ mH + mZ . Therefore by taking into account the
possibility of an SFOEWPT, future studies of this particular decay channel may
allow to obtain a smoking gun signal for the 2HDM. For this reason, we added the
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Figure 6.6: Type I and mass order M1: The mass plane m↓ versus mA. Left: the
ScannerS sample with all parameter points fulfilling theoretical and ex-
perimental constraints; right: Grey points correspond to the ScannerS
sample and the coloured points provide an SFOEWPT. The colour code
denotes the relative frequency normalized to the largest bin. The red
line on the right plot denotes the mass relation mA = m↓ +mZ .

red line in Fig. 6.6b which displays

mA = m↓ +mZ . (6.6)

It can be seen that the PT in fact pushes the phase space above the red line, which
confirms the prediction of [80]. Nevertheless the N2HDM still allows for scenarios
with mA ≤ m↓+mZ . To end the phenomenological discussion of the masses in type
I and the mass order M1 we turn to Fig. 6.7. We define the mass asymmetry as
follows

∆m1,m2 =
m1 −m2

m1 +m2

, (6.7)

so that two masses which are degenerate have a ∆ of approximately zero. In Fig. 6.7
we show ∆m↓,mH±

versus ∆m↑,mH±
and the colour code denotes ∆mA,mH±

. In this way
we compare all non-SM Higgs bosons to the charged Higgs boson at once. All points
which have a non-zero color code, i.e. those points which fulfill an SFOEWPT, lie
in the interval 0% up to 15% of either ∆m↓,mH±

or ∆m↑,mH±
. All other points are

close to zero in ∆mA,mH±
. Therefore we can conclude that the PT favors scenarios

in which the charged mass is degenerate with at least one of the non-SM Higgs
bosons in a range of up to 15%. By further investigation of all mass distributions,
we observe the tendency, that the scalar masses m↓ and m↑ get decreased by the
SFOEWPT and on the other hand the charged and CP-odd scalar tend to larger
masses.
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Figure 6.7: Type I and mass order M1: The mass asymmetries of all non-SM Higgs
bosons in the N2HDM compared the charged Higgs boson mass. Grey
points correspond to the ScannerS sample and coloured points provide
an SFOEWPT.
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Figure 6.8: Type I and mass order M1: µγγ versus µV /muF . Left: the ScannerS
sample with all parameter points fulfilling theoretical and experimental
constraints; right: Grey points correspond to the ScannerS sample and
the coloured points provide an SFOEWPT. The colour code denotes the
relative frequency normalized to the largest bin.

Another phenomenologically interesting quantity is the signal rate of the SM-like
Higgs boson, which checks the compatibility of the discovered Higgs signal with h125.
The investigation of the signal rates in view of an SFOEWPT gives us insights in the
prefered decay channels with respect to succesful baryogenesis. In Fig. 6.8 we display
the signal rates of the discovery channel µγγ versus the fraction µV /µF . The dashed
lines corresponds to the recent experimental bounds and the red triangle to the SM
value. On the left side we show the full sample and on the right side the parameter
points, which provide an SFOEWPT with the whole sample as grey background.
The colour code indicates again the relative frequency normalized to the largest bin.
In the N2HDM the experimental bounds (dashed lines in Fig. 6.8) of the µV /µF rate
can be significantly tightened, if all applied theoretical and experimental constraints
are taken into account. The µγγ rate can take all values which are still allowed by the
experimentel bounds. A factor of 1.56 is still possible in the N2HDM. On the other
side the SFOEWPT shrinks the possible ranges significantly. The upper bound of
µγγ decreases down to 1.04, while the fraction µV /µF is less strictly constrained by
the SFOEWPT. Overall the tendency is still towards to the SM value, such that the
signal rates of the N2HDM are still compatible with the SM, but the SFOEWPT
tightens the possible phase space. This statement holds also for the other promising
decay channels of the SM-like Higgs boson, µττ and µV V , in Fig. 6.9. Applying the
SFOEWPT reduces the upper bounds slightly, but it is still compatible with the SM
value.
To conclude the discussion of the signal rates in type I and M1 of the N2HDM
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Figure 6.9: Type I and mass order M1: µττ versus µV V . Left: the ScannerS sample
with all parameter points fulfilling theoretical and experimental con-
straints; right: Grey points correspond to the ScannerS sample and the
coloured points provide an SFOEWPT. The colour code denotes the rel-
ative frequency normalized to the largest bin.
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Figure 6.10: Type I and mass order M1: Singlet admixture Σh125 as a function of
tan β and the precision in the µ-values. The color code denotes the
µ-values within 5% of the SM reference where base denotes the Scan-
nerS sample. The whole sample with theoretical and experimental con-
straints (left) and the parameter points, which provide an SFOEWPT
(right).
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we investigate the constraining power of the measurement of every particular decay
channel towards the singlet admixture and tan β. In Fig. 6.10 the singlet admixture
Σh125 to SM-like Higgs boson versus tan β is displayed. The singlet admixture to the
SM-like Higgs boson is given by

Σh125 = R2
i3 (6.8)

where i corresponds to the CP-even Higgs boson which denotes the SM-like Higgs
boson1. The colour code indicates a possible measurement of the respective decay
channel within 5% of the SM value. In [51] the authors conclude, that for the type I
model the decay channel h125 → ZZ is the most promising channel to constraint the
singlet admixture, as one can see in Fig. 6.9a (blue points). Requiring a 5% precise
measurement in all decay channels hardly improves the constraint on h125 → ZZ.
On the other side, if one requires an SFOEWPT the upper bound on the singlet
admixture shrinks from around 8% down to 5% taking into account the combination
of all decay channels. The measurement of µV V is still the most constraining channel,
but combining all decay channels in addition of the SFOEWPT has indeed some
effects on the bounds. To obtain a constraint on tan β in combination with an
SFOEWPT, the channels h125 → γγ and h125 → ττ (orange and red points) are
promising. Within a 5% range of the SM value they allow tan β in a range of 2.3 up
to 13.

6.2.2 Mass order M1 and Type II

To continue the discussion of the implications of the SFOEWPT, the type II N2HDM
for the mass order M1 is presented. We start again with the phenomenology of
the non-SM masses. In Fig. 6.11 the mass plane mA versus m↓ is shown. We
already mentioned in Sec. 6.1 the phenomenologically interesting parameter space
mA . 340 GeV. These points have a significant branching ratio in the decay channel
A → Zh125. The requirement of NLO vacuum stability started to tighten the con-
straints on those points, but the SFOEWPT excludes them almost in total. Only one
point with a mass of mA = 321.4 GeV survives the SFOEWPT requirement, which
provides a branching of BRA→Zh125 ≈ 32%. Comparing both density distributions in
Fig. 6.11a and Fig. 6.11b one observes an overall tendency towards smaller CP-even
scalar masses m↓ and pseudoscalar masses around 600 GeV. The red line denotes
again the mass relation mA = m↓+mZ . As noticed in type I the SFOEWPT favors
scenarios with A → Zh125 as promising channel, but nevertheless the N2HDM still
allows phase space besides this consideration.
Turning to the mass plane mA−mH± versus m↓−mH± in Fig. 6.12 the SFOEWPT
favors a mass gap between m↓ and mH± around 200 GeV, but at the same time ex-
cludes very large gaps beyond 600 GeV. Only few scenarios with m↓ ≥ mH± survive
the SFOEWPT check, such that again larger charged masses are favored. A more
significant change can be observed in the mass plane mA −mH± versus m↑ −mH±

1The corresponding index i can be obtained by considering the mass order: i = 1 for the mass
order M1, i = 2 for M2 and i = 3 for M3.
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Figure 6.11: Type II and mass order I: The mass plane m↓ versus mA. Left:
The ScannerS sample fulfilling theoretical and experimental constraints;
right: Grey points correspond to the ScannerS sample and the coloured
points provide an SFOEWPT. The colour code shows the relative fre-
quency normalized to the largest bin. The red line on the right plot
denotes the mass relation mA = m↓ +mZ .
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Figure 6.12: Type II and mass order M1: The mass differences mA−mH± versus m↓−
mH± . Left: The ScannerS sample fulfilling theoretical and experimental
constraints; right: Grey points correspond to the ScannerS sample and
the coloured points provide an SFOEWPT. The colour code shows the
relative frequency normalized to the largest bin.
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Figure 6.13: Type II and mass order M1: The mass differences mA−mH± versus m↑−
mH± . Left: The ScannerS sample fulfilling theoretical and experimental
constraints; right: Grey points correspond to the ScannerS sample and
the coloured points provide an SFOEWPT. The colour code shows the
relative frequency normalized to the largest bin.
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Figure 6.14: Type I and mass order M1: The mass asymmetries of all non-SM Higgs
bosons in the N2HDM compared the charged Higgs boson mass. Grey
points correspond to the ScannerS sample and coloured points provide
an SFOEWPT.

in Fig. 6.13. While the theoretical and experimental constraints force the masses
to be close to each other, the SFOEWPT favors a mass gap between m↑ and mH±

around 200 GeV.
One significant difference with respect to the type I model is, that the mass asym-
metries ∆m↑,mH±

and ∆mA,mH±
are larger compared to the type I case. They are

at most 35% if one requires an SFOEWPT, as can be inferred from Fig. 6.14. Due
to the already heavy charged mass mH± & 580 GeV [72] a mass degeneracy with
m↓ would imply an even heavier m↑. On the other side, the overall tendency of the
SFOEWPT is to have smaller CP-even non-SM Higgs boson masses, so that a mass
asymmetry ∆m↑,mH±

up to 35% is observed. Since a mass degeneracy between mA

and mH± is favored by the SFOEWPT, the pseudoscalar mass is forced to larger
values so that the exclusion of the mass region mA ≤ 340 GeV can be explained.
Heading towards the signal rates for type II, we compare the same signal rates as in

type I. Starting with µγγ versus µV /µF in Fig. 6.15, we observe that the SFOEWPT
tighten the upper and lower bounds on the signal rates in both cases

µγγ ∈ [0.68, 1.49] =⇒ [0.72, 1.32] (6.9)

µV /µF ∈ [0.53, 1.27] =⇒ [0.72, 1.17] . (6.10)

Although the SM value is not contained in the density distribution of the parameter
points with SFOEWPT, the overall tendency of the PT is towards the SM value. In
Fig. 6.16 we show the signal rate into τ leptons versus the signal rate µV V . To have a
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Figure 6.15: Type II and mass order M1: µγγ versus µV /muF . Left: the ScannerS
sample with all parameter points fulfilling theoretical and experimental
constraints; right: Grey points correspond to the ScannerS sample and
the coloured points provide an SFOEWPT. The colour code denotes
the relative frequency normalized to the largest bin.

consistent comparison with [51], we discuss the three different regions with enhanced
µττ separately. The largest enhancement in µττ is obtained for simultaneously en-
hanced µV V . This can be explained by the production mechanism and corresponds
to the enhanced couplings to top quarks [51]. In this region the PT tightens quite
significantly the constraints on µττ down to µττ ≤ 1.14, while the theoretical and
experimental constraints allow µττ ≤ 1.34. The 2HDM-like region in Fig. 6.16 with
enhanced µττ but reduced µV V is quite compatible with the SFOEWPT. The pa-
rameter points with enhanced µττ and µV V ≈ 1 are attributed to the wrong sign
regime, which we will discuss in detail later on.
Considering future collider studies allowing for the measurement of the signal rates
within a 5% precision of the SM value, we compare the constraining power of each
particular decay channel of h125 towards the singlet admixture. In Fig. 6.17 the
singlet admixture to the SM particle versus tan β is shown. The colour codes in-
dicates again the decay channel, which provides a measurement within 5% of the
SM signal rate. µττ constrains (red points) the singlet admixture at most stricly for
larger tan β, while allowing up to 22% for small tan β. Nevertheless the measure-
ment of h125 → ττ allows to reduce the bounds on the admixture most efficiently.
Combining all signal rates and the SFOEWPT one can set an upper bound on the
singlet admixture from 12% (without the SFOEWPT) down to 8%. Therefore it
can be concluded that although it is assumed that the measurement of the signal
rates allows only a deviation of 5% compared to the SM, it is still possible to have
a significant admixture up to 8% of the singlet to the h125.
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Figure 6.16: Type II and mass order M1: µττ versus µV V . Left: the ScannerS sample
with all parameter points fulfilling theoretical and experimental con-
straints; right: Grey points correspond to the ScannerS sample and the
coloured points provide an SFOEWPT. The colour code denotes the
relative frequency normalized to the largest bin.
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Figure 6.17: Type II and mass order M1: Singlet admixture Σh125 as a function
of tan β and the precision in the µ-values. The color codes denotes
the µ-values within 5% of the SM reference where base denotes the
ScannerS sample. The whole sample with theoretical and experi-
mental constraints (left) and the parameter points, which provide an
SFOEWPT(right).

53



6.2.2.1 Wrong sign limit

One interesting phenomenological scenario is the so called wrong sign limit [81].
In this scenario the coupling of the h125 to the gauge bosons normalised to the
SM value has an opposite sign with respect to the coupling of h125 to the bottom-
quark normalised to the SM value. In contrast to the SM, this is possible in the
N2HDM. The wrong sign limit has some consequences like the non-decoupling of
heavy particles, which are discussed in [82, 83] for the 2HDM. The implications for
the N2HDM are presented in [51]. For the type I N2HDM the wrong sign limit
cannot be realised, due to the fact, that the up- and down-type couplings to the
fermions are the same and therefore different signs requires tan β < 1, which is
excluded by experiment. For the type II N2HDM, there exists a still allowed phase
space with an opposite sign in the Yukawa coupling to down-type fermions with
respect to the coupling to gauge bosons. This requires sinα > 0 in the 2HDM and
to obtain the 2HDM limit from the N2HDM, a redefinition of the mixing angles is
needed in the following way

N2HDM → 2HDM ⇐⇒


α1 → α + π

2

α2 → 0

α3 → 0 .

(6.11)

In this way the N2HDM can be seen as a real CP-conserving 2HDM plus a decoupled
singlet extension. To match the convention of [51], we chose

sgn (c(h125V V )) · sin
(
α1 −

π

2

)
> 0 (6.12)

as the condition for the wrong sign limit. In Fig. 6.18 the wrong sign regime discrim-
inator versus tan β is shown. We show all parameter points provided by ScannerS as
grey points and the coloured points indicate the parameter points which provide an
SFOEWPT. The colour code denotes the strength of the phase transition. As can
inferred in Fig. 6.18 the phase space with positive sgn (c(h125V V )) · sin

(
α1 − π

2

)
is

excluded by the SFOEWPT, so that we do not find any allowed phase space point
within the wrong-sign regime. In addition, the SFOEWPT reduces tan β quite sig-
nificantly from tan β = 19.9 to tan β = 8.0.

6.2.3 Mass order M2

Turning to the mass order M2 in which the mass of the mass eigenstate h↓ is smaller
than the SM-like Higgs boson mass of 125.09 GeV, the corresponding sample sizes
can be seen in Table 6.1. The sample sizes of parameter points providing a sufficient
SFOEWPT in the mass order M2 are less than 100 points in both N2HDM types.
Due to the immense computation time required by the numerical analysis, the sample
size was limited to the noted amount. In Fig. 6.19 the mass asymmetries of all
non-SM Higgs bosons compared to the charged Higgs boson mass are displayed
for the type I N2HDM. On the axes, we show ∆m↓,mH±

and ∆m↑,mH±
defined in
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Figure 6.18: Type II and mass order M1: Wrong sign regime discriminator versus
tan β. The colour code shows the strength of the phase transition. Grey
points passed the experimental and theoretical constraints and coloured
points provide an SFOEWPT.

55



−100 −50 0 50 100
∆m↓,mH± [%]

−100

−50

0

50

100
∆
m
↑,
m
H
±

[ %
]

−20

−10

0

10

20

30

∆
m
A
,m

H
±

[ %
]

Figure 6.19: Type I Mass order M2: The mass asymmetries of the non-SM Higgs
bosons compared to the charged Higgs mass. On the axis ∆m↓,mH±

versus ∆m↑,mH±
and the colour code indicates the mass asymmetry

∆mA,mH±
, for the definition see Eq. (6.7).

Eq. (6.7), and the colour code shows ∆mA,mH±
. As already mentioned in the type I

M1 discussion, two scenarios in the mass configuration can be observed by requiring
an SFOEWPT. Most of the points have mA ≈ mH± and a mass gap in the range
∆m↓,mH±

∈ [−70,−50] %. This implies that m↓ is significantly smaller than the
charged mass. In this scenario the mass gap between m↑ and mH± can be & 25% or
. −20% so that both cases- a heavier h↑ or a heavier H± - can be realized. The five
points (four yellows and one dark blue point) with a non-zero ∆mA,mH±

in Fig. 6.19
have a ∆m↑,mH±

close to zero. Four of them (yellow) have a larger pseudoscalar mass
and only one point (dark blue) provides a slightly heavier charged mass compared
to the pseudoscalar. The mass degeneracy between h↓ and H± is already excluded
by theoretical and experimental constraints.
In Fig. 6.20 the same configuration for the type II N2HDM is shown. Again the mass

degeneracy of m↓ and mH± is already not valid anymore due to the experimental
and theoretical constraints. Points with mA ≈ mH± have a mass gap between m↑
and mH± around 200 GeV. In the type II N2HDM this mass scenario (mA ≈ mH±)
implies that the charged mass is greater than m↑. Due to the flavour constraints
B → Xsγ the charged mass is forced to be mH± ≥ 580 GeV so that m↑ ≥ mH±

would imply very large CP-even scalar masses which are disfavored by the PT.
For the mass degeneracy of m↑ and mH± both cases (mA ≥ mH± and mA ≤ mH±)
are possible. Due to the already very large charged mass, the asymmetry ∆mA,mH±

lies in the smaller interval ≈ ±15% compared to the type I N2HDM.
Coming to the signal rates for this mass configuration, no significant changes are
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Figure 6.20: Type II Mass order M2: The mass asymmetries of the non-SM Higgs
compared to the charged Higgs mass. On the axis ∆m↓,mH±

versus
∆m↑,mH±

and the colour code indicates the mass asymmetry ∆mA,mH±
,

for the definition see Eq. (6.7).

observable. All statements in the N2HDM M1 discussion (both types) coincide with
the observations in M2.

6.2.4 Mass order M3

To end the discussion of the different mass orders the mass hierarchy m↓ ≤ m↑ ≤
mh125 is considered. In this scenario the two non-SM Higgs bosons are lighter than
the SM-like Higgs boson h125. In the type I model we have a sample of 3677 points
which fulfill theoretical and experimental constraints. As can inferred from Table 6.1,
around 46% of these points provide a stable electroweak vacuum at NLO and only a
small amount of the points are lost due to the NLO unitarity constraint. In this mass
order there are large mass gaps between the pseudoscalar and the CP-even Higgs
bosons, so that the NLO corrections might get large. Therefore the NLO stability
of the electroweak vacuum is not guaranteed. Applying the SFOEWPT on these
remaining parameter points reduces the size of the sample to one single point. The
parameter point can be read off from Table 6.2. The pseudoscalar and charged mass
are close to each other while the CP-even scalar masses are significantly smaller.
This mass configuration can be observed in the type I M1as well. Due to the small
α1,2 and α3 ≈ π

2
the singlet contribution to h125 is almost decoupled and attributed

to the h2 = h↑ state which results in the high singlet admixture ΣS
h↑

. The large tan β
allows for a small mass of the h1 = h↓ state. All the signal rates are compatible with
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m↓ [ GeV] m↑ [ GeV] mA [ GeV] mH± [ GeV] vS [ GeV] tan β m2
12

[
GeV2

]
97.7 105.7 215.2 227.3 1437.3 27.8 334.6

α1 α2 α3 ΣS
h↑

ΣS
h125

−0.108 −0.196 1.494 0.56% 95.7%

µV /µF µγγ µV V µττ ξC TC [ GeV] vC [ GeV]
0.99 0.89 1.0 1.0 1.75 112.5 196.8

Table 6.2: Type I M3: The single parameter point in the mass order M3which pro-
vides an SFOEWPT.

BR(h125) BR(h125 → bb) = 59.0% BR(h↓) BR(h↓ → bb) = 80.0%
BR(h125 → WW ) = 21.0% BR(h↓ → WW ) = 0.32%
BR(h125 → ττ) = 6.3% BR(h↓ → ττ) = 8.3%
BR(h125 → γγ) = 0.21% BR(h↓ → γγ) = 0.04%

BR(H±) BR(H± → W±h↓) = 96.3% BR(h↑) BR(h↑ → bb) = 77.3%
BR(H± → W±h↑) = 3.1% BR(h↑ → WW ) = 3.2%
BR(H± → W±h125) = 0.1% BR(h↑ → ττ) = 8.0%

BR(A) BR(A→ Zh↓) = 97.6% BR(h↑ → γγ) = 0.19%

Table 6.3: Type I and mass order M3: Branching ratios of the point given in Table 6.2

the SM, only the γγ rate is slightly decreased compared to the SM.
Concerning the branching ratios of the CP-even Higgs bosons in Table 6.3, it can
be observed that the decay in two bottom quarks is the most dominant channel for
all neutral CP-even Higgs bosons. Due to the small masses of the CP-even non-SM
Higgs bosons, the branching into two W bosons is substantially decreased compared
to the SM-like Higgs boson h125. Beside this difference the decay channels of the
CP-even Higgs bosons are hard to distinguish. The pseudoscalar and charged Higgs
bosons mainly decay in the corresponding h↓ channel so that the SM-like decay
channels almost do not contribute to their decay channels.
In the type II M3 N2HDM we do not find any valid parameter point which provides an
SFOEWPT, because the requirement of a stable NLO electroweak vacuum already
excludes the whole phase space, as can be inferred in Table 6.1.
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6.3 Triple Couplings of the Massive Particles

One of the last unknown properties of the SM-Higgs boson is the trilinear self-
coupling. The measurement of this quantity would allow an insight in the elec-
troweak symmetry breaking mechanism [84] and could lead to a deeper understand-
ing of the physics beyond the SM. In this context we calculate the trilinear self-
couplings at zero temperature from the effective potential approach according to

λNLOφiφjφk
≡ −∂3

ijkVeff = −
(
∂3
ijkVtree + ∂3

ijkVCW + ∂3
ijkVCT

)
. (6.13)

Note that, VT does not contribute, due to the fact that the couplings are calculated
at zero temperature. The Coleman-Weinberg contribution is given by [54] and im-
plemented in our program. The calculated values are compared to the SM NLO
value which is given by [85]

λNLOhhh (SM) = −3m2
h

v

[
1− Nc

3π2

m4
t

v2m2
h

{
1 +O

(
m2
h

m2
t

,
p2
i

m2
t

)}]
. (6.14)

For the following discussion of the results, we note that the strength of the SFOEWPT
increases with the size of the couplings of the light Higgs bosons to the SM-like Higgs
boson and decreases with the Higgs boson mass [19]. Since all CP-even neutral Higgs
bosons receive a VeV through mixing and hence contribute to the phase transition,
an SFOEWPT requires the participating Higgs bosons either to be light or to have an
electroweak VeV contribution close to zero [86]. To discuss further implications with
respect to the SFOEWPT, a new quantity is introduced, the doublet admixture

ΣD
i = R2

i1 +R2
i2 ≡ 1− ΣS

i , (6.15)

where Rij is the mixing matrix defined in Eq. (3.18). This quantity describes the
percentage of the two doublets to the mass eigenstate. Since the different mass
orders M1, M2 and M3 do not show significant differences in their trilinear self-
couplings, we show only the results for the first mass order M1. In this mass hierarchy
we have the most parameter points which allows for a sufficient discussion of the
phenomenology.

6.3.1 Type I: M1

In Fig. 6.21 the relative distribution of the tree level versus the NLO trilinear self-
coupling between three h125, both normalized to the SM value, is displayed. The
theoretical and experimental constraints allow enhanced NLO trilinear self-couplings
by a factor of 15, but are significantly decreased by the SFOEWPT. Nevertheless it
is remarkable, that the NLO couplings are enhanced by a factor of 2.5. In addition,
the SFOEWPT requires a non-zero h125 self-coupling. Note that, an SFOEWPT
needs enhanced self-couplings, but on the other side the scalar particle spectrum
participating to the PT should not become too heavy, thus restricting the size of the
quartic coupling parameters in the Higgs potential. Therefore the NLO corrections
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Figure 6.21: Type I and mass order M1: The tree level trilinear self-coupling of the
h125 versus the NLO trilinear self-coupling of h125 both normalized to
the SM value. Left: the ScannerS sample with all parameter points
fulfilling theoretical and experimental constraints; right: Grey points
correspond to the ScannerS sample and the coloured points provide an
SFOEWPT. The colour code denotes the relative frequency normalized
to the largest bin.

60



−60 −40 −20 0 20 40 60

λLO,N2HDM
h↓h↓h↓

/λLO,SMhhh

−200

−100

0

100

200
λ
N
L
O
,N

2H
D
M

h
↓h
↓h
↓

/λ
N
L
O
,S
M

h
h
h

100

200

300

400

500

600

700

800

900

m
↓

[ G
eV

]

(a)

−60 −40 −20 0 20 40 60

λLO,N2HDM
h↑h↑h↑

/λLO,SMhhh

−200

−100

0

100

200

λ
N
L
O
,N

2H
D
M

h
↑h
↑h
↑

/λ
N
L
O
,S
M

h
h
h

100

200

300

400

500

600

700

800

900

1000

m
↑

[ G
eV

]

(b)

Figure 6.22: Type I and mass order M1: The tree level trilinear self-coupling of
h↓(left) and h↑(right) versus the NLO trilinear self-coupling of h↓(left)
and h↑(right) both normalized to the SM value. The colour code indi-
cates m↓(left) and m↑ (right). The grey points denote the full ScannerS
sample, while the coloured points provide an SFOEWPT.

to the trilinear self-couplings are reduced with respect to the maximum enhancement
compatible with the theoretical and experimental constraints.
Considering all other possible combinations of trilinear couplings in the N2HDM, we

observe that the trilinear self-couplings can be supressed or substantially enhanced
compared to the SM value. For further examples of trilinear couplings, we show
the self-couplings between three h↓ and h↑, respectively the leading-order versus
the NLO self-couplings λh↓h↓h↓ , λh↑h↑h↑ are shown in Fig. 6.22. The colour code
denotes the mass of the corresponding particle. Apart from a few exceptions, the
parameter points providing an SFOEWPT lie on a straight line, so that one can
conclude that the NLO trilinear self-coupling is enhanced approximately by a factor
of two compared to the leading-order self-coupling in these scenarios. However,
the maximum of the NLO self-couplings compatible with the applied constraints is
reduced by considering the SFOEWPT. Bearing in mind that the CP-even neutral
Higgs bosons either are light or acquire an electroweak VeV close to zero, in order
not to weaken the PT, we investigate the heaviest CP-even neutral Higgs boson
h↑. In Fig.6.23 the doublet admixture of h↑ versus the NLO trilinear self-coupling
normalized to the SM value is displayed. The colour code indicates m↑. Significantly
enhanced NLO couplings are observed up to a doublet admixture of 25%. In this
region the h↑ state does not contribute significantly to the VeV and at the same time
there are also the largest masses. For doublet admixtures above 25% the SFOEWPT
reduces the possible phase-space of the trilinear coupling to smaller values. These
findings are in agreement with those in Ref. [86].
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Figure 6.23: Type I and mass order M1: The NLO trilinear self-coupling of the h↑
normalized to the SM value versus the doublet admixture ΣD

h↑
. Grey

points denote the ScannerS sample and the colour code indicates m↑.

6.3.2 Type II: M1

We begin the discussion of the type II N2HDM with the trilinear h125 self-coupling.
In Fig. 6.24 the NLO versus the tree level trilinear self-coupling is shown. Again
significantly enhanced self-couplings by a factor of 7.5 are compatible with theoretical
and experimental constraints. The SFOEWPT on the other hand reduces these NLO
enhancements down to an upper bound of 2.8 and demands a non-zero NLO and
tree-level coupling at the same time. As mentioned in the type I discussion, this can
be explained by the interplay between the requirement of enhanced self-couplings
and a light scalar spectrum which directly affects the quartic couplings of the Higgs
potential and in this way limits the NLO corrections [86]. In Fig. 6.25 the self-
couplings of three h↓ and h↑, respectively, are shown. The colour code indicates the
mass of the specific particle. As observed in the type I N2HDM, almost all parameter
points providing an SFOEWPT lie on a straight line which indicates that the NLO
self-couplings are enhanced by a factor of two compared to the leading-order self-
couplings. Coming to the VeV contribution of the heaviest CP-even Higgs boson, we
show in Fig. 6.26 the doublet admixture of h↑ versus the NLO trilinear self-coupling
λh↑h↑h↑ normalized to the SM value. Again we observe that the biggest NLO self-
couplings are obtained for small doublet admixtures, so that the contribution of the
heaviest CP-even neutral Higgs boson to the electroweak VeV is small.
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Figure 6.24: Type II and mass order M1: The tree level trilinear self-coupling of the
h125 versus the NLO trilinear self-coupling of h125 both normalized to
the SM value. Left: the ScannerS sample with all parameter points
fulfilling theoretical and experimental constraints; right: Grey points
correspond to the ScannerS sample and the coloured points provide an
SFOEWPT. The colour code denotes the relative frequency normalized
to the largest bin.
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Figure 6.25: Type II and mass order M1: The tree level trilinear self-coupling of
h↓(left) and h↑(right) versus the NLO trilinear self-coupling of h↓(left)
and h↑(right) both normalized to the SM value. The colour code indi-
cates m↓(left) and m↑ (right). The grey points denote the full ScannerS
sample, while the coloured points provide an SFOEWPT.
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Figure 6.26: Type II and mass order M1: The NLO trilinear self-coupling of the
h↑ versus normalized to the SM value versus the doublet admixture
ΣD
h↑

. Grey points denote to the ScannerS sample and the colour code
indicates m↑.
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CHAPTER 7

Conclusion

In this thesis, we studied the implications of the electroweak phase transition in an
extended Higgs model, the N2HDM. This study allows to combine the experimen-
tal and theoretical constraints with the cosmological aspect, the electroweak phase
transition. We used the baryon washout condition in order to quantify if a specific
parameter setting is able to provide a sufficiently strong first order electroweak phase
transition. If this condition holds for a parameter point, it can be possible to explain
the observed baryon asymmetry of the universe in this setting.
We started by introducing the aspects of finite temperature field theory and the
effective potential at one-loop approximation in order to be able to calculate the
strength of the phase transition. We showed the subtle problems of the self-coupling
expansion at finite temperature and presented the resummation prescription used in
this work. Afterwards, we introduced our notation and reviewed the N2HDM and
its mass spectrum. Subsequently, we introduced the new counter term prescription
[14] allowing us to use one-loop masses and angles as direct input parameters. We
then gave an overview of our numerical analysis and the applied constraints.
Within this work, the C++ code used for the 2HDM analysis in [14] was extended
and developed for the N2HDM. The system of equations for the counter term pre-
scription was solved and the related identities were checked numerically.
In the numerical analysis, presented in Chapter 6, we have investigated the type I
and II N2HDM within all possible mass orders M1, M2 and M3 and we have shown
the implications on the Higgs mass spectrum by first requiring NLO stability and
afterwards a strong first order electroweak phase transition. By doing so we showed
that the electroweak phase transition favors mass scenarios with either degenerate
pseudoscalar and charged masses or a degeneracy of one CP-even non-SM-like Higgs
boson mass with the charged mass, independently of the N2HDM type and mass
order. In the Higgs mass setting mA ≈ mH± , we observed a finite mass gap between
the charged and the CP-even non-SM-like Higgs boson for all types and mass or-
ders1.
All signal rates of the promising decay channels of the SM-like Higgs boson were
investigated with respect to deviations compared to the SM case. We observed that

1Except for the type II N2HDM in the mass order M3, because there is no valid phase space.
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the tendency of the signal rates are towards to the SM rates and in that way the
N2HDM signal rates are compatible with the SM in both types and all mass orders.
We investigated the constraining power on the singlet admixture to h125 given by
the signal rates of every particular decay channel. We found agreement with [51]
and concluded that in the type I model the decay h125 → ZZ is the most promising
candidate for the first mass order. A measurement within a 5% of the SM value
would allow to set an upper bound of 5% on the singlet admixture to the SM-like
Higgs boson by additionally taking into account an electroweak phase transition.
In the type II and mass order M1 we observed that the h125 → ττ channel al-
lows to constrain the singlet admixture most efficiently. For small tan β the upper
bound provided by ScannerS is reduced from 12% down to ≈ 8% after requiring
an SFOEWPT. Subsequently, in the type II discussion we excluded the wrong-sign
limit in the N2HDM by requiring a strong first order electroweak phase transition.
It might be possible to find a parameter point which fulfills the wrong sign condition
and a phase transition, but due to the limited computation time, we did not find
any valid parameter point in our analysis.
Concerning the trilinear couplings among the neutral Higgs bosons of the N2HDM,
we showed that the trilinear coupling among the three SM-like Higgs bosons h125 are
enhanced at next-to-leading order. Additionally, the electroweak phase transition
requires a non-zero self-coupling which deviates significantly enough from the SM
value to possibly be measurable at the LHC. We confirmed the statement in [86]
that either the scalar mass spectrum is as light as possible or the lighter non-SM-
like Higgs boson receives the larger portion of the VeV in order not to weaken the
strength of the phase transition.
For future work, it would be interesting to scan a larger sample size in order to find
more valid parameter points providing a phase transition, especially for the mass or-
der M2 and M3. This might lead to valid parameter point in the type II M3 scenario.
In this specific setting a very large mass gap exists between the CP-even scalars and
the pseudoscalar mass. This leads to large NLO corrections which results in the
instability of the electroweak vacuum. Another interesting point for further inves-
tigations would be to consider variations of the N2HDM, like dark matter models
in the framework of the N2HDM. Such studies would allow a phenomenological
comparison between these models, and possible exclusion scenarios could arise to
distinguish these models from other beyond Standard models.
Furthermore, in this thesis a CP-conserving model was presented, and we did not
find a CP-violating phase evolving at finite temperatures, so that it would be inter-
esting to extend the presented analysis to a complex extension of the N2HDM. In
this way, it would be possible to include CP-violating effects in the analysis. Unfor-
tunately, the complex N2HDM in its general form would consist of a very large free
parameter space which complicates the phenomenological discussion.
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nicht da, wo ich bin.

67





Bibliography

1P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters”, Astron.
Astrophys. 571, A16 (2014).

2A. D. Sakharov, “Violation of CP Invariance, c Asymmetry, and Baryon Asymme-
try of the Universe”, Pisma Zh. Eksp. Teor. Fiz. 5, [Usp. Fiz. Nauk161,61(1991)],
32–35 (1967).

3A. Riotto, “Theories of baryogenesis”, in Proceedings, Summer School in High-
energy physics and cosmology: Trieste, Italy, June 29-July 17, 1998 (1998), pp. 326–
436.

4D. Bailin and A. Love, Cosmology in gauge field theory and string theory (Institute
of Physics Publishing, Bristol and Philadelphia).

5M. Quiros, “Field theory at finite temperature and phase transitions”, Helv. Phys.
Acta 67, 451–583 (1994).

6M. E. Carrington, “The Effective potential at finite temperature in the Standard
Model”, Phys. Rev. D45, 2933–2944 (1992).

7G. Aad et al., “Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B716, 1–29 (2012).

8Z. Fodor, J. Hein, K. Jansen, A. Jaster, and I. Montvay, “Simulating the elec-
troweak phase transition in the SU(2) Higgs model”, Nucl. Phys. B439, 147–186
(1995).

9K. Jansen, “Status of the finite temperature electroweak phase transition on the
lattice”, Nucl. Phys. Proc. Suppl. 47, 196–211 (1996).

10L. Fromme, S. J. Huber, and M. Seniuch, “Baryogenesis in the two-Higgs doublet
model”, JHEP 11, 038 (2006).

11G. C. Dorsch, S. J. Huber, and J. M. No, “A strong electroweak phase transition
in the 2HDM after LHC8”, JHEP 10, 029 (2013).

12J. M. Cline, K. Kainulainen, and M. Trott, “Electroweak Baryogenesis in Two
Higgs Doublet Models and B meson anomalies”, JHEP 11, 089 (2011).

13G. C. Dorsch, S. J. Huber, and J. M. No, “A strong electroweak phase transition
in the 2HDM after LHC8”, JHEP 10, 029 (2013).

14P. Basler, M. Krause, M. Muhlleitner, J. Wittbrodt, and A. Wlotzka, “Strong
First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited”,
JHEP 02, 121 (2017).

69

http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
https://inspirehep.net/record/473645/files/arXiv:hep-ph_9807454.pdf
https://inspirehep.net/record/473645/files/arXiv:hep-ph_9807454.pdf
http://dx.doi.org/10.1103/PhysRevD.45.2933
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/0550-3213(95)00038-T
http://dx.doi.org/10.1016/0550-3213(95)00038-T
http://dx.doi.org/10.1016/0920-5632(96)00045-X
http://dx.doi.org/10.1088/1126-6708/2006/11/038
http://dx.doi.org/10.1007/JHEP10(2013)029
http://dx.doi.org/10.1007/JHEP11(2011)089
http://dx.doi.org/10.1007/JHEP10(2013)029
http://dx.doi.org/10.1007/JHEP02(2017)121


15J. R. Espinosa, T. Konstandin, and F. Riva,“Strong Electroweak Phase Transitions
in the Standard Model with a Singlet”, Nucl. Phys. B854, 592–630 (2012).

16S. J. Huber and M. G. Schmidt, “Baryogenesis at the electroweak phase transi-
tion for a SUSY model with a gauge singlet”, in Strong and electroweak matter.
Proceedings, Meeting, SEWM 2000, Marseille, France, June 13-17, 2000 (2000),
pp. 272–278.

17S. Profumo, M. J. Ramsey-Musolf, and G. Shaughnessy,“Singlet Higgs phenomenol-
ogy and the electroweak phase transition”, JHEP 08, 010 (2007).

18M. Carena, G. Nardini, M. Quiros, and C. E. M. Wagner, “MSSM Electroweak
Baryogenesis and LHC Data”, JHEP 02, 001 (2013).

19M. Carena, G. Nardini, M. Quiros, and C. E. M. Wagner, “The Baryogenesis
Window in the MSSM”, Nucl. Phys. B812, 243–263 (2009).

20C. Balazs, M. Carena, A. Menon, D. E. Morrissey, and C. E. M. Wagner, “The
Supersymmetric origin of matter”, Phys. Rev. D71, 075002 (2005).

21S. J. Huber, T. Konstandin, T. Prokopec, and M. G. Schmidt, “Electroweak Phase
Transition and Baryogenesis in the nMSSM”, Nucl. Phys. B757, 172–196 (2006).

22S. J. Huber, T. Konstandin, T. Prokopec, and M. G. Schmidt, “Baryogenesis in
the MSSM, nMSSM and NMSSM”, Nucl. Phys. A785, 206–209 (2007).

23A. Das, Finite temperature field theory (2004).

24J. I. Kapusta, Finite-temperature field theory (cambridge monographs on mathe-
matical physics) (Cambridge University Press, July 1989).

25S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spon-
taneous Symmetry Breaking”, Phys. Rev. D7, 1888–1910 (1973).

26M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, 4.
print. (Addison-Wesley, Reading, Mass. [u.a.], 1997).

27R. Jackiw, “Functional evaluation of the effective potential”, Phys. Rev. D9, 1686
(1974).

28A. K. Das, “Topics in finite temperature field theory”, (2000).

29H. H. Patel and M. J. Ramsey-Musolf, “Baryon Washout, Electroweak Phase Tran-
sition, and Perturbation Theory”, JHEP 07, 029 (2011).

30M. L. Bellac, Thermal field theory (Cambridge University Press, 1996).

31P. Arnold, “Phase transition temperatures at next-to-leading order”, Phys. Rev. D
46, 2628–2635 (1992).

32R. R. Parwani, “Resummation in a hot scalar field theory”, Phys. Rev. D45, [Er-
ratum: Phys. Rev.D48,5965(1993)], 4695 (1992).

33P. B. Arnold and O. Espinosa,“The Effective potential and first order phase transi-
tions: Beyond leading-order”, Phys. Rev. D47, [Erratum: Phys. Rev.D50,6662(1994)],
3546 (1993).

34L. Dolan and R. Jackiw, “Symmetry Behavior at Finite Temperature”, Phys. Rev.
D9, 3320–3341 (1974).

70

http://dx.doi.org/10.1016/j.nuclphysb.2011.09.010
http://dx.doi.org/10.1142/9789812799913_0034
http://dx.doi.org/10.1142/9789812799913_0034
http://dx.doi.org/10.1088/1126-6708/2007/08/010
http://dx.doi.org/10.1007/JHEP02(2013)001
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.014
http://dx.doi.org/10.1103/PhysRevD.71.075002
http://dx.doi.org/10.1016/j.nuclphysb.2006.09.003
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.154
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.9.1686
http://dx.doi.org/10.1103/PhysRevD.9.1686
http://dx.doi.org/10.1007/JHEP07(2011)029
http://dx.doi.org/10.1103/PhysRevD.46.2628
http://dx.doi.org/10.1103/PhysRevD.46.2628
http://dx.doi.org/10.1103/PhysRevD.45.4695, 10.1103/PhysRevD.48.5965.2
http://dx.doi.org/10.1103/PhysRevD.45.4695, 10.1103/PhysRevD.48.5965.2
http://dx.doi.org/10.1103/PhysRevD.50.6662, 10.1103/PhysRevD.47.3546
http://dx.doi.org/10.1103/PhysRevD.50.6662, 10.1103/PhysRevD.47.3546
http://dx.doi.org/10.1103/PhysRevD.9.3320
http://dx.doi.org/10.1103/PhysRevD.9.3320


35H. H. Patel and M. J. Ramsey-Musolf, “Baryon Washout, Electroweak Phase Tran-
sition, and Perturbation Theory”, JHEP 07, 029 (2011).

36C. Wainwright, S. Profumo, and M. J. Ramsey-Musolf, “Gravity Waves from a
Cosmological Phase Transition: Gauge Artifacts and Daisy Resummations”, Phys.
Rev. D84, 023521 (2011).

37M. Garny and T. Konstandin, “On the gauge dependence of vacuum transitions at
finite temperature”, JHEP 07, 189 (2012).

38X.-G. He, T. Li, X.-Q. Li, J. Tandean, and H.-C. Tsai, “Constraints on Scalar Dark
Matter from Direct Experimental Searches”, Phys. Rev. D79, 023521 (2009).

39B. Grzadkowski and P. Osland,“Tempered Two-Higgs-Doublet Model”, Phys. Rev.
D82, 125026 (2010).

40H. E. Logan, “Dark matter annihilation through a lepton-specific Higgs boson”,
Phys. Rev. D83, 035022 (2011).

41M. S. Boucenna and S. Profumo, “Direct and Indirect Singlet Scalar Dark Mat-
ter Detection in the Lepton-Specific two-Higgs-doublet Model”, Phys. Rev. D84,
055011 (2011).

42X.-G. He, B. Ren, and J. Tandean, “Hints of Standard Model Higgs Boson at the
LHC and Light Dark Matter Searches”, Phys. Rev. D85, 093019 (2012).

43Y. Bai, V. Barger, L. L. Everett, and G. Shaughnessy, “Two-Higgs-doublet-portal
dark-matter model: LHC data and Fermi-LAT 135 GeV line”, Phys. Rev. D88,
015008 (2013).

44X.-G. He and J. Tandean, “Low-Mass Dark-Matter Hint from CDMS II, Higgs
Boson at the LHC, and Darkon Models”, Phys. Rev. D88, 013020 (2013).

45Y. Cai and T. Li, “Singlet dark matter in a type II two Higgs doublet model”,
Phys. Rev. D88, 115004 (2013).

46L. Wang and X.-F. Han, “A simplified 2HDM with a scalar dark matter and the
galactic center gamma-ray excess”, Phys. Lett. B739, 416–420 (2014).

47A. Drozd, B. Grzadkowski, J. F. Gunion, and Y. Jiang, “Extending two-Higgs-
doublet models by a singlet scalar field - the Case for Dark Matter”, JHEP 11,
105 (2014).

48R. Campbell, S. Godfrey, H. E. Logan, A. D. Peterson, and A. Poulin,“Implications
of the observation of dark matter self-interactions for singlet scalar dark matter”,
Phys. Rev. D92, 055031 (2015).

49S. von Buddenbrock, N. Chakrabarty, A. S. Cornell, D. Kar, M. Kumar, T. Mandal,
B. Mellado, B. Mukhopadhyaya, R. G. Reed, and X. Ruan, “Phenomenological
signatures of additional scalar bosons at the LHC”, Eur. Phys. J. C76, 580 (2016).

50C.-Y. Chen, M. Freid, and M. Sher, “Next-to-minimal two Higgs doublet model”,
Phys. Rev. D89, 075009 (2014).

51M. Muhlleitner, M. O. P. Sampaio, R. Santos, and J. Wittbrodt, “The N2HDM
under Theoretical and Experimental Scrutiny”, JHEP 03, 094 (2017).

71

http://dx.doi.org/10.1007/JHEP07(2011)029
http://dx.doi.org/10.1103/PhysRevD.84.023521
http://dx.doi.org/10.1103/PhysRevD.84.023521
http://dx.doi.org/10.1007/JHEP07(2012)189
http://dx.doi.org/10.1103/PhysRevD.79.023521
http://dx.doi.org/10.1103/PhysRevD.82.125026
http://dx.doi.org/10.1103/PhysRevD.82.125026
http://dx.doi.org/10.1103/PhysRevD.83.035022
http://dx.doi.org/10.1103/PhysRevD.84.055011
http://dx.doi.org/10.1103/PhysRevD.84.055011
http://dx.doi.org/10.1103/PhysRevD.85.093019, 10.1103/PhysRevD.85.119902, 10.1103/PhysRevD.85.119906
http://dx.doi.org/10.1103/PhysRevD.88.015008
http://dx.doi.org/10.1103/PhysRevD.88.015008
http://dx.doi.org/10.1103/PhysRevD.88.013020
http://dx.doi.org/10.1103/PhysRevD.88.115004
http://dx.doi.org/10.1016/j.physletb.2014.11.016
http://dx.doi.org/10.1007/JHEP11(2014)105
http://dx.doi.org/10.1007/JHEP11(2014)105
http://dx.doi.org/10.1103/PhysRevD.92.055031
http://dx.doi.org/10.1140/epjc/s10052-016-4435-8
http://dx.doi.org/10.1103/PhysRevD.89.075009
http://dx.doi.org/10.1007/JHEP03(2017)094


52G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva,
“Theory and phenomenology of two-Higgs-doublet models”, Phys. Rept. 516, 1–
102 (2012).

53P. M. Ferreira, R. Santos, and A. Barroso, “Stability of the tree-level vacuum in
two Higgs doublet models against charge or CP spontaneous violation”, Phys. Lett.
B603, [Erratum: Phys. Lett.B629,114(2005)], 219–229 (2004).

54J. E. Camargo-Molina, A. P. Morais, R. Pasechnik, M. O. P. Sampaio, and J.
Wessén, “All one-loop scalar vertices in the effective potential approach”, JHEP
08, 073 (2016).

55E. Benazera and N. Hansen, Libcmaes, (2014) https://github.com/beniz/

libcmaes (visited on 05/19/2016).

56M. G. et al, “Gnu scientific library reference manual”, (2016).

57W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, “A Precision constraint on
multi-Higgs-doublet models”, J. Phys. G35, 075001 (2008).

58W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, “The Oblique parameters
in multi-Higgs-doublet models”, Nucl. Phys. B801, 81–96 (2008).
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