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CHAPTER 1

Introduction

The discovery of a Higgs boson by the ATLAS [1] and CMS [2] experiments provided the last
missing piece of the Standard Model (SM) of particle physics [3–7]. Establishing whether the
discovered particle is the SM Higgs boson is one of the big goals of current particle physics.
Any deviation from the SM expectation can reveal a lot about the physics Beyond-the-SM
(BSM) at work.

The mass of the Higgs boson is already known very precisely [8] and fits into the SM. Mea-
surements of the Higgs couplings are also in agreement with the SM [9]. The precision of
these measurements, however, still allows considerable room for BSM theories.

In this thesis, we study and compare what kind of phenomenology different BSM theories
with extended Higgs sectors might entail. For this comparison, we choose four models with
very different theoretical structure. We only consider models that respect custodial symmetry
and produce the correct value of the ρ-parameter at tree-level. This is naturally ensured by
all models which add only Higgs-singlet and doublet fields to the SM Higgs sector.

Among the simplest possible extensions of the SM Higgs-sector is the Complex singlet-
extension of the SM (CxSM) [10, 11]. The CxSM adds a complex singlet field to the SM
Higgs sector, resulting in a total of three CP-even neutral Higgs bosons. In the CxSM all
couplings of a Higgs boson to SM particles are rescaled by a common factor. This results
in a very simple phenomenology, where Higgs-to-Higgs decays can still lead to interesting
differences from the SM [11]. The CxSM could furthermore provide inert singlet dark mat-
ter [12–26]. We choose to study the CxSM phase without a DM candidate (also called the
broken phase [10, 11]). In this phase, all three CP-even Higgs fields of the theory mix thus
offering an interesting phenomenology as a toy model.

Supersymmetric models always require a second Higgs-doublet. It is, therefore, interest-
ing to study the non-supersymmetric Two-Higgs-Doublet Model (2HDM) [27–29] which has
the same Higgs sector as the Minimal Supersymmetric Standard Model (MSSM). The phe-
nomenology of the CP-conserving Real 2HDM (R2HDM) is very well studied. We, instead,
focus on the Complex 2HDM (C2HDM) [30–39] which incorporates sources of CP-violation
in the Higgs-sector. The C2HDM is the simplest model with a CP-violating Higgs sector. We
include it in our analysis to study the phenomenological similarities and differences induced
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by CP-violating pseudoscalar admixture compared to CP-conserving singlet admixture. The
C2HDM contains three neutral Higgs bosons of mixed CP as well as a charged Higgs boson.

The Next-to-Two-Higgs-Doublet Model (N2HDM) [40–42] extends the SM by a Higgs-doublet
and a real Higgs-singlet field. The N2HDM has been previously studied with an inert dark
matter singlet [41] and could also provide inert doublet dark matter in analogy to the inert
2HDM [43–49]. We study the fully mixing N2HDM, which does not address the dark matter
problem. This model has eleven free parameters in the Higgs sector which allow for an ex-
tremely rich phenomenology in agreement with current constraints. It contains three CP-even
and one CP-odd neutral Higgs boson as well as a charged Higgs boson. We treat it as a toy
model with natural flavor and CP-conservation to understand what kind of phenomenological
consequences BSM theories with large extended Higgs sectors might entail. We are the first to
study the N2HDM without any approximation. We especially study the possibility of singlet
admixture to the 125 GeV Higgs boson, which has been neglected in previous studies [40,
42].

The Next-to-minimal Supersymmetric Standard Model (NMSSM) [50–66] is the final model
of our study. Supersymmetric models address the issues of the SM by solving the naturalness
problem of the SM Higgs boson mass and providing dark matter candidates in the form of
neutralinos. We choose the NMSSM as opposed to the simpler Minimal Supersymmetric
Standard Model (MSSM) as it requires considerably less fine-tuning to reach a Higgs mass of
125 GeV. The singlet field introduced in the NMSSM can furthermore solve the µ-problem of
the MSSM [67]. The NMSSM has more free parameters compared to the MSSM and can pro-
duce a richer phenomenology in the Higgs sector, which is composed of three CP-even and two
CP-odd neutral Higgs bosons and one charged Higgs boson. However, supersymmetry puts
strong constraints on the phenomenology of the NMSSM making it more strongly constrained
than the non-supersymmetric models even though it contains the most free parameters.

All of our models contain two additional neutral Higgs bosons which mix with the 125 GeV
state. The CxSM contains no further Higgs particles, while there is an additional charged
Higgs boson in the C2HDM and the neutral Higgs bosons are no eigenstates of the CP
operator. The N2HDM contains a charged and a pseudoscalar Higgs in addition to the
three mixing CP-even scalars. The NMSSM extends the N2HDM Higgs sector by another
pseudoscalar and also contains the superpartners of all the SM particles and Higgs bosons.

A prerequisite for the phenomenological studies is the generation of parameter point samples
that fulfill all applicable constraints. In the CxSM we use the published implementation in the
ScannerS [10, 68] framework to perform the parameter scan. In the NMSSM the parameter
scan is performed using the NMSSMtools package [64, 69–74] as described in [11, 66].

We have created an implementation of the C2HDM as a ScannerS model class. This im-
plementation is the first C2HDM parameter scan that includes the constraint of the CP-
violating electric dipole moment of the electron [75]. We further use an in-house extension
of HDECAY [76, 77] to the C2HDM. This allows us to be the first to check exclusion bounds
from collider Higgs searches in the C2DHM using the HiggsBounds [78] code. Theoreti-
cal, electroweak, and flavor constraints as well as the measurements of the 125 GeV Higgs
bosons properties have also been assembled and included. We discuss the influence of the
new constraints on our parameter scan and compare our results to a previous work in the
literature [39].

The N2HDM parameter scan is also performed with a ScannerS implementation. We di-
agonalize the N2HDM Lagrangian and derive all three particle couplings required for the
parameter scan without any approximation. Theoretical constraints from the stability of the
electroweak vacuum in the N2HDM potential are for the first time derived and implemented
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in this thesis. The constraints from tree-level perturbative unitarity have been rederived
and numerically verified. We have created the N2HDECAY code which extends HDECAY to the
N2HDM and calculates the decay properties of all Higgs bosons. The decay properties are
used with the HiggsBounds code to check exclusion bounds from collider searches and to
verify agreement with the observed properties of the 125 GeV Higgs boson. Constraints from
electroweak precision and flavor observables are also included in our parameter scan.

We use these samples of physical parameter points to study the properties of the 125 GeV
Higgs boson. We compare the phenomenological possibilities our models predict and discuss
how these deviations from the SM remain in agreement with the observations. We especially
study the possibility of singlet or pseudoscalar admixture to the 125 GeV Higgs boson. We
point out differences between the amounts of admixture allowed in our models and show
which measurements put the strongest constraints on the admixtures.

Afterward, we discuss the phenomenology of the lightest non-125 GeV neutral (CP-even in
the CxSM, N2HDM, and NMSSM) Higgs boson at the LHC. We study inclusive signal rates
and explain in what regions our models can enhance these rates above the SM reference.
We further point out possible observations that could allow us to distinguish between our
models. We finally present an analysis of coupling sums of the lightest two neutral (CP-even
in the CxSM, N2HDM, and NMSSM) Higgs bosons of our models. We show how the model
predictions for these partial coupling sums differ. We point out several observations that
could make the exclusion of a model feasible provided the couplings of two Higgs bosons are
known with sufficient precision. Such an analysis will be challenging with LHC data only
and could be considerably improved by measurements at a possible future linear collider [79–
81].

The work is structured as follows. In chapter 2 we introduce the CxSM, the real and com-
plex 2HDM, and the NMSSM. Chapter 3 is entirely devoted to the N2HDM. We present the
diagonalization of the scalar potential in section 3.1 and derive the effective couplings of the
scalars to the SM particles in section 3.2. In sections 3.3 and 3.4 we establish the theoretical
constraints from tree-level vacuum stability and perturbative unitarity. Chapter 4 describes
the parameter scans performed in the four models. We detail the constraints applied to the
models as well as the parameter ranges used in the scans. We furthermore comment on
the mass distributions of the neutral Higgs bosons and compare our results in the C2HDM
to [39]. Chapter 5 finally contains the phenomenological analysis described in the previous
paragraphs. We study the differences between our models in their predictions for the prop-
erties of the 125 GeV Higgs boson in section 5.1. Section 5.2 presents ways to distinguish
the models provided a second Higgs boson is observed. We study the phenomenology of this
second boson in section 5.2.1 and the possibilities offered by a sum-rule analysis of both Higgs
bosons in section 5.2.2. We conclude in chapter 6.

In appendix A we present explicit formulas for the parameter transformations and triple-Higgs
couplings in the N2HDM. Appendix B contains examples of N2HDM parameter points with
a vacuum structure impossible in the 2HDM. The complete results of the global minimum
analysis in the N2HDM are shown in appendix C. In appendix D we finally give a short
overview on how to use the N2HDECAY code.





CHAPTER 2

Overview of the studied Higgs sector extensions

In this chapter, we introduce the models studied in this thesis. We order them by their
number of free parameters and start with a short review of the CxSM. Afterward, we give
an introduction to the 2HDM. We focus on the C2HDM, while also establishing the R2HDM
as a starting point for the extension to the N2HDM in chapter 3. We finally give a short
overview of the NMSSM Higgs sector.

2.1. The Complex singlet-extension of the Standard Model

In the CxSM the SM Higgs sector is extended by a complex scalar singlet of hypercharge
zero. The resulting scalar potential is

V =
m2

2
Φ†Φ +

λ

4
(Φ†Φ)

2
+
δ2

2
Φ†Φ|S|2 +

b2
2
|S|2 +

d2

4
|S|4

+

(
b1
4
S2 + a1S + c.c.

)
.

(2.1)

The field Φ is the SM Higgs-doublet field, and S is the complex singlet. The potential obeys
a global U(1) symmetry which is softly broken by the second line of eq. (2.1) to prevent the
appearance of a Goldstone boson after electroweak symmetry breaking. We study the version
of the model with a Z2 symmetry of Im(S) imposed. This forces b1 and a1 to be real. All
other parameters are required to be real by hermiticity. Hence, the CxSM has seven real
parameters

m2 , λ , δ2 , b2 , d2 , b1 and a1 . (2.2)

The scalar fields are expanded as

Φ =
1√
2

(
G±

v + h+ iG0

)
, (2.3)

S =
1√
2

[vs + s+ i(va + a)] (2.4)
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around their vacuum expectation values (VEVs) v, vs and va. We only consider the broken
singlet phase [10, 11], where the three VEVs are non-zero and set v ≈ 246 GeV. The fields
G± and G0 are the charged and neutral would-be Goldstone bosons, respectively.

The three neutral fields ρ1 := h, ρ2 := s and ρ3 := a mix. Their 3× 3 mass matrix is

(
M2

)
ij

= −
〈

∂2V

∂ρi∂ρj

〉
, (2.5)

where the angle braces denote the vacuum expectation value. It is diagonalized by a mixing
matrix R, defined through H1

H2

H3

 = R

ρ1

ρ2

ρ3

 . (2.6)

The gauge eigenstates ρi are rotated into the mass eigenstates H1,2,3 ordered by ascending
mass as

m2
H1

< m2
H2

< m2
H3

. (2.7)

We introduce the shorthands

sx := sinx , cx := cosx , tx := tanx (2.8)

and parametrize R as

R =

 cα1cα2 cα2sα1 sα2

−cα3sα1 − cα1sα2sα3 cα1cα3 − sα1sα2sα3 cα2sα3

−cα1cα3sα2 + sα1sα3 −cα3sα1sα2 − cα1sα3 cα2cα3

 (2.9)

where the mixing angles α1,2,3 take values in

−π
2
≤ α1,2,3 <

π

2
. (2.10)

The seven independent parameters of the CxSM scalar potential can be conveniently expressed
through the parameter set

α1 , α2 , α3 , v ≈ 246 GeV , vs , mHi and mHj , (2.11)

where va and the third Higgs mass are functions of the other parameters [11].

One feature common to all extensions of the Higgs sector that only introduce singlet fields is
the particularly simple way in which couplings are modified. The couplings of a Higgs boson
Hi to a set of SM particles (p) are given by

λ
(p)
i = Ri1λ

(p)
SM . (2.12)

The triple and quartic Higgs couplings of the CxSM can be found in the appendix of [11].
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2.2. The Two-Higgs-Doublet Model

For a detailed introduction to the 2HDM we recommend the review by Branco et al. [29]. In
the following we use the conventions from [37] for the C2HDM.

The 2HDM Higgs sector contains two scalar SU(2)L doublet fields with hypercharge Y = 1.
The scalar potential is given by

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+
λ1

2

(
Φ†1Φ1

)
+
λ2

2

(
Φ†2Φ2

)
+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +

(
λ5

2

(
Φ†1Φ2

)2
+ h.c.

)
.

(2.13)

The potential (2.13) obeys a Z2 symmetry imposed on each doublet, which is softly broken
by the m2

12 term.

Requiring hermiticity forces all parameters except m2
12 and λ5 to be real. If arg(m2

12) =
arg(λ5) these complex phases can be absorbed by a basis transformation. If such a rotation,
making λ5 and m2

12 real, exists we call the remaining eight-parameter model the real 2HDM
(R2HDM). When this is not possible the Higgs sector entails sources of CP violation and we
call the model the C2HDM. The C2HDM has ten real parameters.

In the 2HDM both doublet fields are expanded as (i = 1, 2)

Φi =

(
φ±i

1√
2

(vi + ρi + iηi)

)
, (2.14)

where vi denotes the VEV of the respective doublet. In principle, there could be a complex
phase between the VEVs of the two doublets. This phase can, however, always be removed
by a change of basis [30] which is why we omit it. The requirement that the vacuum

〈Φi〉 =

(
0
vi√

2

)
(2.15)

is a minimum of the scalar potential leads to the minimum conditions

m2
11v1 +

λ1

2
v3

1 +
λ345

2
v1v

2
2 = m2

12v2 , (2.16a)

m2
22v2 +

λ2

2
v3

2 +
λ345

2
v2

1v2 = m2
12v1 , (2.16b)

2 Im(m2
12) = v1v2 Im(λ5) , (2.16c)

where λ345 = λ3 + λ4 + Re(λ5). Using eqs. (2.16a) and (2.16b) we can trade the parameters
m2

11 and m2
22 for v1 and v2. Equation (2.16c) yields a relation between the two sources of CP

violation in the scalar potential. This fixes one of the ten parameters of the C2HDM.

The scalar particle spectrum of the 2HDM contains three neutral scalars and a charged scalar.
This can be easily seen by rotating the doublets into the Higgs basis [82, 83](

H1

H2

)
=

(
cosβ sinβ
− sinβ cosβ

)(
Φ1

Φ2

)
(2.17)

with tanβ = v2/v1. In this basis, the doublets are given by

H1 =

(
G±

1√
2

(
v +H0 + iG0

)) , H2 =

(
H±

1√
2

(R2 + iI2)

)
. (2.18)
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The complete VEV v =
√
v2

1 + v2
2 is now in doublet one, along with the massless would-be

Goldstone bosons G± and G0. The charged Higgs state H± is already a mass eigenstate with
mass

mH± =
m2

12

sβcβ
− v2 (λ4 + Re(λ5)) . (2.19)

We calculate the 3× 3 mass matrix of the neutral Higgs bosons

(
M2

)
ij

= −
〈

∂2V
∂ρi∂ρj

〉
, (2.20)

in the basis ρ1, ρ2 (from eq. (2.14)), and ρ3 := I2 (from eq. (2.18)). The mass matrix M2

is diagonalized by the mixing matrix R (same parametrization as in eq. (2.9)). The mass
eigenstates H1,2,3 are given as a function of the ρ1,2,3 throughH1

H2

H3

 = R

ρ1

ρ2

ρ3

 . (2.21)

In the C2HDM the nine independent input parameters can be chosen as [33]

v ≈ 246 GeV , tanβ , α1,2,3 , mHi , mHj , mH± and m2
12 , (2.22)

where mHi and mHj denote any two of the three neutral Higgs masses. It is straightforward to
work out formulas for calculating the third Higgs mass analytically (see e.g. [33]). Analytic
relations between this set of parameters and the λ parameters of the Lagrangian can be
found e.g. in [37]. We do not use either of these relations and instead perform these tasks
numerically.

Note that in the CP-conserving case the mass matrix (2.20) is block diagonal and ρ3 = I2 is
a pseudoscalar mass eigenstate A with

mA =
m2

12

sβcβ
− 2v2λ5 . (2.23)

The remaining 2×2 block for the CP-even scalars is conventionally chosen to be diagonalized
through (

H
h

)
=

(
cα sα
−sα cα

)(
ρ1

ρ2

)
, (2.24)

where α lies in the same range as α1,2,3 from eq. (2.10). The eight independent parameters
of the R2HDM can be expressed through

v ≈ 246 GeV , tanβ , α , mH , mh , mA , mH± and m2
12 . (2.25)

2.2.1. Couplings of the C2HDM

Here we will give formulas for the effective couplings of the Higgs bosons to gauge bosons and
fermions. We define the effective coupling c of a Higgs boson Hi to a set of SM particles (p)
as

c(Hi(p)) :=
λ

(p)
i

λ
(p)
SM

, (2.26)
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Table 2.1.: The four Yukawa types in the Z2-symmetric 2HDM. It is shown which Higgs-
doublet each kind of fermions couples to.

u-type d-type leptons

type I Φ2 Φ2 Φ2

type II Φ2 Φ1 Φ1

lepton-specific Φ2 Φ2 Φ1

flipped Φ2 Φ1 Φ2

Table 2.2.: Yukawa coupling coefficients of the Higgs boson Hi in the 2HDM. The expressions
given here correspond to a+ ibγ5 from eq. (2.28).

u-type d-type leptons

type I Ri2
sβ
− iRi3tβ

γ5
Ri2
sβ

+ iRi3tβ
γ5

Ri2
sβ

+ iRi3tβ
γ5

type II Ri2
sβ
− iRi3tβ

γ5
Ri1
cβ
− itβRi3γ5

Ri1
cβ
− itβRi3γ5

lepton-specific Ri2
sβ
− iRi3tβ

γ5
Ri2
sβ

+ iRi3tβ
γ5

Ri1
cβ
− itβRi3γ5

flipped Ri2
sβ
− iRi3tβ

γ5
Ri1
cβ
− itβRi3γ5

Ri2
sβ

+ iRi3tβ
γ5

where λ denotes the Feynman rule of the corresponding vertex and the division is understood
to cancel equal tensor structure. The Feynman rule can be extracted from the effective
coupling by multiplying with the corresponding SM Feynman rule which can be found e.g.
in [28]. Further Feynman rules of the C2HDM can be found in the appendix of [37].

The effective coupling of a Higgs boson Hi to a pair of gauge bosons V V ∈ {W+W−, ZZ}
is given by

c(HiV V ) = cβRi1 + sβRi2 . (2.27)

In the presence of two scalar doublets, Higgs-mediated tree-level flavor changing neutral
currents can appear. In order to agree with the experimental observations, these need to be
strongly suppressed [84]. The Z2 symmetries of the scalar potential can be extended to the
Yukawa sector in a way that completely eliminates Higgs-mediated flavor changing neutral
currents. This behavior is called natural flavor conservation [85, 86]. It is achieved by allowing
any type of fermion to couple to only one Higgs doublet. The u-type quarks conventionally
couple to Φ2 resulting in the four phenomenologically different types of 2HDMs shown in
table 2.1.

Expanding the Yukawa Lagrangian and transforming all fields into the mass basis yields

LY = −
3∑
i=1

mf

v
ψ̄f (a+ ibγ5)ψfHi (2.28)

for every fermion ψf with mass mf and neutral Higgs boson Hi. The coefficients a and b can
be found in table 2.2.

In the R2HDM the expressions given above reduce to the known couplings given e.g. in [29].

2.3. The Next-to-Minimal Supersymmetric Model

Supersymmetry requires the introduction of at least two Higgs-doublet superfields Ĥu and
Ĥd. The superfield Ĥu couples to u-type quarks, while Ĥd couples to d-type quarks and
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leptons. All superfields are denoted by hats. In the NMSSM an additional complex singlet
superfield Ŝ is added to this minimal Higgs sector. We will now review the NMSSM Higgs
particle spectrum and clarify how the parameters used in the scan are defined. A complete
review of the NMSSM can be found in [64, 65].

The NMSSM Higgs potential receives contributions from the superpotential

W = λŜĤuĤd +
κ

3
Ŝ3 + htQ̂3Ĥut̂

c
R + hbQ̂3Ĥdb̂

c
R − hτ L̂3Ĥdτ̂

c
R . (2.29)

For simplicity we only write terms including the third generation fermion superfields. These
are the left handed doublet quark (Q̂3) and lepton (L̂3) superfields as well as the right handed
singlet quark (t̂cR, b̂cR) and lepton (τ̂ cR) superfields. The superpotential is parametrized by the
parameters λ, κ, and the three Yukawa couplings ht,b,τ .

The soft SUSY breaking Lagrangian contains the mass terms for the scalar components of
the complex superfields. This part of the Lagrangian reads

−Lmass = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2

+m2
Q̃3
|Q̃3|

2
+m2

t̃R
|t̃R|2 +m2

b̃R
|b̃R|

2
+m2

L̃3
|L̃3|

2
+m2

τ̃R
|τ̃R|2 .

(2.30)

The m2 are the scalar mass parameters for the Higgs (Hu, Hd and S), squark (the doublet
Q̃3 and the singlets t̃R and b̃R), and slepton (doublet L̃3 and singlet τ̃R) fields.

The part of the soft SUSY breaking Lagrangian containing the trilinear terms is

−Ltril = λAλHuHdS +
1

3
κAκS

2 + htAtQ̃3Hut̃
c
R − hbAbQ̃3Hdb̃

c
R − hτAτ L̃3Hdτ̃

c
R + h.c.

(2.31)

and the part with the gaugino mass terms is

−Lgaugino =
1

2

(
M1B̃B̃ +M2

3∑
a=1

W̃aW̃
a +M3

8∑
b=1

G̃bG̃
b

)
. (2.32)

The parameters A in eq. (2.31) are the soft SUSY breaking parameters for the Higgs self
couplings (Aλ and Aκ) and the Yukawa couplings (At, Ab and Aτ ), respectively. The gaugino
sector contains the soft SUSY breaking bino B̃, wino W̃ and gluino G̃ mass terms with their
corresponding mass parameters Mi.

After electroweak symmetry breaking the Higgs fields are expanded around their VEVs vd,
vu and vs as

Hd =

(
vd+hd+iad√

2

h−d

)
, Hu =

(
h+
u

vu+hu+iau√
2

)
, S =

vs + hs + ias√
2

. (2.33)

The 2 × 2 mass matrix of the charged sector can be diagonalized in a straightforward way
yielding the charged Goldstone bosons G± and the charged Higgs bosons H±. In the pseu-
doscalar sector, a first rotation of the 3 × 3 mass matrix separates the massless Goldstone
boson G0. Diagonalizing the remaining 2 × 2 matrix yields the mass eigenstates A1 and A2

with the masses mA1 < mA2 . The CP-even neutral sector yields a 3 × 3 mass matrix with
mass eigenstates H1, H2, and H3 after rotating to the mass basis. The corresponding masses
are ordered as mH1 < mH2 < mH3 .

The NMSSM Higgs sector contains seven parameters at tree level

λ , Aλ , κ , Aκ , v ≈ 246 GeV , tanβ = vu/vd and µeff = λvs . (2.34)
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The parameter µeff replaces the µ parameter of the MSSM. The MSSM faces the so called
µ-problem meaning that the parameter µ, which would naturally be of the order of the SUSY
breaking scale, has to be of the order of v to allow for a proper electroweak symmetry breaking.
The value of µeff in the NMSSM is generated by the singlet VEV vs which is naturally of
order v and thus dynamically solves the µ-problem [67].

The parameter relations induced by supersymmetry differentiate the NMSSM from the non-
supersymmetric models. A further difference is that the Higgs masses are not independent
input parameters in the NMSSM. They have to be calculated including higher order correc-
tions to obtain a precise prediction and in particular to reproduce the measured mass value
of the 125 GeV Higgs boson. Through this calculation the other parameters from eqs. (2.30)
to (2.32) enter the Higgs sector. This makes the NMSSM our model with the largest number
of free parameters.





CHAPTER 3

The Next-to-Two-Higgs-Doublet Model

The scalar Lagrangian of the N2HDM is given by

LN2HDM
scalar = (DµΦ1)† (DµΦ1) + (DµΦ2)† (DµΦ2) + (∂µΦS)2 − Vscalar , (3.1)

with the electroweak covariant derivative

Dµ = ∂µ + i
g

2
~σ ~Wµ + i

g′

2
Bµ . (3.2)

This includes the vector of the three SU(2)L gauge fields Wµ and U(1)Y gauge field Bµ as
well as the corresponding coupling constants g and g′. The vector ~σ contains the three Pauli
matrices.

As can be inferred from the kinetic terms, we added a real, hypercharge zero, SU(2)L singlet
field ΦS to the 2HDM. The first section of this chapter is dedicated to the N2HDM scalar
potential Vscalar and provides details on the diagonalization procedure.

The second section contains formulas for various Higgs couplings to SM particles and infor-
mation on the sum-rules those fulfill. The formulas for the triple Higgs couplings can be found
in appendix A. The last section addresses theoretical constraints from vacuum stability and
tree-level perturbative unitarity.

3.1. The N2HDM scalar potential

The N2HDM is based on the CP-conserving 2HDM with a softly broken Z2 symmetry, the
R2HDM of section 2.2. The N2HDM was first studied by Chen, Freid, and Sher [40]. It
has so far been used as a model that provides a dark matter candidate, which appears if
the singlet VEV vanishes [41]. It has also been considered as a possible explanation for the
750 GeV diphoton excess [87, 88] through a sub-GeV scalar state [42]. This excess has since
disappeared [89, 90].

In all of these studies, some level of approximation was applied. In particular, the possibility
of a singlet admixture to the 125 GeV Higgs boson was neglected. In the following, we will
diagonalize the N2HDM Lagrangian without any such assumptions.
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The scalar potential of the N2HDM reads

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12(Φ†1Φ2 + h.c.) +

λ1

2
(Φ†1Φ1)

2
+
λ2

2
(Φ†2Φ2)

2

+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +
λ5

2

(
(Φ†1Φ2)

2
+ h.c.

)
+

1

2
u2
sΦ

2
S +

λ6

8
Φ4
S +

λ7

2
(Φ†1Φ1)Φ2

S +
λ8

2
(Φ†2Φ2)Φ2

S .

(3.3)

The last line is the difference to the R2HDM potential eq. (2.13) and describes the contribution
of the singlet field ΦS .

One can see that this introduces no new sources of Z2 breaking for the doublet fields. The
singlet field has an exact Z2 symmetry. Furthermore, we work in the CP-conserving version
of the model, where all parameters and all VEVs are required to be real. The above potential
contains all possible renormalizable terms that respect these symmetries. It contains a total
of twelve real parameters.

The doublet fields are defined as in eq. (2.14) and the singlet field acquires a real VEV vs.
We expand the fields in the broken phase as

Φ1 =

(
H+

1
1√
2
(v1 + ρ1 + iη1)

)
, Φ2 =

(
H+

2
1√
2
(v2 + ρ2 + iη2)

)
, (3.4)

ΦS = vs + ρs . (3.5)

By requiring the potential to have a stationary point at the VEV we obtain the three minimum
conditions〈

dV

dv1

〉
= 0 ⇒ v2

v1
m2

12 −m2
11 =

1

2

(
v2

1λ1 + v2
2λ345 + v2

sλ7

)
, (3.6a)〈

dV

dv2

〉
= 0 ⇒ v1

v2
m2

12 −m2
22 =

1

2

(
v2

1λ345 + v2
2λ2 + v2

sλ8

)
, (3.6b)〈

dV

dvs

〉
= 0 ⇒ −m2

s =
1

2

(
v2

1λ7 + v2
2λ8 + v2

sλ6

)
. (3.6c)

The shorthand

λ345 = λ3 + λ4 + λ5 (3.7)

has been introduced here. These relations will be used to simplify the mass matrices below.

3.1.1. Diagonalization of the charged and pseudoscalar sectors

Since we only introduce a real singlet with a real VEV, the charged and pseudoscalar sectors
of the model remain unchanged with respect to the R2HDM. This means that the charged
and pseudoscalar mass matrices can still be diagonalized by the rotation matrix

Rβ =

(
cosβ sinβ
− sinβ cosβ

)
, (3.8)

with β defined through

tanβ =
v2

v1
. (3.9)

This yields the charged and neutral Goldstone modes as well as the physical charged Higgs
boson H± with mass (2.19) and the physical pseudoscalar Higgs boson A with mass (2.23).
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3.1.2. Diagonalization of the scalar sector

The CP-even neutral mass matrix is modified with respect to the R2HDM. In the basis(
ρ1 ρ2 ρs

)
(3.10)

it is now a 3× 3 matrix given by

M2
scalar =

 v2λ1c2
β +m2

12tβ v2λ345cβsβ −m2
12 vvsλ7cβ

v2λ345cβsβ −m2
12 v2λ2s2

β +m2
12/tβ vvsλ8sβ

vvsλ7cβ vvsλ8sβ v2
sλ6

 , (3.11)

where eqs. (3.6) and (3.9) have been used to trade the parameters m2
11, m2

22, and m2
s for v,

tanβ, and vs.

The orthogonal matrix R that diagonalizes M2
scalar is again parametrized by

R =

 cα1cα2 cα2sα1 sα2

−cα3sα1 − cα1sα2sα3 cα1cα3 − sα1sα2sα3 cα2sα3

−cα1cα3sα2 + sα1sα3 −cα3sα1sα2 − cα1sα3 cα2cα3

 . (3.12)

This is the same parametrization as eq. (2.9) in the previous chapter. Since the sign of the
mass eigenstates has no physical relevance, the angles α can without loss of generality be
taken in the range

−π
2
≤ α1,2,3 <

π

2
. (3.13)

We call the physical states H1 to H3 with masses mH1 to mH3 and impose the mass ordering

mH1 < mH2 < mH3 . (3.14)

The mass eigenstates are given as linear combinations of the gauge eigenstates throughH1

H2

H3

 = R

ρ1

ρ2

ρs

 . (3.15)

A value that is useful for understanding the phenomenology is the singlet admixture Σi. In
the N2HDM we define

Σi = (Ri3)2 , (3.16)

which specifies the fraction of the singlet field in the physical CP-even neutral scalar Hi.

3.1.3. Parametrizations of the Potential

In the original notation the scalar potential eq. (3.3) contains twelve real independent param-
eters. We call this the Lagrangian parametrization and the parametrization by masses and
mixing angles the physical one. The parameters in each basis are:

Lagrangian: m2
11 , m

2
22 , m

2
s , λ1−8 , m2

12 , (3.17)

physical: v , tanβ , vs , mH1,2,3 , mA , mH± , α1,2,3 , m2
12 . (3.18)
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Table 3.1.: Explicit formulas for the effective Yukawa couplings of the neutral CP-even Higgs
states in the type I and type II models, normalized to the SM values.

(a) Type I

c(Hiff) u d l

H1 (cα2sα1)/sβ (cα2sα1)/sβ (cα2sα1)/sβ
H2 (cα1cα3 − sα1sα2sα3)/sβ (cα1cα3 − sα1sα2sα3)/sβ (cα1cα3 − sα1sα2sα3)/sβ
H3 −(cα1sα3 + cα3sα1sα2)/sβ −(cα1sα3 + cα3sα1sα2)/sβ −(cα1sα3 + cα3sα1sα2)/sβ

(b) Type II

c(Hiff) u d l

H1 (cα2sα1)/sβ (cα1cα2)/cβ (cα1cα2)/cβ
H2 (cα1cα3 − sα1sα2sα3)/sβ −(cα3sα1 + cα1sα2sα3)/cβ −(cα3sα1 + cα1sα2sα3)/cβ
H3 −(cα1sα3 + cα3sα1sα2)/sβ (sα1sα3 − cα1cα3sα2)/cβ (sα1sα3 − cα1cα3sα2)/cβ

The minimum conditions eqs. (3.6a) to (3.6c) in combination with eq. (3.9) allow to trade m2
11,

m2
22, and m2

s for v ≈ 246 GeV, tanβ, and vs. Furthermore, the soft Z2 breaking parameter
m2

12 is an independent parameter in both parametrizations.

This leaves the eight λi in the parametrization of the Lagrangian and the five particle masses
and three αi in the physical parametrization. By requiring that the mass matrices are diago-
nalized by the corresponding rotation matrices a system of equations linear in the λi can be
found. Solving this system yields analytic expressions that allow expressing all parameters
of the Lagrangian through the physical ones. These are mainly useful for simplifying the
triple-Higgs couplings. They are, therefore, given along with the triple-Higgs couplings in
appendix A. Since the system is not linear in the mixing angles αi it is not possible to obtain
the inverse transformation analytically.

3.2. Higgs couplings to SM particles

The singlet field ρs has no direct couplings to SM particles. This means that all changes in
the tree-level Higgs couplings compared to the R2HDM come from the 3 × 3 scalar mixing
matrix (3.12). Furthermore, any couplings not involving the CP-even neutral Higgs bosons
remain unchanged from the R2HDM and can be found e.g. in [29]. We give effective couplings
normalized to the SM coupling wherever a corresponding SM coupling exists.

3.2.1. Yukawa couplings and Z2-symmetric fermion sectors

There are four possible ways of extending the Z2 symmetry to the Yukawa sector, exactly as
in the 2HDM (see table 2.1). These four types again all prevent the appearance of tree-level
flavor changing neutral currents. The effective couplings of the Higgs boson Hi to fermions
are given by the mixing matrix element Rij where j is the index of the doublet in table 2.1
divided by cβ for j = 1 and sβ for j = 2. Explicit formulas for the type I and type II N2HDM
are given in table 3.1.

The fermion couplings allow the construction of a sum-rule in the type II model:

1∑3
i=1 c

2(Hiuu)
+

1∑3
i=1 c

2(Hidd)
= 1 . (3.19)

Since the couplings of the type I model do not contain cβ it is impossible to construct a
sum-rule independent of β for that type.
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c(HiV V )

H1 cα2cβ−α1

H2 −cβ−α1sα2sα3 + cα3sβ−α1

H3 −cα3cβ−α1sα2 − sα3sβ−α1

Table 3.3: Effective couplings of the neutral CP-even
Higgs bosons to gauge bosons normalized to
the SM values. The couplings to W+W− and
ZZ differ only in their SM value leading to a
common effective coupling denoted by V V .

c̃(HiV H)

H1 −cα2sβ−α1

H2 cα3cβ−α1 + sβ−α1sα2sα3

H3 −cβ−α1sα3 + cα3sβ−α1sα2

Table 3.4: Mixing angle dependency of the Higgs-gauge
couplings involving a CP-even neutral scalar
and either AZ or H±W∓. The corresponding
prefactors are given in eq. (3.21).

3.2.2. Higgs-gauge couplings

The interactions between Higgs and gauge bosons stem from the covariant derivatives in
the kinetic terms in eq. (3.1). As the singlet does not transform under electroweak gauge
transformations it has no direct couplings to gauge bosons. All couplings are therefore results
of the mixing matrix (2.9). In the following, we only present three-particle couplings which
are relevant for decays.

The effective couplings to a pair of gauge bosons are given in table 3.3. Since the N2HDM
respects custodial symmetry the effective couplings to W+W− and ZZ are equal. They fulfill
an even simpler sum-rule than the Yukawa couplings:

3∑
i=1

c2(HiV V ) = 1 . (3.20)

The two other kinds of gauge couplings that are modified from their R2HDM values are
HiAZ and HiH

±W∓. They do not have an SM equivalent to normalize to and depend on
the momenta of the scalars. We, therefore, adopt the convention that the momentum pi of
the Hi is always incoming and the momentum pA/H± of the A or H± is outgoing. This is the
convention used in the Higgs Hunter’s guide [28].

The Feynman rules for the vertices are given by

λµ(HiAZ) =

√
g2 + g′2

2
(pA + pi)

µ × c̃(HiV H) , (3.21a)

λµ(HiH
±W±) = ∓ ig

2
(pH± + pi)

µ × c̃(HiV H) , (3.21b)

with the coupling factors c̃(HiV H) in terms of the mixing angles given in table 3.4.

The three particle Higgs-gauge couplings involving only the pseudoscalar A and the charged
Higgs bosons H± are not modified with respect to their R2HDM values. These can be found
e.g. in [29].

3.3. Vacuum stability constraints

In this section, we describe the criteria used to verify that the vacuum of electroweak sym-
metry breaking is the global minimum of the N2HDM scalar potential. We first present the
conditions for the N2HDM scalar potential to be bounded from below. Afterward, we analyze
all stationary points of the potential and show how to assure the electroweak vacuum is the
global minimum.
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3.3.1. Conditions for the potential to be bounded from below

A global minimum of the scalar potential exists if the potential is bounded from below. We
consider the potential to be bounded from below in the strong sense, which is defined as the
potential being strictly positive as the fields approach infinity. The necessary and sufficient
conditions for this are given in [91]. They depend on the discriminant

D =

{
λ4 − λ5, for λ4 > λ5

0, for λ4 ≤ λ5

. (3.22)

The allowed region is

Ω1 ∪ Ω2 (3.23)

with

Ω1 =

{
λ1, λ2, λ6 > 0;

√
λ1λ6 + λ7 > 0;

√
λ2λ6 + λ8 > 0;

√
λ1λ2 + λ3 +D > 0;λ7 +

√
λ1

λ2
λ8 ≥ 0

}
,

(3.24)

Ω2 =

{
λ1, λ2, λ6 > 0;

√
λ2λ6 ≥ λ8 > −

√
λ2λ6;

√
λ1λ6 > −λ7 ≥

√
λ1

λ2
λ8;√(

λ2
7 − λ1λ6

) (
λ2

8 − λ2λ6

)
> λ7λ8 − (D + λ3)λ6

}
.

(3.25)

While obvious from the formulas we emphasize that this forces λ1, λ2 and λ6 to be strictly
positive, which is useful for optimizations of the parameter scan.

3.3.2. Vacuum decay and global minimum condition

If the physical vacuum of the scalar potential is not the global minimum it is possible for
the vacuum to tunnel into the global minimum [92, 93]. Since the catastrophic consequences
of such a tunneling have obviously not been observed, the physical vacuum either has to be
the global minimum of the theory (called a stable vacuum) or the tunneling time has to be
large compared to the age of the universe (called a metastable vacuum). The calculation of
tunneling times is beyond the scope of this work. We, therefore, do not consider metastable
vacua and require the physical vacuum to be the global minimum of the N2HDM scalar
potential. In the following, we present conditions that check this requirement. A discussion
of vacuum stability in the R2HDM including an approximate calculation of tunneling times
can be found in [94].

In the 2HDM it has been proven [95] that the existence of a normal minimum of the form
eq. (2.15) ensures there is no deeper minimum that breaks electromagnetic charge or CP. This
proof does not generalize to the N2HDM as can bee seen from the counterexamples given in
appendix B. We, therefore, have to include the possibility of CP and charge breaking minima
in our analysis. We consider the most general static field configuration

〈Φ1〉 =

(
0
v1

)
, 〈Φ2〉 =

(
vcb

v2 + ivcp

)
, 〈ΦS〉 = vs . (3.26)

We have used the four degrees of freedom of the SU(2)L×U(1)Y gauge group to remove four
degrees of freedom in the static field configuration. Equation (3.26), therefore, parametrizes a
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gauge slice onto which all possible static field configurations of the N2HDM can be projected
via a gauge transformation.

We will in the following refer to the static fields v1, v2, and vs as well as to the CP-violating
vcp and the charge breaking vcb as VEVs even though this is technically only correct if
the configuration describes a minimum of the scalar potential. The Z2 symmetries of the
potential manifest in this parametrization as a Z2 symmetry for vs, vcb, and vcp as well as a
simultaneous Z2 symmetry of v1 and v2. This allows us to choose all VEVs except v2 to be
positive without loss of generality.

In order to classify all possible minima we look at the stationarity conditions for all five
VEVs〈

dV

dv1

〉
= 0⇔ v2m

2
12 − v1m

2
11 =

1

2
v1

(
v2

1λ1 + v2
2λ345 + v2

cbλ3 + v2
cpλ34−5 + v2

sλ7

)
, (3.27)〈

dV

dv2

〉
= 0⇔ v1m

2
12 − v2m

2
22 =

1

2
v2

(
v2

1λ345 + v2
2λ2 + v2

cbλ2 + v2
cpλ2 + v2

sλ8

)
, (3.28)〈

dV

dvcb

〉
= 0⇔ −vcbm

2
22 =

1

2
vcb

(
v2

1λ3 + v2
2λ2 + v2

cbλ2 + v2
cpλ2 + v2

sλ8

)
, (3.29)〈

dV

dvcp

〉
= 0⇔ −vcpm

2
22 =

1

2
vcp

(
v2

1λ34−5 + v2
2λ2 + v2

cbλ2 + v2
cpλ2 + v2

sλ8

)
, (3.30)〈

dV

dvs

〉
= 0⇔ −vsm

2
s =

1

2
vs

(
v2

1λ7 + v2
2λ8 + v2

cbλ8 + v2
cpλ8 + v2

sλ6

)
. (3.31)

Here the shorthands

λ345 = λ3 + λ4 + λ5 and λ34−5 = λ3 + λ4 − λ5 (3.32)

have been used.

Note that we have not made assumptions on any of the VEVs being non-zero. Looking
at eqs. (3.29) and (3.30) we notice, that they are almost equal. If we assume both vcb and
vcp to be non-zero we obtain

λ4 − λ5 = 0 . (3.33)

With the exception of this special case vcb and vcp cannot be simultaneously non-zero. We
obtain a similar condition by setting v1 = 0 in eq. (3.27) or equivalently v2 = 0 in eq. (3.28).
This leads to

(v1 = 0⇔ v2 = 0) ∨m2
12 = 0 . (3.34)

In the following we will only consider the case |m2
12| > 0, implying that v1 and v2 are either

both zero or both non-zero. All possible combinations of VEVs being zero or non-zero are
listed in table 3.5.

The simplest cases are (s)III and sIV. In these, the equations reduce to a linear system
of equations for the squares of the non-zero VEVs. The solutions of these systems can be
inserted directly into the scalar potential and yield only three distinct values of the scalar
potential. Along with these stationary values, we obtain positivity conditions for the squared
VEVs, which have to be fulfilled in order for the solution to exist. The stationary values and
corresponding conditions are given in appendix C.

In the cases (s)II the minimum conditions eqs. (3.29) and (3.30) allow a great simplification
of the v2 minimum condition eq. (3.28). This leads to a solution that is unique up to the sign
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Table 3.5.: All possible cases of VEVs being zero (0) or non-zero (1). Cases which are only
allowed when certain parameter conditions are satisfied are not shown.

Case I IIa IIb IIIa IIIb IIIc sI sIIa sIIb sIIIa sIIIb sIIIc sIV

v1 1 1 1 0 0 0 1 1 1 0 0 0 0
v2 1 1 1 0 0 0 1 1 1 0 0 0 0
vcp 0 1 0 1 1 0 0 1 0 1 1 0 0
vcb 0 0 1 1 0 1 0 0 1 1 0 1 0
vs 0 0 0 0 0 0 1 1 1 1 1 1 1

of v2. The value of the scalar potential at the stationary point, however, does not depend
on this sign. The cases (s)II each yield a unique stationary value given in appendix C along
with the related positivity conditions.

The cases I and sI, where the minimum has the form of a normal R2HDM or N2HDM
minimum, respectively, are the most complicated ones. The form of the system of equations
can in both cases easily be brought to a system of coupled cubic equations for v1 and v2. By
parametrizing them as

v1 = v cos(δ) , v2 = v sin(δ) (3.35)

they can be reduced to a single quartic equation of sin2(δ). This leads to up to four valid
solutions for sin2(δ) (real and in the open interval (0, 1)). The additional freedom in the sign
of sin(δ) and v2 leads to a maximum of 16 solutions for each of the case I configurations.
These solutions still have to satisfy positivity constraints of the squared VEVs. The full
procedure is again detailed in appendix C.

We do not try to discern which of these stationary points are minima, maxima, or saddle
points. To check if our minimum is the global one, we simply compare the value of the scalar
potential at our minimum with the ones at all other stationary points. This involves four
comparisons with an analytically known value, which cover the cases II, III and IV and the
comparisons with the numeric solutions for the case I configurations.

3.4. Tree-level perturbative unitarity

Tree-level perturbative unitarity is a requirement following directly from S-matrix unitar-
ity [96]. It is usually considered by requiring that the 2→ 2 scalar scattering matrix has no
eigenvalue with an absolute value larger than 8π. This is the strict upper limit above which
unitarity is violated. It can be useful to require a limit lower than 8π at tree level to account
for possible large enhancements of the scalar couplings through higher order corrections.

We follow [96] in both procedure and naming. We calculate the full 2→ 2 scattering matrix
of the gauge basis fields (see eq. (3.5))

H±1 , H
±
2 , ρ1, ρ2, ρs, η1, η2 (3.36)

in Mathematica. This scattering matrix is block diagonal.

The block matrices that do not contain ρs have the unique eigenvalues

f1 := λ3 + λ4 , p1 := λ3 − λ4 , (3.37a)

f− := λ3 + λ5 , e2 := λ3 − λ5 , (3.37b)

f+ := λ3 + 2λ4 + 3λ5 , e1 := λ3 + 2λ4 − 3λ5 , (3.37c)
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and

c± :=
1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
, (3.37d)

b± :=
1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

5

)
. (3.37e)

These same eigenvalues are also found in the R2HDM. The blocks involving the singlet field
ρs contribute the eigenvalues

s1 = λ7 , (3.37f)

s2 = λ8 (3.37g)

and the eigenvalues a1,2,3 which are the real roots of the cubic polynomial

4
(
−27λ1λ2λ6 + 12λ2

3λ6 + 12λ3λ4λ6 + 3λ2
4λ6 + 6λ2λ

2
7 − 8λ3λ7λ8 − 4λ4λ7λ8 + 6λ1λ

2
8

)
+ x

(
36λ1λ2 − 16λ2

3 − 16λ3λ4 − 4λ2
4 + 18λ1λ6 + 18λ2λ6 − 4λ2

7 − 4λ2
8

)
+ x2 (−6(λ1 + λ2 + λ6)) + x3 .

(3.38)

The obtained eigenvalues are not all independent. As noted in [96]

3f1 = p1 + e1 + f+ , (3.39)

3e2 = 2p1 + e1 , (3.40)

3f− = 2p1 + f+ . (3.41)

We can, therefore, drop the conditions on f1, e2 and f− as they are implied by taking p1,
e1 and f+ into account. Since λ1, λ2 > 0 is necessary for the potential to be bounded from
below (see section 3.3.1) we obtain

|c+| > |c−| , (3.42)

|b+| > |b−| . (3.43)

The resulting conditions for tree-level perturbative unitarity are thus

|λ3 − λ4| < 8π , (3.44a)

|λ3 + 2λ4 ± 3λ5| < 8π (3.44b)∣∣∣∣12
(
λ1 + λ2 +

√
(λ1 − λ2)2 + 4λ2

4

)∣∣∣∣ < 8π , (3.44c)∣∣∣∣12
(
λ1 + λ2 +

√
(λ1 − λ2)2 + 4λ2

5

)∣∣∣∣ < 8π , (3.44d)

|a1,2,3| < 8π (3.44e)

where a1,2,3 are the real roots of eq. (3.38).





CHAPTER 4

Scans of the parameter space

In this chapter we describe the ScannerS [10, 68] framework used to perform parameter
scans in the CxSM, C2HDM and N2HDM. We describe in some detail the theoretical and
experimental constraints used to decide whether an N2HDM or C2HDM point with given
fixed parameters is physical (i.e. in agreement with theoretical requirements and current
experimental data) or not. We also review the constraints applied on the CxSM and NMSSM
in [11]. Afterward, we discuss the mass distribution of the neutral scalars in the obtained
parameter samples and compare the C2HDM sample to an earlier work [39].

ScannerS is a code that performs parameter scans in models with extended Higgs sectors. The
program first generates a uniform VEV configuration according to the symmetry-breaking
pattern of the model. It also generates a tree-level Higgs sector mixing matrix uniformly
with respect to the Haar measure [97]. Afterward, it solves the linear system of constraints
which define the local minimum. This linear system relates the physical particle masses to
the parameters of the Lagrangian given a fixed mixing matrix and fixed VEVs. It finally
finds which parameters of the model are independent, generates uniform values for them, and
calculates the dependent parameters. Every parameter point generated this way is checked by
ScannerS for agreement with all constraints specified by the user. The program also includes
a model independent check of tree-level perturbative unitarity and provides interfaces to
various programs for particle phenomenology. A detailed description of the ScannerS scanning
procedure can be found in [10].

In the following we denote the discovered Higgs boson by h125 with a mass of

mh125 = 125.09 GeV , (4.1)

which is the central value of the current mass measurement [8]. Electroweak corrections are
not included in both parameter scans and analysis as they are not available for all of our
models.
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4.1. The CxSM parameter scan

The ScannerS implementation of the CxSM is publicly available and has been described in
detail in [10, 11]. We did not generate new CxSM points but instead reused the sample
generated for [11]. The tree-level theoretical constraints have been checked as described
in [10]. They include checks for tree-level perturbative unitarity, for the potential to be
bounded from below, and for the ScannerS minimum to be the global one. There are no
constraints from flavor physics that apply to the CxSM. In singlet models, all couplings of
a given Higgs boson to SM particles are suppressed by the same mixing factor. This allows
calculating the oblique parameters S, T and U [98], which parametrize constraints from
electroweak precision measurements, directly from the SM values [10]. Compatibility of these
parameters with the SM fit [99] was demanded at the 2σ level including correlations.

The public tool sHDECAY [11] was used to calculate the Higgs boson decay properties. Agree-
ment with the Higgs searches was checked with HiggsBounds v6.50 [78] . In the CxSM all
QCD corrections to the production processes cancel upon normalization to the SM. The pro-
duction cross sections normalized to the SM which are required by HiggsBounds are therefore
simply given by the corresponding effective coupling squared. The CxSM parameter scan is
described in more detail in [11].

From this sample, we only consider those parameter points where only one Higgs boson h125

contributes to the 125 GeV Higgs signal. To this end we require a window of mh125 ± 5 GeV
to be free of any Higgs bosons except for h125. We impose this condition in all our models
as we do not want to study the superposition and interference effects of a degenerate Higgs
signal. A detailed discussion of the statistical treatment of such superimposed signals can
be found in [100]. We check the properties of the h125 by requiring that the global signal
strength µ is within 2σ of the experimental fit value [9]. The one parameter fit is a natural
parametrization for the CxSM due to the simple coupling structure. The signal strength of
h125 is given by [11]

µ ≈ (Rh1251)2 ×
∑
XSM

BR(h125 → XSM) . (4.2)

The mixing matrix R is defined in eq. (2.6) and h125 is one of the Hi from eq. (2.6). The sum
includes all decay channels XSM of h125 into SM particles. We do not include the effects of
chain production studied in [11] for any of our models.

The sample was generated using eq. (2.11) as input parameters. One of the Higgs bosons is
identified with h125 and the remaining are constrained to the mass range

30 GeV ≤ mHi < 1 TeV . (4.3)

The doublet VEV v is fixed to the SM value

v =
1√√
2GF

, (4.4)

while va and vs are allowed to lie within

1 GeV ≤ vs, va < 1.5 TeV . (4.5)

The mixing angles α1,2,3 range over their whole allowed region (2.10).
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4.2. The C2HDM parameter scan

We have created an implementation of the C2HDM as a ScannerS model class. All constraints
that apply in the C2HDM have been calculated and used before. We, however, provide the
first simultaneous application of all of these constraints in a full parameter scan. We use the
conditions for the potential to be bounded from below as well as the discriminant to prevent
vacuum decay from [101]. The inequalities to ensure tree-level perturbative unitarity are
given in [29] for the general (real and complex) 2HDM. They have been checked against the
model-independent numeric default procedure of ScannerS.

The flavor constraints on Rb [102, 103] and B → Xsγ [103–106] generalize from the R2HDM to
the C2HDM as they only depend on the charged Higgs boson. These constraints are checked
as 2σ exclusion bounds in the mH±-tanβ-plane. We note that the newest calculation [106]
enforces

mH± > 480 GeV (4.6)

in the type II and lepton specific 2HDM. Agreement with electroweak precision measurements
is again verified using the oblique parameters S, T and U . The formulas to calculate the
oblique parameters are given in [29] for the general 2HDM. We calculate S, T and U and
demand 2σ compatibility with the SM fit [99]. We take the full correlation among the three
parameters into account.

Constraints on the Higgs sector from collider searches are checked using the HiggsBounds [78]
code and the individual signal strength fit [9] for the h125. In order to use these constraints, we
need information on the Higgs boson production and decay properties. We use an in-house
implementation of the C2HDM into HDECAY v6.51 [76, 77] to calculate the Higgs boson
decay widths and branching ratios. This includes state-of-the-art QCD corrections to the
decay processes. Additionally, the Higgs boson production cross sections normalized to the
SM are required. The production cross sections via gluon fusion (ggF) and b-quark fusion
(bbF) are obtained through the ScannerS interface to SusHi v1.6.0 [107] at NNLO QCD.
We calculate the contributions to the cross sections from the CP-even and CP-odd Yukawa
couplings separately and add them incoherently. The obtained cross section is normalized to
the CP-even SM production cross section. We define

µF =
σeven

C2HDM(ggF) + σeven
C2HDM(bbF) + σodd

C2HDM(ggF) + σodd
C2HDM(bbF)

σeven
SM (ggF)

(4.7)

where we neglect the SM bbF cross section compared to the ggF one. All QCD corrections
to production cross sections mediated by gauge bosons cancel upon normalization to the SM.
The Vector Boson Fusion (VBF) and Vector boson associated (VH) production channels thus
yield

µV =
σC2HDM(VBF)

σSM(VBF)
=
σC2HDM(VH)

σSM(V H)
= c2(HiV V ) . (4.8)

There is no CP-odd contribution to these channels and the effective couplings c(HiV V ) are
given in eq. (2.27). Finally, HiggsBounds requires the cross sections through t-quark and
b-quark associated production. The QCD corrections to these processes do not cancel upon
normalization due to the incoherent addition of CP-even and CP-odd contributions. These
cross section ratios are therefore used at leading order where they are given by the effective
coupling a2 + b2 with a and b from table 2.2. This information is passed to HiggsBounds

via the ScannerS interface and HiggsBounds v4.3.1 is used to check agreement with all 2σ
exclusion limits from LEP, Tevatron and LHC Higgs searches. As in the CxSM, we require a
window of mh125 ± 5 GeV to be free of additional Higgs bosons in order to avoid degenerate
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Higgs signals. The properties of the h125 are checked using the six-parameter signal strength
fit from [9]. The six fit parameters are

µF
µV

, µγγF , µZZF , µWW
F , µττF , µbbF , (4.9)

with

µxxF = µF
BRC2HDM(Hi → xx)

BRSM(Hi → xx)
. (4.10)

We require agreement with the fit results [9] at the 2× 1σ level.

Due to the presence of CP-violation in the C2HDM, constraints on CP-violating quantities
are important. The strongest one is the constraint on the electric dipole moment of the
electron [108] using the experimental limit by the ACME collaboration [75]. We have imple-
mented the calculation from [109] and impose that the results are compatible with the 90%
c.l. bound given in [75].

4.2.1. Scan ranges in the type II C2HDM

We use the input parameters from eq. (2.22). We fix v to its SM value (4.4) and vary tanβ
within

0.25 ≤ tanβ < 35 . (4.11)

The lower bound on tanβ from the Rb measurement is stronger than the lower bound in
eq. (4.11). Therefore, the lower bound of eq. (4.11) has no influence on the physical parameter
points. We transform the mixing matrix generated by ScannerS such that it is parametrized
as eq. (2.9) with

−π
2
≤ α1,2,3 <

π

2
. (4.12)

We further identify one of the neutral Higgs bosons Hi with h125 and choose the charged
Higgs mass in the range

480 GeV ≤ mH± < 1 TeV . (4.13)

We observe that the electroweak precision constraints force the mass of at least one of the
neutral Higgs bosons to be close to mH± . We use this information to increase the efficiency
of the parameter scan by generating a second neutral Higgs mass mH in the interval

mH± − 100 GeV ≤ mH < mH± + 250 GeV . (4.14)

We have performed a scan without this parametrization and only the electroweak precision
constraints enabled. The interval (4.14) was then chosen such that all points that fulfill the
electroweak precision constraints lie within. In the final sample with all constraints turned
on we found no physical parameter point within 30 GeV of the interval borders. This verifies
that this parametrization does not influence the phenomenology.

The third neutral Higgs mass is not an independent parameter and is automatically calculated
by ScannerS. We require the two non-h125 Higgs masses to be within

30 GeV ≤ mH 6=h125 < 1 TeV . (4.15)

Finally we generate Re(m2
12) in the interval

0 GeV2 ≤ Re(m2
12) < 500 000 GeV2 . (4.16)

In the C2HDM there exist physical parameter points with Re(m2
12) < 0 GeV2. They are,

however, extremely rare and we do not include them in our study.
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4.3. The N2HDM parameter scan

We have implemented the theoretical constraints on the N2HDM at tree-level as described
in sections 3.3 and 3.4. The requirement that the potential is bounded from below is verified
using eqs. (3.24) and (3.25). We require the vacuum state found by ScannerS to be the
global minimum of the scalar potential. To ensure that, we verify that the value of the scalar
potential at the ScannerS vacuum is deeper than at all of the stationary points described
in section 3.3.2 and appendix C. We check tree-level unitarity using eq. (3.44). ScannerS

includes a model independent numeric check of tree-level perturbative unitarity. We verified
that both methods yield the same results and use eq. (3.44) because of its lower run-time.

Most of the experimental constraints applied on the C2HDM in section 4.2 also apply to the
N2HDM. We first apply the constraints on Rb and B → Xsγ from flavor physics. Since these
are only sensitive to the charged Higgs boson, the 2HDM calculation and the resulting 2σ
limits in the mH±-tanβ-plane can be taken over to the N2HDM. The oblique parameters
S, T , and U are calculated with the general formulas in [110, 111]. We again demand 2σ
compatibility with the SM fit including the full correlation.

We calculate the branching ratios and total widths of the Higgs bosons with N2HDECAY (see
appendix D). The code is an implementation of the N2HDM in HDECAY based on HDECAY

v6.51 [76, 77] including all QCD corrections available in HDECAY. All required Higgs produc-
tion cross sections need to be normalized to the SM. The cross sections through ggF and
bbF are treated as in the C2HDM (see section 4.2) without the CP-odd contributions. In all
other production cross sections, the QCD corrections cancel upon normalization to the SM.
This means that each normalized cross section is simply the corresponding effective coupling
squared. The effective couplings can be found in section 3.2. This information is passed to
HiggsBounds v4.3.1 which checks for agreement with all 2σ exclusion bounds from Higgs
searches. We use the same signal strength parametrization as in section 4.2 to check the
properties of h125. We also require the same mh125 ± 5 GeV window to be free of additional
Higgs particles.

4.3.1. Scan ranges in the type II N2HDM

We use the parameter set (3.18) as input parameters. We fix v to its SM value from eq. (4.4)
and allow for

0.25 ≤ tanβ < 35 , (4.17)

with the same reasoning as in the C2HDM. We further identify one of the Hi with h125 and
transform the mixing matrix generated by ScannerS to match eq. (3.12), with

−π
2
≤ α1,2,3 <

π

2
. (4.18)

We allow the remaining neutral Higgs bosons to have masses within

30 GeV ≤ mH 6=h125 ,mA < 1 TeV , (4.19)

while forcing

480 GeV ≤ mH± < 1 TeV (4.20)

to comply with eq. (4.6). Finally, we generate the singlet VEV vs in the interval

1 GeV ≤ vs < 1.5 TeV (4.21)

and the soft Z2 breaking parameter m2
12 in

0 GeV2 < m2
12 < 500 000 GeV2 . (4.22)

The condition m2
12 > 0 is found to be necessary for our minimum to be the global minimum

of the scalar potential. The same behavior is observed in the R2HDM.
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Table 4.1.: Input parameter ranges of the NMSSM parameter scan. All parameters have been
varied independently between the given minimum and maximum values.

tanβ λ κ M1 M2 M3 At Ab Aτ mQ̃3
mL̃3

Aλ Aκ µeff

in TeV

min 1 0 −0.7 0.1 0.2 1.3 −2 −2 −2 0.6 0.6 −2 −2 −1
max 30 0.7 0.7 1 1 3 2 2 2 3 3 2 2 1

4.4. The NMSSM parameter scan

We performed a parameter scan in the NMSSM following the procedure described in [11, 66].
In the following, we will give an overview of the scanning procedure. For a more detailed
description, we refer to [66].

We use the NMSSMtools package [64, 69–74] for most of the analysis. NMSSMtools calculates
the spectrum of the Higgs and SUSY particles including higher order corrections. The branch-
ing ratios are calculated with the tool NMHDECAY [73] for the Higgs bosons and NMSDECAY [70,
74] for the SUSY particles. Additionally, the package checks for vacuum stability verifies
LEP and Tevatron exclusion bounds from searches for SUSY particles and tests low-energy
observables. More information can be found on the website [112].

The resulting points are checked for compatibility with the searches for SUSY particles at
LHC [113–126]. The NMSSMtools interface with micrOMEGAS [69, 127] is used to calculate the
relic density. We require that the relic density does not exceed the value measured by the
PLANCK collaboration [128]. Exclusion bounds from Higgs searches are verified using a link
to HiggsBounds in the effective coupling approximation. We require a neutral CP-even Higgs
boson between 124 GeV and 126 GeV. We also impose that the window mh125 ± 5 GeV is free
of further Higgs bosons, as for the other models. Agreement with the observed h125 is again
verified using the signal strength fit described in section 4.2 at the 2× 1σ level. The required
signal strengths are computed by NMSSMtools.

The parameter ranges used to generate our sample are given in table 4.1. The parameters
tanβ and λ are conventionally chosen to be positive, while κ and the soft SUSY breaking A
parameters can have both signs. To ensure perturbativity and unitarity up to the GUT scale
we require [64]

λ2 + κ2 < 0.72 . (4.23)

The mass parameters for the third generation sfermions, which are missing in table 4.1, are

mt̃R
= mQ̃3

, mτ̃R = mL̃3
, and mb̃R

= 3 TeV . (4.24)

All first and second generation sfermion mass parameters are set to 3 TeV. In addition we
only keep points with all Higgs masses between 30 GeV and 1 TeV for consistency with the
other models.

4.5. Mass distributions of the neutral scalars

In this section and the following we discuss some properties of the samples of physical param-
eter points obtained using the procedure described in sections 4.1 to 4.4. Each of our models
contains a set of three mixing neutral Higgs bosons H1,2,3 one of which is identified with the
h125 state. In the CP-conserving models, these are the three CP-even neutral Higgs bosons
of the theory. In the C2HDM they are the neutral states of mixed CP quantum numbers. In
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Figure 4.1.: Masses of the two non-h125 neutral scalars in our four models. Note that by
definition mH↓ ≤ mH↑ . The gaps at 125 GeV are the windows around h125 to
avoid degenerate Higgs signals (see e.g. section 4.1).
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this section, we study the mass distributions of the two non-h125 particles out of these three.
We call the lighter of the two H↓ and the heavier H↑.

Figure 4.1 shows the distribution of the masses of these two particles in our models. A first
observation is that all of our models can produce points with mH↓ < mh125 . In the C2HDM
our sample only contains two points in this region (here shown in front of the NMSSM points
to be visible at all). This is insufficient to conclude anything about the C2HDM behavior in
this region. We will continue to show these points in the plots but will not comment on them
any further. Only the N2HDM and the CxSM contain parameter points where mH↑ < mh125 .
The N2HDM points cover this whole region but are almost completely hidden behind CxSM
points. We note that the light NMSSM pseudoscalar A1 as well as an R2HDM pseudoscalar
A may also be located in this mass range.

Apart from the differences in this region the CxSM, N2HDM and NMSSM can cover most
of the parameter space. The C2HDM, however, behaves very differently and always has
H↑ heavier than about 400 GeV. This is the behavior mentioned in section 4.2.1 and can
be understood as follows. The T parameter strongly constrains the allowed mass difference
between mH± and the nearest neutral Higgs boson masses. Since there is no charged Higgs
boson in the CxSM the T parameter does not constrain this model. In the C2HDM, N2HDM
and NMSSM it forces at least one and usually two neutral Higgs bosons to be close in mass
to the charged Higgs boson. The contributions of these neutral Higgs bosons can then cancel
the contribution of the charged Higgs boson to the T parameter. The N2HDM and NMSSM,
however, have additional pseudoscalar Higgs bosons which can help to fulfill this constraint,
greatly reducing its influence on the mass distributions of the CP-even Higgs bosons. In the
C2HDM there are only three neutral Higgs bosons, one of which is identified with h125. This
forces at least one of the remaining two neutral Higgs bosons to be close in mass to mH±

which is heavier than 480 GeV due to the constraints from BR(B → Xsγ) [106]. This leads
to additional light Higgs bosons being extremely rare in the C2HDM, which could allow us
to distinguish it from the other models.

4.6. The effect of new constraints on the C2HDM parameter
space

In this section, we compare the results of our parameter scan in the C2HDM type II to
the results from [39]. To do so we recreate figures 1 to 3 from [39] using both our sample
of physical parameter points as described in section 4.2 (sample I) and a sample with the
constraints from HiggsBounds and the electron electric dipole moment (eEDM) turned off
(sample II). The constraints applied on sample II are roughly equivalent to the ones used
in [39].

To properly compare with [38] we explicitly use the parametrization (2.9) for the C2HDM
mixing matrix R. For simplicity we only include points where h125 is the lightest neutral
Higgs boson H1. The h125 state is then given by

h125 = R11ρ1 +R12ρ2 +R13ρ3 = [cα1cα2 ] ρ1 + [cα2sα1 ] ρ2 + sα2ρ3 (4.25)

as a linear combination of the states ρ1,2,3 from section 2.2.

Figure 4.2 shows the two mixing angles that enter in the admixtures of h125. The angle α1

mixes the two CP-even parts of the Higgs-doublets while α2 parametrizes the CP-violating
pseudoscalar admixture. We see that in sample I α2 is constrained to be very small, while it
can take much bigger values with the eEDM constraint turned off. The shape of sample II
approximately agrees with [39].
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Figure 4.2.: Mixing angles α1 and α2 of the C2HDM mixing matrix R (see e.g. eq. (2.9)) in
degree. The dark blue points are sample I and the light blue points sample II,
respectively. To be compared to fig. 1 from [39].

The mixing matrix elements R11 and R13 are shown in fig. 4.3. We do not show the plot for
the matrix element R12 as there are no significant differences between the samples I and II
and [39]. The sample II points behave very similarly to [39] in both figs. 4.3a and 4.3b. The
main difference between the samples I and II in fig. 4.3a is the exclusion of R11 ≈ 0 points
by the stronger constraints applied in sample I. The phenomenology of these points, where
the couplings of h125 to d-type quarks and leptons are purely CP-odd, was studied in detail
in [39]. In fig. 4.3b we see that in sample I the CP-violating R13 is constrained to be smaller
than 0.01 except for points of small tanβ.

Figure 4.4 shows tanβ over

sgn(c(h125V V )) · sin(α1 − π/2) , (4.26)

with c(h125V V ) given by eq. (2.27). In the R2HDM a plot of tanβ over x := sgn(c(h125V V )) ·
sin(α) splits the parameter space into the correct-sign-regime (where x < 0) and the wrong-
sign-regime [129] (where x > 0). In [39] it is shown that letting R13 → 0 ⇔ α2 → 0 (and
(α1 − π/2)→ α to match the R2HDM conventions) leads h125 into the R2HDM limit of the
C2HDM. Since employing the eEDM and HiggsBounds constraints enforces |R13| < 0.01 for
most of our sample I points h125 is usually in the R2HDM limit. This is the case for all points
with eq. (4.26) larger than zero. We can, therefore, use the condition

sgn(c(h125V V )) · sin(α1 −
π

2
) > 0 (4.27)

for the wrong-sign-limit. The phenomenology of the wrong-sign-limit points is very different
from the other C2HDM points. We will frequently comment on their behavior in chapter 5.
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Figure 4.3.: The parameter tanβ as a function of the mixing matrix elements R11 in (a) and
R13 in (b), which contribute to h125. The dark blue points are sample I and the
light blue points sample II, respectively. To be compared to fig. 1 from [39].

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4
sgn(c(h125V V ))× sin(α1 − π/2)

0

5

10

15

20

25

30

ta
n
β

Figure 4.4.: The parameter tanβ as a function of sgn(c(h125V V )) · sin(α1 − π/2). The dark
blue points are sample I and the light blue points sample II, respectively. To be
compared to fig. 3 from [39].



CHAPTER 5

Phenomenological results

In this chapter, we present the results of the parameter scans described in chapter 4. In
section 5.1 we study the properties of the h125 in our four models. We discuss how the
physical parameter points of our models can deviate from the SM expectation. We focus on the
possibility of singlet (or pseudoscalar) admixture to h125 and how points with high admixture
are kept in agreement with current experimental data. Section 5.2 shows ways to distinguish
between our four models. In section 5.2.1 we study the properties of a second neutral Higgs
boson. We explain the model predictions for signal rates in the LHC Higgs search channels
and point out how the observation of a second Higgs boson could help distinguish among our
models. In section 5.2.2 we present an analysis of coupling sums, relying on sum-rules fulfilled
by the models. This analysis is a promising way to differentiate between models and can allow
the exclusion of a model using the coupling measurements of only two scalar particles.

In the models with a Z2-symmetric Yukawa sector (the N2HDM and the C2HDM), we only
study the type II in detail. However, we comment on the behavior of the other types in the
sum-rule analysis.

5.1. Properties of the h125

In this section we study the properties of the h125 in our models by looking at its admixtures.
The singlet admixture Σi in the N2HDM has already been defined in eq. (3.16) as

ΣN2HDM
i := (Ri3)2 . (5.1)

The definition in the NMSSM is the same using the NLO mixing matrix calculated by NMSSM-

tools. In the CxSM the singlet admixture is the sum of the real and complex singlet parts

ΣCxSM
i := (Ri2)2 + (Ri3)2 . (5.2)

In the C2HDM we define the pseudoscalar admixture

ΨC2HDM
i := (Ri3)2 . (5.3)

Since we will only study the h125 we denote its admixtures simply by Σ for singlet admixtures
and Ψ for the pseudoscalar admixture.
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Figure 5.1.: Singlet admixture Σ of h125 as a function of the global signal strength µ in the
CxSM. The dashed line denotes the experimental lower limit on µ from [9].

We use the individual signal strengths (4.9) as a parametrization for the observable properties
of h125. In the CxSM we instead use the global signal strength µ (see eq. (4.2)) due to its
simple coupling structure. We observe that the measurement of µbb̄ is not sufficiently precise
to constrain our models and thus do not show it. We further note that

µZZ = µWW =: µV V (5.4)

holds in our models since they all preserve custodial symmetry. We, therefore, combine the
lower 2× 1σ bound from µZZ with the upper bound on µWW [9] and use

0.79 < µV V < 1.48 . (5.5)

5.1.1. Phenomenology of the h125 singlet admixture

We start the discussion with the CxSM, where all couplings to the SM particles are rescaled
by a common factor. Due to this simple behavior, it is not possible to keep large singlet
admixtures in agreement with the experimental data. This is shown in fig. 5.1. The maximum
allowed singlet admixture in the CxSM is given through the lower bound on the global signal
strength µ by

ΣCxSM
max = 1− µmin ≈ 11 % . (5.6)

The large number of free parameters in the N2HDM allows for more non-standard properties
of h125. Figure 5.2 shows the distribution of the parameter points in the space of signal
strengths with the color code indicating the amount of singlet admixture Σ. We observe that
the N2HDM parameter space is constrained by both upper and lower limits in µV V and µγγ
as well as the lower bounds from µττ and µV /µF . Figure 5.3 shows correlations between the
effective couplings of the theory and the influence of singlet admixture on the couplings.
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Figure 5.2.: Singlet admixture Σ in the N2HDM as a function of the most constraining mea-
sured signal strengths from eq. (4.9). The dashed lines show the experimental
limits from [9] (and eq. (5.5)) and the white triangle denotes the SM value.
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Figure 5.3.: Singlet admixture Σ of the N2HDM h125 as a function of its effective couplings
squared. The white triangle denotes the SM value. The dashed line is the line of
equal scaling of both couplings.
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We first study the possibility of an enhanced µττ . The largest enhancements compared to the
SM are reached in the R2HDM limit of vanishing singlet admixture. There are three distinct
regions with different ways of enhancing µττ . The largest enhancement of up to 40 % can
happen if µV V is simultaneously enhanced. These are the points with an enhanced coupling to
t quarks in fig. 5.3a. This enhancement increases ggF production while the decay properties
stay SM-like. The points with an enhanced µττ and µV V ≈ 1 are (wrong-sign-limit) points
where the coupling to gauge bosons is reduced. In fig. 5.3b they are located below the dashed
line and isolated from the bulk of the points. The resulting reduction of the decay width
Γ(h125 → V V ) leads to an increased BR into τ τ̄ . The final O(10 %) enhancements of µττ
near the lower bound from µV V are points where the coupling to τ leptons and b quarks is
enhanced (the spikes to the right in fig. 5.3). This increases the decay widths into τ τ̄ and
the dominating decay width into bb̄. The decay width Γ(h125 → V V ), which in the SM is
comparable to Γ(h125 → ττ), is not enhanced. This leads to a reduction of BR(h125 → V V )
in favor of BR(h125 → ττ). We stress again that these enhancements are possible in the
R2HDM limit without any singlet admixture to h125.

Looking at the singlet admixture we observe that a Σ of up to 55 % can still be compatible
with current measurements. It is especially interesting that µV V and µγγ , which have the best
experimental sensitivity, do not put the strongest limits on the singlet admixture as even a
measurement of µV V = 1 would still allow for a sizable Σ ≈ 45 %. A measurement of µττ = 1
would, on the other hand, enforce Σ . 25 %. We will now explain this behavior by studying
how points with high singlet admixture stay in agreement with observations.

In fig. 5.3a we see, that a high singlet admixture reduces the effective coupling to b quarks,
which scales the dominant decay width into bb̄, more strongly than the coupling to t quarks,
which is the dominant loop contribution in ggF production. Figure 5.3b shows that the b
quark coupling also decreases faster with rising singlet admixture than the effective coupling
to gauge bosons. This means that a high-singlet-admixture point has a reduced Γ(h125)tot

due to the strongly reduced Γ(h125 → bb̄) which dominates the SM reference. This reduction
of the total width enhances the BR in the V V and γγ channels sufficiently to compensate
for both the reduced ggF production cross section and the reduced partial decay widths in
these channels. The decay width Γ(h125 → ττ), however, gets rescaled by the same coupling
as the bb̄ channel (since we are in the type II). A high singlet admixture therefore always
reduces µττ . Values of µττ & 1 are only possible in the presence of singlet admixture if µττ
is enhanced by one of the effects in the R2HDM limit described above. On the other hand,
µV V ≈ 1 can be reached through a sufficient reduction of Γ(h125 → bb̄) even for strongly
reduced gauge couplings. We conclude that a more precise measurement of µττ is the best
way to constrain the amount of singlet admixture in the N2HDM.

In fig. 5.3a we further see that in the case of small Σ the effective coupling to top quarks in
the N2HDM can be considerably enhanced. This allows the model to contain an enhancement
of the ttH production process which is very well compatible with current measurements [9].
Finally, we observe that the maximum possible enhancement of the bb̄ coupling in the N2HDM
is not high enough for bbF to play a relevant role in the production of h125.

Figure 5.4 shows the same plots as fig. 5.2 for the NMSSM parameter points. The parameter
space of the NMSSM is clearly more constrained as compared to the N2HDM. This is due
to the correlations enforced upon the Higgs sector by supersymmetry. We observe that in
the NMSSM µτ τ̄ cannot be enhanced by more than a few percent. We will now explain
the absence of the tree regions of enhancement we observed in the N2HDM. The region of
enhanced ggF production does not exist as fig. 5.5a shows that in the NMSSM

c2(h125tt̄) ≤ 1 . (5.7)
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Figure 5.4.: Singlet admixture Σ of h125 in the NMSSM as a function of the most constraining
measured signal strengths from eq. (4.9). The dashed lines show the experimental
limits from [9] (and eq. (5.5)) and the white triangle denotes the SM value.
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Figure 5.5.: Singlet admixture Σ of the NMSSM h125 as a function of its effective couplings
squared. The white triangle denotes the SM value. The dashed line is the line of
equal scaling of both couplings.
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A region with µττ > 1 and µV V ≈ 1 does not exist as these are wrong-sign-limit points in the
N2DHM and the wrong-sign-limit is excluded in the NMSSM. The enhancement of µττ with
simultaneously reduced µV V relied on increased couplings of h125 to b quarks and leptons.
Comparing fig. 5.5 to fig. 5.3 we observe that the allowed enhancement of this coupling is
only about 20 % in the NMSSM compared to 40 % in the N2HDM. The possible enhancement
of µττ in this region is therefore way lower than in the N2HDM.

We further observe that the ratio of production signal strengths in fig. 5.4b is constrained to
be close to one. The correlation that is apparent between fig. 5.5a and fig. 5.5b shows that

c2(h125tt̄) ≈ c2(h125V V ) . (5.8)

The t quark couplings dominates ggF production and thus µF while c2(h125V V ) ≈ µV . This
leads to µV ≈ µF and explains why µV /µF ≈ 1. This is a consequence of SUSY relations.

Despite these constraints, the NMSSM can still accommodate a considerable singlet admixture
of up to Σ ≈ 45 %. These points stay in agreement with the observations in the same way
as described for the N2HDM. The effective couplings in fig. 5.5 show the required scaling
behavior of c2(h125bb̄) being reduced by singlet admixture more strongly than c2(h125V V )
and c2(h125tt). Since the NMSSM cannot enhance µττ to compensate for a singlet admixture,
the lower bound of µττ constrains the allowed Σ even more strongly than in the N2HDM. A
measurement of µττ = 1 would exclude any relevant singlet admixture to h125.

5.1.2. Pseudoscalar admixture in the C2HDM

The CP-violation present in the C2HDM leads to a very different phenomenology compared
to the CP-conserving models. The pseudoscalar admixture Ψ of h125 cannot exceed a few
percent, as can be inferred from fig. 5.6. It is clear that the bounds on Ψ do not stem from
measurements of the h125 properties. They instead originate mainly from the bound on the
electron EDM as discussed in section 4.6.

Since the allowed amount of pseudoscalar admixture is small the possible properties of h125 in
the C2HDM are well approximated by the R2HDM. In the previous section, we have already
discussed some of the phenomenology of the R2HDM limit in the N2HDM. Comparing fig. 5.6
to fig. 5.2 we indeed observe a similar behavior of the low admixture points in both models.
We specifically observe the same three regions of enhanced µττ in fig. 5.6a and fig. 5.2a which
we discussed for the N2HDM. We have verified that the mechanisms of enhancement in these
regions are the same in the C2HDM and N2HDM. The sharp edges in fig. 5.6a are reproduced
in the N2HDM if we only include points with negligible singlet admixture. In the limit of
vanishing admixture there are only two non-zero mixing matrix elements which contribute to
h125. The orthogonality of the mixing matrix then leads to these sharp edges in the R2HDM
limit of both the C2HDM and N2HDM.

The points deviating from the bulk (towards the top left in fig. 5.6a and the bottom left in
fig. 5.6b) are the wrong-sign-limit points from section 4.6. In the C2HDM it is instructive to
look at the signal strengths µV and µF individually. They are shown in fig. 5.7 with the color
code indicating

c(h125V V )× c(h125bb̄) . (5.9)

The sign of this product specifies the correct-sign-limit (> 0) or the wrong-sign-limit (< 0).
We approximate the coupling to b quarks by its CP-even part a from table 2.2 since Ψ is
always small. In fig. 5.7 we see that the wrong sign limit points are the only points in the
C2HDM where c2(h125V V ) = µV can deviate from one. This leads to the reduced µV V and
enhanced µττ behavior in fig. 5.6a. The reduced µV also leads to the reduced µV /µF we
observe for the wrong-sign-limit points in fig. 5.6b.
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Figure 5.6.: Pseudoscalar admixture Ψ of h125 in the C2HDM as a function of the most
constraining measured signal strengths from eq. (4.9). The dashed lines show the
experimental limits from [9] (and eq. (5.5)) and the white triangle denotes the
SM value.
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5.2. Distinguishing Higgs sector extensions through the prop-
erties of two Higgs bosons

In the following sections, we discuss the properties of the non-h125 Higgs bosons of the theory.
The focus will be on distinguishing the four different models assuming that only one additional
Higgs boson will be discovered.

We adopt the notation from section 4.5 and denote by H↓ the lighter of the two non-h125

neutral (CP-even in the CxSM, N2HDM, and NMSSM) Higgs bosons and the heavier one by
H↑.

5.2.1. Decays into SM particles

We first study the inclusive rates of producing a H↓ which decays into various SM particles.
We compare the predictions of our models and discuss which observations could allow us to
distinguish between them. The main point of interest is what kind of observations a given
model could not explain. To this end, we also comment on the behavior of H↑ whenever
appropriate.

In the first stage of discovery, it will be challenging to measure the CP nature of the discovered
particle. Analyses testing the pure CP-odd against the pure CP-even hypothesis will, however,
likely be performed in this early stage. Such an analysis is possible even if no couplings to
gauge bosons are observed [130]. We, therefore, assume that the possibility of the new particle
being a pure pseudoscalar state can be excluded. Distinguishing a C2HDM Higgs boson of
mixed CP from a pure CP-even Higgs boson will be considerably more challenging. Under
these assumptions, we can consistently compare the behavior of H↓ in all of our models.

In the following, we plot signal rates obtained by multiplying the production cross section
with the corresponding branching ratio obtained from HDECAY. The production cross section

σH(pp) = σH(ggF) + σH(bbF) (5.10)

at a 13 TeV LHC was calculated with SusHi at NNLO QCD using the effective t and b
couplings of the theory. We include bbF to account for possible large b quark couplings.
Since none of our models can enhance the coupling to gauge bosons, we neglect the subleading
production through vector boson fusion. We also neglect all associated and Higgs-strahlung
production channels since their cross sections are negligible compared to ggF and bbF. In all
plots we impose a lower limit of 0.1 fb for the signal rate and cut off any points below.

In fig. 5.8 the signal rates in the ZZ channel are shown. The branching ratio calculation in
HDECAY allows for the Z to be off-shell and interpolates around the on-shell resonance such
that both mH < 2mZ and mH > 2mZ are accurately described. In none of our models, the
coupling to gauge bosons can be enhanced above the SM value. Furthermore the gauge boson
sum-rule

3∑
i=1

c2(HiV V ) = 1 , (5.11)

which stems from unitarity of the mixing matrix, is realized in all our models (this will be
discussed in detail in section 5.2.2.1). This forces the gauge coupling of H↓ to be considerably
below the SM value as h125 needs substantial gauge couplings to agree with the observations
in the ZZ and W+W− final states. The room for deviations in the gauge couplings of the
non-h125 Higgs bosons mainly depends on the number of free parameters of the model and
therefore on the ability to accommodate independent coupling variations. A reduction of the
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Figure 5.8.: Signal rate of the production of a H↓ decaying into a pair of Z bosons at the
13 TeV LHC as a function of the H↓ mass. The dashed black line denotes the
signal rate of a SM Higgs boson of the same mass. The gap at 125 GeV is the
window we require around mh125 (see e.g. section 4.1).

decay width into gauge bosons can be compensated by either a reduction of the total decay
width or an increased production cross section.

We first look at the CxSM, where the common scaling of all couplings together with eq. (5.11)
and fig. 5.1 enforces

c2
CxSM(H↓V V ) . 0.1 . (5.12)

It is furthermore impossible to enhance the production cross sections in the CxSM. This
keeps all CxSM rates below the SM reference at all masses mH↓ as can be seen in fig. 5.8.
This behavior is the same for all decay channels and for H↑, which makes the discovery of
additional Higgs bosons in the CxSM most likely through Higgs-to-Higgs decays [11].

In fig. 5.7 we saw that in the C2HDM c2(h125V V ) ≈ 1 for all parameter points except for the
wrong-sign-limit ones. This severely constrains the gauge coupling available for H↓ and leads
to the clear upper bound of the bulk of the C2HDM points in fig. 5.8. The few outliers that
can match the rates of the N2HDM are the wrong-sign-limit points where eq. (5.11) allows
for a larger gauge coupling of H↓.

In the N2HDM the gauge couplings of h125 can be reduced up to c2(h125V V ) = 0.4 (see
fig. 5.3b). The sumrule eq. (5.11) therefore allows H↓ to have sizable gauge couplings of up to
c2(H↓V V ) ≈ 0.6. A reduced total width (compared to the SM reference) through a reduced
c(H↓bb̄) or an increased ggF cross section through an increased c(H↓tt̄) can compensate
c2(H↓V V ) < 1. We specifically found that c(H↓tt̄) can be enhanced by up to a factor of
2.5. This allows the N2HDM to reach the SM reference in the mH↓ < 200 GeV mass region
of fig. 5.8. In the high mass region the N2HDM can no longer reach the SM reference as
both the dominating ggF production and the dominating tt̄ decay width depend on the same
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Figure 5.9.: Signal rate of the production of a H↓ decaying into a pair of τ leptons at the
13 TeV LHC as a function of the H↓ mass. The dashed black line denotes the
signal rate of a SM Higgs boson of the same mass. The gap at 125 GeV is the
window we require around mh125 (see e.g. section 4.1).

coupling. However, it is still possible to obtain larger rates in the N2HDM than in any of our
other models with the exception of the C2HDM wrong-sign-limit points.

In the NMSSM the sum rule (5.11) and fig. 5.5b enforce c2(H↓V V ) < 0.45. Furthermore
SUSY relations force c2(H↓tt̄) < 1 just as we observed for h125. This makes an enhancement
of the ggF cross section impossible. However, sufficient reduction of the total decay width
can still enhance the rate in the ZZ channel. Such a reduction of the dominant bb̄ decay
width allows the NMSSM to have a few points above the SM reference at mH↓ ≈ 100 GeV
in fig. 5.8. A combination of sum-rules and SUSY relations strongly suppress the rate in the
ZZ channel for high mH↓ . We observe the same behavior for H↑. An observation of a neutral
scalar with an O(100 fb) rate in the ZZ channel and a mass of at least 500 GeV might be
sufficient to exclude the NMSSM.

Figure 5.9 shows the signal rates in the τ τ̄ channel as an example of the fermionic decay
channels. In all models except for the CxSM, it is possible to enhance the couplings of H↓
to d-type quarks and leptons with respect to their SM values. Enhancements of the signal
rates above the SM reference are therefore possible provided the production cross section is
not too strongly suppressed.

All physical C2HDM points predict H↓ signal rates above the SM reference in fig. 5.9 (this
statement remains valid for the points below the 0.1 fb cutoff). This is a result of the inco-
herent addition of scalar and pseudoscalar contributions to both ggF production and the τ τ̄
decay width, which allows for large enhancements. We further saw in fig. 5.8 that the decay
rate into gauge bosons is suppressed by about an order of magnitude. Since the gauge boson
decay widths of the SM reference are sizable in this mass range this leads to a reduction of
the total width and a further enhancement of the τ τ̄ rate. The observation that the C2HDM
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rates are always above the SM reference is true for H↓ and H↑ in both the bb̄ and τ τ̄ chan-
nel. In the tt̄ channel, however, rates below SM reference are possible for points with high
tanβ as this suppresses both the scalar and pseudoscalar parts of the t quark coupling (see
table 2.2).

The N2HDM shows a rich phenomenology in the τ τ̄ channel of fig. 5.9. It can, on the one
hand, match the high rates of the C2HDM through enhanced t quark couplings leading to a
high production cross section. In contrast to the C2HDM, it can also predict rates far below
the SM reference. This is because singlet admixture reduces all couplings to SM particles,
while pseudoscalar admixture usually (depending on tanβ, see table 2.2) enhances fermionic
couplings. A notable feature is the mass range between 200 and 400 GeV where the N2HDM
can predict rates higher than the other models. The exception is again the wrong-sign-limit
C2HDM which has several points that can match the N2HDM rates in this region.

The only NMSSM points that exceed the SM reference in fig. 5.9 are points with high tanβ.
The increased b quark coupling (∝ 1/ cosβ) enhances the production cross section through
bbF which compensates for the reduction in ggF (due to the t quark coupling being∝ 1/ sinβ).
These reduced t quark couplings together with small gauge couplings [66] make bb̄ and τ τ̄
the dominant SM decay modes even above the tt̄-threshold. In fig. 5.9 we observe a gap
between the NMSSM points above the SM reference with mH↓ > 400 GeV and the points
near the SM reference and mH↓ ≈ 200 GeV. This gap can be understood from figure 5 in [66].
This shows that it is exceedingly rare for an NMSSM parameter point to have both a high
tanβ, which is a requirement for the point to produce rates above the SM reference and
125 GeV < mH↓ . 400 GeV. This is a result of the NMSSM Higgs mass calculation purely
due to the supersymmetric structure of the NMSSM Higgs sector regardless of experimental
constraints. We note that H↑ can be located inside this gap, though with lower maximum
rates than the N2HDM.

An observation of a Higgs boson H with 200 GeV < mH < 400 GeV and a rate in the ττ
channel & 0.1 pb would, therefore, leave the N2HDM as the natural model candidate. The
C2HDM wrong-sign-limit can produce comparable rates in this mass region, it is however
strongly constrained by the measurements of h125 and could be excluded that way [129]. This
is only true if the new particle is not a pure pseudoscalar, as we have verified in our samples
that the NMSSM A1 can produce similar rates, as can the N2HDM pseudoscalar A.

We conclude this part of the analysis by studying the γγ channel in fig. 5.10. The C2HDM
predicts γγ rates above the SM reference for most of its parameter points. The rate is
enhanced by large t contributions to the ggF production. In the mass region above the
tt̄ threshold, where most of the C2HDM points are located, this enhancement is partially
compensated by an increase in the dominating Γ(H↓ → tt̄).

In the N2HDM the γγ rate of fig. 5.10 is also enhanced by a large ggF production cross section
due to large t quark couplings. Especially in the mass range between 200 and 400 GeV below
the tt̄ threshold the γγ rates can be enhanced by two orders of magnitude compared to the
SM reference. As in the ττ channel, the N2HDM is the only model that could explain γγ rates
far above the SM reference in this mass range. The N2HDM can also exceed the SM reference
if mH↓ < 125 GeV. In addition to an enhanced ggF production cross section, these points
have low b quark couplings thus reducing the total width and enhancing BR(H↓ → γγ).

In fig. 5.10, the NMSSM can also produce rates above the SM reference in the mH↓ < 125 GeV
region even though no enhancement of the t quark coupling is possible. This behavior has
been studied in [131]. It can be explained by loop contributions from light SUSY particles
like staus or charginos and a suppression of the dominant Γ(H↓ → bb̄).
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Figure 5.10.: Signal rate of the production of a H↓ decaying into a pair of photons at the
13 TeV LHC as a function of the H↓ mass. The dashed black line denotes the
signal rate of a SM Higgs boson of the same mass. The gap at 125 GeV is the
window we require around mh125 (see e.g. section 4.1).

We conclude that the distinction between models based on inclusive rates alone is very chal-
lenging. However, we have still identified a number of discriminating properties. The CxSM
could be excluded by any measurement of a signal rate enhanced above the SM reference. A
discovery of an mH > 500 GeV Higgs boson with a rate of about 100 fb in the ZZ channel
would put considerable strain on the NMSSM. Furthermore, a discovery in the 200 to 400 GeV
mass range with γγ and/or τ τ̄ rates enhanced compared to the SM reference could only be
easily explained by the N2HDM.

5.2.2. Yukawa and gauge boson sum-rules

In this section, we present a comparison of the models based on the sums of the couplings of
the h125 and H↓ from their spectrum. We will study the gauge boson sum

Πi
VV =

i∑
j=1

|c(HiV V )|2 (5.13)

and the Yukawa sum

Πi
Yuk =

1∑i
j=1 |c(Hiτ τ̄)|2

+
1∑i

j=1 |c(Hitt̄)|2
. (5.14)

We sum all CP-even Higgs bosons in the CxSM, N2HDM and NMSSM, respectively, and the
three neutral Higgs bosons in the C2HDM. Note that

Πi
VV ≤ Πi+1

VV (5.15)
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and

Πi
Yuk ≥ Πi+1

Yuk . (5.16)

In type II models the coupling to b quarks could be used instead of the coupling to τ -leptons if
it was known more precisely. While this could also be done in models with a different Yukawa
structure it would no longer result in a sum-rule independent of tanβ (see section 5.2.2.2
below). In the following, we study the quantities Π2

VV and Π2
Yuk, which include h125 and

H↓ in the sum. This assumes that H↓ is the only additional neutral Higgs boson with gauge
couplings (see below) discovered. Points where h125 is the heaviest neutral CP-even (since this
is only possible in the CxSM and N2HDM) Higgs boson are not included in this analysis.

At the LHC the Higgs couplings are not directly observable and can only be extracted with
model assumptions. In [79–81] a precision of about 10 % for the h125 couplings to gauge
bosons, t quarks, and τ leptons is expected from a 3000 fb−1 High-Luminosity-LHC (HL-
LHC) dataset. The precision of the b quark coupling will be closer to 20 % which is why we
use the lepton coupling in eq. (5.14). The couplings of H↓ will, presumably, be known less
precisely than for h125 due to lower statistics. At a linear collider (LC) the measurement
of the Higgs couplings is possible in a model-independent way. A 500 GeV linear collider
with a 500 fb−1 dataset could extract the required h125 couplings with a precision of a few
percent [80, 81]. Combining the LHC and LC analysis may further improve this precision.
This analysis will, therefore, become relevant only toward the end of the HL-LHC run. At
this point, statistics should be sufficient to test the CP-nature of H↓. It could, however, still
be very challenging to differentiate a state of mixed CP from a pure CP-even Higgs boson.
For this reason, we include the C2HDM in this analysis.

The sum-rule analysis only works if H↓ mixes with h125. In the C2HDM and CxSM, this
requirement is fulfilled for any additional neutral particle. In the N2HDM and NMSSM,
however, we have to make sure that we are able to distinguish H↓ from the pseudoscalar
Higgs bosons of the models. The easiest way to exclude the observed particle from being a
pure CP-odd state is to observe the ZZ decay channel [130]. For this reason, we require the
rate

ggF → H↓ → ZZ > 10 fb . (5.17)

This should be observable at the HL-LHC if the particle has previously been discovered in
another decay mode so that we already know its mass. This condition still allows H↓ to be a
state of mixed CP, as it is in the C2HDM, with interesting phenomenological consequences.

It has been shown in [132] that the R2HDM contains points with considerable rates in the
loop-induced A→ ZZ channel. If a similar behavior is possible in the N2HDM the observation
of the ZZ decay channel might not be sufficient to distinguish H↓ from the pseudoscalar A.
In this case measurements of the angular distributions in H↓ → ZZ → 4l, ggF → H↓ →
γγ or the fermionic decay modes could be used to verify the CP nature of the discovered
particle [130].

5.2.2.1. The gauge boson sum-rule

All our models fulfill the gauge boson sum-rule

Π3
VV = 1 . (5.18)

Therefore

Π2
VV ≤ 1 (5.19)
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Figure 5.11.: The partial gauge boson sum Π2
VV as a function of mH↓ . All four models fulfill

the sum-rule (5.18) for Π3
VV, as well as Π2

VV ≤ Π3
VV.

holds for all points. For models with smaller Higgs sectors like the R2HDM and CP-conserving
MSSM, which only contain two CP-even neutral scalars, we have

Π2
VV = 1 . (5.20)

Figure 5.11 shows the partial gauge boson sum Π2
VV in the four models that we study in this

thesis. In the CxSM Π2
VV cannot be smaller than about 0.9. This is a result of the simple

coupling structure and the bound from the global signal strength. This bound enforces
c2(h125V V ) & 0.9 which is equivalent to Π2

VV & 0.9, even if H↓ does not couple to gauge
bosons at all. This provides a handle on excluding the CxSM. It is, however, likely for the
CxSM to be excluded by deviations from the common scaling, before an analysis like this one
can be performed.

Most of the C2HDM points in fig. 5.11 have Π2
VV close to one. This is mostly due to

c(h125V V ) ≈ 1 which we observed in fig. 5.7. The only points where H↓ can have a con-
siderable gauge coupling are the wrong-sign-limit points in fig. 5.7 where the gauge coupling
of h125 is reduced. The C2HDM points where Π2

VV deviates more considerably from one are,
therefore, wrong sign limit points with rather small c(H↓V V ) (but eq. (5.17) still satisfied).
In these points H↑ has considerable couplings to gauge bosons.

In the N2HDM the possibility of having large singlet admixtures in h125 together with a
gauge-phobic H↓ leads to large deviations from Π2

VV = 1 in agreement with the applied
constraints. The C2HDM wrong-sign-limit points are the only ones that can produce a range
of Π2

VV values comparable to the N2HDM.

Despite the NMSSM having the largest Higgs sector, it is clearly the most constrained model
in fig. 5.11. We observe deviations from one by a few percent at most. As we saw in fig. 5.5b
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Figure 5.12.: The Yukawa sum eq. (5.24) as a function of tanβ in the C2HDM.

this is not due to h125 always having a gauge coupling of one. We instead observe the
(approximate) sum rule

Π2
VV = 1 , (5.21)

or equivalently c(H↑V V ) ≈ 0, which is enforced by SUSY relations. This makes the NMSSM
very hard to distinguish from the R2HDM or the MSSM, where this sum-rule is exact at
tree-level. The CxSM and the C2HDM points in the correct-sign-limit would require a cou-
pling resolution of a few percent be distinguished from models with smaller Higgs sectors.
Conversely, this sum-rule allows the exclusion of the CxSM and NMSSM if Π2

VV deviates
significantly from one. In the C2HDM an observation of Π2

VV < 1 would force the wrong-
sign-limit to be realized.

5.2.2.2. The Yukawa sum-rule

The CxSM fulfills the Yukawa sum-rule

Π3
Yuk = 2 , (5.22)

while the NMSSM as well as the type II (and lepton-specific) N2HDM fulfill

Π3
Yuk = 1 . (5.23)

In the C2HDM we use
∣∣c(Hff̄)

∣∣2 = a2 + b2, with a and b as in eq. (2.28), for the effective
coupling to fermions. This is the value that rescales inclusive cross sections and thus would
be extracted from data if no direct hints of CP-violation should have been discovered. It
leads to the C2HDM type II sum-rule

Π3
Yuk = 2

(
24

17− cos(4β)
− 1

)
. (5.24)

The behavior of eq. (5.24) is plotted in fig. 5.12. The function has a minimum of Π3
Yuk = 2/3

at tanβ = 1 and quickly approaches one for other values of tanβ.

For completeness, in the flipped N2HDM a

Π3
Yuk = 1 (5.25)
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Figure 5.13.: The partial Yukawa sum Π2
Yuk as a function of mH↓ . The NMSSM and N2HDM

(type II) fulfill Π3
Yuk = 1, while in the CxSM Π3

Yuk = 2 and the C2HDM fulfills
eq. (5.24). In all models Π2

Yuk ≥ Π3
Yuk holds.

sum-rule can be constructed by using the b quark instead of the τ coupling. The type I
N2HDM fulfills

Π3
Yuk = 2 sin2 β ≈ 2 , (5.26)

as tanβ > 2 is enforced by flavor constraints [104, 105].

The Yukawa types of the R2HDM fulfill the same sum rules as the N2HDM with Π2
Yuk instead

of Π3
Yuk and the CP-conserving MSSM fulfills

Π2
Yuk = 1 . (5.27)

The Yukawa sum Π2
Yuk, depicted in fig. 5.13, provides another clear handle on excluding the

CxSM. If Π2
Yuk < 2 is measured the CxSM is excluded. The maximum reachable value in the

CxSM again depends on the bound of the global signal strength.

A measurement of Π2
Yuk < 1 would be very interesting. In the C2HDM this is possible due

to the pseudoscalar admixture with CP-odd Yukawa couplings. According to eq. (5.24) this
would fix tanβ ≈ 1 while excluding all of our CP-conserving models. A dedicated analysis of
the C2HDM could additionally extract the CP-even and CP-odd Yukawa couplings separately
and verify that Π2

Yuk > 1 if only the CP-even part a of the Yukawa couplings is included.

Figure 5.13 shows that the N2HDM could explain any value in the range 1 < Π2
Yuk . 5. A

dedicated parameter scan in the region of large Yukawa couplings would presumably yield
points with even higher values of Π2

Yuk. This agrees with section 5.2.1 where the flexibility of
this model regarding the Higgs couplings to fermions became evident. In the region 200 GeV <
mH↓ < 400 GeV and Π2

Yuk < 1.5 the N2HDM is the only model with a lot of parameter points.
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While the C2HDM might be able to reproduce such a value it would again require the wrong-
sign-limit.

In the NMSSM we observe that Π2
Yuk ≤ 2 is fulfilled by all points. This is linked to a number

of correlations between couplings enforced by supersymmetry. In fig. 5.5 we saw that

c(h125V V ) ≈ c(h125tt) . (5.28)

We have verified that this also holds for H↓ (but not for H↑). If we combine this with eq. (5.21)
we obtain

c2(h125tt) + c2(H↓tt) ≈ 1 . (5.29)

We also observe that

c2(h125bb̄) + c2(H↓bb̄) ≥ 1 , (5.30)

while no relation between the b coupling and t quark or gauge coupling is evident. Inserting
eqs. (5.29) and (5.30) into Π2

Yuk immediately yields Π2
Yuk ≤ 2. Note that none of these relations

come from the orthogonality of the mixing matrix. If this were the case they would also be
realized in the N2HDM. The NMSSM could thus be excluded by an observation of Π2

Yuk > 2
or an observed deviation from eqs. (5.29) and (5.30). Note that all of these relations only
hold for the two lightest CP-even scalars of the NMSSM. If H↑ would be discovered instead
of H↓ the behavior could be very different. We also observe in fig. 5.13 that the NMSSM
points never saturate Π2

Yuk = 1. This behavior is due to the cut on the H↓ → ZZ rate (see
eq. (5.17)) which cuts off all NMSSM points where Π2

Yuk ≈ 1. These are points with high
tanβ where the b quark and τ couplings of H↓ are very large [66]. They could be reincluded
in the analysis if the CP-nature of H↓ was verified without observing H↓ → ZZ.

We finally note that an observation of Π2
Yuk < 2/3 (which is the minimum value reachable in

the C2HDM) cannot be explained by any of our models and would hint at a more complex
Higgs sector.

5.2.2.3. Correlations between the sum-rules

Correlations between the coupling sums allow for a further improvement of this analysis if
both the values of Π2

VV and Π2
Yuk are known. Figure 5.14 shows the predictions of the four

models in these two parameters. The CxSM shows the simplest behavior. Due to the common
scaling factor of all SM couplings, all CxSM parameter points lie exactly on a line starting
at Π2

VV = 1 and Π2
Yuk = 2.

The C2HDM shows the possibility of Π2
Yuk < 1 as described in the previous section. The

bulk of the C2HDM parameter points is located at Π2
VV ≈ 1. The exceptions are the wrong-

sign-limit points which behave completely different. They not only deviate substantially from
Π2

VV = 1 but for large deviations they tend strongly towards Π2
Yuk = 1.

The N2HDM is by far the least constrained of our models. One notable feature is the sharp
lower boundary. This is a result of the orthogonality of the mixing matrix without any
physical constraints involved. An observation of Π2

VV < 1 and Π2
Yuk ≈ 1 could therefore

exclude all models with a 3× 3 mixing of CP-even scalars.

The coupling sums of the NMSSM are severely constrained by SUSY relations. All points have
Π2

VV ≈ 1 and 1.5 ≤ Π2
Yuk ≤ 2. The minimum of the NMSSM predictions for Π2

Yuk depends
strongly on the cut imposed in eq. (5.17). If this condition were removed the NMSSM would
cover the range 1 ≤ Π2

Yuk ≤ 2.
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Figure 5.14.: The partial Yukawa sum Π2
Yuk as a function of the partial gauge boson sum

Π2
VV. Note that a few outlying N2HDM points have been cut off.



CHAPTER 6

Conclusions

In this thesis, we have analyzed and compared the phenomenology of the CxSM, C2HDM,
N2HDM, and NMSSM. We have investigated what kind of deviations from the SM expecta-
tions for h125 are possible and in agreement with current observations. We have compared the
signal rates predicted for a second neutral (CP-even in the CxSM, N2HDM, and NMSSM)
Higgs boson H↓ and shown which observations could allow us to differentiate between the
four models. We have finally introduced a sum-rule analysis using the couplings of h125 and
H↓, which can allow for a clear distinction between the four models.

We started by reviewing the CxSM, C2HDM, and NMSSM models. Afterward we introduced
the N2HDM in detail and derived all tree-level couplings and theoretical constraints required
to study the phenomenology of the model. This work contains the first study of the N2HDM
without any approximations employed on the mixing among the scalars.

We subsequently described the parameter scans performed in our models. We began with a
short introduction of the ScannerS framework we used for the parameter scans in the non-
supersymmetric models. We then gave an overview of the constraints applied on the CxSM
using the publicly available implementation of the model in ScannerS. Our new implementa-
tion of the C2HDM in ScannerS contains a more complete set of constraints than previous
parameter scans in the model. We are the first to check all exclusion bounds from Higgs
searches at colliders using the HiggsBounds code. This is possible because of an in-house im-
plementation of the C2HDM in HDECAY to calculate the decay properties of all Higgs bosons.
We furthermore are the first to include the constraints on the electric dipole moment of the
electron (eEDM) in a full parameter scan. The ScannerS implementation of the C2HDM will
be included in a future release as soon as the HDECAY implementation of the C2HDM is offi-
cially published. Thereafter, we presented our implementation of the N2HDM in ScannerS.
It relies on the N2HDECAY code, which implements the model in HDECAY, to calculate the Higgs
boson decay properties including QCD corrections. Our N2HDM parameter scan checks the
theoretical constraints we have derived as well as all experimental constraints applicable to
the model. The implementation of the N2HDM is included in the latest public release of the
ScannerS program and the N2HDECAY code will be made publicly available as well. We finally
discussed the parameter scan in the NMSSM using the NMSSMtools package and described
all constraints applied to the model.
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Through these parameter scans, we generated samples of physical parameter points in our four
models for the subsequent numerical analysis. We started this analysis with a discussion of the
mass distributions of the non-h125 neutral (CP-even in the CxSM, N2HDM, and NMSSM)
scalars. We especially discussed why the neutral Higgs bosons of the C2HDM are usually
both heavy, while very light CP-even Higgs bosons are still possible in the other models.
Afterward, we compared the parameter space of the physical C2HDM points in our scan to a
previous work in the literature. We found that the constraints from the eEDM severely limit
the allowed amount of CP violation in the h125. We used our scan results to generalize the
R2HDM wrong-sign-limit to the C2HDM.

We then discussed properties of h125 in the CP-conserving models. We compared the phe-
nomenology predicted by the models and studied the influence of singlet admixture to the
h125. We showed that measurements in the ττ channel can best constrain the amount of
singlet admixture to h125 and we demonstrated in which ways the NMSSM is constrained
by supersymmetry. We also studied the amount of pseudoscalar admixture to h125 allowed
in the C2HDM. We saw that the pseudoscalar admixture is most strongly constrained by
the eEDM bound and not by the measurements of the h125 properties. The allowed pseu-
doscalar admixture to h125 cannot exceed a few percent and h125 is therefore always close to
the R2HDM limit. We further showed that the wrong-sign-limit of the C2HDM results in a
phenomenology very different from the correct-sign-regime.

Subsequently, the inclusive signal rates of H↓ were discussed. We pointed out several ob-
servations that could exclude one of our models. We especially found a mass range of
200 GeV < mH↓ < 400 GeV where enhanced rates (with respect to the SM reference) in
the γγ and τ τ̄ channels could easily be explained only in the N2HDM.

We finally described an analysis based on sum-rules which allows for a better distinction
between our models. For this analysis, it is essential that a CP-odd Higgs boson (present in
the N2HDM and NMSSM) is not misidentified as H↓. We therefore only included parameter
points with a rate in the ggF → H↓ → ZZ channel of at least 10 fb. For the remaining
points we constructed a partial gauge boson and Yukawa coupling sum using the couplings
of h125 and H↓. These partial coupling sums are constructed such that the inclusion of the
third neutral (CP-even in the CxSM, N2HDM, and NMSSM) Higgs boson H↑ in the sum
would lead to a sum-rule being satisfied. These sum rules follow from the unitarity of the
mixing matrix in the neutral (CP-even) sector. We showed how the CxSM, the correct-
sign-limit C2HDM, and the NMSSM could be excluded using this analysis. In the C2HDM
we again observed a very different behavior of the wrong-sign-limit points which are better
constrained by measurements of h125 than by the sum-rule analysis. We further discuss
how a measurement of the Yukawa sum could indicate the presence of CP-violation and
simultaneously fix tanβ to one in the C2HDM. The N2HDM showed a great flexibility in the
sum-rule analysis and is the only model to saturate the constraints from orthogonality of the
mixing matrix. We observed several additional sum-rules enforced by SUSY relations in the
NMSSM. These lead to a very distinct behavior of the NMSSM in this analysis and can allow
for a clear exclusion of the model. We propose this analysis as a promising way to distinguish
between Higgs sector extensions if only an H↓ is discovered.







APPENDIX A

Explicit parameter transformations and triple-Higgs couplings

In this chapter, the formulas for the explicit transformation between the basis of the La-
grangian and the physical basis defined in section 3.1.3 are shown. The second part contains
the formulas for the simplified triple Higgs couplings.

A.1. Explicit parameter transformation

The λi parameters of the N2HDM scalar potential can be written as a function of the physical
parameters (3.18) as shown below. The transformation is given as a function of the elements
Rij of the mixing matrix

R =

 cα1cα2 cα2sα1 sα2

−cα3sα1 − cα1sα2sα3 cα1cα3 − sα1sα2sα3 cα2sα3

−cα1cα3sα2 + sα1sα3 −cα3sα1sα2 − cα1sα3 cα2cα3

 (A.1)

from eq. (3.12). The parameter

µ̃2 =
m2

12

sβcβ
(A.2)

is introduced to further simplify the following expressions.

With these conventions, the λi are given by

v2c2
β · λ1 = −µ̃2s2

β +
3∑
i=1

m2
HiR

2
i1 , (A.3)

v2s2
β · λ2 = −µ̃2c2

β +

3∑
i=1

m2
HiR

2
i2 , (A.4)

v2 · λ3 = −µ̃2 +
1

cβsβ

3∑
i=1

m2
HiRi1Ri2 + 2m2

H± , (A.5)

v2 · λ4 = µ̃2 +m2
A − 2m2

H± , (A.6)

v2 · λ5 = µ̃2 −m2
A , (A.7)
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v2
s · λ6 =

3∑
i=1

m2
HiR

2
i3 , (A.8)

vvscβ · λ7 =

3∑
i=1

m2
HiRi1Ri3 , (A.9)

2vvssβ · λ8 =

3∑
i=1

m2
HiRi2Ri3 . (A.10)

A.2. Triple-Higgs couplings

The triple Higgs couplings gabc can be simplified using the relations above. They are given
here as functions of only the physical parameters. A coupling gabc is defined as

gabc =
∂3L

∂Ha∂Hb∂Hc
, (A.11)

where the Lagrangian is taken to be in the physical basis and a, b and c can denote any of
the physical charged or neutral Higgs bosons. These triple-Higgs couplings are used in the
N2HDECAY code.

The indices i, j, k can in the following take unique values from {1, 2, 3} and denote the three
CP-even Higgs bosons H1,2,3. We define the three dimensional Levi-Civita-Tensor as

εijk =


1 if (i, j, k) is an even permutation of (1, 2, 3) ,

−1 if (i, j, k) is an odd permutation of (1, 2, 3) ,

0 otherwise.

(A.12)

In the following formulas there is no summation implied by repeated indices.

v · giAA = −µ̃2

[
Ri1

1

cβ
+Ri2

1

sβ

]
+m2

Hi

[
Ri1

s2
β

cβ
+Ri2

c2
β

sβ

]
+ 2m2

A [Ri1cβ +Ri2sβ] (A.13)

v · gi±± = −µ̃2

[
Ri1

1

cβ
+Ri2

1

sβ

]
+m2

Hi

[
Ri2

c2
β

sβ
+Ri1

s2
β

cβ

]
+ 2m2

H± [Ri1cβ +Ri2sβ] (A.14)

1

3
v · giii = −µ̃2

[
R2
i2cβ

(
Ri2cβ

sβ
−Ri1

)
+R2

i1sβ

(
Ri1sβ

cβ
−Ri2

)]
+
m2
Hi

vs

[
R2
i3v +R3

i2

vs
sβ

+R3
i1

vs
cβ

] (A.15)

v · giij = −1

2
µ̃2

[(
Ri2

1

sβ
+Ri1

1

cβ

)(
6Ri2Rj2 + 6Ri3Rj3s2

β +
∑
k

εijkRk3s2β

)]

+
2m2

Hi
+m2

Hj

vs

[
R2
i3Rj3v +R2

i2Rj2
vs
sβ

+R2
i1Rj1

vs
cβ

] (A.16)
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v · g123 = −µ̃2

[
(2R12R13 +R32R33) cβ + (R31R33 − 3R12R23R33 −R21R23) sβ

+ 3R12R22

(
R31

1

cβ
−R32

1

sβ

)
+ 3R13R23R31

s2
β

cβ

]

+
m2
H1 +m2

H2 +m2
H3

vs

[
R13R23R33v +R12R22R32

vs
sβ

−R11 (R22R32 +R23R33)
vs
cβ

]
(A.17)

The sums of different powers of mixing matrix elements arise from simplifications due to the
orthogonality of the mixing matrix. The formula employed is

Rmn = (−1)m+ndet(/Rmn) , (A.18)

which follows from the properties of the adjugate of an orthogonal matrix. The matrix /Rmn
is the submatrix formed by deleting the m-th row and n-th columns from R. The indices m
and n take any values in {1, 2, 3}.





APPENDIX B

N2HDM parameter points with global charge and
CP-breaking minima

Here we give examples of N2HDM parameter points that contain both a charge and CP-
conserving (normal) local minimum with v2

1 + v2
2 ≈ 246 GeV and a deeper charge or CP-

breaking minimum. The existence of such configurations has been disproven in the 2HDM [95].
These examples serve as counterexamples to a naive generalization of this proof to the
N2HDM.

The charge-breaking parameter point in table B.1 has a normal minimum at

v1 = 192.715 GeV , v2 = 152.887 GeV , vs = 626.334 GeV . (B.1)

The value of the potential at this minimum is

Vnormal = −2.26× 1010 GeV . (B.2)

The global minimum is

v1 = 496.073 GeV , v2 = 101.843 GeV , vcb = 529.567 GeV , vs = vcp = 0 GeV , (B.3)

with a value of

Vcharge = −4.01× 1010 GeV . (B.4)

The normal minimum in the CP-breaking parameter point in table B.1 is

v1 = 102.66 GeV , v2 = 223.553 GeV , vs = −491.912 GeV , (B.5)

with

Vnormal = −7.29× 109 GeV . (B.6)

The CP-breaking global minimum is at

v1 = 778.838 GeV , v2 = 69.9478 GeV , vcp = 999.254 GeV , vs = vcb = 0 GeV , (B.7)

with

VCP = −1.87× 1010 GeV . (B.8)
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Table B.1.: Parameter values of exemplary N2HDM points with both a normal minimum and
a global charge or CP-breaking minimum, respectively.

charge CP

m2
11 / GeV2 −2.836 82× 105 3.271 66× 104

m2
22 / GeV2 −1.989 90× 105 −9.223 17× 104

m2
12 / GeV2 −1.409 96× 105 −9.874 25× 104

m2
s / GeV2 3.389 65× 105 2.200 53× 104

λ1 7.788 11 7.359 30
λ2 5.294 42 2.912 79
λ3 −4.639 41 7.089 98
λ4 1.281 59× 101 −1.120 02× 101

λ5 6.027 84× 10−1 4.039 30× 10−1

λ6 4.495 21× 10−1 7.074 93× 10−1

λ7 1.556 82 5.705 95× 10−1

λ8 2.046 19 4.056 77× 10−1



APPENDIX C

Global minimum conditions

Using the procedure described in section 3.3.2 we obtain all stationary points of the scalar
potential. To ensure that the physical minimum is the global one we check that none of
the other stationary points has a smaller value of the scalar potential V . Table C.1 which
characterizes the possible stationary points is identical to table 3.5 and shown again for ease
of reference.

In the following, we use shorthands for combinations of the λi ,

λ345 := λ3 + λ4 + λ5 , (C.1)

λ34−5 := λ3 + λ4 − λ5 , (C.2)

Λijkl := λiλj − λkλl . (C.3)

Note that λ345 and λ34−5 can appear in Λijkl.

We have have defined the field configuration eq. (3.26) such that the VEVs v1, v2, vcp, and vcb

are real parameters. Any solution of the stationarity conditions has to satisfy this assumption.
We are, therefore, only interested in solutions where all VEVs squared are positive. These are
the positivity conditions we state together with the corresponding stationary values. If any
of these conditions are not satisfied the corresponding stationary point of the scalar potential
does not exist. We remind that the Z2-symmetries of the N2HDM potential allow us to choose
all VEVs except v2 to be positive without loss of generality.

Table C.1.: Shows and names all possible cases of VEVs being zero (0) or non-zero (1). The
cases, that are only allowed when certain parameter conditions are satisfied, are
not shown.

Case I IIa IIb IIIa IIIb IIIc sI sIIa sIIb sIIIa sIIIb sIIIc sIV

v1 1 1 1 0 0 0 1 1 1 0 0 0 0
v2 1 1 1 0 0 0 1 1 1 0 0 0 0
vcp 0 1 0 1 1 0 0 1 0 1 1 0 0
vcb 0 0 1 1 0 1 0 0 1 1 0 1 0
vs 0 0 0 0 0 0 1 1 1 1 1 1 1



62 C. Global minimum conditions

C.1. 2HDM-like stationary points

The six cases of 2HDM-like stationary points with vs = 0 are the stationary points of an
R2HDM potential with the same parameters m2

11, m2
22, m2

12 and λ1−5. The resulting condition
in the R2HDM has been checked numerically against the discriminant condition [94].

C.1.1. Case I

The CP and charge conserving case is the most complicated one. We rewrite the system of
minimum conditions in terms of

v1 = v cos δ , (C.4)

v2 = v sin δ . (C.5)

The convention v1 > 0 leads to

−π
2
< δ <

π

2
. (C.6)

We can eliminate v from the resulting system of equations and obtain a single quartic equation
for sin2 δ

0 =
(
m2

12

)2
λ2

1

+ sin2 δ
[
−(m2

11λ345 −m2
22λ1)2 − 4

(
m2

12

)2
λ2

1

]
+ (sin2 δ)

2 [
3(m2

11λ345 −m2
22λ1)2 + 2(m2

11λ345 −m2
22λ1)(m2

22λ345 −m2
11λ2)

+2
(
m2

12

)2
(3λ2

1 − λ1λ2)
]

+ (sin2 δ)
3
[
−3(m2

11λ345 −m2
22λ1)2 + 4

(
m2

12

)2
λ1(λ2 − λ1)

−(m2
22λ345 −m2

11λ2)((4m2
11 +m2

22)λ345 − 4m2
22λ1 −m2

11λ2)
]

+ (sin2 δ)
4
[
(m2

11λ345 −m2
22λ1)2 +

(
m2

12

)2
(λ1 − λ2)2

+(m2
22λ345 −m2

11λ2)((2m2
11 +m2

22)λ345 − 2m2
22λ1 −m2

11λ2)
]
.

(C.7)

This equation can be solved numerically. Out of the four solutions of eq. (C.7) only real
solutions in the open interval (0, 1) are valid solutions for sin2 δ. Reality of sin2 δ is required
for v1 and v2 to be real.

Each of these solutions yields two possible values for

v2 =
2
(
m2

22 −m2
12

(
±
√

1
sin2 δ

− 1
))

λ345(sin2 δ − 1)− λ2 sin2 δ
. (C.8)

The ± corresponds to the two possible signs of sin δ in the region (C.6). Valid solutions for
v2 have to be positive. We then use eqs. (C.4) and (C.5) to compute v1 and v2 where both
possible signs for v2 need to be considered.

We finally compute the values of the scalar potential for these up to 16 solutions for v1 and
v2 (up to four solutions for sin2 δ times two for the sign of sin δ times two for the sign of
v2). These values are compared to the value of the physical minimum to ensure the physical
minimum is the global one.
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C.1.2. Case II

In the cases IIa and IIb, the system of the minimum conditions can be solved analytically.
There are two quadratic equations to be solved in the process leading to two discriminants
that have to be positive for the solution to exist. This is equivalent to requiring that all VEVs
squared are positive. We have obtained analytic formulae for the value of the potential at
these points.

The value and positivity conditions are

V (II) =

(
m2

11

)2
λ2 − 2m2

11m
2
22x+

(
m2

22

)2
λ1

2Λxx12

−
(
m2

12

)2
λ345 − x

, (C.9)

0 < vcb
2 + vcp

2 =

(
m2

12

)2
Λxx12

(λ345 − x)2(m2
22x−m2

11λ2)
− 2xm2

11 − 2m2
22λ1

Λxx12

, (C.10)

0 < v2
1 = −2m2

22x− 2m2
11λ2

Λxx12

. (C.11)

Positivity of v2
2 is guaranteed if v2

1 is positive. Setting

x =

{
λ34−5 in case IIa

λ3 in case IIb
(C.12)

we obtain the results of the two sub-cases.

C.1.3. Case III

In the cases III, the minimum conditions simplify to a linear system for the VEVs squared.
All three cases lead to the same value stationary value

V (IIIabc) = −
(
m2

22

)2
2λ2

. (C.13)

This solution only exists if

m2
22 < 0 (C.14)

which follows by simplifying the positivity conditions of the squared VEVs with eqs. (3.24)
and (3.25).
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C.2. Stationary points with a singlet VEV

The procedure for the stationary points with vs 6= 0 is the same as for the 2HDM-like cases.

C.2.1. Case sI

The quartic equation in sin2 δ reads

0 =
(
m2

12

)2(
Λ77

16

)2
+ sin2 δ

[
−
{

(m2
11λ6 −m2

sλ7)λ345 +m2
22Λ77

16 + (m2
sλ1 −m2

11λ7)λ8

}2

−4
(
m2

12

)2(
Λ77

16

)2]
+ (sin2 δ)

2 [{
(m2

11λ6 −m2
sλ7)λ345 −m2

11(λ7λ8) +m2
22Λ77

16 +m2
s (λ1λ8)

}
×
{

(3m2
11λ6 + 2m2

22λ6 −m2
s (3λ7 + 2λ8))λ345 +m2

11(2Λ88
26 − 3λ7λ8)

+m2
22(3Λ77

16 − 2λ7λ8) +m2
s (2λ2λ7 + 3λ1λ8)

}
+2
(
m2

12

)2
Λ77

16

(
3Λ77

16 − Λ88
26

)]
+ (sin2 δ)

3 [{
(m2

s (3λ7 + λ8)− (3m2
11 +m2

22)λ6)λ345 +m2
11(3λ7λ8 − Λ88

26)

+m2
22(λ7λ8 − 3Λ77

16)−m2
s (λ2λ7 + 3λ1λ8)

}
×
{

((m2
11 +m2

22)λ6 −m2
s (λ7 + λ8))λ345 +m2

11(Λ88
26 − λ7λ8)

+m2
22(Λ77

16 − λ7λ8) +m2
s (λ2λ7 + λ1λ8)

}
+4
(
m2

12

)2
Λ77

16(Λ88
26 − Λ77

16)
]

+ (sin2 δ)
4 [{

((m2
11 +m2

22)λ6 −m2
s (λ7 + λ8))λ345 +m2

11(Λ88
26 − λ7λ8)

+m2
22(Λ77

16 − λ8λ7) +m2
s (λ2λ7 + λ1λ8)

}2

+
(
m2

12

)2 (
Λ88

26 − Λ77
16

)2]

(C.15)

The corresponding values for v2 and v2
s are obtained through

v2 =
2λ6

(
m2

22 −m2
12

(
±
√

1
sin2 δ

− 1
))
− 2m2

sλ8

(sin2 δ − 1)(λ6λ345 − λ7λ8) + Λ88
26 sin2 δ

, (C.16)

v2
s =
−λ7v

2
1 − λ8v

2
2 − 2m2

s

λ6
. (C.17)

The requirements on a solution are as in case I with the addition of v2
s > 0. The sign of vs is

irrelevant leading again to a maximum of 16 solutions.

C.2.2. Case sII

The stationary values and positivity conditions in case sII are given by

V (sII) = −
(
m2

12

)2
λ345 − x

− −
(
m2

11

)2
Λ88

26 −
(
m2

22

)2
Λ77

16 −
(
m2

s

)2
Λxx12

2(λ7Λx8
27 + xΛ78

x6 − λ1Λ88
26)

− m2
11m

2
22Λ78

x6 +m2
11m

2
s Λx8

27 +m2
22m

2
s Λx7

18

λ7Λx8
27 + xΛ78

x6 − λ1Λ88
26

,

(C.18)
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0 < vcb
2 + vcp

2 =
2
(
m2

12

)2
(λ7Λx8

27 + xΛ78
x6 − λ1Λ88

26)

(λ345 − x)2(m2
s Λx8

27 +m2
22Λ78

x6 −m2
11Λ88

26)

+
2m2

22Λ77
16 − 2m2

s Λx7
18 − 2m2

11Λ78
x6

λ7Λx8
27 + xΛ78

x6 − λ1Λ88
26

,

(C.19)

0 < v2
s =

2m2
s Λxx12 − 2m2

11Λx8
27 − 2m2

22Λx7
18

λ7Λx8
27 + xΛ78

x6 − λ1Λ88
26

, (C.20)

0 < v2
1 =
−2m2

s Λx8
27 − 2m2

22Λ78
x6 + 2m2

11Λ88
26

λ7Λx8
27 + xΛ78

x6 − λ1Λ88
26

. (C.21)

Positivity of v2
2 is ensured if v2

1 is positive.

Setting

x =

{
λ34−5 in case sIIa

λ3 in case sIIb
(C.22)

again yields the two sub-cases.

C.2.3. Case sIII

The cases sIII all yield the same result. The stationary value of the scalar potential is given
by

V (sIII) =

(
m2

22

)2
λ6 − 2m2

22m
2
sλ8 +

(
m2

s

)2
λ2

2Λ88
26

. (C.23)

The two conditions that need to be satisfied are

0 <
2m2

22λ6 − 2m2
sλ8

Λ88
26

, (C.24)

0 <
2m2

sλ2 − 2m2
22λ8

Λ88
26

. (C.25)

C.2.4. Case sIV

The case sIV stationary point has a value of

V (sIV) = −
(
m2

s

)2
2λ6

, (C.26)

which is only a valid solution if

m2
s < 0 . (C.27)

C.3. Special case λ4 = λ5

If λ4 = λ5 all VEVs can be simultaneously non-zero. This special case yields a scalar potential
value of

V (λ4 = λ5) = −
(
m2

12

)2
2λ4

+

(
m2

11

)2
Λ88

26 +
(
m2

s

)2
Λ33

12 +
(
m2

22

)2
Λ77

16

2(λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26)

− m2
11m

2
s Λ38

27 +m2
11m

2
22Λ78

36 +m2
22m

2
s Λ37

18

λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26

.

(C.28)
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The positivity conditions are

0 < v2
cb + v2

cp =

(
m2

12

)2
(λ7Λ38

27 + λ3Λ78
36 − λ1Λ88

26)

2λ2
4(m2

s Λ38
27 +m2

22Λ78
36 −m2

11Λ88
26)

+
2m2

22Λ77
16 − 2m2

s Λx7
18 − 2m2

11Λ78
36

λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26

, (C.29)

0 < v2
s =

2m2
s Λ33

12 − 2m2
11Λ38

27 − 2m2
22Λ37

18

λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26

, (C.30)

0 < v2
1 =

2m2
s Λ38

27 + 2m2
22Λ78

36 − 2m2
11Λ88

26

−λ7Λ38
27 − λ3Λ78

36 + λ1Λ88
26

. (C.31)
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The code N2HDECAY

N2HDECAY1 is an HDECAY implementation of the N2HDM written in Fortran. It is based
on HDECAY v6.51 [76, 77] and builds largely on the implementation of the 2HDM [77]. The
code is completely self-contained. Compiling it with the supplied makefile creates a portable
executable called run which reads a file called n2hdecay.in in the same directory as input.

Part of an example input file is shown below. All parameters not shown are set to their
default values. The lines colored gray contain parameters unused in the N2HDM and can be
set to any value. The input flag called N2HDM near the top of the input file (not shown) turns
on the model if set to 1. The flag PARAM has to be set to 1 for the code to work.

************************** 2 Higgs Doublet Model *************************

TYPE: 1 (I), 2 (II), 3 (lepton-specific), 4 (flipped)

PARAM: 1 (masses), 2 (lambda_i)

PARAM = 1

TYPE = 2

********************

TGBET2HDM= 1.17639226D0

M_12^2 = 3.28390121D5

******************** PARAM=1:

ALPHA_H = 10.D0

MHL = 10.D0

MHH = 10.D0

MHA = 9.02919728D2

MH+- = 8.59398112D2

******************** PARAM=2:

LAMBDA1 = 0D0

LAMBDA2 = 0D0

LAMBDA3 = 0D0

LAMBDA4 = 0D0

LAMBDA5 = 0D0

**************************** N2HDM ***********************************

*** needs TYPE, TGBET2HDM, M12^2, MHA and MH+- from the 2HDM block ***

MH1 = 1.25090000D2

MH2 = 8.17422761D2

MH3 = 9.76339405D2

alpha1 = 0.79503834

alpha2 = 0.13549279

alpha3 = 1.46729273

V_SING = 1.49629673D3

**************************************************************************

1available at https://www.itp.kit.edu/~maggie/N2HDECAY/

https://www.itp.kit.edu/~maggie/N2HDECAY/
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Running with this input file produces output files containing the branching ratios and total
widths for the Higgs bosonsH1,2,3 (br.H1_N2HDM_a, br.H1_N2HDM_b, . . . ), A (br.A_N2HDM_a,. . . ),
H± (br.H+_N2HDM_a, . . . ) and the top-quark (br.top). The total width and branching ratio
of the t quark are calculated to account for the decay

t→ H+b (D.1)

if the charged Higgs boson is sufficiently light.

As an example, the output for the heaviest Higgs boson (br.H3_N2HDM_a, br.H3_N2HDM_b,
br.H3_N2HDM_c, br.H3_N2HDM_d) for this parameter point is given below. Each line of values
corresponds to one of the output files.

MH3 BB TAU TAU MU MU SS CC TT

_______________________________________________________________________________

976.339 0.3458E-03 0.5450E-04 0.1927E-06 0.1259E-06 0.1267E-04 0.8026

MH3 GG GAM GAM Z GAM WW ZZ

_______________________________________________________________________________

976.339 0.1326E-02 0.3417E-05 0.6717E-06 0.4762E-01 0.2350E-01

MH3 H1H1 H1H2 H2H2 AA Z A

_______________________________________________________________________________

976.339 0.6375E-01 0.2923E-03 0.000 0.9115E-13 0.7821E-04

MH3 W+- H-+ H+ H- WIDTH

_______________________________________________________________________________

976.339 0.6038E-01 0.000 43.40
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