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1. Introduction

Almost nine years past the discovery of a Standard Model-like Higgs boson at the LHC [1,
2], particle physics faces an era of precision measurements. Although predictions from
the Standard Model (SM) of particle physics are consistent with experimental results, the
tension towards statistical significant discrepancies has been intensified with recent findings
of the Muon g − 2 experiment [3]. Furthermore, there is clear evidence for physics beyond
the SM, for example from cosmology. The matter that is described by the SM is only
able to account for around 15.6% of the total matter density of the universe, the rest is
the so-far unknown dark matter (DM) [4]. There is clear evidence for its gravitational
interactions [4–6] and the presence of non-relativistic DM is also essential in order to
successfully describe the formation of structures in the early universe [7].

In addition to DM, another open question is the non-zero baryon asymmetry of the universe
(BAU). Although the Big Bang theory predicts an initial baryon-antibaryon symmetric
state, the Planck Collaboration determines today’s BAU at [4]

η ≡ nb − n̄b

nγ
' nb

nγ
' 6.1 × 10−10 . (1.1)

Sakharov proposed three conditions that enable a dynamical generation of a non-zero BAU
starting from an initially baryon-antibaryon symmetric state [8]. They are: C and CP -
violation, baryon number violation and departure from thermal equilibrium. Electroweak
baryogenesis (EWBG) is a possible framework that can explain the dynamical generation of
the BAU during the era of the electroweak phase transition (EWPT) in the early universe
in combination with beyond the SM (BSM) physics. BSM models are required for an
EWBG scenario to enable a strong first-order electroweak phase transition (SFOEWPT)
that provides the departure from thermal equilibrium that is necessary to fulfill the third
Sakharov condition. For the measured SM-like Higgs mass mh = (125.10 ± 0.14) GeV [9]
the EWPT can only be realized through a smooth cross-over phase transition in the SM [10,
11]. An SFOEWPT is characterized by ξc, the ratio between the vacuum expectation value
vc at the temperature of the EWPT and the critical temperature Tc [12, 13], that exceeds
one, i.e.

ξc ≡ vc

Tc
& 1 . (1.2)

Additionally, a BSM model has to include non-standard CP -violation, as the amount of
CP -violation in the SM is not sufficient to enable EWBG.

This Master thesis studies the model CP in the Dark, that was introduced in [14]. The
model features an extension of the SM scalar sector by an additional dark SU(2)-doublet
and an additional dark real singlet. CP in the Dark is a specific Next-to-Minimal Two-
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Higgs-Doublet Model (N2HDM) [15–17], with only one additional Z2-symmetry. This
imposed symmetry stabilizes the dark sector at T = 0 GeV, providing a stable neutral
particle dark matter candidate h1 and in addition an SM-like first doublet that features
the SM-like Higgs boson h. The model also introduces two heavier neutral dark scalars
h2 and h3, as well as the charged dark scalars H±. CP in the Dark provides additional
CP -violation in the dark sector that makes it a particularly interesting model candidate
in an EWBG scenario. In this Master thesis, we study the potential of the model CP
in the Dark to provide parameter points compatible with the relevant theoretical and
experimental constraints that show an SFOEWPT, which is a necessary condition in an
EWBG scenario for the generation of the BAU.

The structure of this thesis is as follows. In Chapter 2 we build the theoretical foundation
of this thesis. A short introduction to the SM is given in Sec. 2.1. The open question of
the baryon asymmetry of the universe is introduced in Sec. 2.2. Sections 2.3-2.7 present
the description of particle physics in the hot early universe at times around the electroweak
phase transition. The model CP in the Dark is described in detail in Chapter 3. Chapter 4
gives its renormalization prescription, with special focus on the role of the unconstrained
finite pieces of the chosen renormalization scheme. Our results are presented in Chapter 5.
The work is summarized and concluded in Chapter 6.



2. Theoretical Background

The following sections give an overview on the theoretical background of this Master
thesis. Section 2.1 introduces the Standard Model (SM) of particle physics focussing on
the SM Higgs mechanism. An introduction to the open question of explaining the baryon
asymmetry of the universe (BAU) is given in Sec. 2.2. Section 2.3 provides more details on
the electroweak phase transition. The formalism used to describe the Higgs sector at finite
temperature in the hot early universe is introduced in Secs. 2.4 to 2.7.

2.1. Standard Model of Particle Physics

The SM provides us with the most complete understanding of particle physics based on a
renormalizable quantum field theory with the symmetry group [18]

SU(3)C × SU(2)L × U(1)Y . (2.1)

Postulating local gauge invariance of the SM Lagrangian under the symmetry transforma-
tion of Eq. (2.1) introduces the covariant derivative ∂µ → Dµ and the gauge fields. The
gauge bosons mediate fundamental interactions between particles. Particles are understood
as excitations of quantum fields. They carry quantum numbers and have certain transfor-
mation properties under the symmetry groups of the gauge interactions.

Three of the four fundamental interactions are described within the SM. The strong inter-
action is mediated by gluons Ga

µ that are the gauge bosons of the SU(3)C . The electroweak
interaction is mediated by the gauge bosons of the SU(2)L × U(1)Y gauge groups, the
W µ

1,2,3 and Bµ bosons.

It has been verified experimentally that the electroweak gauge bosons and all fermions are
massive.1 However, naive mass terms break the symmetry of the SM and can therefore not
be introduced in the usual bilinear way.

Moreover, unitarity in a quantum field theory like the SM with massive gauge bosons
and fermions that interact weakly up to high scales, can be restored by introducing an
additional scalar boson which couples to SM particles proportional to their masses. The
SM Higgs boson is such a scalar boson. It was first postulated in the Brout-Englert-Higgs
(BEH) mechanism [20–23]. The mechanism explains fermion and gauge boson masses in a
gauge-invariant way.

1Neutrinos are massless in the SM, although they have to carry a non-zero mass. The process called
neutrino oscillation is only possible for non-zero neutrino masses mν and can explain the solar neutrino flux
and all other experimental findings related to neutrinos. The current world-best limit is set by the KATRIN
experiment in Karlsruhe [19].
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The BEH mechanism introduces a complex SU(2)L doublet field Φ together with the Higgs
potential V (Φ)

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 , (2.2)

with

µ2 < 0 . (2.3)

Expanding the SM-Higgs field Φ around its minimum yields

Φ =
(

φ+

φ0

)
≡
(

G±
1√
2
(
v + h + iG0)

)
, (2.4)

with the vacuum expectation value (VEV)

v =

√
−µ2

2λ
≈ 246.22 GeV . (2.5)

The ground state of the Higgs field

〈Φ〉 = 1√
2

(
0
v

)
(2.6)

spontaneously breaks SU(2)L × U(1)Y down to U(1)em. The photon γ as gauge boson of
the unbroken U(1)em remains massless.

Each of the three broken degrees of freedom introduces a massless Pseudo Goldstone boson
into the theory. Additionally, we get one massive scalar Higgs boson h. In unitary gauge
the degrees of freedom which are associated with Goldstone bosons are absorbed into the
mass eigenstates for the electroweak gauge bosons W ± and Z. The Higgs field in unitary
gauge reads

Φ =
(

0
1√
2(v + h)

)
. (2.7)

The Higgs mechanism describes the minimalistic extension necessary in order to explain
massive gauge bosons and fermions. The fermions obtain their masses through the Yukawa
couplings, introducing an interaction between the SM Higgs bosons and the fermions,
respectively.

With the discovery of an SM-like Higgs boson with mh = (125.10 ± 0.14) GeV [9] at CERN
by ATLAS [1] and CMS [2] in 2012 the last missing piece of the SM and also the first
elementary scalar particle was found experimentally.
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2.2. The Baryon Asymmetry of the Universe
The standard model of Big Bang cosmology is the Lambda Cold Dark Matter model ΛCDM.
It is based on today’s most important observations on our universe:

• Expansion: The universe is expanding. The expansion is described by a growing scale
factor a(t). The Hubble parameter [9]

H(t) = ȧ(t)
a(t) (2.8)

describes the rate of the expansion. A measurable consequence is the redshift of
photons emitted by cosmological sources [24]. Fig. 2.1 sketches the evolution of the
universe with time and decreasing temperature.

• Isotropy and homogeneity: Largest structures in the universe are superclusters of
galaxies that reach sizes of up to a couple of 10 Mpc. Matter and energy is evenly
distributed considering scales larger than 102 Mpc [9, 25].

• Cosmic Microwave Background: Nearly ideal gas of photons with temperature

T = (2.7255 ± 0.0006) K (2.9)

that fills the universe and shows angular fluctuations of δT/T ∼ 10−5 [9].

• Dark Matter : Ordinary baryonic matter with a relic density of [4]

Ωbh
2 = 0.02237 ± 0.00015 (2.10)

only accounts for around 15.6% of the matter density of the universe [4]

Ωmh2 = 0.1430 ± 0.0011 . (2.11)

Almost 84% of the matter relic density consists of cold dark matter [4]

Ωch
2 = 0.1200 ± 0.0012 . (2.12)

While the cosmological large-scale evidence clearly indicates the presence of additional
matter in the universe [4, 5], so far dark matter has hidden from searches for baryonic
matter. It therefore has to be sufficiently electrically neutral. Dark matter also
plays an important role in the formation of structures in the early universe. It is
required to be non-relativistic or cold to be able to stabilize the process of matter
accumulation [7].

During the ongoing expansion that was accelerated during an era called inflation an equal
amount of baryons and antibaryons is created originating from the initial symmetric state
associated with the Big Bang. However, observations today show a BAU. Primordial
antimatter has so far not been observed and all cosmological antimatter can be consistently
explained by mechanisms of secondary production in cosmic rays. The BAU is quantified by
the baryon asymmetry to photon density ratio η. The baryon asymmetry density nB − nB̄

is nearly equal to the density of baryons nB − nB̄ ' nB. The Planck Collaboration
determines the BAU to be [4]

η ≡ nb − n̄b

nγ
' nb

nγ
' 6.1 × 10−10 . (2.13)

The evolution of a baryon-asymmetric universe from an initially baryon-symmetric state
could in principle be explained by a mechanism that prevents the baryon-antibaryon
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Figure 2.1.: Sketch of the temporal evolution of the universe. The Big Bang is followed
by a period of accelerated expansion, called inflation. With continuing, but much slower
expansion and decreasing temperature, the universe undergoes several phase transitions.
The era of the electroweak phase transition around TEW = 100 GeV is of special interest in
the context of this thesis as it gives rise to scenarios of electroweak baryogenesis enabling
the explanation of a dynamical generation of the observed baryon asymmetry of the
universe, see Secs. 2.2 and 2.3. The figure is taken from [26].
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annihilation. However, after inflation the causally connected region is too small for such a
process to successfully appear. Assuming that the universe does not start from an initially
baryon-antibaryon symmetric one, but from a state with an initial baryon access can also
not solve the problem. A small initial baryon access is not able to survive inflation and
would be washed out in this process [26].

The dynamical generation of the BAU originating from a symmetric vacuum is possible for
a model that fulfills the conditions by Sakharov [8].

2.2.1. Sakharov Conditions
The observed excess of matter over antimatter has to evolve from an initial state with
baryon asymmetry equal to zero. A dynamical creation of a BAU is possible given that
the three Sakharov conditions are fulfilled [8]:

• Existence of baryon number B violating processes,

• C and CP violation and

• departure from thermal equilibrium.

The Sakharov conditions are necessary, but in general not sufficient in order to generate
the BAU in an electroweak baryogenesis (EWBG) scenario.

2.2.2. Can the SM alone explain the BAU?
The SM already provides C, CP and B violation. C and CP violation occur in the charged
weak currents. The Kobayashi-Maskawa (KM) mechanism [27] explains the observed CP
violation in K meson systems and B meson decays via a non-zero complex and therefore a
CP-violating phase in the Cabibbo–Kobayashi–Maskawa (CKM) matrix.

In present-day experiments the baryon B and lepton number L appear to be good quantum
numbers. More specifically, the global U(1)B and U(1)L gauge symmetries of the Lagrangian
suffer from the Adler-Bell-Jackiw chiral anomaly which results in conservation of B − L
because the difference of the associated symmetry currents vanish [26]

∂µ(JB
µ − JL

µ ) = 0 . (2.14)

Baryon and lepton number violation in the SM is a non-perturbative effect. B and L are
conserved as long as the perturbative approach is still justified. However, non-abelian
gauge theories have many equivalent topological minima whose ground states have different
topological charge classified by a non-zero Chern-Simons number NCS. Ground states
with different NCS are separated by a potential barrier and correspond to large gauge field
variations beyond the size of perturbative fluctuations. They can violate B and L by units
of flavor nF [28],

∆B = ∆L = nF ∆NCS . (2.15)

A classical calculation by ’t Hooft [28, 29] showed that at zero temperature the needed
tunneling process between two topologically different vacuum field configurations is highly
suppressed

σ /B+/L ∼ 10−164 . (2.16)

The situation changes at finite temperature. Sphalerons, classical mixtures of gauge and
Higgs fields who topologically lie on the path with minimum energy, mediate transitions
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between different minima [30, 31]. The electroweak symmetry is restored for temperatures
roughly above the electroweak scale TEW = 100 GeV [32]. Then B and L violating
transitions are no longer suppressed. As long as [26]

TEW < T . 1012 GeV (2.17)

we are in the symmetric Higgs phase and sphaleron-mediated B + L violating processes
are in thermal equilibrium because

Γsph
/B+/L

(T > TEW) � H , (2.18)

with the Hubble parameter H defined in Eq. (2.8). Whether the departure from thermal
equilibrium is sufficiently strong in order to fulfill the third Sakharov condition is discussed
in Sec. 2.3.

2.3. Electroweak Phase Transition

It has been shown that spontaneously broken gauge symmetries are restored at high
temperature [33–37]. At finite temperature, the Higgs potential passes from the symmetry-
breaking VEV to a symmetric ground state. This electroweak phase transition (EWPT)
takes place around [32]

TEW = 100 GeV . (2.19)

In the early universe at T > TEW consequently all SM-like gauge bosons and fermions are
massless.

A phase transition is characterized by an order parameter. For systems with a spontaneously
broken electroweak symmetry, the electroweak VEV ω is a suitable order parameter. The
critical temperature Tc is defined as the temperature, where the symmetric and broken
minima of the potential V are degenerate,

V (ω = 0, Tc) = V (ω 6= 0, Tc) . (2.20)

First-order phase transitions are characterized by a discontinuity in the order parameter
at Tc. For second-order phase transitions the vicinity of Tc is also characterized by a
significant, but continuous change in the order parameter. The departure from thermal
equilibrium needed for a dynamically generated BAU in context of the criteria by Sakharov
(see Sec. 2.2) can only be guaranteed through a sufficiently strong first-order EWPT.2

EWBG is a suitable candidate for an explanation of the BAU production, however only
possible with beyond the Standard Model (BSM) physics. It takes place in the period after
inflation and before or around the electroweak phase transition at TEW = 100 GeV.

As long as T > TEW sphaleron-mediated B and L violating processes are in thermal
equilibrium. All fermions and bosons are still massless as the SU(2)L × U(1)Y symmetry
is a global unbroken symmetry of the theory. As the universe cools down, the temperature
T eventually comes in the vicinity of TEW triggering EWPTs. Bubbles with the symmetry-
breaking vacuum state now start to nucleate. In order to conserve the BAU, the bubbles

2Since lattice gauge theory disfavors a first-order QCD phase transition with the known non-zero quark
masses [38], first-order phase transitions during the EWPT are a favored scenario to determine the baryon
density.
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must get filled with more baryons than antibaryons and further B violating processes inside
the bubbles must be prohibited. The sphaleron rate needs to be sufficiently suppressed in
the broken phase inside the bubbles. In the broken phase it is given by [39]

Γsph
/B+/L

∝ exp −Esph(T )
T

. (2.21)

The sphaleron energy Esph(T ) can be expressed in terms of φc(Tc), the classical field
configuration that minimizes the effective potential (see Sec. 2.4) at Tc [39]. Γsph

/B+/L
is

sufficiently suppressed in order to explain the BAU if the baryon wash-out condition is
fulfilled [12, 13]

ξc ≡ vc

Tc
& 1 . (2.22)

If Eq. (2.22) is satisfied, the EWPT is a strong first-order electroweak phase transition
(SFOEWPT).

The size of the discontinuity in the order parameter for the EWPT in the SM is dependent
on the SM Higgs boson mass mh, it gets smaller for larger mh. An SFOEWPT is only
possible for mh . 70 − 80 GeV [10, 11]. For the measured mh = (125.10 ± 0.14) GeV [9]
the EWPT can only take place through a smooth cross-over phase transition that does not
provide the necessary departure from thermal equilibrium to explain the BAU [26].

Consequently, the initial question of Sec. 2.2.2 is answered with a no. The SM with
its explanation of electroweak symmetry breaking through the BEH mechanism alone is
not sufficient to explain the dynamical generation of today’s observed BAU in the early
universe. Note, that in addition to not sufficiently suppressing the sphaleron transitions,
also the CP-violation (CPV) is not large enough in the SM to explain baryogenesis [40].
It is therefore crucial to formulate BSM models that not only enable an SFOEWPT, but
also include sources of additional non-standard CPV. The model CP in the Dark which is
discussed in this thesis, can be such a suitable model candidate.
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2.4. The Effective Potential Approach

It was shown in [41] that radiative corrections can significantly change the symmetry-
breaking behavior of a theory. At tree level, the postulated SM Higgs potential of Eq. (2.2)
is stable. But higher-order corrections play an important role. The requirement of vacuum
stability up to the Planck mass scale imposes an upper bound on the top quark pole
mass [42, 43]. Vacuum stability for BSM models with additional scalar degrees of freedom
is studied for example in [44–47] for the Two-Higgs-Doublet Model (2HDM) and in [16, 17]
for the Next-to-Minimal Two-Higgs-Doublet Model (N2HDM).

The effective potential approach (EPA) enables an all-order description of the complete
vacuum state of a theory, considering tree-level interactions and also all possible quantum
corrections. The minimum of the effective potential is the true vacuum state of the quantum
field theory, including interactions of all orders of perturbation theory.

The probability amplitude for the general transition between two vacuum states |0in〉
and |0out〉 in the presence of external sources can be calculated knowing the generating
functional for the connected Greens function W (J) [41, 48]

W (J) =
∑

n1,n2,n3,...,nN

1
n1!n2!n3! . . . nN !

∫
d4x1d4x2 . . . d4xn1 d4y1 . . . d4yn2 . . . d4w1 . . . d4wnN

× G(n1,n2,n3,...,nN )(x1, x2, . . . , xn1 , y1, . . . , yn2 , . . . , w1, . . . , wnN )
× J1(x1)J1(x2) . . . J1(xn1) J2(y1) . . . J2(yn2) . . . Ji(w1) . . . Ji(wnN ) ,

(2.23)

where Ji with i ∈ {1, . . . , N} are sources introduced for each of the N fields Φi of the
theory. G(n1,...,nN )(x1, . . . , wnN ) are the connected Greens function that are constructed by
the sum of all connected Feynman diagrams with ni external lines of the particle i.3 The
integration is performed in

∑N
i=1 ni directions that are labeled in Eq. (2.23) by xi with

i ∈ {1, . . . , n1}, yj with j ∈ {1, . . . , n2}, . . . , and wk with k ∈ {1, . . . , nN }, respectively.
Then the probability amplitude for the transition between two vacuum states reads

〈0out|0in〉 = eiW (J) . (2.24)

A classical field Φc,i can be understood as the variation of W (J) with respect to the external
source Ji

Φc,i = δW (J)
δJi(x) = 〈0out|Φi(x)|0in〉J

〈0out|0in〉J
. (2.25)

The effective action Γ(Φc) is defined via a Legendre transformation [18]

Γ(Φc) = W (J) −
∑

i

∫
d4xJi(x)Φc,i(x) . (2.26)

It is therefore also a generating functional

Γ(Φc) =
∑

n1,...,nN

1
n1! . . . nN !

∫
d4x1 . . . d4xn1 . . . d4wnN × Γ(n1,...,nN )(x1, . . . , wnN )

× Φ1(x1) . . . Φ1(xn1) . . . Φi(wnN ) .

(2.27)

3Connected Feynman diagrams are diagrams without any disconnected vacuum loops [18].
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Γ(n1,...,nN )(x1, . . . , wnN ) label the one-particle irreducible (1PI) Greens functions that are
constructed by the sum of all 1PI Feynman diagrams.4 Expanding the effective action of
Eq. (2.26) in powers of external momenta around the point of vanishing external momenta
at a constant field value ϕc,i of the classical field Φc,i we get

Γ[Φc] =
∫

d4x

{
−V (ϕc) + 1

2∂µΦc(x)∂µΦc(x)Z(ϕc) + . . .

}
. (2.28)

The first term in the external momenta expansion, V (ϕc), is the so-called effective po-
tential [41]. It can be diagrammatically calculated by summing all diagrams with zero
external momenta and only external scalar fields.

The theory shows spontaneous symmetry breaking (SSB) if [41]

δΓ[Φc(x)]
δΦc(x) = 0 , when Φc(x) 6= 0 . (2.29)

Assuming Poincaré-invariance, the fields are not space-time dependent and ϕc is constant.
The Poincaré-invariant theory shows SSB if

dV (ϕc)
dϕc

= 0 , when ϕc 6= 0 . (2.30)

For space-time independent fields Φc, Eq. (2.28) simplifies and the effective action and the
full effective potential are connected via the spacetime volume Ω

Γ[ϕc] = −ΩV (ϕc) . (2.31)

In addition to the true ground state, also 1PI Greens functions can be calculated from the
effective potential. Evaluating the nth derivative of V (ϕc) at ϕc = 0 gives the n-point 1PI
Greens function in the limit of vanishing external momenta.

A complete calculation of V would involve the sum over an infinite amount of Feynman
diagrams. It is possible to do an expansion in terms of numbers of loops that can be
directly related to an expansion in ~ [41],

V = V (0) + ~V (1) + O(~2) and (2.32)

Γ[ϕc] = −ΩV (0)(ϕc) + i~
2 log det D−1 + O(~2) . (2.33)

The logarithm of the determinant of the inverse propagator D−1 can be rewritten as a
trace. The trace can then be expressed as a sum over its eigenvalues [18]. In case of a pure

41PI Feynman diagrams are connected diagrams that cannot be separated into two diagrams by cutting
one internal line [18].
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scalar theory with D−1 =
(
∂2 + m2) defined in position space, this reads

log det D−1 = Tr log D−1

=
∫

d4x〈x| log D−1|x〉

=
∫

d4x

∫
d4k

(2π)4

∫
d4k′

(2π)4 〈x|k〉〈k| log D−1|k′〉〈k′|x〉

=
∫

d4x

∫
d4k

(2π)4 log
(
−k2 + m2

) ∫
d4k′〈x|k〉δ(4)(k − k′)〈k′|x〉

=
∫

d4x

∫
d4k

(2π)4 log
(
−k2 + m2

)
= Ω

∫
d4k

(2π)4 log
(
−k2 + m2

)
,

(2.34)

where we used that 1 =
∫ d4k

(2π)4 |k〉〈k| and inserted the eigenvalues of the inverse propagator
in momentum space 〈k| log D−1|k′〉 = (2π)4δ(4)(k − k′) log

(
−k2 + m2). After performing a

Wick rotation with k0 → ik4 and comparing Eq. (2.31) with (2.33), the one-loop potential
in a purely bosonic field theory reads

V (1) = 1
2

∫
d4kE

(2π)4 log
(
k2

E + m2
eff

)
. (2.35)

The effective mass matrix m2
eff in a theory with spontaneous symmetry breaking is calculated

considering the inverse propagator in the true ground state where the field Φc obtains the
VEV 〈ϕ〉

m2
eff, ij = ∂2V (0)

∂Φc,i∂Φc,j

∣∣∣∣
Φc=〈ϕ〉

. (2.36)

2.5. Finite Temperature Field Theory

Quantum field theory at finite temperature can be formulated in the Matsubara formalism
that was originally introduced in [49]. The thermal system of the hot early universe can be
described by a grand canonical ensemble, therefore allowing particle and energy exchange
with a heat bath of temperature T [50]. The partition function Z of a system at finite
temperature T = β−1 is 5

Z(β) = Tr e−βĤ , (2.37)

with H = H − µN , the Hamiltonian of the grand canonical ensemble, the Hamiltonian
operator H and the particle number operator N , as well as the chemical potential µ.

Observables at finite temperature are ensemble averages of operators O, the so-called Gibbs
averages [51]

〈O〉β = Z(β)−1Tr e−βĤO . (2.38)

Writing the operator as O = O(x1, x2, . . . , xn) ≡ O1 (t1, x1) O2 (t2, x2) . . . On (tn, xn) and
inserting the explicit Heisenberg operator form of OH(t, x) = eiHtOSe−iHt we can rewrite

5We use natural units and set kB ≡ 1.
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Eq. (2.38)

〈O(x1, x2, . . . , xn)〉β = Z(β)−1Tr e−βĤO1 (t1, x1) O2 (t2, x2) . . . On (tn, xn) (2.39a)

= Z(β)−1Tr e−βĤeiHt1O1 (0, x1) e−iHt1 . . . eiHtnOn (0, xn) e−iHtn

(2.39b)

= Z(β)−1Tr e−βĤ · e−βĤeβĤ · eiHt1O1 (0, x1) . . . On (0, xn) e−iHtn

(2.39c)

= Z(β)−1Tr e−βĤeH(it1+β)O1 (0, x1) . . . On (0, xn) e−H(itn+β) .
(2.39d)

In step (2.39c) 1 = e−βĤeβĤ is inserted and in step (2.39d) we use the cyclicity of the
trace. By comparing Eq. (2.39b) and (2.39d) we find that the equality only holds if

itm → itm + β (2.40)

for arbitrary m ∈ {1, . . . , n}. Consequently, in contrast to the zero temperature Greens
functions with boundary conditions for tm = ±∞, the finite temperature Greens functions
are periodic in imaginary time itm with period β [51]. This is the reason why the Matsubara
formalism is often called imaginary time formalism [50].

The finite-temperature two-point Greens function can be written as [50]

Gβ(τ − τ ′) =
〈
Tτ

(
φH(τ)φ†

H(τ ′)
)〉

β
(2.41a)

= Z(β)−1Tr e−βĤTτ

(
φH(τ)φ†

H(τ ′)
)

(2.41b)

= Z(β)−1Tr e−βĤ
[
Θ(τ − τ ′)φH(τ)φ†

H(τ ′) ± Θ(τ ′ − τ)φ†
H(τ ′)φH(τ)

]
. (2.41c)

In Eq. (2.41c) the time ordering at finite temperature Tτ is written out explicitly, (+)
corresponds to bosonic, (−) to fermionic Heisenberg fields φH . From Eq. (2.40) we know
that Gβ is periodic with period β, therefore |τ − τ ′| ≤ β. Using the cyclicity of the trace
one can conclude that

Gβ(τ < 0) = ±Gβ(τ + β) . (2.42)

Because the Greens functions are defined on a finite time interval, the Fourier transform
can only involve discrete frequencies, the so-called Matsubara frequencies ωn with n ∈ N0.
Using Eq. (2.42), we can write the Fourier-transformed Greens function as [50]

Gβ(ωn) = 1
2

∫ β

−β
dτeiωnτ Gβ(τ) (2.43a)

= ±1
2

∫ 0

−β
dτeiωnτ Gβ(τ + β) + 1

2

∫ β

0
dτeiωnτ Gβ(τ) (2.43b)

= ±1
2

∫ β

0
dτeiωn(τ+β)Gβ(τ) + 1

2

∫ β

0
dτeiωnτ Gβ(τ) (2.43c)

= 1
2
(
1 ± eiωnβ

) ∫ β

0
dτeiωnτ Gβ(τ) (2.43d)

= 1
2 (1 ± (−1)n)

∫ β

0
dτeiωnτ Gβ(τ) . (2.43e)

From Eq. (2.43e) we conclude that for bosons only even n and for fermions only odd n
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lead to non-zero Greens functions. The Matsubara frequencies for bosons and fermions
therefore are

ωn =

2nπ
β for bosons with n ∈ N0

(2n+1)π
β for fermions.

(2.44)

The finite temperature partition function can also be expressed in terms of the path integral.
The zero temperature transition amplitude in the path integral formalism reads

〈φ(x1, t1)|φ(x2, t2)〉 = 〈φ1|e−iH(t1−t2)|φ2〉 = N ′
∫

DφeiS . (2.45)

For finite temperature we identify −iβ = t1 − t2 and write

Z(β) = Tr e−βĤ =
∫

dφ〈φ|e−βĤ|φ〉 = N ′
∫

Dφe−ŜE . (2.46)

The imaginary time action SE and ŜE are connected via

ŜE = SE + βµN =
∫ β

0
dτ

∫
d3xLE + βµN . (2.47)

The fields are periodic

φ(x, β) = ±φ(x, 0) . (2.48)

The procedure of obtaining Feynman rules from the path integral is the same as for zero
temperature field theory [18]. While the vertices remain unchanged when going from
zero to finite temperature field theory, the propagators receive temperature-dependent
contributions. The bosonic and fermionic momentum space causal two-point Greens
functions in finite temperature field theory read

Gβ,s0(k, ωn) = 1
ω2

n + k2 + m2 , (2.49)

Gβ,s1/2(k, ωn) = γ0ωn + γk − m

ω2
n + k2 + m2 . (2.50)

γµ are the Dirac matrices and s0, 1/2 label the spin quantum numbers of bosons and fermions.

We summarize, at finite temperature the space-time topology changes as

R4 → R3 × S1 . (2.51)

S1 is identified with the one-dimensional sphere. Periodicity in imaginary time leads to
discretization of energy defining the Matsubara frequencies. Equations (2.44) and (2.51)
indicate the following replacements when going from zero to finite temperature field theory∫

d4k

(2π)4 =
∫

dk0
2π

∫
dk

(2π)3 → T
∑
n∈Z

∫
d3k

(2π)3 . (2.52)

The imaginary time formalism trades the time variable for the equilibrium temperature. It
is therefore applicable for static systems that are in thermal equilibrium. However, this is
not true for the hot early universe in the vicinity of the electroweak phase transition that
we want to describe. It is possible to introduce a slow time dependence into the imaginary
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time formalism through analytic continuation [50]. Systems far from thermal equilibrium
can be described via the so-called real time path formalism and its special case, the closed
time path formalism [50]. As the terminology indicates, it involves a time integration along
a path on the real axis in positive direction that is closed in the complex time plane.

In the context of this work, we apply perturbation theory in the hot early universe. We
study EWPTs assuming that we are approximately close enough to the equilibrium that
the imaginary time formalism is still applicable.

2.6. One-Loop Effective Potential at Finite Temperature

By applying Eq. (2.52) to Eq. (2.35), we can write the one-loop effective potential at finite
temperature for bosonic fields as

V (1) = T

2
∑
n∈Z

∫
d3k

(2π)3 log
(
ω2

n + ω2
k

)
, with ω2

k ≡ k2 + m2 . (2.53)

Using the method of [36] the finite temperature one-loop bosonic effective potential can be
further split into two parts, a temperature-independent Coleman-Weinberg potential VCW
and a temperature-dependent part VT [52, 53],

V (1) =
∫

d3k

(2π)3
ωk

2 +
∫

d3k

(2π)3
1
β

log
(
1 − e−βωk

)
≡ VCW + VT . (2.54)

The temperature-independent Coleman-Weinberg contribution is UV divergent. As no
further UV divergences can be generated at finite temperature, performing MS renormal-
ization at zero temperature is sufficient in order to cure the UV divergences [50]. This
procedure of renormalization is further discussed in Chapter 4. One obtains the UV-finite
bosonic Coleman-Weinberg potential in the MS scheme at the renormalization scale µ
as [41]

V MS
CW = m4

64π2

[
log

(
m2

µ2

)
− kX

]
, (2.55)

with the renormalization constant kX

kX =
{5

6 , for gauge bosons
3
2 , otherwise

. (2.56)

The complete effective potential at finite temperature up to one-loop level reads

V = V (0) + V (1) ≡ V (0) + VCW + VT . (2.57)

The temperature-dependent part VT of the one-loop bosonic effective potential can be
written defining the thermal bosonic function J− [36, 52, 53]

VT =
∫

d3k

(2π)3
1
β

log
(
1 − e−βωk

)
≡ 1

2π2β4 J−(m2β2) (2.58)

with

J±(x2) =
∫ ∞

0
dkk2 log

(
1 ± e−

√
k2+x2

)
. (2.59)
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So far, we only considered a purely bosonic theory. The contributions from vector bosons
and fermions to the effective potential can be calculated analogously. In Sec. 4.2 we give
the one-loop effective potential at finite temperature for a general quantum field theory
involving scalars, fermions and gauge bosons using the universal notation of [54]. Also
in this most general case, the effective potential splits into a temperature-independent
Coleman-Weinberg potential and a temperature-dependent part.

2.7. Resummation

The effective potential suffers from so-called infrared (IR) divergences when k → 0 for the
bosonic Matsubara zero modes with n = 0,

V ∝ log D−1 k→0−−−→ ∞ for n = 0 . (2.60)

These infrared divergences lead to a breakdown of the perturbative expansion close to the
phase transition [52].

It was shown in [55] that the NLO contribution to the temperature-dependent part of the
effective potential in the expansion in terms of the self-coupling λ is of order O(λ3/2), not
of order O(λ2). The order O(λ3/2) is given by the so-called ring or daisy corrections [56].
If all ring diagrams are included, the problematic IR divergences cancel and we are able to
perform a complete perturbative IR finite NLO calculation of the effective potential.

Ring diagrams account for non-perturbative significant long-distance effects. They are the
dominant parts of the two-loop graph and can be calculated as self-energy corrections in
the infrared limit k → 0 and in the hard thermal loop approximation6 [57]

m

T
� 1 . (2.61)

Including the infinite sum of all possible ring diagrams in a diagrammatic calculation is
equivalent to performing resummation by including the thermal masses into the calculation.
Thermal masses arise from one-loop diagrams shown in Fig. 2.2 that yield quadratic
divergences of order ∝ T 2 [58]. In a scalar field theory with quartic coupling λ, the one-loop
polarization tensor of Fig. 2.2 at finite temperature in the infrared and hard thermal loop
limit is given by [58]

Π(1)(ωn, k) k→0, m/T �1−−−−−−−−→ Π(1)(0) = 3λT
∑
n∈Z

∫
d3k

(2π)3
1

ω2
n + ω2

k

(2.62)

= λ
T 2

4

(
1 + O

(
m

T

))
. (2.63)

As suggested by Parwani in [59], resummation in finite temperature effective field theory
can be performed by replacing all masses in the effective potential with the thermal masses

m2 → m2 + Π(1)(0) . (2.64)

The method proposed in [58], that we will refer to as the Arnold-Espinosa method, treats
the Matsubara modes differently. As shown in [58], only contributions for heavy n 6= 0
but not for light n = 0 modes can be treated perturbatively. After the heavy modes

6This approximation is sufficient, because the ring diagram contribution is negligible in the opposite
case when m ∼ T as shown in [55].
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Figure 2.2.: Thermal mass correction in a purely bosonic field theory

are integrated out, only the zero modes are resummed in the Arnold-Espinosa method.
Therefore, in contrast to the Parwani method, one does not suffer from the mixture of
different orders in perturbation theory. The thermal mass corrections for a general quantum
field theory in the notation of [54] are presented in Sec. 4.2.





3. CP in the Dark

A minimal approach to describe physics beyond the Standard Model in a bottom up way is
the extension of the scalar sector. Being experimentally the least resolved sector of the
SM, the scalar sector therefore has the potential to turn out to be more complex than
postulated in the SM. A precisely measured quantity that restricts multiplet extensions of
the SM scalar sector is the ρ parameter [60]. For an electroweak SU(2)L × U(1)Y gauge
theory with n scalar doublets with weak isospins Ii, weak hypercharges Yi and VEVs vi

the ρ parameter reads

ρ =
∑n

i=1 vi
[
4Ii(Ii + 1) − Y 2

i

]∑n
i1 2Y 2

i vi
. (3.1)

For the SM Higgs sector with one SU(2)L doublet with I = 1
2 , Y = 1, ρ is exactly ρSM = 1.

Experimentally, ρ is found to be close to the SM value [61],

ρobs = 1.00039 ± 0.00019 . (3.2)

A special model describing physics beyond the SM is called CP in the Dark [14]. It features
an N2HDM-like extended scalar sector with two scalar doublets Φ1 and Φ2 and a real scalar
singlet ΦS . Additionally, we require the Lagrangian to be invariant under the discrete Z2
symmetry

Φ1 → Φ1 , Φ2 → −Φ2 , ΦS → −ΦS . (3.3)

This Z2 symmetry rules out any tree-level flavor-changing neutral currents (FCNCs) which
would conflict the experimental results that require that any such process is strongly
suppressed.

Imposing this Z2 symmetry on the field content of an N2HDM, the most general scalar
tree-level potential invariant under SU(2)L × U(1)Y is given by

V (0) = m2
11|Φ1|2 + m2

22|Φ2|2 + m2
S

2 Φ2
S

+ [Re (A) + i Im (A)]Φ†
1Φ2ΦS + [Re (A) − i Im (A)]Φ†

2Φ1ΦS

+ λ1
2 |Φ1|4 + λ2

2 |Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†
1Φ2|2 + λ5

2 [(Φ†
1Φ2)2 + (Φ†

2Φ1)2]

+ λ6
4 Φ4

S + λ7
2 |Φ1|2Φ2

S + λ8
2 |Φ2|2Φ2

S .

(3.4)

The mass parameters m2
11, m2

22 and m2
S and the quartic coupling parameters λ1−4, λ6−8

are forced to be real by the imposed Z2 symmetry. The trilinear coupling A and the quartic

19
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coupling λ5 are in general complex. However, in the tree-level potential of Eq. (3.4) we
absorb the complex phase of λ5 into a basis change of the doublets. Then only A can
acquire a non-zero imaginary part, Im (A).

At the present vacuum with T = 0 GeV only the first doublet acquires a non-zero VEV v1.
Thus, the imposed Z2-symmetry of Eq. (3.3) is unbroken

〈Φ1〉|T =0 GeV = 1√
2

(
0
v1

)
, 〈Φ2〉|T =0 GeV =

(
0
0

)
and 〈ΦS〉|T =0 GeV = 0 . (3.5)

Due to the Z2-symmetry, the first scalar doublet Φ1 is the only one that couples to the
fermion sector. Consequently, v1 describes the SM VEV v1 ≡ v = 246.22 GeV. The Yukawa
sector is identical to the SM one. FCNCs are therefore automatically prohibited at tree level.

At arbitrary temperature T , we allow for a more general vacuum structure that is described
by five VEVs. While in the first doublet, only the neutral CP -even scalar ζ1 develops
a VEV ω1, the real part of the charged scalar ρ2, the neutral CP -even ζ2 and neutral
CP -odd Ψ2 field components of the second doublet and the singlet ζS acquire VEVs as

Φ1 = 1√
2

(
ρ1 + iη1

ζ1 + ω1 + iΨ1

)
, Φ2 = 1√

2

(
ρ2 + ωCB + iη2

ζ2 + ω2 + i(Ψ2 + ωCP)

)
, ΦS = ζS + ωS .

(3.6)

Note, that we include a charge-breaking VEV ωCB in the finite temperature vacuum
structure, to be as general as possible. However, in the later analysis of Chapter 5 all
points with |ωCB| > 0 are excluded due to non-physical behavior.

The tree-level potential V (0) is required to be minimal at the electroweak vacuum. The
resulting minimum conditions

∂V (0)

∂Φa

∣∣∣∣
Φi=〈Φi〉|T =0 GeV

= 0 , a, i ∈ {1, 2, S} (3.7)

can be used to trade the potential parameter m2
11 for the input parameters v1 and λ1,

m2
11 = −1

2λ1v2
1 . (3.8)

This equation is referred to as the tadpole equation.

Using the minimum condition of Eq. (3.8), the mass matrix in the gauge basis

φi = {ρ1, η1, ρ2, η2, ζ1, Ψ1, ζ2, Ψ2, ζS} (3.9)

is diagonal for the Goldstone bosons G± ≡ 1√
2(ρ1 ± iη1) and G0 ≡ 1√

2Ψ1, the SM-like Higgs
boson h ≡ ζ1 and the charged scalars H± ≡ 1√

2(ρ2 ± iη2). They are mass eigenstates with

m2
G± = m2

G0 = 0 , (3.10a)
m2

h = λ1v2
1 and (3.10b)

m2
H± = m2

22 + 1
2λ3v2

1 . (3.10c)
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The first doublet field and the charged component of the second doublet field written in
terms of these mass eigenstates read

Φ1 =
(

G±
1√
2
(
h + v1 + iG0)

)
, Φ±

2 = H± . (3.11)

The neutral fields ζ2, Ψ2 and ζs mix and generate three mass eigenstates h1, h2, h3 which
are obtained by the rotation h1

h2
h3

 = R

 ζ2
Ψ2
ζS

 . (3.12)

The orthogonal matrix R is parametrized by three angles α1, α2 and α3 as [14]

R =

 cα1cα2 sα1cα2 sα2

−(cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 −(cα1sα3 + sα1sα2cα3) cα2cα3

 , (3.13)

where we use sin(αi) ≡ sαi , cos(αi) ≡ cαi . The sub mass matrix of the neutral scalars reads

M2
N =


m2

22 + v2
1
2 λ345 0 Re (A)v1

0 m2
22 + v2

1
2 λ345 −Im (A)v1

Re (A)v1 −Im (A)v1 m2
S + v2

1
2 λ7

 . (3.14)

It can be diagonalized yielding the mass eigenvalues

RM2
N RT = diag(m2

h1 , m2
h2 , m2

h3) . (3.15)

The masses are chosen to have the hierarchy

mh1 < mh2 < mh3 . (3.16)

The doublet and real singlet fields transform under CP as

Φ1,2(t, ~x) CP−−→ Φ∗
1,2(t, −~x) , ΦS(t, ~x) CP−−→ ΦS(t, −~x) , (3.17)

respectively. The vacuum of Eq. (3.5) is symmetric under these CP -transformations, hence
CPV cannot result from SSB at T = 0 GeV.

A non-zero complex phase of A, Im(A) 6= 0, will break the invariance under transformations
of Eq. (3.17). Moreover, as the neutral scalars h1, h2 and h3 are generated through a
mixture of CP -even and odd states, they are states of mixed CP quantum number and
enable CP -violating processes. Therefore, the CPV in the model CP in the Dark is explicit
and introduced through Im (A) 6= 0.

The conservation of the Z2 symmetry of Eq. (3.3) introduces an additional quantum number,
called dark charge. While all SM-like particles have dark charge +1, the charged scalar H±

and the neutral scalars h1−3 originating from the second doublet Φ2 and the real singlet
ΦS have dark charge −1. All particles with dark charge −1 are called dark particles. The
dark charge is exactly conserved up to all orders in perturbation theory. Dark particles can
consequently only be produced and annihilated in pairs. Therefore, the lightest neutral
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dark particle h1 is stable and acts as a particle dark matter candidate.

Note, that this model features explicit CPV in the dark sector.1 It is therefore not
constrained by electric dipole moment (EDM) constraints.

1So far only [62, 63] presented a three-doublet model that also includes a dark matter candidate and
additional CPV.



4. Renormalization

A perturbative quantum field theory calculation suffers from UV divergences1 that are
relics of the fixed-order approximation and its lack of describing short-range effects. If a
quantum field theory is renormalizable, these infinities cancel in a full-order calculation [18].
CP in the Dark, as a special N2HDM, is a renormalizable quantum field theory [64].

In order to be able to obtain finite physical results in a fixed-order calculation of a
renormalizable quantum field theory, the procedure of regularization and renormalization is
applied. First, the divergences are isolated through regularization. Second, renormalization
is the formal procedure, where all infinities are systematically canceled. It is achieved
through replacing every potentially infinite bare parameter or wave function (WF) of the
Lagrangian by finite renormalized parameters or WFs and counterterms (CTs) or wave
function renormalization constants (WFRCs). The CTs and WFRCs contain singularities
that cancel the infinities of the fixed-order quantum field theory calculation order by order
in perturbation theory.

A renormalization scheme with its renormalization conditions defines how the finite pieces
are handled. By specifying the scheme one therefore gets a unique relation between
bare and renormalized parameters. The MS scheme is defined by only absorbing the UV
singularities into the CTs and WFRCs. The MS scheme also absorbs typical associated
constants into the CTs and WFRCs, in addition to the singularity. In an on-shell (OS)
scheme, the physical masses are defined as the real parts of the poles of the renormalized
propagators [18].

4.1. Notation
In this thesis we follow the notation of [54] which is applied in the C++ code BSMPT [65, 66].
Thus, we use a most general way of writing a quantum field theory Lagrangian for a gauge
theory with fields of spin sX = 0, 1

2 , 1. The scalar multiplets of the theory are built up
by real scalar component fields Φi with i = 1, . . . , N0 and sΦ = 0. The Weyl 2-spinors ΨI

with I = 1, . . . , N1/2 and sΦ = 1
2 build up the fermion multiplets. The gauge bosons with

sA = 1 are associated with the 4-vectors Aaµ. The gauge group index a = 1, . . . , N1 labels
them in the adjoint representation.

In this notation, the purely scalar, scalar-fermionic and scalar-gauge Lagrangian reads

−LS = LiΦi + 1
2!L

ijΦiΦj + 1
3!L

ijkΦiΦjΦk + 1
4!L

ijklΦiΦjΦkΦl , (4.1a)

−LF = 1
2Y IJΨIΨJ + 1

2Y IJkΨIΨJΦk + c.c , (4.1b)

−LSG = 1
4GabijAaµAµ

b ΦiΦj + GaijAaµΦi∂
µΦj . (4.1c)

1If divergences in loop calculations appear for loop momenta l → ∞, or high frequency, they are called
UV divergences. Divergences for l → 0 or low frequencies are called IR divergences. In the context of an
EPA the IR divergences are treated through resummation as described in Sec. 2.7.
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The tensors {Li, Lij , Lijk, Lijkl} contain all couplings between scalar fields in the gauge
basis. Y IJ is the quadratic fermion coupling matrix. Y IJk are Yukawa couplings between
two fermions and one scalar field. Gauge-basis couplings between two scalar fields and one
or two gauge fields are denoted by Gaij and Gabij .

After SSB the scalar fields are written as Φi(x) = ωi + φi(x) with the VEVs ωi and the
fluctuations φi. The Lagrangian in the Λ-basis or mass basis reads

−LS = Λ + Λi
(S)φi + 1

2!Λ
ij
(S)φiφj + 1

3!Λ
ijk
(S)φiφjφk + 1

4!Λ
ijkl
(S) φiφjφkφl , (4.2a)

−LF = 1
2M IJΨIΨJ + 1

2Y IJkΨIΨJφk + c.c. , (4.2b)

−LSG = 1
2Λab

(G)AaµAµ
b + 1

2Λabi
(G)AaµAµ

b φi + 1
4Λabij

(G) AaµAµ
b φiφj + GaijAaµφi∂

µφj . (4.2c)

The Λ-tensors read [54]

Λ ≡ V (0)(ωi) = Liωi + 1
2!L

ijωiωj + 1
3!L

ijkωiωjωk + 1
4!L

ijklωiωjωkωl , (4.3a)

Λi
(S) ≡ Li + Lijωj + 1

2!L
ijkωjωk + 1

3!L
ijklωjωkωl , (4.3b)

Λij
(S) ≡ Lij + Lijkωk + 1

2!L
ijklωkωl , (4.3c)

Λijk
(S) ≡ Lijk + Lijklωl , (4.3d)

Λijkl
(S) ≡ Lijkl , (4.3e)

Λab
(G) ≡ 1

2!G
abijωiωj , (4.3f)

Λabi
(G) ≡ Gabijωj , (4.3g)

Λabij
(G) ≡ Gabij , (4.3h)

ΛIJ
(F ) ≡ M∗ILMJ

L , M IJ ≡ Y IJ + Y IJkωk . (4.3i)

Λij
(S), Λab

(G) and M IJ are the mass-squared matrices of the scalars (S), gauge bosons (G)
and fermions (F), respectively.

4.2. MS Renormalization of the Effective Potential

The occurring infinities in a fixed-order calculation of a renormalizable quantum field theory
can be treated and consistently absorbed into CTs during the process of renormalization.
Using the EPA up to one-loop order at finite temperature we write [65]

V (~ω, T ) ≡ V (~ω) + VT (~ω, T ) ≡ V (0)(~ω) + VCW(~ω) + VT (~ω, T ) . (4.4)

The temperature-independent contributions V (~ω) are split up into the tree-level potential
V (0) and the one-loop Coleman-Weinberg potential VCW. As already discussed in Sec. 2.6,
the renormalization of the UV-divergent Coleman-Weinberg potential is sufficient to cure
the UV divergences of the one-loop finite temperature effective potential. The temperature-
dependent potential VT is UV finite [50].

The Coleman-Weinberg potential VCW in the MS scheme is given in terms of the general
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mass-squared matrices Λxy
(X) as [41]

VCW = ε

4
∑

X=S,G,F

(−1)2sX (1 + 2sX) Tr
[(

Λxy
(X)

)2
(

log
( 1

µ2 Λxy
(X)

)
− kX

)]
(4.5)

with ε = 1
(4π)2 and xy ∈ {ij, ab, IJ}, X ∈ {(S), (G), (F )}. The Landau gauge is used.2 The

values of the renormalization constant kX are

kX =
{5

6 , for gauge bosons
3
2 , otherwise

. (4.6)

In BSMPT [65, 66] the renormalization scale µ is set to µ = v(T = 0 GeV) = 246.22 GeV.

The temperature-dependent contribution VT (~ω, T ) can also be expressed with the general
mass-squared matrices Λxy

(X) [36, 52, 53],

VT (~ω, T ) =
∑

X=S,G,F

(−1)2sX (1 + 2sX) T 4

2π2 J±

(Λxy
(X)
T 2

)
. (4.7)

The thermal integrals for fermions and bosons J± are defined as [36, 52, 53]

J±(x2) = Tr
[∫ ∞

0
dkk2 log

(
1 ± exp

(
−
√

k2 + x2
))]

, (4.8)

where the + (−) refers to fermions (bosons). The trace is calculated by summation over
the eigenvalues of the corresponding matrix. The daisy corrections to the scalar Πij

(S) and
gauge boson Πab

(G) masses that are needed for resummation [55] (see Sec. 2.7) can also be
expressed in terms of tensors [65],

Πij
(S) ≡ T 2

12

[
(−1)2sS (1 + 2sS)

N0∑
k=1

Lijkk + (−1)2sG(1 + 2sG)
N1∑
a=1

Gaaij+

(−1)2sF (1 + 2sF )1
2

N1/2∑
I,J=1

(
Y ∗IJjY i

IJ + Y ∗IJiY j
IJ

) ]
,

(4.9)

Πab
(G) ≡ T 2 2

3

(
ñH

8 + 5
) 1

ñH

N0∑
m=1

Λaamm
(G) δab , (4.10)

where ñH ≤ N0 is the number of Higgs fields that couple to the gauge bosons. The Parwani
method [59] corresponds to the replacement of all masses by the thermal masses as

Λxy
(X) → Λxy

(X) + Πxy
(X) with xy ∈ {ij, ab}, X ∈ {(S), (G)} . (4.11)

In the Arnold-Espinosa method [58] only the Matsubara zero modes are resummed. The
zero-mode resummation corresponds to the following replacement in the temperature-

2Landau gauge corresponds to the choice ξ = 0 in general Rξ gauge. Then the gauge boson propagators
are purely transverse and there are no ghost contributions. Gauge dependence in the EPA is further
discussed in e.g. [36, 39, 67, 68].
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dependent potential VT ,

VT (~ω, T ) → VT (~ω, T ) + Vring(~ω, T ) with (4.12)

Vring(~ω, T ) = − T

2π

NX∑
x=1

(
(m2

x)3/2 − (m2
x)3/2

)
with x ∈ {i, a}, X ∈ {(S), (G)} , (4.13)

with m2
x being the eigenvalue of Λxy

(X). The temperature or Debye-corrected masses m2
x can

be calculated directly by diagonalizing the Debye corrected mass matrix Λxy
(X) + Πxy

(X) and
determining its eigenvalues.

4.3. Treatment of Finite Pieces

After resummation in Sec. 2.7 and renormalization in Sec. 4.2, the one-loop corrected
effective potential of Eq. (4.4) is IR and UV finite.

Scalar mixing angles and masses that are obtained from the one-loop corrected potential
now correspond to the one-loop corrected angles and masses in the approximation of
vanishing external momenta. With the prospect of performing efficient parameter scans
and comparing experimental and theoretical results, it is convenient to redefine the finite
pieces of the CT potential such that the scalar mixing angles and masses exactly equal their
LO values. The LO-fixed masses can then be used as input for the parameter scans. The
conventional treatment of finite pieces for angles and masses was first introduced in [69]
and is applied to CP in the Dark in Sec. 4.3.1.

In the context of this work, we found that in case of explicitly CPV models the conventional
mass scheme as proposed in [65, 66, 69–71] is not sufficient in order to constrain all scalar
masses to their LO values as it lacks loop-induced CPV contributions. In Sec. 4.3.2 we
introduce a modified mass scheme for CP in the Dark that is capable of exactly constraining
the scalar masses and angles that are obtained from the one-loop corrected effective potential
to their LO values.

4.3.1. Conventional Mass Scheme

In the conventional mass scheme [65, 66, 69–71] a CT potential VCT is constructed by
replacing the Np bare parameters p

(0)
i of the tree-level potential with i ∈ {1, . . . , Np} by

the renormalized parameters pi and finite3 CTs δpi as

p
(0)
i → pi + δpi . (4.14)

Additionally, tadpole CTs δT for the Nv ≤ NHiggs field directions that are allowed to
develop a non-zero VEV at finite temperature are included. In a strict one-loop calculation
only terms up to O(δp) are taken into account. A general expression of VCT reads [65, 66,
69–71]

VCT =
Np∑
i=1

∂V (0)

∂pi
δpi +

Nv∑
k=1

δTk(φk + ωk) . (4.15)

3The MS renormalized one-loop corrected effective potential is UV finite. Any additionally introduced
CT is therefore UV finite.
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The CT potential is added to the one-loop corrected effective potential in Eq. (4.4). The
full one-loop corrected effective potential then reads

V = V (0) + VCW + VT + VCT . (4.16)

Applying Eq. (4.15) to the tree-level potential in Eq. (3.4) results in the conventional CT
potential for CP in the Dark

VCT = δm2
11|Φ1|2 + δm2

22|Φ2|2 + δm2
S

2 Φ2
S

+ [δRe (A) + iδIm (A)]Φ†
1Φ2ΦS + [δRe (A) − iδIm (A)]Φ†

2Φ1ΦS

+ δλ1
2 |Φ1|4 + δλ2

2 |Φ2|4 + δλ3|Φ1|2|Φ2|2 + δλ4|Φ†
1Φ2|2 + δλ5

2 [(Φ†
1Φ2)2 + (Φ†

2Φ1)2]

+ δλ6
4 Φ4

S + δλ7
2 |Φ1|2Φ2

S + δλ8
2 |Φ2|2Φ2

S

+ δTCB(ρ2 + ωCB) + δT1(ζ1 + ω1)
+ δT2(ζ2 + ω2) + δTCP(Ψ2 + ωCP) + δTS(ζS + ωS) .

(4.17)

In order to constrain the NLO scalar mixing angles and masses to their LO values, the
following renormalization conditions are applied [65, 66, 69–71]

∂φi
V (0)∣∣

φ=〈φc〉|T =0 GeV
≡ ∂φi

V (T = 0 GeV)
∣∣
φ=〈φc〉|T =0 GeV

, (4.18a)

∂φi
∂φj

V (0)∣∣
φ=〈φc〉|T =0 GeV

≡ ∂φi
∂φj

V (T = 0 GeV)
∣∣
φ=〈φc〉|T =0 GeV

. (4.18b)

The scalar fields φi of the gauge basis are labeled as follows

φi = {ρ1, η1, ρ2, η2, ζ1, Ψ1, ζ2, Ψ2, ζS} . (4.19)

The field configuration at T = 0 GeV is denoted by 〈φc〉|T =0 GeV,

〈φc〉|T =0 GeV = {0, 0, 0, 0, v1, 0, 0, 0, 0} and v1 ≡ v = 246.22 GeV . (4.20)

The conditions in Eq. (4.18) ensure that the electroweak minimum is still a local minimum
at NLO. Only parameter points where the electroweak minimum is still the global minimum
at T = 0 GeV are NLO stable and are further considered in the scan of BSMPT (see Sec. 5.1.2).
Inserting the one-loop potential (4.16) into Eq. (4.18) implies the following renormalization
conditions on VCT

∂φi
(VCT + VCW)

∣∣
φ=〈φc〉|T =0 GeV

= 0 , (4.21a)

∂φi
∂φj

(VCT + VCW)
∣∣
φ=〈φc〉|T =0 GeV

= 0 . (4.21b)

We use the notation

NCW
φ ≡ ∂φVCW , (4.22a)

HCW
φiφj

≡ ∂φiφj
VCW . (4.22b)

Equations (4.21a) and (4.21b) yield a system of in total 16 equations for 18 CTs. 13 of the
16 equations are linearly independent. Three identities between derivatives of the VCW are
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required for a consistent solution, namely

HCW
ρ1ρ1 = HCW

Ψ1Ψ1 , (4.23a)
HCW

η1η1 = HCW
Ψ1Ψ1 , (4.23b)

HCW
ρ2ρ2 = HCW

η2η2 . (4.23c)

Equations (4.23) are checked for every scanned parameter point and are found to be fulfilled
up to numerical fluctuations.

The remaining five dimensional solution space is parametrized by δλi ≡ ti ∈ R with
i ∈ {2, 3, 6, 7, 8}. Three CTs δλ2, δλ6 and δλ8, which only appear in terms with no Φ1,
are fully decoupled from the remaining CTs. The other free CT parameters δλ3 and δλ7
contribute to the other CTs δm2

22 and δm2
S . The solution space for all CTs is given by

δm2
11 = 1

2HCW
ζ1ζ1 − 3

2HCW
ρ1ρ1 , (4.24a)

δm2
22 = −HCW

ρ2ρ2 − 1
2 t3v2

1 , (4.24b)

δm2
S = −HCW

ζSζS
− 1

2 t7v2
1 , (4.24c)

δRe (A) = − 1
v1

HCW
ζ2ζS

, (4.24d)

δIm (A) = 1
v1

HCW
Ψ2ζS

, (4.24e)

δλ1 = 1
v2

1

(
−HCW

ζ1ζ1 + HCW
ρ1ρ1

)
, (4.24f)

δλ2 = t2 , (4.24g)
δλ3 = t3 , (4.24h)

δλ4 = 1
v2

1

(
2HCW

ρ2ρ2 − HCW
ζ2ζ2 − HCW

Ψ2Ψ2

)
, (4.24i)

δλ5 = 1
v2

1

(
−HCW

ζ2ζ2 + HCW
Ψ2Ψ2

)
, (4.24j)

δλ6 = t6 , (4.24k)
δλ7 = t7 , (4.24l)
δλ8 = t8 , (4.24m)

δTCB = −NCW
ρ2 , (4.24n)

δT1 = v1HCW
ρ1ρ1 − NCW

ζ1 , (4.24o)
δT2 = −NCW

ζ2 , (4.24p)
δTCP = −NCW

Ψ2 , (4.24q)
δTS = −NCW

ζS
. (4.24r)

The first and second derivatives of VCW in terms of scalar fields in their gauge basis
are derived in [54] using the general tensor notation that is introduced in Sec. 4.1. The
derivatives are implemented in BSMPT [65, 66]. Choosing the renormalization scheme with
ti = 0, i ∈ {2, 3, 6, 7, 8}, simplifies Eq. (4.24) to

δm2
11 = 1

2HCW
ζ1ζ1 − 3

2HCW
ρ1ρ1 , (4.25a)

δm2
22 = −HCW

ρ2ρ2 , (4.25b)
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δm2
S = −HCW

ζSζS
, (4.25c)

δRe (A) = − 1
v1

HCW
ζ2ζS

, (4.25d)

δIm (A) = 1
v1

HCW
Ψ2ζS

, (4.25e)

δλ1 = 1
v2

1

(
−HCW

ζ1ζ1 + HCW
ρ1ρ1

)
, (4.25f)

δλ2 = 0 , (4.25g)
δλ3 = 0 , (4.25h)

δλ4 = 1
v2

1

(
2HCW

ρ2ρ2 − HCW
ζ2ζ2 − HCW

Ψ2Ψ2

)
, (4.25i)

δλ5 = 1
v2

1

(
−HCW

ζ2ζ2 + HCW
Ψ2Ψ2

)
, (4.25j)

δλ6 = 0 , (4.25k)
δλ7 = 0 , (4.25l)
δλ8 = 0 , (4.25m)

δTCB = −NCW
ρ2 , (4.25n)

δT1 = v1HCW
ρ1ρ1 − NCW

ζ1 , (4.25o)
δT2 = −NCW

ζ2 , (4.25p)
δTCP = −NCW

Ψ2 , (4.25q)
δTS = −NCW

ζS
. (4.25r)

4.3.2. Modified Mass Scheme for CP in the Dark

Imposing the renormalization conditions of Eq. (4.21) on the CT potential of Eq. (4.17) is
not sufficient in order to constrain the NLO masses exactly at their LO values. We still
observe

∂ζ2∂Ψ2 (VCW + VCT) ∼ O(101) (4.26)

after VCT is determined through Eq. (4.24). The reason is non-zero ∂2
ijVCW for field

directions in which ∂2
ijVCT = 0.4 The NLO scalar masses are observed to show relative

deviations from their tree-level values of the order of 0.005%.

CP in the Dark features CPV interactions that are not present at tree level but can be
induced through 1-loop effects, see for example Fig. 4.1. Therefore, the introduction of CTs
for all tree-level parameters as in Eq. (4.15) is not sufficient to capture all loop-induced
CPV effects. The conventional mass scheme will fail for models like CP in the Dark that
include CPV. In practice, this means that in order to actually fix all masses at their LO
values, we need to introduce additional independent CTs that can absorb all non-vanishing
second derivatives of the Coleman-Weinberg potential.

For CP in the Dark, we propose a modified mass scheme that fulfills Eq. (4.21) and is
therefore able to capture all effects up to the order of the second derivative. In this scheme
the additional CPV structure is parametrized by a new CT δIm (λ5), which is introduced

4The CTs of Eq. (4.24) are only a unique solution of Eq. (4.21) if Eq. (4.23) is fulfilled and additionally
∂iVCT = 0 ⇔ ∂iVCW = 0 and ∂ijVCT = 0 ⇔ ∂ijVCW = 0 for all i, j ∈ {1, . . . , N0}. If, however, we find
∂iVCW 6= 0 for ∂iVCT = 0 or ∂ijVCW 6= 0 for ∂ijVCT = 0, then the solution is insufficient in the first place.
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(a) G0 loop diagram (b) h loop diagram

Figure 4.1.: One-loop diagrams contributing to the CP -violating ζ2Ψ2 coupling, i, j, k ∈
{1, 2, 3}.

in the CT potential as

V ′
CT ≡ VCT + i

2δIm(λ5)
(
(Φ†

1Φ2)2 − (Φ1Φ†
2)2
)

. (4.27)

Although λ5 is chosen to be real in the tree-level potential as discussed in Chapter 3, CPV
vertices stemming from the δIm (λ5) CT in Eq. (4.27) are induced at one-loop level.

The CT δIm (λ5) therefore has to be included due to the same reason why tadpole CTs
need to be included. The tadpoles vanish exactly at tree level, T = 0, but at one-loop
level they may obtain non-zero contributions. Tadpole CTs δT are able to absorb the NLO
tadpole contributions that would otherwise shift the tree-level VEV.

Again requiring the renormalization conditions of Eq. (4.21) determines δIm (λ5),

δIm (λ5) = 2
v2

1
HCW

ζ2Ψ2 . (4.28)

Together with Eq. (4.24) and the identities in Eq. (4.23), Eq. (4.28) represents a unique
and complete solution for the renormalization scheme conditions in Eq. (4.15). All NLO
scalar mixing angles and masses are exactly shifted to their LO values and can now be
efficiently used as input for the parameter scan.

4.3.3. Constraining the t Parameters

The OS-shell like renormalization scheme that is defined in Sec. 4.3.2 fixes the NLO mixing
angles and NLO masses exactly at their tree-level values. However, due to the vacuum
of the model with a VEV only being assigned to the SM-like first doublet, there are five
quartic CTs that are not constrained through the conditions of Eq. (4.21).

The CTs δλ3 = t3 (4.24h) and δλ7 = t7 (4.24l) are accessible through trilinear couplings,
while δλ2 = t2 (4.24g), δλ6 = t6 (4.24k) and δλ8 = t8 (4.24m) are only accessible through
quartic couplings, as they multiply quartic couplings of solely dark fields.

In order to fix all ti parameters in the usual scheme we could in principle additionally
constrain the third derivatives of the one-loop potential to be equal to those of the tree-level
potential,

∂φi
∂φj

∂φk
V (0)∣∣

φ=〈φc〉|T =0 GeV
≡ ∂φi

∂φj
∂φk

V (T = 0 GeV)
∣∣
φ=〈φc〉|T =0 GeV

(4.29a)

⇒ ∂φi
∂φj

∂φk
(VCT + VCW)

∣∣
φ=〈φc〉|T =0 GeV

= 0 , (4.29b)
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and equally the fourth derivatives of the one-loop potential to be equal to those of the
tree-level potential,

∂φi
∂φj

∂φk
∂φl

V (0)∣∣
φ=〈φc〉|T =0 GeV

≡ ∂φi
∂φj

∂φk
∂φl

V (T = 0 GeV)
∣∣
φ=〈φc〉|T =0 GeV

(4.30a)

⇒ ∂φi
∂φj

∂φk
∂φl

(VCT + VCW)
∣∣
φ=〈φc〉|T =0 GeV

= 0 . (4.30b)

This would yield the CT potential in terms of derivatives of the Coleman-Weinberg potential.
In the context of this thesis, also the fourth derivative of the Coleman-Weinberg potential
was implemented in BSMPT, basic considerations can be found in App. A.

Demanding the additional renormalization scheme conditions of Eqs. (4.29) and (4.30) would
exactly determine the ti parameters in terms of the third derivatives ∂φiφjφk

VCW ≡ T CW
φiφjφk

and fourth derivatives ∂φi
∂φj

∂φk
∂φl

VCW ≡ F CW
φiφjφkφl

of the Coleman-Weinberg potential,
e.g.

t3 = − 1
v1

T CW
ρ2ρ2ζ1 , t7 = − 1

v1
T CW

ζ1ζSζS
, (4.31a)

t2 = 1
3F CW

ρ2ρ2ρ2ρ2 , t6 = −1
6F CW

ζSζSζSζS
, t8 = −F CW

ρ2ρ2ζSζS
. (4.31b)

However, as we will show in the following, this method leads to potential inconsistencies
for trilinear and quartic CTs that were already constrained through mass renormalization.

The mass renormalization of Eq. (4.21b)

∂φi
∂φj

V (0)∣∣
φ=〈φc〉|T =0 GeV

≡ ∂φi
∂φj

V (T = 0 GeV)
∣∣
φ=〈φc〉|T =0 GeV

(4.32a)

= ∂φi
∂φj

(V (0) + VCW + VCT)
∣∣
φ=〈φc〉|T =0 GeV

(4.32b)

already constrains the trilinear and quartic CTs δRe (A), δIm (A), δλ1, δλ4 and δλ5 in
terms of second derivatives of the Coleman-Weinberg potential as

δRe (A) = − 1
v1

HCW
ζ2ζS

, (4.33a)

δIm (A) = 1
v1

HCW
Ψ2ζS

, (4.33b)

δλ1 = 1
v2

1

(
−HCW

ζ1ζ1 + HCW
ρ1ρ1

)
, (4.33c)

δλ4 = 1
v2

1

(
2HCW

ρ2ρ2 − HCW
ζ2ζ2 − HCW

Ψ2Ψ2

)
, (4.33d)

δλ5 = 1
v2

1

(
−HCW

ζ2ζ2 + HCW
Ψ2Ψ2

)
. (4.33e)

If we would now additionally require the conditions of Eq. (4.29), or even (4.30), we would
introduce additional in general non-zero contributions that potentially also violate the
tree-level relations between masses and trilinear or quartic couplings, as elaborated in the
following. This would then require an iterative procedure in order to determine the trilinear
and quartic parameters.

In case of δRe (A) constraining the trilinear couplings with Eq. (4.29) results in the following



32

condition

∂3
ζ1ζ2ζS

V (T = 0 GeV)
∣∣
φ=〈φc〉|T =0 GeV

= Re (A) + ∂3
ζ1ζ2ζS

VCW
∣∣
φ=〈φc〉|T =0 GeV

+ δRe (A)
(4.34a)

≡ ∂3
ζ1ζ2ζS

V (0)∣∣
φ=〈φc〉|T =0 GeV

= Re (A) , (4.34b)

while δRe (A) is already defined to absorb exactly the contribution arising form ∂2VCW in
mass renormalization, cf. Eq. (4.33a), so that

∂3
ζ1ζ2ζS

V (T = 0 GeV)
∣∣
φ=〈φc〉|T =0 GeV

= Re (A) + ∂3
ζ1ζ2ζS

VCW
∣∣
φ=〈φc〉|T =0 GeV

− 1
v1

HCW
ζ2ζS︸ ︷︷ ︸

6=0, in general

.

(4.35)

If by chance the contribution from the additional third derivative of VCW turns out to be
equal to the HCW term and is therefore exactly canceled by δRe (A), our renormalization
condition in Eq. (4.34) would be fulfilled. In general, this is not the case. The corresponding
trilinear coupling gets modified by a non-zero one-loop contribution

λζ1ζ2ζS
= λ

(0)
ζ1ζ2ζS

+ ∆λ
(1)
ζ1ζ2ζS︸ ︷︷ ︸

6=0, in general

. (4.36)

In order to renormalize the additional one-loop contribution to zero we need to modify the
CT potential of Eq. (4.27) to

V
′′

CT ≡ V
′

CT + δR̂e (A)
[
Φ†

1Φ2ΦS + ΦSΦ†
2Φ1

]
(4.37)

by introducing a new CT of the form

δR̂e (A) ≡ −δRe (A) − ∂3
ζ1ζ2ζS

VCW
∣∣
φ=〈φc〉|T =0 GeV

(4.38a)

= 1
v1

HCW
ζ2ζS

− ∂3
ζ1ζ2ζS

VCW
∣∣
φ=〈φc〉|T =0 GeV

. (4.38b)

Then the NLO trilinear couplings are fixed at their LO values by construction

∂3
ζ1ζ2ζS

V (T = 0 GeV)
∣∣
φ=〈φc〉|T =0 GeV

= Re (A) + ∂3
ζ1ζ2ζS

VCW
∣∣
φ=〈φc〉|T =0 GeV

+ δRe (A) + δR̂e (A)︸ ︷︷ ︸
=0

(4.39a)
= ∂3

ζ1ζ2ζS
V (0)∣∣

φ=〈φc〉|T =0 GeV
. (4.39b)

But the non-zero one-loop contributions of Eq. (4.36) modify the relation between exact
trilinear couplings and their values in the mass renormalization scheme. In order to again
ensure mass renormalization one has to introduce new additional CTs that absorb the
induced shift from δR̂e (A). Following this approach, one can consequently define quadratic,
trilinear and quartic CTs in an iterative approach by introducing a set of new CTs that
can order by order in iteration absorb the mismatch until the required level of precision is
acquired.

Another possible and consistent way is to determine the ti parameters through future
experiments. Thus, t3 and t7 can be extracted from Higgs-to-Higgs decays. The quartic
couplings influenced by t2, t6 and t8 could be derived from Higgs-to-Higgs scattering.
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The following Sec. 4.3.4 discusses the effects of changing the ti parameters. In the end we
will argue to set ti = 0 for the analysis in Chapter 5.

4.3.4. Changing the t Parameters

A change of the ti parameters, i ∈ {2, 3, 6, 7, 8}, corresponds to a change in the renormal-
ization scheme. The choice of ti is unphysical and should therefore not change the result.
However, as discussed in [72–74] a proper parameter conversion is essential in order to
compare results obtained for different renormalization schemes.

Take two different renormalization schemes RS1 with ti ≡ t1 and RS2 with ti ≡ t2. The
bare parameter p(0) is the same in both schemes

p(0) = p1 + δp1 = p2 + δp2 . (4.40)

Now the renormalized parameters p1 and p2 of the two schemes are related through

p2 = p1 + δp1 − δp2 . (4.41)

Parameter-dependent quantities, e.g. amplitudes, can be converted as follows. Assume the
quantity f is given in scheme RS1. The renormalized f at NLO can be written as

f (1)(p1 + δp1) = f (1)(p1) + f (0)(p1 + δp1) (4.42a)

= f (1)(p1) + f (0)(p1) + ∂f (0)

∂p

∣∣∣∣
p=p1

(p1 + δp1 − p1) + O(δp2) (4.42b)

= f (1)(p1) + f (0)(p1) + f
′(0)(p1) · δp1 + O(δp2) . (4.42c)

Using Eq. (4.41), the same quantity f in scheme RS2 reads

f (1)(p2 + δp2) = f (1)(p2) + f (0)(p2) + f
′(0)(p2) · δp2 (4.43a)

= f (1)(p1 + δp1 − δp2) + f (0)(p1 + δp1 − δp2) + f
′(0)(p1 + δp1 − δp2) · δp2

(4.43b)

= f (1)(p1) + ∂f (1)

∂p

∣∣∣∣
p=p1

(δp1 − δp2) + f (0)(p1) + ∂f (0)

∂p

∣∣∣∣
p=p1

(δp1 − δp2)

(4.43c)

+ f
′(0)(p1)δp2 + ∂2f (0)

∂p2

∣∣∣∣
p=p1

(δp1 − δp2)δp2 + O(δp2)

= f (1)(p1) + f (0)(p1) + f
′(0)(p1)(δp1 − δp2 + δp2) + O(δp2) (4.43d)

= f (1)(p1) + f (0)(p1) + f
′(0)(p1) · δp1 + O(δp2) . (4.43e)

Comparing the quantity f expressed in scheme RS1, Eq. (4.42), and RS2, Eq. (4.43), we
find that if the parameters are consistently converted between the renormalization schemes,
then the quantities f will be equal up to one-loop order modulo higher order corrections.

f (1)(p2 + δp2) = f (1)(p1 + δp1) + O(δp2) . (4.44)

The one-loop corrected effective potential at finite temperature is, however, not an ana-
lytical function in terms of its renormalized parameters in the proposed incomplete OS
scheme of Sec. 4.3.2. It is therefore not possible to do the conversion of renormalized
parameters between different ti-schemes consistently, which would ensure the conservation
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of all parameter-dependent quantities.

We find that changing ti without the necessary parameter conversion leads to unphysical
effects that impose a limit on the range of allowed ti. This is because a change in ti without
a proper parameter conversion influences the shape of the potential. From now on we
define

t37 ≡ t3 = t7 , (4.45a)
t268 ≡ t2 = t6 = t8 . (4.45b)

We observe that the CT potential is highly sensitive for large t37. In order to illustrate the
effect of a change in t37 on the potential, we consider ∆Veff defined as the relative difference
between the one-loop corrected effective potential at the electroweak tree-level minimum φ,
written in the gauge basis of Eq. (3.9) as

φ ≡ {0, 0, 0, 0, v1, 0, 0, 0, 0} with v1 ≡ v = 246.22 GeV , (4.46)

and at the found global minimum φ + δφ at zero temperature

|∆Veff| =

∣∣∣∣∣∣V
(1)

eff (φ, T = 0 GeV) − V
(1)

eff (φ + δφ, T = 0 GeV)
V

(1)
eff (φ, T = 0 GeV)

∣∣∣∣∣∣ . (4.47)

If |∆Veff| = 0, the found global minimum of the one-loop corrected effective potential is
identical with the tree-level electroweak minimum as long as δφ = 0. In case δφ 6= 0, both
minima are degenerate.

The dependence of |∆Veff| and δφ on t37 ∈ {−20, . . . , 20} due to no proper parameter con-
version is shown in Fig. 4.2 for six parameter points that are found to have an SFOEWPT
for ti = 0. These benchmark points are listed in App. B. Points where δφ = 0 and therefore
the electroweak minimum is found as the global minimum at T = 0 GeV, are highlighted in
yellow. We find that large |t37| lead to δφ � 0 and |∆Veff| � 0. Then the found global
minimum for T = 0 GeV no longer coincides with the electroweak minimum. |t37| � 0
results in the development of new unphysical global minima if no proper scheme conversion
is performed.5

Figure 4.3 illustrates the temperature dependence of the one-loop global minimum v(T )
(red), see Eq. (5.4), and all five individual finite-temperature VEV directions ω1, ω2, ωCP,
ωCB and ωS due to no proper renormalization scheme conversion for different choices of
t37 ∈ {0, 13, 20} for the parameter point F13R406, see App. B. In case t37 = 0 an SFOEWPT
with ξc = 1.05316, vc = 158.765 GeV and Tc = 150.751 GeV is observed. Only ω1 shows a
phase transition. The broken EW VEV is found as the global VEV at T = 0 GeV. If we set
t37 = 13 and t37 = 20 without performing a proper renormalization scheme conversion the
parameter point will fail the consistency checks performed by BSMPT, see Sec. 5.1.2. While
for t37 = 13 at T = 0 GeV the symmetric phase is the global minimum, a non-symmetric
phase is found to evolve around T = 230 GeV. For t37 = 20 this unphysical broken phase
is found to be the new global minimum over the whole temperature range. Consequently,

5The effect of changing t37 is much larger than the effect of changing t268. Quantitatively, if only t268 is
varied the same VCT potential value is observed if approximately t268 ∼ −2 × 104 · t37. Only negative t268
were observed to show a similar behavior to what was observed for negative t37 in Fig. 4.2. t37 influence
δm2

22 and δm2
S which are of the order O(103 − 104) GeV2 and therefore up to three orders of magnitude

larger than the other CTs.
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(a) Negative t37

(b) Positive t37

Figure 4.2.: The absolute relative difference |∆Veff|, defined in Eq. (4.47), between
the one-loop corrected effective potential for T = 0 GeV at the electroweak tree-level
minimum φ and at the found global minimum φ + δφ as well as the deviation from the
electroweak tree-level minimum δφ as a function of t37 for negative t37 (Fig. 4.2a) and
positive t37 (Fig. 4.2b) and for six benchmark points that have an SFOEWPT at ti = 0.
The six benchmark points are defined in App. B. Figures 4.2a and 4.2b share the same
color code. In case V

(1)
eff (φ) + 100 GeV < V

(1)
eff (φ + δφ) we set |∆Veff| = −100. As long as

δφ = 0, the electroweak minimum is found as the global minimum at T = 0 GeV. These
points are highlighted in yellow.
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(a) t37 = 0

(b) t37 = 13

(c) t37 = 20

Figure 4.3.: Evolution of the VEV v(T ) at the one-loop global minimum (red), as
defined in Eq. (5.4), and the individual VEV contributions ω1 (green stars), ω2 (black
plus signs), ωCB (dark blue crosses), ωCP (yellow dots) and ωS (light blue stars) as a
function of the temperature T for the point F13R406 and for t37 = 0 (Fig. 4.3a), t37 = 13
(Fig. 4.3b) and t37 = 20 (Fig. 4.3c). The parameter point F13R406 is given in App. B.
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a large non-zero t37 influences the shape of the one-loop corrected effective potential. New
ti-dependent local minima emerge and become unphysical global minima. They spoil the
one-loop behavior of the effective potential at finite temperature and limit the allowed
ti range for a valid renormalization scheme in case no proper scheme conversion is performed.

Figures 4.4 and 4.5 show the one-loop corrected effective potential at zero temperature as a
function of the scalar fields in direction of Φ1 (blue), Φ2 (yellow) and ΦS (green) for different
choices of ti for the benchmark point F16R292 that is given in App. B. Boundedness from
below is found to be always guaranteed for the whole one-loop corrected effective potential
along each field direction. VCW will compensate a VCT that is not bounded from below.
However, depending on the choice of ti there are regions where V (1) develops ti-dependent
minima in direction of the dark fields if no proper scheme conversion is performed. Fig-
ure 4.4c shows such a new unphysical global minimum for t268 = −20 in direction of the
second doublet fields. Choosing t2,6 < 0 leads to VCT not being bounded from below. This
choice of ti violates the conditions stated in [16] for a general viable N2HDM. By comparing
Fig 4.5a where t2 = −20 and Fig 4.5b where t6 = −104 while all other parameters are kept
fixed, we observe V (1) to develop ti dependent minima in direction of the dark doublet for
t2 = −20 and the dark singlet field for t6 = −104. Note that V (1) will be bounded from
below if large enough φi are considered, see Fig. 4.4.

Figure 4.6 illustrates the shape of the tree-level and the one-loop corrected effective po-
tential at zero temperature near the origin in direction of ζ1 (blue), ζ2 (yellow) and ζS

(green) for ti ∈ {0, 10} and t268 = −1 for the benchmark point F16R292, given in App. B.
The Mexican-hat shaped potential with broken minimum at φi = 264.22 GeV is observed
in the ζ1-direction of the SM-like first doublet Φ1 independent of the choice of ti. However,
choosing |ti| > 0 leads to deviations from the EW minimum obtained from the one-loop
effective potential at T = 0 GeV in direction of the dark doublet. Any deviation from
the EW minimum at T = 0 GeV corresponds to unphysical global minima. For ti = 0
(Fig. 4.6, middle row) the EW minimum is still the global minimum because the dark
directions (i.e. the direction ζ2 from the second doublet) are exactly in their symmetric
configuration. For ti = 10 (Fig. 4.6, upper row) the dark doublet directions, represented
by φi = ζ2, are observed to also develop a Mexican-hat shaped potential that leads to
v(T = 0 GeV, ti = 20) 6= vEW(T = 0 GeV, ti = 0) and for t268 = −1 (Fig. 4.6, lower row)
unphysical minima at even larger dark φi in direction of the dark doublet evolve. Note
that the whole one-loop potential will still be bounded from below in every field directions,
as illustrated in Fig. 4.4.

In conclusion, Figs. 4.4, 4.5 and 4.6 all show significant and ti-dependent defects for large
ti. Then the found global minimum no longer coincides with the electroweak minimum
at zero temperature as also indicated by the analysis of |∆Veff|. This case, see Eq. (5.8),
is caught by BSMPT and the point will then fail the scan, nevertheless it clearly shows the
limitations of choosing ti when no proper scheme conversion is performed.

On the other hand, as already stated above, t3 and t7 influence the one-loop trilinear
couplings. In particular, the trilinear couplings between the SM-like Higgs h and two dark
scalars h1h1, h2h2, h3h3, H±H± are sensitive to a change in t37. Raising t37 shifts the
couplings to larger negative values for the same mass range. The maximal absolute coupling
value is obtained for the largest dark scalar masses. Figure 4.7 shows the one-loop trilinear
couplings λ

(1)
hh1h1

obtained from the one-loop corrected effective potential at T = 0 GeV
in the plane spanned by mH± and mh1 for ti ∈ {0, 2π, 4π} and all found SFOEWPT
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(a) t268 = 20

(b) ti = 0

(c) t268 = −20

Figure 4.4.: Development of the tree-level potential Vtree (small dots), the sum of the
tree-level and the CT potential Vtree + VCT (plus sign), the Coleman-Weinberg potential
VCW (cross) and the sum of tree-level, Coleman-Weinberg and CT potential (large dots)
for different field directions, namely the Φ1-direction (blue), the Φ2-direction (orange) and
the ζS = ΨS-direction (green) as a function of the field value φi for the point F16R292
that is given in App. B and t268 = 20 (Fig. 4.4a), ti = 0 (Fig. 4.4b) and t268 = −20
(Fig. 4.4c). For the doublet directions Φi, with i ∈ {1, 2}, the field value φi is set to one
of the four corresponding fields in the gauge basis {ρi, ηi, ζi, Ψi}, while the other field
directions are then set to zero, respectively, as the shape of V is independent of this
choice.



Chapter 4. Renormalization 39

(a) t2 = −20

(b) t6 = −103

Figure 4.5.: Same as Fig. 4.4, but for t2 = −20 (Fig. 4.5a) and t6 = −103 (Fig. 4.5b).
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Figure 4.6.: Development of the tree-level potential (small dots) and complete one-loop
potential (large dots) at T = 0 GeV for small field variations |φi| < 400 GeV for the
ζ1-direction (blue dots, left column), the ζ2-direction (orange dots, middle column) and
the ζS-direction (green dots, right column) as a function of the field value φi for ti = 10
(upper row), ti = 0 (middle row) and t268 = −1 (lower row) for the point F16R292, given
in App. B.



Chapter 4. Renormalization 41

points that were obtained without applying DM constraints. In Fig. 4.8 we illustrate
the SFOEWPT points in the same mass plane, but indicate the strength of the EWPT
ξc, defined in Eq. (2.22), by the color code. We also show the sample that passes the
theoretical and experimental constrains checked by ScannerS [75, 76] (gray), see Sec. 5.1.1
and the sample that additionally passes all checks by BSMPT [65, 66] (orange), see Sec. 5.1.2.6

Figures 4.7 and 4.8 show a change in phenomenology for higher ti values. Higher dark
scalar masses are needed in order to enable an SFOEWPT, while the trilinear couplings
are shifted to lower values for the same mass range.

In order to still ensure NLO stability and perturbativity one could derive constraints
on ti from the size of the unconstrained trilinear couplings. However, as we do not use
a complete OS-scheme and do not have an analytic formula for the one-loop effective
corrected potential, the relation between one-loop trilinear coupling and input parame-
ters in the ti-scheme is unknown. In principle, knowing these relations would enable to
translate the one-loop trilinear couplings in the ti = 0 scheme to a scheme with arbitrary
ti. A proper translation would ensure that any difference between the renormalization
schemes is only due to unknown higher-order corrections, but not connected to a change in ti.

What we observe in Figs. 4.7 and 4.8 can again be understood as a relic of our lack of
properly converting the parameters between the different schemes. In principle, if one
could do a complete parameter conversion between the schemes, the mass parameter space
is expected to be identical between different ti choices modulo higher order corrections.
Like in Eq. (4.41), we have for the trilinear couplings

λti=0
3H + δλti=0

3H = λti=2π
3H + δλti=2π

3H = λti=4π
3H + δλti=4π

3H , (4.48)

which would in principle allow us to perform the parameter conversion. But the one-loop
corrected effective potential at finite temperature in its notation of Sec. 4.1 is not an ana-
lytical function in terms of the trilinear couplings. If it was, one could insert the converted
parameters and then extract the input parameters in the different scheme. Because we still
show the same unconverted scan range for the input parameters pti=0, but plot results for
the changed renormalization scheme with ti 6= 0, the result range is changed.

Let us repeat the argument. The observed change in phenomenology is not physical, but a
remnant from not properly converting the renormalization scheme. Coming back to the
analysis of |∆Veff| in Fig. 4.2, the shape of the potential is influenced through a change
in ti because even though we set ti 6= 0 we still plot V

(1)
ti=0 without a proper conversion to

V
(1)

ti 6=0. The result is that for too large ti our perturbative approach breaks down indicated
by the evolution of new unphysical global minima, as also seen in Fig. 4.3. A proper conver-
sion to the general ti-scheme would, however, imply to minimize V

(1)
ti

, not V
(1)

ti=0 when ti 6= 0.

In the following discussion we set ti = 0 and show results for this specific renormalization
scheme. With choosing ti = 0, no additional finite pieces that are irrelevant for the initial
aim of fixing NLO masses and angles at their tree-level values are picked up. Then the CT
potential is given by Eqs. (4.17), (4.25) and (4.27). All parameters and parameter-dependent
quantities have to be understood as defined in the ti = 0 scheme.

6The workflow of the parameter scan is described in detail in Sec. 5.1.
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(a) ti = 0

(b) ti = 2π

(c) ti = 4π

Figure 4.7.: The one-loop trilinear coupling hh1h1 in the mH± − mh1-plane for ti = 0
(Fig. 4.7a), ti = 2π (Fig. 4.7b) and ti = 4π (Fig. 4.7c). The size of the one-loop trilinear
coupling λ

(1)
hh1h1

is indicated by color for all found viable SFOEWPT points. No DM
constraints are imposed for this scan.
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(a) ti = 0

(b) ti = 2π

(c) ti = 4π

Figure 4.8.: Scatter plot in the mH± − mh1-plane for all points passing the tests by
ScannerS [75, 76] (gray), see Sec. 5.1.1, and points additionally passing the BSMPT [65,
66] checks (orange), see Sec. 5.1.2, for ti = 0 (Fig. 4.8a), ti = 2π (Fig. 4.8b) and ti = 4π
(Fig. 4.8c). Colored points are those for which BSMPT finds ξc > 1 with the size indicated
by the color code. No DM constraints are imposed for this scan, Tc > TEW is additionally
required, as discussed in Sec. 5.1.2.





5. Results

This Chapter presents the results that were obtained in the context of this thesis. The
workflow of the numerical analysis is introduced in Sec. 5.1. We give an overview of the
parameter point sample that we obtained for CP in the Dark in Sec. 5.2. Section 5.3
summarizes the VEV configurations that were found to show an SFOEWPT. The distribu-
tion of SFOEWPT points in the dark mass plane is illustrated in Sec. 5.4, pointing out
the importance of applying DM constraints. Section 5.5 shows the singlet and doublet
admixture of the SFOEWPT points. The sizes of the trilinear Higgs self-couplings of the
SFOEWPT points are discussed in Sec. 5.6 and the predictions on DM observables in
Sec. 5.7, respectively. Section 5.8 shows results for the branching ratios of the SM-like
Higgs h into photons and dark particles.

5.1. Workflow

In order to investigate the possibility of an SFOEWPT in CP in the Dark and determine
its available parameter space, we use the programs BSMPT [65, 66] and ScannerS-2 [75,
76]. ScannerS-2 scans a given parameter space and returns points which fulfill certain
theoretical and experimental bounds. The procedure is further introduced in Sec. 5.1.1.

BSMPT is used to perform the global minimization of the one-loop corrected effective
potential at finite temperature. It determines the strength of the phase transitions ξc using
Eq. (2.22). Section 5.1.2 gives details on how BSMPT is used in the context of this thesis.

5.1.1. ScannerS

The code ScannerS-2 [75, 76] performs parameter scans for SM extensions checking for
experimental and theoretical constraints. ScannerS-2 already provides an implementation
of CP in the Dark following the conventions of [14]. The model is referred to as the minimal
CP -violating DM model, shorthand CPVDM.

Every parameter point is checked for tree-level perturbative unitarity. Perturbative unitarity
is crucial in order for the perturbative approximation to hold. ScannerS demands the
tree-level 2 → 2 scattering matrix to fulfill∣∣∣Mi

2→2

∣∣∣ ≤ 8π . (5.1)

A stable tree-level vacuum is further ensured by testing the tree-level potential for bound-
edness from below, namely requiring that the potential tends to positive infinity for large
field values and does not grow towards large negative potential values. Both theoretical
constraints can be taken over from the N2HDM [16].

45
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min. max.

mh 125.09 125.09
mh1 1 1000
mh2 1 1000
mH± 65 1000
α1 −π/2 π/2
α2 −π/2 π/2
α3 −π/2 π/2
λ2 0 9
λ6 0 17
λ8 -26 26
m2

22 0 106

m2
S 0 106

Table 5.1.: Input parameter ranges used for ScannerS, for details see Sec. 5.1.1. Masses
are given in GeV.

The Peskin-Takeuchi electroweak precision constraints S, T and U [77] are tested via the
fit of [78]. In its default working mode, ScannerS provides an automated link to the codes
HiggsBounds [79–83] and HiggsSignals [84, 85]. This enables a check of experimental
constraints from Tevatron, LEP and LHC for models with extended scalar sectors.

Most stringent constraints on extended scalar sectors with CPV originate additionally from
the EDM of the electron [86],

|de| < 8.7 × 10−29 ecm . (5.2)

However, in CP in the Dark, h is the only scalar that couples to fermions. Even though this
model features explicit CPV, the EDM constraints are therefore automatically fulfilled [14].

The code MicrOMEGAs 5.2.7a [87–89] is included to impose DM constraints on the parameter
space. The predicted relic density Ωmodel is required to not exceed

Ωmodelh2 ≤ Ωobsh2 + 2δ , (5.3)

with the uncertainty δ on the measurement and the experimentally observed relic density
Ωobsh2 = 0.1200 ± 0.0012 [4]. Additionally, ScannerS is able to include constraints on the
DM nucleon scattering cross section using MicrOMEGAs and results from the XENON1T direct
detection DM searches [90].

The input parameter ranges used for the scan are displayed in Tab. 5.1. The charged dark
scalar H± does not couple to fermions, its mass is therefore not constrained by B-physics
bounds and chosen to vary between 65 GeV and 1000 GeV. This choice eliminates the
possibility of h → H+H− decays. The scalar mixing angles α1, α2 and α3 are varied
between −π/2 and π/2. The requirement of boundedness from below restricts λ2 and λ6
to positive values, while λ8 can also become negative [16].

5.1.2. BSMPT
The C++ code BSMPT [65, 66] is used for the parameter points that passed all theoretical and
experimental constraints described in Sec. 5.1.1. In the context of this thesis, CP in the
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GSL CMAES NLopt
default modified default modified default modified

tolerance 10−6 10−9 10−5 10−20 10−4 10−9

MaxTries 600 2000 sigma 5 10 - -
MaxSol 50 1000 - - - -

Table 5.2.: Modified minimization parameters used for BSMPT scans. As described in
Sec. 5.1.2, we increase the precision of all three minimizers, that are included in BSMPT.
The table summarizes the minimizer parameters with its default and modified values.

Dark is added as a new model class to BSMPT. Its couplings to scalars, fermions and gauge
bosons are encoded in the corresponding tensors of Eq. (4.1) that are defined in Sec. 4.1.

We use all three minimizers that are implemented in BSMPT for the minimization of the one-
loop corrected effective potential. In order to increase the minimizer precision, accepting
longer runtimes, we also changed some minimizer parameters with respect to their default
values as displayed in Tab. 5.2. BSMPT offers the use of two local and one global minimization
algorithms, given by:

• gsl_multimin from the GNU Scientific Library [91] is a multidimensional deriv-
ative-free local minimizer that features the Nelder-Mead Simplex algorithm. By
increasing MaxTries and MaxSol, we reduce the probability of finding only a local,
but not the global minimum.

• The global minimization algorithm CMAES is implemented in the C++ library libcmaes
[92]. The initially estimated parameter error sigma is raised to 10.

• The compilation of non-linear optimization routines NLopt [93] features the local
minimization algorithm GN_ORIG_DIRECT_L which is also included in BSMPT. Its
precision is enhanced by setting the relative tolerance to 10−9.

The found minima are collected and numerically compared. The minimum with the lowest
potential value is then taken by BSMPT as the global minimum of the potential for the given
temperature T .

Like for the N2HDM [71], the temperature-dependent electroweak VEV v(T ) is calculated
taking into account only the doublet VEVs. The singlet field is allowed to develop a VEV
ωS which is taken into account for the minimization procedure, but ωS is dropped in the
calculation of the electroweak VEV v(T ). Since the electroweak sphaleron transitions are
due to an SU(2)-vacuum transition, only the scalar SU(2) degrees of freedom are taken
into account for the determination of the strength of the electroweak phase transition,
hence

v(T ) =
√

ω2
1(T ) + ω2

2(T ) + ω2
CP(T ) + ω2

CB(T ) . (5.4)

The critical temperature Tc indicates the point of the phase transition where the evolved
broken minimum has developed the same potential value as the symmetric vacuum,

V (ω = 0, Tc) = V (ω 6= 0, Tc) . (5.5)

A bisection method is used to find Tc as explained hereafter.
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The temperature range T ∈ {0 GeV, 300 GeV} is scanned and the temperature-dependent
VEV in Eq. (5.4) is determined for each temperature step. At the beginning of each step,
the potential is minimized for

Tmid ≡ 1
2 (Tstart + Tend) . (5.6)

If ωmid < 10−2, we are in the symmetric vacuum and therefore Tc < Tmid. For the next
step Tend is set to Tmid. Respectively, for ωmid ≥ 10−2 we are in the broken phase and
Tc > Tmid. Then Tstart is set to Tmid for the next step. As soon as Tstart − Tend ≤ 10−2 is
reached, the phase transition is determined at Tc ≡ Tstart with vc ≡ v(Tc).

The global minimum of the one-loop corrected effective potential at T = Tc is labeled using
ωi

∣∣
T =Tc

≡ ωi with

{ω1, ω2, ωCB, ωCP, ωS} . (5.7)

During the steps of the bisection method, BSMPT discards parameter points if they fail one
of the following additional checks. A discarded point is characterized by ξc set to some
negative number:

• If v(T = 300 GeV) > 10−4 the symmetric VEV is not found at T = 300 GeV.
The temperature-dependent electroweak VEV is bounded from above by the LO
electroweak VEV, v(T ) ≤ 246.22 GeV. For temperature T > v(T ), the EWPT cannot
be of strong first-order, ξc = vc

Tc
< 1. Therefore, for T > 300 GeV, an SFOEWPT is

not possible, ξc is then set to ξc = −1. The upper limit of 300 GeV is chosen to allow
for numerical errors [94].

• The NLO stability of the zero temperature VEV is checked by requiring

max |ωi(T = 0 GeV) − vi,EW| < 1 GeV (5.8)

with the LO electroweak VEV vector of CP in the Dark given by

vEW ≡
(
v1,EW, v2,EW, vCB,EW, vCP,EW, vS,EW

)
= (246.22 GeV, 0, 0, 0, 0) . (5.9)

In case a point fails Eq. (5.8), the NLO VEV differs from the LO electroweak VEV
at T = 0 GeV and it is discarded due to its lack of NLO vacuum stability, ξc is then
set to ξc = −2.

• Points with an NLO VEV v(T ) ≥ 255 GeV at some point during the bisection method
are also discarded due to unphysical and numerically unstable behavior. Then ξc is
set to ξc = −3. This upper bound is again chosen to allow for some numerical error.

• In the fourth step, it is checked whether vc/Tc < C_PT, while by default C_PT is set
to zero. If points with vc/Tc < C_PT are found, ξc is set to ξc = −4 and the point
is discarded. In the default implementation with C_PT = 0, all points that pass all
additional checks are taken into further account. In order to obtain only points that
provide an SFOEWPT, C_PT can be set to C_PT = 1.

• Additionally, if at T = 0 GeV the NLO VEV is below 10−4 GeV, or above 255 GeV, the
parameter point will fail the consistency checks of BSMPT. Then ξc is set to ξc = −5.

In the analysis of Sec. 5.4 we found parameter points with the prospect of a really strong
first-order EWPT with ξc > 10 which pass all constraints applied by ScannerS and BSMPT.
However, they are all characterized by Tc < TEW = 100 GeV and even Tc < mW for points
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with ξc > 10. Therefore, they violate the assumptions made in the high-temperature
expansion [57]. We moreover expect to have Tc ∼ TEW in order to obtain an SFOEWPT.
A cut on Tc discards all found SFOEWPT points with ξc > 3 when Tc > mW is required
(ξc > 2.5 for the requirement Tc > TEW).

5.2. Parameter Point Sample

Table 5.3 illustrates the parameter point sample that was generated using ScannerS with
(without) additional DM constraints and BSMPT. We start with 106 points passing all
theoretical and experimental constraints that are per default implemented in ScannerS and
given in Tab. 5.1. Only 16% points of the original ScannerS sample additionally fulfill the
DM constraints applied by MicrOMEGAs. The BSMPT constraints are described in Sec. 5.1.2.
The additional cut on Tc is motivated in Sec. 5.1.2. After applying all constraints including
the DM constraints and requiring an SFOEWPT only 2599 points (0.3%) of the initial
sample are left.

5.3. VEV Configuration Analysis

Tables 5.4-5.7 provide a detailed analysis of the VEV configurations at T = Tc that were
found to show an SFOEWPT. We define ωi

∣∣
T =Tc

≡ ωi. All found SFOEWPT points
have |ω1| > 10−3 and |ωCB| < 10−3 independent of whether DM constraints are imposed.
Although the charge-breaking VEV direction ωCB is included in the minimization in order
to be as general as possible, finding only viable SFOEWPT points with vanishing ωCB is of
course reassuring. Points with |ωCB| > 10−3 would have to be excluded due to unphysical
behavior.

Without DM constraints being imposed, we find that 1.2% of the SFOEWPT points yield
at least one additional dark VEV |ωi| > 10−3 with i ∈ {2, S, CP}. The minimal and
maximal values of non-zero VEVs are displayed in Tab. 5.4. Detailed VEV configurations
can be found in Tab. 5.5. A percentage of 98.8% of all SFOEWPT points only have
|ω1| > 10−3. For 1.2%, we find VEV configurations where all except ωCB participate in the
phase transition, as only |ωCB| < 10−3. Two VEV configurations show only |ωS | > 10−3 or
|ωS |, |ω2| > 10−3 in addition to |ω1| > 10−3.

Only 7.3% of the SFOEWPT points of the sample additionally pass the DM constraints
that were discussed in Sec. 5.1.1. Table 5.6 displays the minimal and maximal values

ScannerS BSMPT SFOEWPT Tc > TEW

106(100%) 502 065(50%) 38 737(4%) 35 540(4%)

ScannerS and MicrOMEGAs BSMPT SFOEWPT Tc > TEW

164 351(16%) 98 123(10%) 2806(0.3%) 2599(0.3%)

Table 5.3.: Benchmark point sample size after generating the sample with ScannerS and
optionally including DM constraints with MicrOMEGAs. Further constraints are imposed
by BSMPT, see Sec. 5.1.2. An SFOEWPT requires ξc & 1, with ξc being the strength of the
EWPT, defined in Eq. (2.22). Furthermore, we restrict Tc > TEW as argued in Sec. 5.1.2.
The numbers in the brackets give the percentage of the original sample generated with
ScannerS.
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number min max

# SFOEWPT 35 540

|ω1| > 10−3 35 540 111.693 254.999
|ω2| > 10−3 418 0.001 75.037

|ωCB| > 10−3 0 0 0
|ωCP| > 10−3 417 0.009 90.597

|ωS | > 10−3 419 0.005 77.571

Table 5.4.: VEV configurations found by BSMPT (without DM constraints) that have
|ωi| > 10−3 with i ∈ {1, 2, CB, CP, S}. The minimal and maximal VEV values are also
displayed. Units are in GeV. We require Tc > TEW, as discussed in Sec. 5.1.2.

VEVs > 10−3 |ω1| |ω1|, |ω2|, |ω1|, |ωS | |ω1|, |ω2|,
|ωCP| , |ωS | |ωS |

found by

GSL 20 689 87 1 0
CMAES 10 498 288 0 1
NLopt 3934 42 0 0

# total 35 121 417 1 1

Table 5.5.: Detailed VEV configurations found by BSMPT for the sample without DM
constraints. We require Tc > TEW, as discussed in Sec. 5.1.2. The table additionally
includes information on the minimizers. GSL is observed to find the majority of VEV
configurations with only |ω1| > 10−3. VEV configurations with non-zero dark VEVs at
T = Tc are preferably found by CMAES. See Sec. 5.1.2 for a description of the minimizers
that are implemented in BSMPT.



Chapter 5. Results 51

number min max

# SFOEWPT 2599

|ω1| > 10−3 2599 125.374 254.880
|ω2| > 10−3 38 0.258 71.089

|ωCB| > 10−3 0 0 0
|ωCP| > 10−3 38 0.115 43.279

|ωS | > 10−3 38 9.283 62.209

Table 5.6.: VEV configurations found by BSMPT with |ωi| > 10−3 for i ∈ {1, 2, CB, CP, S}
and minimal and maximal VEV values are displayed for DM constraints imposed. Units
are in GeV. We require Tc > TEW, as discussed in Sec. 5.1.2.

VEVs > 10−3 |ω1| |ω1|, |ω2|,
|ωCP|, |ωS |

found by

GSL 1235 4
CMAES 1041 28
NLopt 285 6

# total 2561 38

Table 5.7.: The number of SFOEWPT points and their respective VEV configurations
are shown for the sample with imposed DM constraints. We require Tc > TEW, as
discussed in Sec. 5.1.2. The table additionally includes information on the minimizers.
Similarly compared to the analysis without implying DM constraints, see Tab. 5.5, GSL
finds the most SFOEWPT points that only show |ω1| > 10−3. CMAES in addition is
observed to find most SFOEWPT points that only show |ωCB| < 10−3.

of the five VEV directions. Table 5.7 illustrates the detailed VEV configurations that
were found by BSMPT. 98.5% of the SFOEWPT points that pass the DM constraints only
have |ω1| > 10−3. All other found SFOEWPT points, 1.5% of the sample, only show
|ωCB| < 10−3, with all other dark VEVs > 10−3 at T = Tc.

In Fig. 5.1 we show the evolution of all VEV directions with the temperature T for the
two categories of points that are found when imposing DM constraints, see Tab. 5.7.
Figure 5.1a shows the benchmark point F1R57. Its VEV evolution is exemplary for 98.5%
of the SFOEWPT points that pass the DM constraints and all only have |ω1| > 10−3 and
all other dark VEVs |ωi| < 10−3 with i ∈ {2, CB, CP, S}. Figure 5.1b shows the benchmark
point F610R819 that is one of the 38 or 1.5% of the SFOEWPT points that pass the DM
constraints and only show |ωCB| < 10−3 with all other dark VEVs > 10−3 at T = Tc. Both
benchmark points are specified in App. B. As described in Sec. 2.3, an SFOEWPT is
characterized by a strong discontinuity in the order parameter, the temperature-dependent
VEV v(T ) (red) of Eq. (5.4). Both parameter points in Fig. 5.1 show such an SFOEWPT.
For 5.1a, only |ω1| (green) is larger than 10−3 and therefore participates in the phase
transition. For 5.1b also all dark VEVs contribute around the phase transition, except for
the charge-breaking VEV (dark blue) which is always found to be |ωCB| < 10−5.

In case |ωCP| > 10−3, we have spontaneous CPV at finite temperature. In Fig. 5.2 we show
|ωCP| as a function of |Im (A)| normalized to |Re (A)| for all SFOEWPT points that pass the
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(a) With all dark VEVs zero

(b) With non-zero dark VEVs

Figure 5.1.: The evolution of the finite-temperature VEVs |ωi| with i ∈ {1, 2, CB, CP, S}
as a function of the temperature T . Figure 5.1a shows the point F1R57, Fig. 5.1b shows
the VEV evolution for the point F610R819. The benchmark points F1R57 and F610R819
are given in App. B.
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Figure 5.2.: The absolute value of the CP -violating finite-temperature VEV ωCP that
minimizes the one-loop corrected effective potential at T = Tc versus the absolute value
of the imaginary part of the trilinear coupling Im (A), normalized to its real part, Re (A),
for all viable SFOEWPT points that are found when implying DM constraints. The
strength of the phase transition ξc is indicated by the color code.

DM constraints. The color indicates the strength of the phase transition, ξc, for ξc & 1. CP
is explicitly violated by Im (A) 6= 0, as discussed in Chapter 3. Today, at T = 0 GeV, CPV
can only be generated explicitly, as ωCP

∣∣
T =0 GeV ≡ vCP = 0. If, however, |ωCP| > 0, CP is

violated spontaneously at T = Tc. In total, we find 38 SFOEWPT points that pass the DM
constraints and yield spontaneous CPV at T = Tc. Figure 5.2 shows that high ξc > 2.2 are
only found for points with no spontaneous, but explicit CPV with |Im (A)| ∼ 1. The high-
est ξc-value of ξc = 2.507 is found for |ωCP| = 2.5 × 10−6 GeV and |Im (A)| = 1.372 GeV.
Furthermore, we find SFOEWPT points with 10−6 GeV < |ωCP| < 43.28 GeV, compare
also with Tab. 5.6.

The 38 found SFOEWPT points that show spontaneous CPV at finite temperature ad-
ditionally have |ω2| > 10−3 and |ωS | > 10−3. This means that for these points at finite
temperature, the Z2-symmetry is broken and the dark charge is no longer a conserved
quantum number. Therefore, previously dark particles will mix with the particles from the
first doublet. Consequently, additional non-standard CPV that is a necessary ingredient
for an EWBG in order to generate the measured BAU can in this case be transferred to
the SM-like couplings to fermions at finite temperature.

In conclusion, CP in the Dark provides points that enable the interesting feature of
spontaneous CPV at finite temperature. However, unfavorably in context of an EWBG
scenario, the strength of spontaneous CPV seems not correlated with the strength of the
EWPT, as the points with large |ωCP| do not in addition show a large ξc-value.
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5.4. SFOEWPT in CP in the Dark
Figures 5.3-5.5 show the distribution of points that provide an SFOEWPT in the dark mass
plane, in particular Fig. 5.3 displays them in the plane of the mass of the lightest neutral
dark scalar particle, mh1 , and the mass of the charged dark scalar, mH± . Figure 5.4 shows
them in the mH± − mh2-plane, with mh2 , the mass of the second-lightest dark neutral
scalar. In Fig. 5.5 we display the point sample in the plane of the heaviest neutral dark
scalar mass mh3 and the charged dark scalar mass mH± . The left plots in each of these
figures are without imposing the DM constraints, the plots on the right side of these figures
are with imposed DM constraints, that were discussed in Sec. 5.1.1. The gray points are
benchmark scenarios generated by ScannerS, hence fulfilling experimental and theoretical
constraints, as described in Sec. 5.1.1, while the orange points additionally pass all tests by
BSMPT, see Sec. 5.1.2 and provide an NLO stable EW vacuum. The color code shows the
strength of the EWPT ξc & 1 and thus indicates the parameter points with an SFOEWPT.

Figures 5.6-5.8 are the corresponding figures to 5.3-5.5, but with additionally applying
a cut on the critical temperature, Tc > TEW. As already discussed in Sec. 5.2, the DM
constraints impose essential bounds on our parameter sample. The amount of points and
their distribution in the dark mass plane gets significantly restricted. With additionally
imposed Tc > TEW the highest found ξc-value is below ξc = 2.5. As seen in these plots,
the theoretical and experimental constraints allow for a large range for the Higgs boson
masses. The additional requirement of an SFOEWPT, however, reduces significantly the
available parameter points, but the overall range of Higgs masses is still possible. We
emphasize that a single point in a region is sufficient to underline this statement, since a
dedicated scan in this respective region would yield more similar points. To summarize, we
do not observe a favored mass region for an SFOEWPT. The DM constraints might give a
stronger constraint on the different mass planes.

Let us discuss in more detail the results when we impose all possible constraints, namely
also DM constraints and the requirement of Tc > TEW, i.e. Figs. 5.6-5.8 (right). Figure 5.6
shows the mh1 − mH±-plane. As can be inferred from the plot, we find viable SFOEWPT
points for the whole scanned range of mH± and also for a broad mass range of mh1 . In
Fig. 5.7 we show the found SFOEWPT points in the plane of the second-lightest neutral
dark scalar mass mh2 and the charged dark scalar mass mH± . The mass mh2 is found
to be preferably in the range of mH± for points with an SFOEWPT, still the absolute
deviation in the two masses can be of up to 335.81 GeV for some SFOEWPT points,
cf. Fig. 5.9b. Figure 5.8 displays the viable SFOEWPT points with DM constraints
and the cut Tc > TEW in the mh3 − mH±-plane. We find viable SFOEWPT points for
mh3 < mH± , mh3 ∼ mH± and mh3 > mH± . The plots show that when imposing all
constraints, we do not find a point in our sample with mh3 < mh = 125.1 GeV and si-
multaneously an SFOEWPT, while mh2 can still be below mh for a viable SFOEWPT point.

In order to further illustrate the relations between the neutral and charged dark masses,
we show the SFOEWPT points in the plane spanned by their mass differences mH± − mhi

with i ∈ {1, 2, 3} in Fig. 5.9. As we do not find a favored mass region for an SFOEWPT,
the ranges of the mass differences for the SFOEWPT point distribution are dictated by
the mass hierarchy

mh1 < mh2 < mh3 , (5.10)

the scan range mH± ∈ {65, 1000} GeV, as well as the point distribution and density from
ScannerS. Note, that the latter is not physical and as soon as we are able to obtain one
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(a) Without DM constraints (b) With DM constraints

Figure 5.3.: Benchmark point sample (see Tab. 5.3) in the mass plane of the lightest
neutral dark scalar mass, mh1 , versus the charged dark scalar mass, mH± . Gray points
are those of the full ScannerS sample, orange points pass the BSMPT constraints, and the
colored points have ξc & 1, with the color code indicating the size of ξc. The left figure
does not include DM constraints, in the right figure they are included.

point in a certain mass region that passes the theoretical and experimental constraints
of ScannerS, a dedicated scan will find more points in this region. We observe viable
SFOEWPT points for nearly the whole scanned range of mH± , cf. Figs. 5.6-5.8. In Fig. 5.9a
we do not only observe viable SFOEWPT points in a broad mH± −mh1 range, but also in a
broad, but smaller mH± −mh3 range. Figure 5.9b shows a much smaller range of mH± −mh2

for viable SFOEWPT points. In Fig. 5.9c the viable SFOEWPT points are displayed in the
plane of mH± −mh2 versus mH± −mh3 and mH± −mh1 is indicated by the color code. Large
mH± −mh1 are only obtained for small mH± −mh3 , due to the mass hierarchy, see Eq. (5.10).

We define the mass asymmetry ∆m1m2 for two masses m1 and m2 as

∆m1m2 = m1 − m2
m1 + m2

. (5.11)

Figure 5.10 displays in color all SFOEWPT points that pass the DM constraints in the plane
that is spanned by ∆mh1 mH± and ∆mh2 mH± . The size of ∆mh3 mH± for the SFOEWPT
points is indicated by the color code. In agreement with the previous plots, we find that
a broad range of ∆mh1 mH± yields SFOEWPT points. The mass asymmetry ∆mh2 mH±

is preferably low, since mh2 ∼ mH± was found as the favored mass hierarchy for an
SFOEWPT. Only in cases where ∆mh1 mH± or ∆mh2 mH± are small, ∆mh3 mH± can reach
values above > 60%. This is due to the chosen mass hierarchy, see Eq. (5.10).
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(a) Without DM constraints (b) With DM constraints

Figure 5.4.: Same as Fig. 5.3, but for the next-to-lightest neutral dark scalar mass mh2

versus mH± .

(a) Without DM constraints (b) With DM constraints

Figure 5.5.: Same as Fig. 5.3, but for the heaviest neutral dark scalar mass mh3 versus
mH± .

(a) Without DM constraints (b) With DM constraints

Figure 5.6.: Same as Fig. 5.3, but with additionally imposing Tc > TEW on the
SFOEWPT points.
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(a) Without DM constraints (b) With DM constraints

Figure 5.7.: Same as Fig. 5.4, but with additionally imposing Tc > TEW on the
SFOEWPT points.

(a) Without DM constraints (b) With DM constraints

Figure 5.8.: Same as Fig. 5.5, but with additionally imposing Tc > TEW on the
SFOEWPT points.
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(a) mH± − mh1 and mH± − mh3 (b) mH± − mh2 and mH± − mh3

(c) mH± − mh1 , mH± − mh2 and mH± − mh3

Figure 5.9.: Benchmark point sample (see Tab. 5.3) with imposed DM constraints and
additional cut for the found SFOEWPT points on the critical temperature Tc > TEW in
the plane spanned by the mass differences mH± − mhi

with i ∈ {1, 2, 3}. Gray points
pass all ScannerS-tests, orange points additionally pass all checks of BSMPT. Figure 5.9a
and 5.9b include the information on the strength of the EWPT ξc as indicated by the
color code. Figure 5.9c combines information on all mass differences.
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Figure 5.10.: Scatter plot in the plane of the mass asymmetries |∆mh1 mH± | and
|∆mh2 mH± | with ∆m1m2 defined in Eq. (5.11) for the points obtained from the ScannerS
scan with DM constraints (gray), after imposing the BSMPT constraints (orange) and addi-
tionally requiring an SFOEWPT (color). The color code indicates the size of |∆mh3 mH± |,
where Tc > TEW is imposed.

5.5. Doublet and Singlet Admixture

As discussed in Chapter 3, CP in the Dark features three neutral dark scalars hi with
i ∈ {1, 2, 3} that are admixtures of the neutral CP -even scalars ζ2, ζS and the neutral
CP -odd scalar Ψ2,

hi = Ri1ζ2 + Ri2Ψ2 + Ri3ζS . (5.12)

The rotation matrix elements Rij with i, j ∈ {1, 2, 3} are defined in Eq. (3.13). We define
the admixture Σφj

hi
of the field φj in the gauge basis to the field hi in the mass basis as

Σφj

hi
≡ (Rij)2 . (5.13)

In Fig. 5.11 we illustrate the distribution of the found SFOEWPT points in the plane
which is spanned by the doublet admixtures Σζ2

hi
and ΣΨ2

hi
and the singlet admixture ΣζS

hi

against the neutral dark scalar masses mhi
, respectively.

We find SFOEWPT points over the whole range of doublet and singlet admixtures to the
dark matter candidate h1. On the other hand viable SFOEWPT points show preferably a
low singlet admixture to the second-lightest neutral dark particle h2, but the whole range
of doublet admixtures. Note, that this point distribution is very likely a scan artifact of
ScannerS. We find some viable SFOEWPT points where h2 also shows a large singlet
admixture. Therefore, this parameter space region is theoretically and experimentally
allowed and a more dedicated scan is expected to yield more points with high singlet and
low doublet admixtures for h2. The heaviest neutral dark scalar h3 again provides viable
SFOEWPT points for all combinations of doublet and singlet admixtures.
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Figure 5.11.: CP -even, CP -odd doublet and singlet admixtures Σζ2
hi

, ΣΨ2
hi

and ΣζS

hi
,

respectively, to the neutral dark scalars h1 (left), h2 (middle) and h3 (right), as defined
in Eqs. (5.12) and (5.13) as a function of the corresponding Higgs mass mhi . The color
code is the same as in Fig. 5.8. DM constraints are included. Only points with Tc > TEW
are considered as viable SFOEWPT points, as discussed in Sec. 5.1.2.
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5.6. Trilinear Higgs Self-Couplings
In this section we discuss the behavior of the leading-order and of the next-to-leading order
trilinear Higgs self-couplings of the SM-like Higgs boson h normalized to the corresponding
SM values λ

(0), SM
hhh and λ

(1), SM
hhh , respectively, in view of an SFOEWPT. The leading-order

trilinear SM-Higgs self-coupling is derived as the third derivative with respect to h of
Eq. (2.2) yielding

λ
(0), SM
hhh = 3m2

h

v
. (5.14)

The dominant top-quark contribution to the one-loop correction of the trilinear SM-Higgs
self-coupling has been given in [95],

λ
(1), SM
hhh = 3m2

h

v

[
1 − Nc

3π2
m4

t

v2m2
h

{
1 + O

(
m2

h

m2
t

,
p2

i

m2
t

)}]
, (5.15)

with the mass of the top quark mt, the momenta pi, i ∈ {1, 2, 3}, of the external Higgs
bosons and the number of colors Nc = 3.

The LO and NLO trilinear Higgs self-couplings for CP in the Dark are obtained from
BSMPT. We compare the ratios between the SM-Higgs trilinear self-couplings λ

(0), SM
hhh and

λ
(1), SM
hhh and the trilinear self-couplings derived for CP in the Dark. In BSMPT, they are

determined numerically by calculating the third derivatives of the effective potential with
respect to the scalar fields [65, 66].

The SM-like Higgs boson of CP in the Dark is referred to as h, therefore the leading-order
hhh-coupling ratio is exactly determined to be

λ
(0)
hhh

λ
(0) SM
hhh

= 1 . (5.16)

For the next-to-leading order SM-like Higgs self-coupling ratio, we obtain for all viable
parameter points that pass all experimental and theoretical constraints of ScannerS and
BSMPT values in the range of

−7.878 <
λ

(1)
hhh

λ
(1) SM
hhh

< 1.743 . (5.17)

The viable SFOEWPT points yield ratios in the reduced range of

−0.420 <
λ

(1)
hhh

λ
(1) SM
hhh

∣∣∣∣
ξc>1

< 1.743 . (5.18)

The increase of the lower bound when requiring an SFOEWPT is also observed for the
N2HDM in [71]. It is stated in [70] for the C2HDM and again observed in [71] for the
N2HDM, that an SFOEWPT favors large trilinear Higgs self-couplings. For CP in the Dark,
we find SFOEWPT points in the coupling range of Eq. (5.18), which is shifted towards more
positive values compared to the range of all viable parameter points given in Eq. (5.17).
Additionally, the strength of the EWPT does not seem to directly scale with the size of the
trilinear couplings. In contrast to the N2HDM, we observe an SFOEWPT to be possible not
only for SM-like or enhanced, but even for vanishing loop-corrected trilinear Higgs couplings.
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Figure 5.12 shows the trilinear Higgs self-coupling ratios to the SM-Higgs trilinear self-
coupling for the couplings between the SM-like Higgs h and two neutral dark scalars hihi

with i ∈ {1, 2, 3} for the parameter sample that passes the constraints by ScannerS (gray)
and BSMPT (orange) and the found viable SFOEWPT points (color). Displayed are the
NLO ratios versus the LO ratios. The strength ξc of the SFOEWPT is again indicated
by the color code. The trilinear couplings between the SM-like Higgs h and two neutral
dark scalars hihi, i ∈ {1, 2, 3}, play a role in decays of h to dark particles. Such decays are
important for collider searches for DM particles. We clearly observe large allowed coupling
ranges over the parameter space that yield viable SFOEWPT points in Fig. 5.12.
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(a) hh1h1

(b) hh2h2

(c) hh3h3

Figure 5.12.: The ratio of the trilinear coupling normalized to the SM-Higgs trilinear
coupling at NLO as function of the corresponding LO quantity for the trilinear coupling
of the SM-like Higgs boson h to a pair of two lightest dark neutral bosons h1 (top), a
pair of two second-lightest dark neutral bosons h2 (middle) and a pair of two heaviest
dark neutral bosons h3 (bottom). Gray points pass all ScannerS-tests, including DM
constraints, orange points additionally pass all checks of BSMPT. The color code indicates
the strength ξc & 1 of the SFOEWPT. Only points with Tc > TEW are considered as
viable SFOEWPT points.
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5.7. DM observables

Figure 5.13 shows the relic density, which has been calculated assuming the freeze-out
mechanism, with MicrOMEGAs [87–89] which is linked to ScannerS [75, 76], versus the DM
mass mh1 . Again points that pass all theoretical and experimental constraints of ScannerS
are colored in gray while points that additionally pass the constraints of BSMPT are colored
in orange. The size of ξc for viable SFOEWPT points is indicated by the color code.
The majority of viable SFOEWPT points is found to be underabundant. We find three
SFOEWPT points that are able to produce a relic density that exceeds Ωprodh2 > 0.11.
The maximally produced relic density by parameter points providing an SFOEWPT is

Ωmax
prodh2 = 0.114 , (5.19)

and therefore is not able to saturate the experimentally measured relic density within
1σ-limits, Ωobsh

2 = 0.1200 ± 0.0012 [4]. Note, that Fig. 5.13 shows that it is possible to
generate parameter points that pass the ScannerS bounds and lie within the 1σ limits for
the measured relic density. We find 222 such points, that all have mh1 = 190.193 GeV, in
our parameter sample, see Sec. 5.2. They are additionally colored in red in Fig. 5.13.

Figure 5.14 illustrates the effective spin-independent (SI) direct detection DM-nucleon cross
section fχχ · σ versus the DM mass mh1 . The SI direct detection DM-nucleon cross section
σ has to be rescaled with the renormalized relic density to account for the underabundance
of the DM candidate, cf. also [96, 97],

σ · fχχ ≡ σ · Ωprodh2

Ωobsh2 . (5.20)

The required values are obtained with MicrOMEGAs. All parameter points are below
the XENON1T exclusion limit [90], as this is already required in the checks of ScannerS.
We find that the majority of SFOEWPT points are above the neutrino floor, which is
displayed by the gray shaded region, and in reach of the projected sensitivity of the XENONnT
experiment [98]. This means that a large amount of the SFOEWPT points of CP in the
Dark will be able to be tested by future DM direct detection experiments.
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Figure 5.13.: The relic density versus the DM mass mh1 for all points that pass the
ScannerS constraints (gray). DM constraints are included. Orange points additionally
pass the BSMPT constraints. The colored points indicate SFOEWPT points with strength
ξc & 1. Only points with Tc > TEW are considered as viable SFOEWPT points. The
experimentally measured relic density Ωobsh

2 = 0.1200 ± 0.0012 [4] is shown in red.
Points within the 1σ bounds around the central value are additionally colored in red,
they are all found to have mh1 = 190.193 GeV.
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Figure 5.14.: The effective SI direct detection DM-nucleon cross section as a function of
the DM mass mh1 for all points of the sample of Tab. 5.3. The color code is the same as
in Fig. 5.13. The experimental results have been taken from [99]. The XENON1T exclusion
limit [90] is shown in blue. In red, we show the projected sensitivity of the XENONnT
experiment [98]. The experimental limit for the neutrino background has been taken
from [100].
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5.8. Branching Ratios of the SM-like Higgs Boson
In this section we discuss the results for the branching ratios of the SM-like Higgs h into
photons and into dark particle pairs. The benchmark point sample that is introduced in
Sec. 5.2 and further discussed in Secs. 5.3-5.7 only includes 247 points with mh1 < 70 GeV
that pass all ScannerS and MicrOMEGAs constraints (see Sec. 5.1.1). This corresponds to a
percentage of 0.15% of the ScannerS sample that also passes DM constraints. Only 121 or
49% of these ScannerS points that show mh1 < 70 GeV pass the BSMPT constraints and in
total 7 or 2.8% are also SFOEWPT points with Tc > TEW. A non-zero invisible branching
ratio of h is observed to be possible whenever mh1 < mh

2 . As we aim to study decays
of h into dark particles, we need a substantial amount of viable parameter points in the
mass region mh1 < 70 GeV. Therefore, we performed an additional dedicated scan with
ScannerS and MicrOMEGAs in this specific mass region. The thus generated benchmark
point sample is summarized in Tab. 5.8. Note that the percentages of points that pass the
subsequent checks are similar to those of the benchmark point sample of Tab. 5.3, where
we scanned in the much broader range of 1 GeV < mh1 < 1000 GeV.

In Fig. 5.15 we show the branching ratio of the SM-like Higgs h into two photons normalized
to the SM value BRSM(h → γγ) = 0.00227 [61] versus the mass of the dark charged scalar
mH± . Figure 5.15a illustrates the sample of Sec. 5.2 with 1 GeV < mh1 < 1000 GeV.
In Fig. 5.15b we additionally include the points from the dedicated scan in the region
mh1 < 70 GeV. Points from the new sample cover the whole scanned mH±-range and
even extend the range of the ratio BR(h→γγ)

BRSM(h→γγ) that is found for viable SFOEWPT points.
Figure 5.15a shows for the SFOEWPT points of the sample with 1 GeV < mh1 < 1000 GeV
that the ratio takes values in the range

0.917 <
BR(h → γγ)

BRSM(h → γγ)

∣∣∣∣
ξc>1, Tc>TEW

< 1.115 . (5.21)

When we additionally include the points of the dedicated scan with mh1 < 70 GeV, this
region is extended to

0.843 <
BR(h → γγ)

BRSM(h → γγ)

∣∣∣∣
mh1 <70 GeV, ξc>1, Tc>TEW

< 1.179 , (5.22)

as for mh1 < mh
2 the decay channel h → h1h1 is open and depending on mh1 also the

channels into the other neutral dark bosons h2 and h3 are open. This changes the total
SM-like Higgs decay width and increases the range of the ratio in Eq. (5.22). This change
stays compatible with current Higgs data, as ensured by ScannerS.

Figure 5.16 displays the invisible branching ratio of the SM-like Higgs h into dark neu-
tral particles BR(h → hihj), i, j ∈ {1, 2, 3}, versus the DM mass mh1 in the range
40 GeV < mh1 < 70 GeV for all points from the samples of Tabs. 5.3 and 5.8. We manually
impose an additional cut on BR(h → inv.) < 0.11, following the latest results of [101]. We
find viable parameter points and also viable SFOEWPT points for all BR(h → inv.) < 0.11.
This means that the model CP in the Dark with an SFOEWPT can be tested by future
improved measurements of h → inv. at LHC. Note that the overdensity of points for
mh1 > 55 GeV and the underdensity for mh1 < 55 GeV is not physical, but merely a scan
artifact most likely issuing from this mass region being under-represented in terms of initial
parameter points in ScannerS.

In Fig. 5.17 we show the invisible branching ratio of h versus the gauge boson signal
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ScannerS and MicrOMEGAs BSMPT SFOEWPT Tc > TEW

433 437(100%) 225 285(52.0%) 7367(1.7%) 6397(1.5%)

Table 5.8.: Benchmark point sample for a dedicated scan in the DM mass region mh1 <
70 GeV with ScannerS and MicrOMEGAs. For details on the implemented constraints, see
Sec. 5.1.1.

strength, derived directly from the ScannerS output and defined as, cf. also [96],

µV V ≡ σ(pp → h → ZZ)
σSM(pp → h → ZZ) = σ(pp → h → W +W −)

σSM(pp → h → W +W −) . (5.23)

A cut on BR(h → inv.) < 0.11, following the latest results of [101] is again imposed. Our
results look similar to those found in [96] for the fully dark phase (FDP) of the N2HDM. The
invisible branching ratio BR(h → inv.) decreases for increasing µV V until BR(h → inv.) = 0
when µV V = 1. This is expected as for µV V → 1, the SM-like Higgs converges to its SM
behavior with no decays into invisible particles being allowed. Furthermore, we find viable
SFOEWPT points over the whole range of µV V and BR(h → inv.).
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(a) Sample of Sec. 5.2 with 1 GeV < mh1 < 1000 GeV

(b) Sample of Fig. 5.15a with additional mh1 < 70 GeV sample

Figure 5.15.: Branching ratio of the SM-like Higgs h into photons, BR(h → γγ),
normalized to the SM value BRSM(h → γγ) = 0.00227 [61] versus the charged dark
scalar mass mH± . The top figure illustrates the parameter sample that was discussed
in Sec. 5.2, in the bottom figure we additionally combine the sample of Sec. 5.2 with a
new sample that is generated through a dedicated scan in the mass region mh1 < 70 GeV.
Details on this new sample can be found in Tab. 5.8. Gray points pass all ScannerS-tests,
including DM constraints, orange points additionally pass all checks of BSMPT. A cut on
Tc > TEW for the SFOEWPT points is enforced. The color code indicates the strength of
the SFOEWPT ξc & 1.
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Figure 5.16.: The invisible branching ratio of the SM-like Higgs h into two neutral dark
scalars hihj , i, j ∈ {1, 2, 3}, versus the DM mass mh1 for all points of the sample from
Sec. 5.2 combined with the new sample with mh1 < 70 GeV, for details see Tab. 5.8. We
additionally impose a cut on BR(h → inv.) < 0.11, following the latest results of [101].
Gray points pass all ScannerS-tests, including DM constraints, orange points additionally
pass all checks of BSMPT. A cut on Tc > TEW for the SFOEWPT points, is enforced.
The color code indicates the strength of the SFOEWPT ξc & 1. The vertical line is at
mh1 = mh

2 .
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Figure 5.17.: The invisible branching ratio of the SM-like Higgs h, BR(h → inv.),
inv. ≡ hihj with i, j ∈ {1, 2, 3}, versus the gauge boson signal strength µV V , as defined
in Eq. (5.23), for the combined sample from Tabs. 5.3 and 5.8. We additionally impose
a cut on BR(h → inv.) < 0.11, following the latest results of [101]. Gray points pass
all ScannerS-tests, including DM constraints, orange points additionally pass all checks
of BSMPT. A cut on Tc > TEW for the SFOEWPT points is enforced. The color code
indicates the strength of the SFOEWPT ξc & 1.





6. Conclusions

In this thesis we studied the possibility of an SFOEWPT within the model CP in the
Dark. CP in the Dark features an N2HDM-like extended scalar sector with an SM-like first
doublet and a stabilized dark sector consisting of a dark doublet and a dark real singlet.
The dark neutral scalars mix and create three mass eigenstates hi with i ∈ {1, 2, 3} and the
mass hierarchy mh1 < mh2 < mh3 . The lightest, h1, acts as a stable particle dark matter
candidate. Explicit CPV in the dark sector is introduced through Im (A) 6= 0.

In Chapter 4 we proposed a renormalization scheme based on the conventional approach
of [65, 66, 69–71] that redefines the finite pieces such that the tree-level masses and mixing
angles can be used as scan input variables. Our scheme adds an additional term to the coun-
terterm Lagrangian that is able to absorb all non-vanishing contributions of loop-induced
CPV interactions. We stated that the conventional approach that is based on a tree-level
like structure of the counterterm Lagrangian is insufficient for any model that features
non-standard CPV. The reason are loop-induced CPV interactions that can still alter the
masses and angles that are extracted from the one-loop corrected effective potential at
finite temperature. We also studied in detail the effects of varying the non-constrained
finite piece parameters of our renormalization scheme and their physical implications. At
the end of the discussion, we concluded to choose a specific scheme for the numerical analysis.

In Chapter 5 we presented our results. As one outcome of this work, we provided the
implementation of the model CP in the Dark as a new model class into the C++ code
BSMPT [65, 66]. BSMPT determines an SFOEWPT through the global minimization of the
one-loop corrected effective potential including daisy resummation of the bosonic masses
at finite temperature. For CP in the Dark, we find viable SFOEWPT points over a broad
range of dark charged masses mH± and dark neutral masses mhi

with i ∈ {1, 2, 3}. We
do not find a favored mass region for an SFOEWPT. Imposing DM constraints on our
sample significantly reduces the amount of viable SFOEWPT points, but does not impose
limits on the distribution in the dark mass parameter space. We furthermore observe viable
SFOEWPT points for any CP -even, CP -odd doublet or singlet admixture. A study of the
trilinear SM-like Higgs couplings shows large ranges for SM-like Higgs boson couplings to
two dark neutral scalars, that provide viable SFOEWPT points. These couplings enter the
SM-like Higgs decays into a dark particle pair and are hence important for LHC searches for
DM. Besides that, we predict viable SFOEWPT points in a range that allows for vanishing,
SM-like and enhanced values of the one-loop trilinear self-coupling of the SM-like Higgs
boson.

The detailed analysis of the minimizing VEV configurations at the EWPT in Sec. 5.3
reveals a most promising feature of the model. We observe that 1.5% of the found viable
SFOEWPT points have non-zero dark VEVs minimizing the one-loop effective potential at
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T = Tc. In particular, we find a non-zero dark CP -violating VEV ωCP 6= 0 for these 38
points. In addition to explicit CPV in case Im (A) 6= 0, these points show that CP in the
Dark enables the generation of spontaneous CPV at finite temperature.

A study of DM observables in Sec. 5.7 shows theoretically and experimentally viable points
that lie within the 1σ bounds of the measured relic density. All found SFOEWPT points
are underabundant, but cover a broad range of DM masses and are observed to cover five
orders of magnitude in the relic density value. The calculation of the effective SI direct
detection DM-nucleon cross section shows that the majority of found SFOEWPT points
lies above the neutrino floor and moreover within the experimental reach of the future
XENONnT experiment.

Also, the low DM-mass region mh1 < 70 GeV is found to provide viable SFOEWPT points
over the whole range of the theoretically and experimentally allowed parameter space
and with BR(h → inv.) < 0.11 as imposed, below the current experimental bound on the
invisible branching ratio of the SM-like Higgs. Future improved measurements of h → inv.
at the LHC will be able to test this parameter space region of CP in the Dark.

In summary, we stress that CP in the Dark proved itself to be a very promising extended
scalar sector model in the context of a possible explanation of the BAU through EWBG. A
large part of the parameter space compatible with theoretical and experimental constraints
is covered by viable SFOEWPT points, that are even within reach of future experiments. In
addition, not only explicit CPV, but also spontaneous CPV at finite temperature is possible
in the framework of the model. Providing an SFOEWPT and additional non-standard
spontaneous CPV at finite temperature, CP in the Dark seems promising in an EWBG
scenario. The next step to be taken now is to find a detailed answer to the question whether
CP in the Dark is actually able to generate the BAU in an EWBG context.
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Appendix

A. Fourth derivative of the Coleman-Weinberg potential

In [54] the authors present a general analytic expression for derivatives of the Coleman-
Weinberg potential. An essential part of the fourth derivative of the Coleman-Weinberg
potential is the following function

f
(1)
(T )abcd =

m2
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a
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b)(m2
a − m2

c)(m2
a − m2

d)
+

m2
b log m2

b
µ2

(m2
b − m2

a)(m2
b − m2

c)(m2
b − m2

d)

+
m2

c log m2
c

µ2

(m2
c − m2

a)(m2
c − m2

b)(m2
c − m2

d)
+

m2
d log m2

d
µ2

(m2
d − m2

a)(m2
d − m2

b)(m2
d − m2

c)
.

(A.1)

In the limit of vanishing masses, f
(1)
(T )abcd is divergent. These divergences are known in the

literature as relics of the vanishing momenta approximation which is used for calculating
the Coleman-Weinberg potential [102, 103]. However, the divergences cancel if the calcu-
lation is performed over the whole momentum range. For the 2HDM, the diagrammatic
approach was shown to yield finite results for vanishing momenta for the second and third
derivatives [104, 105].

We calculate the degenerate mass limits of f
(1)
(T )abcd and recreate the results for vanishing

masses by dropping the IR divergences.

There are in total 52 limit cases that have to be considered separately. Equation (A.1)
only holds in case all masses squared are non-degenerate. The degenerate mass limits for
f

(1)
(T )abcd read
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The zero mass limits read
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f
(1)
(T )000d = 0 , (A.10)

f
(1)
(T )0000 = 0 . (A.11)

B. Benchmark points

Two parameters of the tree-level potential are fixed through Eqs. (3.8) and (3.10b),

λ1 ' 0.258 and m2
11 ' −7823.754 . (B.1)

The benchmark points of Figs. 4.2-4.6 and Fig. 5.1 are listed in Tabs. B.1-B.4. The mass
and trilinear parameters that define the scalar tree-level potential of Eq. (3.4) are given
in Tab. B.1. Table B.2 shows all quartic parameters of the scalar tree-level potential.
Table B.3 gives the dark mass spectrum and Tab. B.4 includes results from BSMPT.

point m2
22 [GeV2] m2

S [GeV2] Re (A) [GeV] Im (A) [GeV]

F1R57 24.2572 × 104 10.9399 × 104 93.784 126.304
F11R239 20.6512 × 104 24.4128 × 104 −126.573 196.608
F12R229 41.0665 × 104 68.9511 × 104 −327.739 693.838
F13R406 42.8085 × 104 42.8085 × 104 305.087 13.242
F14R415 53.9115 × 104 48.5477 × 104 92.486 −60.547
F16R126 39.0001 × 104 29.9337 × 104 −935.289 269.068
F16R292 21.8590 × 104 36.4763 × 104 760.170 383.020
F610R819 1.2474 × 104 6.3588 × 104 213.475 183.850

Table B.1.: Mass and trilinear parameters for the benchmark points that are displayed
in Figs. 4.2-4.6 and Fig. 5.1. For a definition of the tree-level scalar potential of CP in
the Dark in terms of the mass, trilinear and the quartic parameters (see Tab. B.2), see
Eq. (3.4) in Chapter 3.
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point λ2 λ3 λ4 λ5 λ6 λ7 λ8

F1R57 4.691 −0.215 −0.425 −0.138 15.076 6.779 −1.865
F11R239 0.182 7.246 −1.575 −1.374 9.168 2.741 −0.273
F12R229 0.003 8.582 −4.247 4.121 13.441 −1.217 3.842
F13R406 8.203 −1.144 0.212 0.138 2.966 13.277 −0.962
F14R415 3.230 2.357 −2.850 0.023 0.528 14.036 −0.137
F16R126 0.202 10.855 −5.014 −4.562 12.445 −0.001 −0.498
F16R292 1.141 5.869 2.777 1.657 11.743 −1.211 −0.288
F610R819 1.244 0.957 2.327 1.852 13.441 0.132 −0.447

Table B.2.: Quartic parameters of the tree-level scalar Lagrangian in Eq. (3.4) for all
benchmark points that are displayed in Figs. 4.2-4.6 and Fig. 5.1.

point mH± [GeV] mh1 [GeV] mh2 [GeV] mh3 [GeV]

F1R57 485.849 457.136 472.254 573.769
F11R239 652.815 537.595 594.005 665.010
F12R229 819.030 568.480 792.037 886.724
F13R406 627.232 625.769 629.053 927.451
F14R415 781.375 722.691 723.973 955.426
F16R126 847.964 346.466 768.153 850.479
F16R292 629.670 434.530 668.582 808.410
F610R819 203.684 88.170 301.213 439.503

Table B.3.: Dark scalar masses for the benchmark points that are displayed in Figs. 4.2-4.6
and Fig. 5.1. Note, that in CP in the Dark the mass hierarchy of the neutral dark scalars
is defined as mh1 < mh2 < mh3 , see Chapter 3.
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point Tc [GeV] vc [GeV] ξc

F1R57 184.717 198.073 1.072
F11R239 189.377 203.315 1.074
F12R229 160.941 165.709 1.030
F13R406 150.751 158.765 1.053
F14R415 174.454 180.154 1.033
F16R126 196.417 236.532 1.204
F16R292 198.596 213.333 1.074
F610R819 141.129 142.779 1.012

point ωCB [GeV] ω1 [GeV] ω2 [GeV] ωCP [GeV] ωS [GeV]

F1R57 9.1 × 10−7 198.073 2.2 × 10−8 2.2 × 10−6 4.0 × 10−6

F11R239 1.2 × 10−6 203.315 −1.1 × 10−6 1.3 × 10−6 −1.6 × 10−6

F12R229 1.7 × 10−7 165.709 1.0 × 10−6 −2.3 × 10−6 −8.1 × 10−7

F13R406 1.1 × 10−7 158.765 1.5 × 10−6 −7.8 × 10−7 1.1 × 10−6

F14R415 −1.1 × 10−6 −180.154 −2.1 × 10−6 −9.6 × 10−7 1.8 × 10−6

F16R126 −3.2 × 10−7 −236.532 −4.0 × 10−6 −9.2 × 10−7 −1.7 × 10−6

F16R292 3.2 × 10−6 213.333 1.5 × 10−6 2.3 × 10−7 −5.2 × 10−7

F610R819 −4.4 × 10−6 140.117 12.500 −24.430 −27.353

Table B.4.: BSMPT output for the benchmark points whose parameters are listed in
Tabs. B.1-B.3. Details on the determination of Tc and vc with BSMPT can be found in
Chapter 5.1.2. The strength of the electroweak phase transition, ξc, is derived from
the baryon wash-out condition in Eq. (2.22), ξc = vc

Tc
. The finite-temperature VEV

configurations ωi with i ∈ {1, 2, CB, CP, S} minimize the one-loop corrected effective
potential at T = Tc.
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