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5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen einer
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Abstract

Soft and collinear approximations are the fundamental concepts used to construct parton
showers. Infrared singularities are also important for the calculation of cross sections beyond
leading order. Current parton showers implement the iteration of one emission, but for com-
parison to higher order cross sections a framework for two or more emissions is needed. The
work in this thesis focuses on developing such a framework, to factorise soft and collinear
emissions from multi-parton amplitudes for two or more emissions. Firstly, the kinematic
mapping for the one-emission case is investigated and modified to introduce a global recoil
via a Lorentz transformation. Then, the concepts are extended to a generalised case and a
partitioning formalism is developed to separate different collinear sectors. This allows the
mapping for multiple emissions to be developed and the corresponding phase space factorisa-
tion to be established. An example is made of the new mapping applied to the two-emission
case and important cross checks are carried out. Finally, the mapping is implemented, for
the one-emission case, in the Herwig 7 dipole shower and compared to the existing mapping
and other variants. This shows the potential for improvement in the kinematics of the parton
shower.

Zusammenfassung

Weiche und kollineare Annäherungen sind die grundlegenden Konzepte, woraus Partonschauer-
simulationen gebaut werden. Infrarotsingularitäten müssen sorgfältig behandelt werden, um
Querschnitte von nächst-führender Ordnung zu berechnen. Aktuelle Partonschauersimula-
tionen implementieren die Iteration einer Emission, aber um sie mit Querschnitten höherer
Ordnung zu vergleichen, ist ein Rahmen für zwei oder mehr Emissionen erforderlich. Die Ar-
beit in dieser Dissertation konzentriert sich auf die Entwicklung eines solchen Rahmens zur
Faktorisierung weicher und kollinearer Emissionen aus Mehrteilchenamplituden für zwei oder
mehr Emissionen. Der erste Teil der Arbeit besteht darin, die kinematische Abbildung für
den Einemissionsfall zu untersuchen und diese zu modifizieren, um einen globalen Rückstoß
über eine Lorentztransformation einzuführen. Dann werden die Konzepte auf einen verall-
gemeinerten Fall erweitert und ein Partitionierungsformalismus entwickelt, um verschiedene
kollineare Sektoren zu trennen. Dadurch kann auch die Abbildung für mehrere Emissionen
entwickelt und die entsprechende Faktorisierung des Phasenraums festgelegt werden. Als
nächstes wird ein Beispiel für die neue Abbildung gemacht, angewendet auf den Fall mit
zwei Emissionen, und wichtige Gegenprüfungen werden durchgeführt. Schließlich wird die
Abbildung für den Einemissionsfall in den Herwig 7-Dipolschauer implementiert und mit der
vorhandenen Abbildung und anderen Varianten verglichen. Dies zeigt das Potenzial für eine
Verbesserung der Kinematik des Partonschauers.
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CHAPTER 1

Introduction

Particle physics experiments, such as the Large Hadron Collider (LHC), seek to understand
the building blocks of matter and how fundamental particles interact with each other. Over
many years physicists have developed a model that aims to describe all concepts of the physical
world, the Standard Model (SM). The SM contains all fundamental particles and forces
except gravity, and combines the theories of electrodynamics and the weak and strong forces.
However, the SM is not complete; there are many examples of experimental observations that
are inconsistent with the SM. Some examples include: dark matter and dark energy, massive
neutrinos and the strong CP problem. Theorists have proposed several ways to extend the
SM such as supersymmetry, string theory and composite Higgs models, although none of
these have yet been shown to be consistent with data. Therefore, the search for new physics
continues and is the motivation for future high-energy particle-physics experiments such as
the Future Circular Collider (FCC) [1] and the Electron-Ion Collider (EIC) [2].

The component of the SM of interest in this thesis is quantum chromodynamics (QCD), that
describes the parton model to explain the behaviour of protons and neutrons as composite
hadrons composed of quarks. The quarks are held together by the short-range strong force,
which is mediated by gluons. Due to confinement, which can be explained by the scaling of the
strong force at large distances, it is not possible to observe free quarks. Structure functions
describe the behaviour of partons at small distances and evolution equations describe how
these functions change with the energy scale. Another key concept is factorisation, that
allows the separation of physics at different scales, e.g. perturbative and non-perturbative
physics. It will be shown that using factorisation enables physicists to produce predictions
for multi-scale processes.

Work that is currently carried out at the LHC and other particle physics experiments is
searching for a solution to the problem of the incomplete SM. The discovery of new physics
requires an accurate comparison of data and theory. At the LHC this is most commonly
done by comparing event data to event simulations, especially for exclusive final states which
are not calculable analytically. The simulated events are generated by Monte Carlo Event
Generators (MCEG), such as Pythia [3], Herwig [4, 5] and Sherpa [6, 7]. These are powerful
tools capable of simulating particle collisions and their subsequent decays.

A standard MCEG contains many components, each with a specific task and different physics
to implement. The hard process is the highest energy component and can be calculated
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analytically. The hard matrix element is usually built into event generators, although there
are also specific matrix element programs that can be interfaced. The hard process connects to
the parton shower, that controls the emissions from the highest energies O(TeV) to O(1 GeV),
at which point perturbation theory no longer holds. Hadronisation models then take over and
form hadrons from the final state partons. These hadrons are involved in decay processes to
produce the whole range of particles which can be detected by experiments. Development
of these simulations is aimed at increasing their accuracy and predictive power, which will
result in improved sensitivity to new physics when compared to data. Methods to increase
the accuracy of the predictions include; higher order calculations and matching to the parton
shower, better description of soft physics and background processes and a better description
of small regions of phase space for the prediction of highly exclusive observables.

Hard processes are usually calculated at leading or next-to-leading order, then the parton
shower adds emissions to the initial and final states, to connect the energy scales. These
emissions contain poles in the soft and collinear limits. Being able to describe the behaviour
both at and away from these limits is important for the determination of the showering
process. The expressions for the singular limits can also be used for subtraction schemes,
which enable the calculation of higher-order cross sections. When higher order corrections
are included in the matrix element they need to be combined with the parton shower which
needs to have a comparable level of accuracy.

Currently, parton showers are based on single-emission kinematics and splitting functions
that are then iterated by the shower algorithm to produce multiple emissions. To increase
the precision of the shower the next order of emissions needs to be included, which requires
implementation of the two-emission splitting functions. Including two emissions in a parton-
shower framework requires structural changes within the shower, including the kinematic
mapping. As existing shower mappings result in errors of logarithmic accuracy beyond the
leading terms, which have been highlighted in recent years, it is desirable to redesign the
mapping. Hence, in this thesis the aim is to investigate the factorisation of soft and collinear
emissions beyond the one-emission case and to develop an appropriate kinematic mapping
within a framework that can describe the two-emission case. This framework is designed so
that it can be easily and systematically extended to describe more than two emissions.

In Chapter 2 the concepts of QCD are introduced, with a focus on infrared singularities, as
these are particularly relevant to this thesis. The scaling conventions for soft and collinear
limits are given, as well as examples of soft and collinear factorisation that are important for
constructing parton showers. At the end of this chapter, the relevant notation for this thesis
is given, including the Feynman rules and colour algebra.

As an introduction to event simulation in Chapter 3, Monte Carlo (MC) methods are ex-
plained and shown in the context of MCEG. The components of event generators are outlined,
from the high energy scales of the hard matrix element via parton showers to non-perturbative
hadronisation models and soft physics models. To illustrate the application of MC methods in
the parton shower, an example of a shower algorithm is shown. In Chapter 4, more complete
and detailed background information for parton showers is given. This includes DGLAP evo-
lution, next-to-leading order (NLO) subtraction and examples of the Catani-Seymour dipole
formalism. To give context to the motivation of this thesis, the current status and issues with
parton showers are discussed, as well as insights into areas for improvement.

The aim of Chapter 5 is to investigate the kinematic mapping used for collinear factorisation,
as it is implemented in the parton shower, to see where improvements can be made. The single-
emission case is first outlined, then detailed calculations are shown to expose the scaling of all
terms that can contribute in both the soft and collinear limits. Steps are taken to improve the
kinematic mapping by introducing a global recoil distribution via a Lorentz transformation.
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As a cross-check of the methods used for two different mappings, the collinear limit is taken
and the result is compared to the known splitting functions.

Having examined the single-emission case, Chapter 6 extends the concepts to an arbitrary
number of emissions. This requires careful enumeration of possible diagrams and the devel-
opment of a partitioning formalism to separate overlapping collinear sectors. In Chapter 7,
a mapping for k-emissions is established and tested for the two-emission case. Again, the
collinear limit is checked to give the known splitting function. The other infrared limits
are also compared as an illustration of the connections between limits and how subtraction
counter terms can be constructed.

To see the effect of the mapping development in the context of an event generator, the multiple
emission mapping is implemented in the Herwig parton shower, as discussed in Chapter 8.
This first implementation uses the single emission form of the mapping, that is then iterated
by the shower algorithm so that this can be directly compared to the existing dipole shower.
The existing framework for the splitting functions and phase space from the Herwig dipole
shower are used. Two other mappings are implemented for comparison, that differ from the
standard mappings by not assigning a transverse momentum component to the emitter. The
analysis shows some small differences between the mappings. Future work will adjust the
phase space and splitting function implementation to give more conclusive results.





CHAPTER 2

Quantum Chromodynamics and Infrared Singularities

The singularities of interest in this thesis arise in both the electromagnetic and strong fields.
The factorisation concepts discussed apply to both cases with the inclusion of colour charge
for quarks and gluons. The colour charge and correlations between colour charges are the
main motivation for development of the methods and formalisms for infrared (IR) radiation
in QCD amplitudes. To discuss the behaviour of quarks and gluons, it is first important to
introduce QCD, the theory that describes strong interactions.

This chapter starts by introducing the key concepts of QCD in Sec. 2.1 and discusses the pro-
cess of calculating QCD amplitudes in Sec. 2.1.1. The central issue considered in this thesis
is IR singularities, i.e. soft and collinear singularities that can occur in QCD amplitudes, and
how to treat them. Sec. 2.2 outlines how these singularities arise and under which circum-
stances they cancel. Finally the notation used for the calculations in subsequent chapters
is established in Sec. 2.3. This includes the Feynman rules in Sec. 2.3.1, colour operators in
Sec. 2.3.2 and cutting rules in Sec. 2.3.3.

2.1. Quantum Chromodynamics (QCD)

Experimental evidence in the last century led to several conclusions about atomic substruc-
ture, including the discovery that quarks are the building blocks of hadrons and that gluons
are the mediators of the strong force that holds quarks together. Hadrons are defined as parti-
cles containing two or more quarks. They therefore interact with the strong force via hadronic
interactions. States with two quarks are known as mesons and those with three quarks as
baryons. The first three quarks postulated were the ‘u’ (up), ‘d’ (down) and ‘s’ (strange)
quarks and to satisfy the flavour SU(3) symmetry observed, carry the electric charges ±1/3
and ±2/3 of the electron charge and spin of 1/2 [8]. The parton model was developed as a
result of observed nucleon substructure which then was combined with the quark model to
give the quark parton model (QPM).

However, the QPM was not complete as for bayrons containing three of the same quark the
wave function was totally symmetric which violates the Pauli-principle. This required a new
degree of freedom to be introduced, colour, with three values referred to as red, blue and
green. The resulting wave function is completely antisymmetric and is a colour singlet when
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it is assumed that the colour charge has SU(3) symmetry. Only colour singlet states are
observed, in agreement with the SU(3) symmetry, including the known mesons and baryons.
Therefore, the colour charge can only be measured when momentum transfer takes place.

The combination of flavour and colour symmetries and evidence of the strong interaction,
determined from experimental observations, led to the development of the non-abelian Yang-
Mills gauge theory of QCD. This theory can be used to describe the interactions of quarks and
gluons via Feynman rules, (given in Sec. 2.3.1), derived from the QCD Lagrangian density.
The classical QCD Lagrangian, for quarks of mass m, as given in [8] is:

LQCD = −1

4
F aµνF

aµν +
∑

flavours

q̄i(i /D −m)ijqj , (2.1)

where it is assumed that the SU(3) gauge symmetry is unbroken. F aµν is the field strength
tensor, /D = γµD

µ and Dµ is the covariant derivative which are defined as:

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν ,

(Dµ)ij = δij∂µ + igsT
a
ijA

a
µ ,

(2.2)

where Aaµ are the gluon fields, fabc is the structure constant, gs the strong coupling constant
and T aij the SU(3) generators. The indices a, b, c, contain the eight degrees of freedom from
the colour charge. The non-abelian triple and four-gluon vertices arise from the third term
in the definition of the field strength. The mass terms and the coupling constant are the free
parameters of the theory. For local transformations of the strong field the QCD Lagrangian
is invariant.

The generators can be written as the matrices t or T for the fundamental and adjoint repre-
sentations, respectively [9]:

[ta, tb] = ifabctc , [T a, T b] = ifabcT c , (T a)bc = −ifabc , (2.3)

where the fundamental generators can be represented as ta = λa/2 via the eight Gell-Mann
matrices, λa. The normalisation of the generators for SU(N) is chosen to be:

Tr(tatb) = TRδ
ab , TR =

1

2
, (2.4)

which results in the following:∑
a

(taijt
a
jk) = CF δik , CF =

N2 − 1

2N
,

Tr(T cT d) =
∑
a,b

fabcfabd = CAδ
cd , CA = N .

(2.5)

For the chosen normalisation and given the SU(3) symmetry, the values are:

CF =
4

3
, CA = 3 , (2.6)

The relative splitting probabilities for a quark and a gluon can be described by these factors,
where they correspond to the probabilities for a gluon emission from a quark and a gluon
emission from a gluon. A gluon splitting into two quarks has the probability described by
the factor TR. The probability of splitting is the same for all colours. The values given above
depend on the normalisation chosen for the generators therefore it is more meaningful to
refer to ratios of these values than just the values themselves. These ratios correspond to
experimental cross sections, which gives evidence for the theory of QCD.
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Usually, when QCD is used to describe a process in high-energy physics, perturbative QCD
(pQCD) is actually being used that makes use of the concepts of perturbation theory. It is
not possible to describe most non-perturbative processes with QCD. To use pQCD the strong
coupling must be small, which is only true for processes with large momentum transfers, Q,
i.e. Q� ΛQCD. ΛQCD is defined as the energy scale at which non-perturbative effects become
important, which is O(200) MeV. The strong coupling, αs, can be defined as a function of
Q2 to leading order as [8]:

αs(Q
2) ≡ g2

s(Q
2)

4π
=

1

β0 ln(Q2/Λ2
QCD)

, (2.7)

where β0 is a coefficient that depends on the renormalisation scheme used. The scale depen-
dence of the strong coupling is known as the running coupling that is due to the introduction
of a second mass scale through the renormalisation of the theory. The value of αs becomes
smaller as Q increases. This inverse relationship means that QCD is an asymptotically free
theory and that for large values of Q, perturbation theory can always be applied. The
most commonly used renormalisation scheme is the modified minimal subtraction scheme
(MS), that regulates ultraviolet loop divergences by reducing the number of dimensions to
d = 4− 2ε [9]:

d4k

(2π)4
→ (µ)2ε d4−2εk

(2π)4−2ε
, (2.8)

where ε = 2− n/2 and n < 4. Poles arise from the loop integrals of the form dnk/[k2 +m2]2

when ε = 0, that for the minimal subtraction scheme are subtracted out and the bare coupling
is replaced by the renormalised coupling, αs(µ

2). Additionally, the constants that accompany
the poles are subtracted, in the case of the modified minimal subtraction scheme. The choice
of renormalisation scheme results in different values for the Λ parameter in the definition of
the coupling, and thus different values for the coupling.

At the high-energy scales at which pQCD is applicable, it is possible to investigate physics
at a sub-nuclear scale. This enables the description of hadrons via parton density functions
(PDFs), which describe the distribution of partons as a function of the momentum fraction
carried by each parton. A QCD cross section can be calculated by convoluting tree-level
amplitudes with the relevant PDFs, which are independent of the hard subprocess.

2.1.1. Cross Sections and Amplitudes

The most common aspect of QCD to be experimentally measured are cross sections. As an
introduction, the total cross section for e+e− → hadrons will be discussed. This cross section
can be calculated using pQCD and is expected to have small non-perturbative corrections
due the the large scale from the combined momenta of the electron and positron. It is also an
inclusive quantity that results in the cancellation of IR divergences, as discussed in Sec. 2.2,
and can provide a precise measurement of the strong coupling. Cross sections for a specific
number of jets in the final state can be defined and compared to experimental data. Jet cross
sections are of particular interest as a way to probe the behaviour of the triple gluon vertex.
To determine a cross section analytically it is necessary to determine which amplitudes will
contribute. This can involve both electroweak and strong mediators.

Amplitudes in general are described by a series of increasingly complex Feynman diagrams,
that can be organised according to the power of coupling they contain. For QCD amplitudes,
the amplitude squared is proportional to the simplest set of diagrams of O(αns ), where the
value of n depends on the process. This results in the leading order (LO) contribution to the
cross section. The next-to-leading order (NLO) approximation corresponds to the diagrams
O(αn+1

s ) etc. Increasing the order of the calculation usually increases the accuracy and results
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in better theory predictions for experiments. For e+e− → qq̄g, the lowest order of αns is n = 1,
as is the case for most tree-level QCD processes. Though for the total e+e− annihilation cross
section the leading contribution is the QED interaction. The matrix elements for a QCD
process can be written down using the Feynman rules given in Sec. 2.3.1 and can be used to
determine the cross section.

The leading contribution to the total hadronic cross section is obtained by summing over
all possible flavours and colours of the quark-antiquark pairs in the final state, where higher
order corrections involve gluon interactions. For electron-positron annihilation to two general
fermions, e+e− → ff̄ , f 6= e, ignoring weak effects as they can assumed to be small, the
differential cross section for the s-channel can be written as [9]:

dσ

dcosθ
=
πα2Q2

f

2s
(1 + cos2θ) , (2.9)

where in the centre of mass frame, θ is the scattering angle, s is the scattering energy squared
and α is the electromagnetic coupling. Upon integration over θ, the cross section is given by:

σ0 =
4πα2

3s
Q2
f . (2.10)

This cross section does not yet contain any QCD effects that enter at O(αs) and require the
inclusion of real and virtual gluon emissions from the final-state quarks. The phase space for
the real-emission diagrams can be written as [9]:

dΦ3 =
1

(2π)5

s

32
dα dcosβ dγ dx1 dx2 , (2.11)

where α, β and γ are Euler angles and x1 = 2Eq/
√
s, x2 = 2Eq̄/

√
s. By integrating out the

angles from the matrix element squared, the total cross section can be expressed in terms of
x1 and x2.

σqq̄g = σ0 3
∑
q

Q2
q

∫
dx1 dx2 CF

αs
2π

x2
1 + x2

2

(1− x1)(1− x2)
. (2.12)

The region of integration is defined by 0 ≤ x1, x2 ≤ 1 and x1 + x2 ≥ 1 and divergences arise
at the integration boundaries where x1, x2 = 1. These divergences can also be expressed in
terms of the gluon energy, Eg, and the angle between the gluon and quark i, θig:

1− x1 =
x2Eg(1− cos(θ2g))√

s
,

1− x2 =
x1Eg(1− cos(θ1g))√

s
.

(2.13)

Divergences then arise in regions of phase space where the emitted gluon is collinear to the
quark, θig → 0, or the gluon is soft, Eg → 0. The singularities that result in these two cases
appear in both real and virtual contributions and will be discussed in detail in Sec. 2.2.

2.2. Infrared Singularities

Soft and collinear divergences are referred to collectively as IR divergences. The term ‘soft’
implies that the energy of the emitted parton � Q, where Q describes the hard scale, and
‘collinear’ refers to the case when the angle between any two partons is zero. It is also possible
to have collinear divergences involving more than two partons, i.e. triple collinear cases. For
calculations in perturbation theory it is desirable to work with IR safe observables. IR safety
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is when there is a small sensitivity to hadronisation and the IR divergences cancel in the
perturbative calculation.

For sufficiently inclusive observables these divergences cancel in the massless limit, as estab-
lished by Bloch and Nordsieck [10] who developed a mechanism for constructing IR finite
cross sections. The IR divergences cancel between the real and virtual parts of the cross
section when summed over all degenerate physical states. This is due to the use of dimen-
sional regularisation to increase the number of dimensions to greater than four, which results
in poles due to the IR singularities at n = 4 dimensions. This concept was later extended
by Kinoshita [11] and Lee and Nauenberg [12] in parallel, which led to the naming of the
Kinoshita-Lee-Nauenberg (KLN) theorem. The KLN theorem shows that inclusive jet cross
sections are finite and that the finiteness can be extended to both initial and final-state inter-
actions [13]. Instead of using cross sections, the KLN theorem uses transition probabilities,
which are illustrated for a set of states, D(E0), where the energy range is:

E0 − ε < E < E0 + ε (2.14)

Then the probability density per unit volume for a transition from j to i, pij , can be used to
define the finite quantity:

P (E0, ε) =
∑

i,j∈D(E0)

pij , (2.15)

in the massless limit. For the KLN theorem to apply, an average over the initial states has to
be included. This is possible for hadronic initial states if they are constructed to include the
averaging. Cross sections containing initial state hadrons depend on the momentum scales of
the initial state. At these momentum scales the effective coupling can be large and so the cross
section cannot be well determined using perturbation theory. This momentum dependence
still allows the cross section to be IR finite, due to the averaging over states, but it cannot
be considered to be IR safe in the zero mass limit [13].

For exclusive observables the divergences do not cancel completely and large logarithms arise,
written as L = ln(Q2/Q2

0). For Q2 � Q2
0, αs(Q

2)L is approximately equal to one, which can
prevent the perturbation theory, at a given order in αs, from converging. An alternative
approach is to instead expand the differential cross section in powers of αsL, that results in
the leading logarithm approximation (LLA) where the results are often referred to as leading
log (LL), next-to-leading log (NLL) etc. This expansion can be written as [8]:

dσ =
∑
n

an(αsL)n + αs(Q
2)
∑
n

bn(αsL)n + ... (2.16)

Determining such contributions to a cross section is known as resummation, as the contribu-
tions at each order need to be summed. This method is particularly valuable in regions of
phase space that are poorly described by the leading-order approximation.

In the context of Feynman amplitudes, the propagator factors that arise from the emissions
from external lines contain IR singularities e.g. for an emitted gluon:

1

(p± q)2 −m2
=
±1

2p · q =
±1

2ωE(1− vcosθ) , (2.17)

where ω is the gluon energy and E and v describe the emitter parton. The divergences
contained are for a soft gluon emission as ω � Q and for a collinear emission where θ → 0
for the massless case.

To categorise terms and their contributions to soft and collinear divergences it is helpful to
introduce a scaling parameter, λ, that in both the soft and collinear cases can be considered
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pi||pj pj → 0

pi · pj λ2 λ

pj · pk 1 λ

Table 2.1.: Scaling in soft and collinear limits from SCET conventions.

to go to zero when a limit is taken. The scaling used in this thesis is inspired by SCET
conventions [14] and is given in Table 2.1, where pi is the momentum of particle i. The
first column describes the case where i and j are collinear and the second column describes
the case where j is soft. This scaling can also be applied to parameters in the context of a
kinematic mapping shown in Sec. 5.2.

2.2.1. Soft and Collinear Factorisation

Factorisation is the concept of separation between short and long-range effects. It can be
described by the factorisation theorem. Both collinear and soft emissions can be factorised
from a hard amplitude and examples of this are shown in Sec. 4.3. Soft and collinear factori-
sation are specific examples of the factorisation theorem given in Eq. (3.6), which applies to
all processes occurring at different scales.

For the emission of a sufficiently soft gluon with momentum k from a hard parton with
momentum pi, where k � pi, terms proportional to k in the amplitude can be neglected.
This results in the eikonal approximation, which applies to both gluon and quark emitters
due to the low resolution of the soft gluon. The total of the emissions from all hard partons
in a N -parton final state gives [8]:

M(N+1) = gsε
∗(k)µ

(
N∑
i=1

T̂ ai
pµi
pi · k

)
×M(N) , (2.18)

where T̂ ai is the appropriate colour charge operator for parton i. The matrix-element squared
can be written, after summing over gluon polarisations, as:

|M(N+1)|2 = g2
sJ · J†|M(N)|2 , (2.19)

where Jaµ(k; pi) =
∑
i

T̂ ai

(
pµi
pi · k

− nµ

n · k

)
and nµ is the gauge vector. J is known as the

eikonal current. The term in the eikonal current that is proportional to nµ does not contribute
in a colour neutral system or when the Feynman gauge is used.

Collinear factorisation is possible when an emitted gluon is collinear to a hard parton, that
can also be described as the angle between the two momenta going to zero [9]. For a proton-
proton collision, with a final state defined by X and Y , producing a collinear gluon, the
differential cross section factorises as:

dσ(pp→ Y + g +X) (2.20)

= dσ(pp→ Y +X)

∫
dp2
⊥

p2
⊥

dz

z

αs
2π
CF

f(xaz , t)

fa(xa, t)
P (z) ,

where f are the distribution functions for the partons involved. The parts containing the
collinear behaviour are referred to as splitting functions, P (z), and are described in Sec. 4.1.1.
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This factorisation expression is based on the DGLAP evolution equations, which are intro-
duced in Sec. 4.1.

It is possible to factorise at both cross-section and amplitude level, where the collinear fac-
torisation at amplitude level gives factors that represent different components of the splitting
functions, that can be added to give the cross-section level expression. The work in this
thesis focuses on the amplitude level due to the additional colour information that can be
retained. To determine the cross section, there is always an implicit summing over colour and
spins that results in an averaged matrix-element squared. For some exclusive observables,
the information from specific amplitudes is needed to give accurate predictions.

To calculate the cross section with IR divergences, methods have been developed to subtract
the singular terms and integrate them separately. The two most common methods are dipole
subtraction [15], as discussed in Sec. 4.2, and FKS subtraction [16]. These operate by sub-
tracting the terms that give the IR divergences before integration, then adding them back in
their integrated form. The divergences can be described by a counter term, for which it is
possible to determine an expression analytically. The counter terms to be subtracted make
use of the splitting functions and eikonal functions that describe the singular behaviour. An
alternative to subtraction methods is slicing methods, such as in [17], where the phase space
is cut into different regions above and below a cut parameter, that separates the part of the
cross section sensitive to IR divergences.

2.3. Notation

This section outlines the notation used in this thesis, that is of particular relevance for the
QCD diagrams calculated in the following chapters. The Feynman rules for QCD are gauge
dependent, so it is first necessary to introduce the relevant gauges. The two types of gauge
that are commonly used in QCD calculations are covariant and axial gauges. The gluon
polarisation tensor, dµν(p), takes different forms for the covariant and axial gauges [8]:

• Covariant gauge: dµν(p) = −ηµν + (1− ξ) pµpν

p2 + iε

• Axial gauge: dµν(p) = −ηµν +
nµpν + pµnν

n · p − n2 + ξp2

(n · p)2
pµpν .

For a covariant gauge where the gauge parameter, ξ = 1, gives the Feynman gauge, that
results in the gluon polarisation tensor, dµν(p) = −ηµν . For an axial gauge, ghosts terms
decouple given n · A = 0 and the light-cone gauge is given by the case where ξ = 0, n2 = 0,

that gives dµν(p) = −ηµν +
nµpν + pµnν

n · p . Now that the gauges are defined, the Feynman

rules can be discussed and it will be shown where the differences between the gauges appear.

2.3.1. Feynman Rules

The Feynman rules of QCD are defined via the operator given by [9]:

S = i

∫
L d4x (2.21)

This operator can be separated into two parts, corresponding to the free part and the inter-
acting part of the theory. Where the propagators are determined from the free part, S0, and
the interactions are determined from the interacting part, SI .

S = S0 + SI = i

∫
L0 d4x+ i

∫
LI d4x (2.22)
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The QCD Feynman rules, which apply to both covariant and axial gauges are [9]:

µ, a ν, bp
= δab

i

p2 + iε
dµν(p) , (2.23a)

β, l α, kp
= δkl

i(/p+m)αβ

p2 −m2 + iε
, (2.23b)

α, a γ, c

β, b

pa

pb
pc = −gsfabc [gαβ(pa − pb)γ + gβγ(pb − pc)α + gγα(pc − pa)β] , (2.23c)

β, l α, k

λ, c

= −igs(tc)kl(γλ)αβ , (2.23d)

where fabc is the structure constant introduced in Eq. (2.5) which can also be written as:

fabc = − i

TF
Tr
{
T aT bT c − T cT bT a

}
. (2.24)

The Feynman rules for the ghost propagator and quark-ghost vertex are given below, which
only contribute when a covariant gauge is used,

a bp
= δab

i

(p2 + iε)
, (2.25a)

a b

λ, c

q = gsf
abcqλ . (2.25b)

The labelling conventions for open indices used in this thesis are defined for quarks and gluons,
where the exchanged gluon is always labelled with polarisation λ and colour c. The labelling
used is as follows:

• Quark emitter: α, β and k, l,

• Quark spectator: γ, δ and m, n,

• Gluon spectator: µ, ν and a, b ,

• Gluon spectator: ρ, σ and d, e ,

where the emitter refers to the parton that emits the soft or collinear momentum. The
spectator is the other parton involved in the dipole. Additionally, square brackets are used
to assign the momenta to a hard line and keep track of the indices that connect to the hard
amplitude. [/pi]αβ describes the momentum flowing through the line connecting the indices α
and β.

2.3.2. Colour Algebra

The generators of the colour charge were introduced in Sec. 2.1 and relevant relations given
in Eq. (2.3). Here, the notation for combinations of colour charges is introduced, which will
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be used in the calculations throughout this thesis. Colour charges for both quarks and gluons
can be written as Ta

i , where the index i refers to the parton and a indexes the generators.
Additional upper and lower indices can be used to indicate outgoing colour and anti-colour,
respectively [8]:(

Ta
i=q

)α
β = (ta)αβ ,

(
Ta
i=q̄

)
α
β = −(ta)βα ,

(
Ta
i=g

)
bc

= −ifabc . (2.26)

The generators take the form of matrices and are, by convention, multiplied in order against
the flow of the corresponding fermions. Products between the charges can be written as:

Ti ·Tj = Ta
iT

a
j , Ti ·Tj = Tj ·Ti , T2

i = Ti ·Ti = Ci , (2.27)

where Ci = CF for a quark and Ci = CA for a gluon, which correspond to the fundamental
and adjoint representations respectively. A final-state amplitude squared, summed over colour
and spins can be written as:

|Mm|2 = m〈1, ...,m|1, ...,m〉m (2.28)

By definition each vector, |1, ...,m〉m, is a colour-singlet state [15]. When colour conservation
is applied to a generator acting on such a singlet state, the result is:

m∑
i=1

Ti|M〉m = 0 . (2.29)

The above expression is only true when the generators act on an amplitude i.e. it is not an
operator identity. In the context two partons in the final state, labelled i and j, where i 6= j,

charge conservation can be used for the generators to give:
∑

j 6=i
Tj = −Ti. Examples of

this notation for factors arising from quark-gluon vertices are:

(tci )lr(t
c
i )rk = T2

i , (tci )
k
l(t

c
j)
m
n = −Ti ·Tj . (2.30)

For triple gluon vertices, the structure constant, fabc, represents the colours involved. When
two gluon vertices are combined, this gives:∑

c,d

facdf bcd = CAδ
ab . (2.31)

2.3.3. Cutting Rules

The Cutkosky cutting rules were first defined in the context of determining discontinuities
of Feynman amplitudes in [18]. They are primarily used to simplify the calculation of the
imaginary part of a loop diagram, however, the same rules can be applied to all amplitudes.
In the context of this thesis, the cutting rules will be used to calculate the splitting diagrams
when dealing with on-shell momenta, particularly for the determination of collinear splitting
functions. The rules for loop diagrams, as given in [19], are:

1. Cut through the diagram in all ways that can put all intermediate propagators on-shell
without violating momentum conservation.

2. For each cut, replace
1

p2 −m2 + iε
→ −2πi δ(p2 −m2)θ(p0).

3. Sum over all cuts.

4. The result is the discontinuity of the loop amplitude Disc(A) = −2 ImA.
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The derivation of these rules in shown in detail, and an example for a loop diagram given
in [19].

The cutting rules make use of the fact that a Feynman propagator is real except from when
the particle is on-shell, shown by:

Im
1

p2 −m2 + iε
= −πδ(p2 −m2) (2.32)

For internal lines to be put on-shell a dashed line or ‘cut’ is drawn through the lines. The cut
diagrams used in this thesis to investigate emissions from hard momenta are a representation
of the squared tree-level amplitudes for possible emissions such as:

q

qi
(2.33)

Where the shaded ‘blobs’ represent the hard amplitude and the dashed line is the ‘cut’ that
puts the gluon and quark propagators on-shell. These diagrams are a combination of the
amplitude and its conjugate, which are joined together at the ‘cut’. There are also multiple
diagrams for each amplitude because there are multiple ways to combine each amplitude with
its conjugate. In this context the following rules apply:

1. No loop-momentum integration is introduced.

2. On each side of the cut, the signs for the momenta and vertex factors are opposite.

3. Cut propagators give the factors:

• Fermion: /p+m

• Gauge boson: dµν(q)

4. Trace over closed fermion lines.

In this case using the cutting rules simplifies the squared amplitudes and means that the spin
and polarisation sums do not need to be carried out explicitly. The emissions themselves are
the point of interest, so the diagrams can be calculated for a generic hard amplitude that
factorises from the IR emissions.



CHAPTER 3

Monte Carlo Event Generators

This chapter details the function and methods of Monte Carlo (MC) event generators, and
gives an introduction to parton showers, which are discussed in more detail in Chapter 4.
Firstly in Sec. 3.1, the basic concepts of MC methods are explained and the suitability of
these methods for complex particle simulations is illustrated. Then in Sec. 3.2, the different
components of MC event generators are described with a particular focus on the parton
shower algorithm in Sec. 3.2.1 and the methods used to describe non-perturbative physics in
Sec. 3.2.3.

3.1. Monte Carlo Methods

MC methods are a group of methods based on the principle of repeated random sampling.
They have applications in optimisation and numerical integration problems. These methods
are particularly useful when the problem is analytically unsolvable, however, because they are
only approximate methods there is always an associated error. The accuracy of the solution
generally improves with time and the number of samples. MC methods make use of random
numbers to randomise the sampling, that can be efficient for solving complex integrals. Some
MC methods make use of a ‘Markov Chain’, that is defined as a sequence of possible events
where the probability of each event depends only on the previous event. Markov Chain MC
methods are used to simulate random objects with specific probability distributions. The
name ‘Monte Carlo’ was first used by Von Neumann and Ulam, as published in [20]. Given
a probability density:

dP (x) = f(x)dx , (3.1)

the probability distribution ≈ area, is described by:

F (x) =

∫ x

x0

f(x)dx . (3.2)

This can be evaluated by the ‘Hit and Miss’ algorithm, a method of calculating the integral
via a random walk of points, which generates a sequence across the probability density, P (x).
The error of the result is estimated from the variance of the mean, which is O(1/

√
N) [21].

This is an inefficient method as it samples uniformly across the range of interest and has
a large error for cases with a large variance. However, this approach can be used for any
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density that is bounded from above. In its simplest form MC integration is facilitated by
writing integrals as an average over the points in a specific range:

F (x) =

∫ x1

x0

f(x)dx ≈ (x1 − x0)
1

N

N∑
i=1

f(xi) . (3.3)

The values of xi from 1 to N are randomly distributed between x0 and x1. The estimate
converges to the true value in the limit that N →∞ [22]. For large enough values of N , the
convergence is independent of the integration-volume dimension. In this case, the error is
proportional to 1/

√
N , which is given from the variance of the mean. Thus the error can be

reduced by reducing the variance of the integrand. Methods of variance reduction, such as
importance sampling, use non-uniform sampling, which aims to sample more in the regions
where the integrand is large. For an n-dimensional integral:∫

f(~x)dnx =

∫
f(~x)

p(~x)
· p(~x)dnx =

∫
f(~x)

p(~x)
· dP (~x) , (3.4)

the variance can be reduced by sampling ~x with respect to the probability density function
p(~x), where p(~x) is restricted to positive values [22]. An estimate of the integral is given by:

E =
1

N

N∑
i=1

f(xi)

p(xi)
, (3.5)

where the aim is to choose the function p(x), as similar as possible to f(x). Importance
sampling is most effective when there is some knowledge of the function to be integrated. For
cases where this is not possible, adaptive methods have been developed, such as the VEGAS
algorithm [23]. This algorithm is adaptative, i.e. learns continuously about the function whilst
sampling, which enables it to process integrals with higher dimensions. The integration space
is subdivided into a grid that is then optimised via sampling iterations. The optimal grid
has an increased sampling rate in regions where the integrand is large. An estimate of the
integral is then obtained using the optimised grid.

There are other methods and algorithms that also aim to optimise the sampling, that are
better suited to specific function types. MC methods are suited to particle physics problems,
as these problems often involve complex integrals that cannot be solved analytically. To
calculate hard processes it is easy to implement cuts via MC methods and the phase space
integral can be approximated via a product with dimensions of the degrees of freedom. In
the next section, MC event generators for particle physics are described.

3.2. Monte Carlo Event Generators

MC methods are used effectively in the simulation of particle collisions within the framework
of MC event generators. These event generators are composed of many different parts that
each carry out a specific task to evaluate the simulation steps in the collision and subsequent
decay of colliding particles. The hard process is contained within a phase space of 3n − 4
dimensions, where n are the degrees of freedom given by the number of produced particles
and the flavour and spin information from the final state. When including the parton shower
and hadronisation in the simulation there are many more dimensions involved. Such a high
dimensional integration problem is best dealt with using MC techniques. A comprehensive
review of available MC event generators can be found in [24].

Event generators use the factorisation theorem, that allows different processes to be separated
due to their different energy scales. This means that perturbative and non-perturbative
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physics can be separated. Non-perturbative components, including PDFs and hadronisation,
describe physics below scales O(1 GeV). Perturbative physics describes the hard process,
at scales � GeV, that correspond to lengths of fractions of fm, when αs is assumed to be
small. The parton shower also contains perturbative physics and connects the hard process
to hadronisation by evolving the parton branching down to a scale O(GeV), at the limit of
perturbation theory. The factorisation theorem can be illustrated for the cross section of two
hadrons with momenta P1 and P2 as [9]:

σ(P1, P2) =
∑
i,j

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σ̂ij(p1, p2, αs(µ

2), Q2/µ2) , (3.6)

where σ̂ij is the short distance cross section as a function of the parton momenta pi = xiPi,
which can be calculated perturbatively. The scale of the hard scattering is given by Q and
the functions fi(x, µ

2) are the quark and gluon PDFs defined at a factorisation scale µ.

A generic differential cross section in the context of MC event generators can be factorised
into the following contributions:

dσ = dσhard(Q)× PS(Q→ µ)×Had(µ→ Λ)× ... (3.7)

where the first term represents the hard cross section, the second term the parton shower, the
third term hadronisation and the ellipsis represents other non-perturbative terms. There are
multi-purpose event generators that aim to simulate the full process of a particle collision.
Other programs focus of one of the above components of the cross section. The commonly
used multi-purpose generators include Pythia [3], Herwig [4, 5] and Sherpa [6,7].

The hard cross section can be calculated using perturbation theory for inclusive observables.
For an exclusive final state, MC event generators are used, as they can implement the cuts
necessary to obtain the final state of interest. As an input to the event generator, the
LO matrix-elements squared are used, which can be provided by external matrix-element
generators. There are dedicated MC programs to generate matrix elements and phase space
(e.g. MadGraph [25]). These programs then interface to the multi-purpose event generators,
although the generators often have built in matrix-element generators. For high-multiplicity
final states, dedicated programs are needed to efficiently generate and evaluate the matrix
elements. PDFs are integrated via the PDF sets available from LHAPDF [26], however, each
generator chooses a default set because the choice of PDF can affect the tuning of the parton
shower and hadronisation model.

3.2.1. Shower Algorithm

The next step after the hard process is the parton shower, that connects the hard and non-
perturbative scales via a series of emissions that radiate energy, as illustrated in Fig. 3.1.
The hard scale is usually O(1 TeV) and the parton showers then evolve down to the IR
cut-off, which is generally O(1 GeV) because this corresponds to the scale defined by QCD
at which partons become confined to hadrons. The aim is to include higher order effects not
described by the LO or NLO matrix element, such as the resummation of leading logarithmic
contributions. Parton showers are discussed in more detail in Chapter 4.

The key components of a parton shower are the kinematic mapping and the emission kernels
or splitting functions. Emission kernels, P (z), such as in Eq. (4.12), describe the rate of
emission for a propagating quark or gluon to emit an additional quark or gluon as a function
of the momentum fraction z. The mapping facilitates the factorisation of emissions within
the phase space by relating the momenta after the emission to those before the emission.
Parton showers are at high enough energy scales to allow use of perturbation theory and are
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Figure 3.1.: Diagram of an e+e− collision and possible parton shower

consistent with energy and momentum conservation. The choice of evolution variable and
recoil scheme is important, as these can have a large effect on the result from the shower.
Recoil methods are of interest to this thesis and will be discussed in subsequent chapters.
The total branching probability for parton i is given by [24]:

dPi =

∫ p2
⊥max

p2
⊥min

dp2
⊥

p2
⊥

∫ zmax

zmin

dz
αs
2π
Pji(z) (3.8)

for an emitted parton with momentum fraction, (1−z) ∈ [zmin, zmax], and p⊥ ∈ [p⊥min, p⊥max].

As shown in the previous section, MC methods can use probabilities to estimate an integral
and are used in the parton shower to formulate the evolution algorithm. The Sudakov form
factor is used to describe the probability for parton i to evolve from a scale t0 to t without
an emission and is defined as [9]:

∆i(t) ≡ exp

(
−
∑
j

∫ t

t0

dt′

t′

∫
dz
αs
2π
P̂ji(z)

)
(3.9)

where P̂ji is the unregularised splitting function for i→ j. Using this probability it is possible
to write an integral equation for the parton distribution, f(x, t), in terms of the initial parton
distribution, f(x, t0):

f(x, t) = ∆(t)f(x, t0) +

∫
dt′

t′
∆(t)

∆(t′)

∫
dz
αs
2π
P̂ (z)f(x/z, t′) (3.10)

With this knowledge, a simple MC branching algorithm for parton evolution from (t1, x1)→
(t2, x2) can be designed, where ti is the virtual mass scale and xi the momentum fraction [9]:

1. Solve
∆(t2)

∆(t1)
= R for t2, where R is a random number between [0, 1].

2. If t2 > Q2, the hard subprocess scale, stop branching.

3. Otherwise, generate momentum fraction z = x2/x1 with a probability distribution
proportional to (αs/2π)P̂ (z).

4. Repeat until hard scale is reached.

These steps describe the process for upward or space-like evolution, which applies to what
is called initial state radiation (ISR), that can occur for high-energy partons before the hard
collision. Partons emitted in both the initial and final states can result in further branching,
however, in this case the variable t evolves downwards to a cut-off scale t0 and not upwards
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towards the hard-process scale. The probability of evolving downwards from t2 to t1 without
branching is given by ∆(t1)/∆(t2), which can be used to solve for t1 in the same way as
described above.

A modified version of the form factor and algorithm can also be used for backward evolution
as discussed in [27,28]. Backward evolution is more efficient for describing space-like cascades
because it starts at the momentum fraction of the final parton and uses this to generate the
momentum fractions of the previous partons. One of the main differences between forward
and backward evolution is that the form factor needs to account for the local parton density
f(x, t), that gives the probability for backwards evolution from (t2, x) to (t1, x) without
branching as:

Π(t1, t2;x) =
f(x, t1)∆(t2)

f(x, t2)∆(t1)
. (3.11)

This has the effect of suppressing branching at large values of x and enhancing branching at
low values of x. In this sense, the parton distributions are used as a guide to generate the
correct shower for an initial state.

3.2.2. Matching and Merging

The result of parton showers is an approximation of higher order corrections to the hard
matrix element. A better description of observables can often be given by replacing this
approximation with exact pQCD calculations. Two methods used for such replacements are
matching and merging, described as [29]:

• Matching - parton showering of the result of the subtraction of the parton shower at
fixed order from a higher-order matrix element calculation.

• Merging - the parton shower is combined with the hard matrix elements for different
particle multiplicities, to which cuts have been applied to regulate the soft and collinear
divergences.

Both methods remove double counting, in the matching case via the subtraction and in the
merging case by applying vetos to the parton shower.

Matching schemes such as MC@NLO [30] and POWHEG [31] match NLO calculations to
the parton shower and subtract doubly counted terms. The NLO calculation makes use
of IR subtraction to include soft and collinear emissions, an example of which is shown in
Sec. 4.2. Matrix-element calculations are more accurate than parton showers at high p⊥
but the matched result does not account for beyond LL effects, that can still have large
contributions, as in the case of Higgs production.

Merging methods, such as the CKKW algorithm [32], select parton shower events with a p⊥
below a cut-off energy, Qcut, and shower the events from tree-level matrix elements with p⊥
higher than the cut off. Then the two samples are merged with a discontinuity at Qcut, where
smearing of the merging scales can be used to avoid the discontinuity. It is important that
the jet algorithm used is IR safe so that the jet configuration does not change if the initial
parton is replaced by a cluster of collinear partons. A review of jet algorithms can be found
in [33]. The showering process has to identify a configuration that corresponds to the correct
final state from the matrix-element calculation, to which further radiation can be added.

3.2.3. Hadronisation

At energies below 1 GeV, perturbation theory no longer holds and non-perturbative hadro-
nisation models must be used. Hadronisation aims to produce final-state hadrons from the
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partonic input, which is the end product of the parton shower. The two most commonly used
hadronisation models are the cluster and string models.

The cluster hadronisation model is based on the principle of preconfinement of parton showers
[34], which shows that colour singlets can be formed from the colour structure of the shower at
any evolution scale, Q0 � Q, with an invariant-mass scale only dependent on Q0 and ΛQCD.
To create these colour singlets, all gluons are first split into qq̄ pairs. These are then grouped
to form the ‘clusters’. These clusters undergo cluster fission to produce smaller clusters, then
hadrons depending on the mass of the cluster. There are two commonly used versions of the
cluster model, in Herwig [35] and Sherpa [36], that follow the same basic approach but have
different detailed treatment of issues such as high mass clusters.

The Lund string model [37, 38], as used in Pythia [3], transforms the partons directly to
hadrons and uses a string model to describe this process. The model is based on the idea
of linear confinement, which is expected for QCD at large distances. This can be illustrated
as a flux tube with constant energy per unit length, that is stretched between two quarks.
The resulting linear potential can be written as, V (r) = κr, where κ is the string constant
known from hadron-mass spectroscopy to be κ ≈ 1 GeV/fm ≈ 0.2 GeV2. For the case of a
back-to-back qq̄ pair the string can be stretched to some length, r ≈ 5−10 fm, in the quarks’
rest frame, until it breaks to produce a new q′q̄′ pair. This processes repeats until n primary
hadrons are formed from adjacent qq̄ pairs.

3.2.4. Decays and Soft Interactions

After hadronisation there are hadronic decays, that decay the hadrons into more stable par-
ticles detected by experiments. These decays can include electromagnetic, strong and weak
processes, and result in hundreds of different particles via thousands of different decay modes.
Options to control the output of these decays encompass the inclusion of heavy quarks, heav-
ier baryon multiplets and intermediate decay modes [24]. Specialised eternal packages can
be used for both hadron decays, EvtGEN [39], and tau decays, TAUOLA [40] which can be
important for analyses involving heavy hadrons or tau decays.

There are many soft interactions, particularly in pp collisions, which are not necessarily
associated with the hard scattering. These soft interactions are generally divided into two
categories, elastic and inelastic. Elastic scattering implies only an exchange of momenta by
emission or annihilation of particles. Inelastic describes all cases where there is some change
in the particle content. The inelastic final states can be categorised as diffractive or non-
diffractive, where a topology from an excitation of beam particles is considered to be diffractive
and can be further specified depending on how many particles are excited [24]. Minimum-bias
events are used to measure such soft-physics interactions, because these are selected to be
as inclusive as possible. Underlying event (UE) is a term used to describe all interactions in
an event other that the hard collision. Models of multiple parton interactions (MPI) aim to
describe the case where more than one pair of partons interact in the same collision. Most
current implementations of MPI models follow the same principles first outlined in [41], that
includes defining the double-parton cross section, which can be calculated perturbatively.



CHAPTER 4

Parton Showers Background

Parton showers were briefly introduced in the previous chapter, in the context of MC event
generators and MC methods. A simple example of an MC evolution algorithm is given in
Sec. 3.2.1. However, before MC event generators were developed the formalism of parton
evolution was established using concepts from field theory. The foundations of this evolution
are based on the DGLAP formalism, that contains the so called Altarelli-Parisi (AP) split-
ting functions from [42]. In this chapter, the known single-emission splitting functions are
introduced, in the context of DGLAP evolution in Sec. 4.1. The study of soft and collinear
factorisation led to the development of the dipole formalism, discussed in Sec. 4.3, which
makes use of the AP splitting functions. This formalism and the splitting functions are of
particular interest in this thesis as they are used as reference points for the development of
new methods. The current status of dipole showers is outlined in Sec. 4.4, followed by a
discussion of future directions in Sec. 4.5, which aim to improve upon the existing paradigm.

For the complex final states observed at the LHC, there is no analytical way to predict these
collisions, due to QCD colour confinement effects at large distances. However, MC event gen-
erators have been developed to give a good approximation of such QCD effects. Electroweak
effects also need to be considered for higher-order corrections, such as bremsstrahlung of soft
photons from charged particles in the final state. Due to the large mass of the weak mediators
higher-order corrections for weak interactions can be larger than expected [13]. It is possible
to integrate both QED and QCD radiation within a shower, where the QED showering pairs
are dictated by the particle charge as opposed to colour in the QCD case. There is resulting
competition in different regions of phase space between the two types of radiation, that can
be used to probe the ordering variable used for the parton shower [43]. This thesis focuses
on QCD radiation, however, most of the concepts can also be applied to the QED case by
considering only abelian terms.

4.1. DGLAP evolution

As was discussed in Sec. 2.2.1, a QCD amplitude can be factorised into different components
at different energy scales. The definition of a factorisation scale, often written as µF , results
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in a scale dependence of the PDFs. This behaviour is described by the DGLAP equations
[42,44–46], for PDFs with a changing factorisation scale, t, in the collinear limit:

t
∂

∂t
q(x, t) =

αs(t)

2π

∫ 1

x

dξ

ξ
P

(
x

ξ

)
q(ξ, t) . (4.1)

P = P (0)
qq , and is the first term of Pqq, the Altarelli-Parisi splitting function given in Eq. (4.12),

when perturbatively expanded in the running coupling as [9]:

Pqq(z, αs) = P (0)
qq (z) +

αs
2π
P (1)
qq (z) + ... (4.2)

The function in Eq. (4.2) describes the branching between quark distributions, but it is
possible to define such a splitting function for each possible branching between quarks and
gluons. The DGLAP equation can also be written as a matrix equation for quarks, antiquarks
and gluons.

MC event generators utilise the concept of DGLAP evolution and via repeated use of Eq. (4.1)
can produce an arbitrary number of parton splittings, which leads to a multi-particle final
state. The issue with the DGLAP equations are that they are only true for the strictly
collinear case, which is not compatible with conserved momentum and a finite factorisation
scale. This can be solved by using a recoil method to define a relation between the momenta
of the emitted particle and other particles in the same state. These ‘spectator’ partons
absorb kinetic energy from the recoil to allow an on-shell emitter to produce two new on-shell
particles. There is also the issue of the resolution scale set by QCD of ΛQCD, this requires
that the evolution has to be cut off at a scale of order ΛQCD and restricts the integration range
in comparison to the inclusive approach proposed by the DGLAP equations. The practical
implementation of the shower kinematics will be discussed in the following sections.

4.1.1. Altarelli-Parisi Splitting Functions

The single emission Altarelli-Parisi splitting functions, Pba(z), describe the probability of the
emission of a collinear parton a from parton b, as a function of the momentum fraction z.
In the context of collinear emissions, they usually refer to the leading order contribution
from Eq. (4.2). The splitting functions are defined at the collinear limit, where the virtuality
y = 0. Due to flavour symmetry and charge conjugation invariance the following relations
exist between splitting functions [8]:

Pqq = Pq̄q̄ , Pqq̄ = Pq̄q , (4.3)

Pqg = Pq̄g , Pgq = Pgq̄ . (4.4)

To conserve momentum and flavour with each emission between partons b and a, a second
parton is produced. This second parton can be ignored for PDF evolution, but in a parton
shower this contributes to both ISR and final-state radiation (FSR) and is included in the
final state. The regularised splitting functions, Pba(z), are given by:

Pqq = CF

[
1 + z2

(1− z)+
− 3

2
δ(1− z)

]
, Pqg = CF

[
1 + (1− z)2

z

]
, (4.5)

Pgq = TR

[
z2 + (1− z)

]
, Pgg = 2 CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]

+ δ(1− z)
(

11

6
CA −

2

3
nfTR

)
.
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At z = 1 both Pqq and Pgg have to be treated as distribution functions and the plus prescrip-
tion is defined as [8]:

F (z)+ = F (z)− δ(1− z)
∫ 1

0
dyF (y) . (4.6)

A second form of the splitting function is that in the context of factorisation with spin corre-
lations where the function, P̂ab(z, k⊥; ε), is dependent on the momentum fraction, transverse
momentum and helicity. The relevant splitting is given by [15] :

a(p)→ b(zp+ k⊥ +O(k2
⊥)) + c((1− z)p− k⊥ +O(k2

⊥)) ,

and the splititng functions take the form:

〈s| P̂qq(z, k⊥; ε) |s′〉 = δss′CF

[
1 + z2

1− z − ε(1− z)
]
, (4.7)

〈s| P̂qg(z, k⊥; ε) |s′〉 = δss′CF

[
1 + (1− z)2

z
− εz

]
, (4.8)

〈µ| P̂gq(z, k⊥; ε) |ν〉 = TR

[
− gνµ + 4z(1− z)k

µ
⊥k

ν
⊥

k2
⊥

]
,

〈µ| P̂gg(z, k⊥; ε) |ν〉 = 2CA

[
− gµν

(
z

1− z +
1− z
z

)
− 2(1− ε)z(1− z)k

µ
⊥k

ν
⊥

k2
⊥

]
. (4.9)

The indices in the bra-ket refer to the relevant spin indices for parent parton a, which for a
fermion are s, s′ and for a gluon are µ, ν. It is then possible to perform the d-dimensional
average over polarisations of parton a that leads to the third and more well known form of
the splitting functions. For fermions this averaging gives a factor of δss′/2 and for gluons the
factor is:

1

d− 2
dµν(p) =

1

2(1− ε)(−gµν + gauge terms) , (4.10)

where the gauge terms are always proportional to pµ or pν and thus:

−gµνdµν(p) = d− 2 , −kµ⊥dµν(p) = k⊥ν

pµdµν(p) = 0
(4.11)

The averaging results in the following expressions:

〈P̂qq〉 = CF

[
1 + z2

1− z − ε(1− z)
]
, 〈P̂qg〉 = CF

[
1 + (1− z)2

z
− εz

]
, (4.12)

〈P̂gq〉 = TR

[
1− 2z(1− z)

1− ε

]
, 〈P̂gg〉 = 2CA

[
z

1− z +
1− z
z

+ z(1− z)
]
.

The angle brackets imply that the average over the polarisations of parton a has been taken.
These functions are now only in terms of the momentum fraction z and the dimensional
parameter ε. The soft limits for the emitter and emission respectively are characterised by
the divergences at z → 0, 1. To describe soft and collinear behaviour, both the splitting
functions and the eikonal factors are needed which will be discussed in Sec. 4.3. This can
result in double counting in overlapping regions, which needs to be carefully avoided.

4.2. NLO Subtraction

Using the principles of the dipole formalism, outlined in Sec. 4.3, it is possible to define a
subtraction scheme for NLO subtraction known as dipole subtraction. Here, this will be shown
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in the context of the methods used in [15], which are designed for general jet observables and
are inspired by previous methods for three-jet observables from e+e− annihilation experiments
[47, 48]. These early examples then led to formalisms for hadron collisions up to two-jet
observables [49, 50], which were later extended up to three jets [16, 51]. These three-jet
methods can in principle be used to describe up to n-jet observables for both lepton and
hadron collisions.

The aim of the dipole subtraction method, as developed in [15], is to provide a general
subtraction algorithm via dipole factorisation, which allows universal counter-terms to be
determined. This formalism can be applied to an arbitrary number of jets in a final state
and can also describe multi-particle correlations. It can also be applied to both massive
and massless quarks and extended to cases of polarised scattering. First it is necessary to
introduce the notation associated with jet cross sections. The leading order cross section is
determined from the differential Born cross section, which is fully exclusive according to the
Born approximation for the phase space of the quantity of interest [15] :

σLO =

∫
n

dσB , (4.13)

for an n particle final state. The NLO cross section can then be written as a combination of
the real and virtual parts, where the virtual parts correspond to one-loop corrections at this
order:

σNLO ≡
∫

dσNLO =

∫
n+1

dσR +

∫
n

dσV . (4.14)

Using renormalisation, the ultraviolet poles in the virtual contributions can be removed and
after dimensional regularistion the only double poles, 1/ε2 , remaining are those arising from
the soft and collinear cases. These poles can be subtracted by using a local counter-term
dσA, which contains the singular behaviour from dσR, giving:

σNLO =

∫
n+1

[(
dσR

)
ε=0
−
(
dσA

)
ε=0

]
+

∫
n

[
dσV +

∫
1

dσA
]
ε=0

. (4.15)

The counter-term has to be analytically integrable over the single-parton subspace to cancel
the divergences in the virtual contributions. This subtraction of the poles then makes the
numerical integration of both the n + 1 and the n-parton phase spaces possible. Such a
counter-term can be implemented in an MC event generator that generates events with both
n + 1 and n final-state partons. The counter-term needs to be established independently of
the process of interest and match the singular behaviour of the real part in d dimensions
exactly. For dipole factorisation the counter-term can be defined as:

dσA =
∑

dipoles

dσB ⊗ dVdipole , (4.16)

where dVdipole contains universal dipole factors that can describe the singular behaviour of
dσR. The observable dependence is contained in the Born part, which is combined with
the dipole factors via the convolution of phase space and summing over colour and spin.
The dipole configurations are defined by taking an n-parton state and allowing one of the
partons to decay into two, giving a configuration with n+ 1 partons. A mapping can then be
implemented to connect the n+ 1 to n-parton phase space times a single-parton phase space.
This facilitates the cancellation of the virtual poles contained in the factor I:∫

n+1
dσA =

∑
dipoles

∫
n

dσB ⊗
∫

1
dVdipole =

∫
n

[
dσB ⊗ I

]
. (4.17)
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Once the expressions for the factors dVdipole and I are determined they can be implemented
for NLO subtraction. The implementation requires knowledge of the virtual and real con-
tributions for the observable of interest, as well as colour and helicity projections of the
Born-level matrix element. The virtual contributions need to be evaluated in d dimensions
but the real contributions can be evaluated in four dimensions, as it is known that the poles
exactly cancel.

The Born-level cross section for a jet observable, in d-dimensions with no initial-state hadrons,
can be written in terms of the QCD tree-level matrix element, Mn, as [15]:

dσB = Nin
∑
{n}

dφn(p1, ..., pn;Q)
1

S{n}
|Mn(p1, ..., pn)|2F (n)

J (p1, ..., pn) , (4.18)

where Nin contains factors that are QCD independent, {n} contains all configurations with
n partons, φn is the n-parton phase space and S{m} is the Bose symmetry factor for identical

partons in the final state. The jet function, F
(n)
J (p1, ..., pn), defines the jet observable of

interest in terms of the final-state partons.

Using the dipole factorisation formula in Eq. (4.27), combined with the Born-level cross
section from Eq. (4.18), the counter term dσA can be expressed as:

dσA = Nin
∑
{n+1}

dφn+1(p1, ..., pn+1;Q)
1

S{n+1}

×
∑

(pairs i,j)

∑
k 6=i,j

Dij,k(p1, ..., pn+1)F
(n)
J (p1, ..., p̃ij , p̃k, ..., pn+1) ,

(4.19)

where Dij,k is the dipole contribution as given in Eq. (4.27). F
(n)
J is the jet function for the

n-parton state that results from combining the momenta pi and pj into p̃ij . This counter
term can be used to cancel the singularities in the real part of the cross section, dσR. The jet
function plays an important role in regularising the dipole singularities, so that it is necessary

for dσR to be proportional to F
(n+1)
J and dσA to F

(n)
J . The actual mechanism does not depend

on the form of the jet function. Within an MC algorithm, the role of the jet functions is to
bin weighted events according to the jet observable. When a singular region is approached,

the bins for the functions F
(n+1)
J and F

(n)
J become the same and the weights cancel.

4.3. Dipole Formalism

To construct the counter terms needed for NLO subtraction the relevant soft and collinear
behaviour needs to be established. In the context of dipole subtraction from [15], this is done
by factorising the singular emissions from a dipole, to relate an amplitude with n+ 1 partons
in the final state to that with n partons. For an amplitude squared this can be written as:

|Mn+1|2 → |Mn|2 ⊗ Vij,k , (4.20)

where Vij,k is a factor containing the singular factors for ‘emitter’ parton ij and ‘spectator’
parton k. The dipole factorisation makes use of the known concepts of soft and collinear
factorisation, which were introduced in Sec. 2.2.1. These concepts are shown in the context
of a soft or collinear emission in a multi-parton final state in Sec. 4.3.1.
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4.3.1. Soft and Collinear Factorisation of an Emission

For the case of a soft emission within an (n+1)-parton final state, the soft momentum can be
parametrised as pj = λq, where in the soft limit λ → 0. The soft emission can be factorised
from the matrix element to give the expression:

〈Mn+1|Mn+1〉 → −
1

λ2
4πµ2εαs 〈Mn| [Jµ(q)]†Jµ(q) |Mn〉+ ... , (4.21)

that contains the leading soft-singular terms and the ellipsis refers to sub-leading terms. The
component which factorises is the eikonal current Jµ(q), that is given by:

Jµ(q) =
∑
i

Ti
pµi
pi · q + Ta

pµa
pa · q

+ ... . (4.22)

This factorisation is not exact due to colour correlations, as the eikonal current is dependent
on the colour of the hard partons. In this definition, initial-state momenta are included, and
are denoted by pa and the ellipsis. In further discussions only the final state will be considered,
where these terms can be neglected. The matrix elements are only defined when momentum
is conserved. Eq. (4.21) holds in the strict soft limit, where λ = 0, away from this limit,
momentum conservation needs to be carefully implemented to facilitate the factorisation. In
the massless limit the eikonal current squared can be written as:

[Jµ(q)]†Jµ(q) =
∑
k,i

Tk ·Ti
pk · pi

(pk · q)(pi · q)
. (4.23)

To separate the collinear singularities, that correspond to q collinear to pi or pk, the above
expression can be rewritten as:∑

k,i

Tk ·Ti
pk · pi

(pk · q)(pi · q)
=
∑
k,i

Tk ·Ti

[
pk · pi

(pk · q)(pi + pk) · q
+

pk · pi
(pi · q)(pi + pk) · q

]
=
∑
i,k 6=i

2

pi · q
Tk ·Ti

pk · pi
(pi + pk) · q

.

(4.24)

At this point the dipole structure can already be seen, as the terms in Eq. (4.24) depend on
the emission momentum q and the momenta pi and pk, that can be labelled as the emitter
and spectator respectively.

In the collinear limit, a Sudakov decomposition [52] can be used for the final-state momenta
pi and pj . The limit in which the final-state momenta become collinear, corresponds to
k⊥ → 0 [15]:

pµi = zpµ − k2
⊥

z(2p · n)
nµ + kµ⊥ , (4.25a)

pµj = (1− z)pµ − k2
⊥

(1− z)(2p · n)
nµ − kµ⊥ , (4.25b)

2pi · pj =− k2
⊥

z(1− z) , (4.25c)

where p and n are light-like vectors. p gives the collinear direction and k⊥ is the transverse
component i.e. k2

⊥ < 0, k⊥ · p = k⊥ · n = 0. For a final-state matrix element with n + 1
partons, factorisation is possible by replacing partons i and j with one parton labelled ij
which can be written as:

〈Mn+1|Mn+1〉 →
1

pi · pj
4πµ2εαs 〈Mn| P̂(ij),i(z, k⊥, ε) |Mn〉 , (4.26)
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where P̂(ij),i are the spin dependent Altarelli-Parisi splitting functions in d-dimensions as
given in Eq. (4.7). The splitting functions describe the collinear splitting of ij → i + j and
depend on the momentum fraction z, the transverse momentum k⊥ and the helicity of the
parton ij. The resulting spin correlations prevent the full factorisation of the amplitude from
the splitting function.

4.3.2. Dipole Factorisation

For an emission from a dipole composed of two final-state partons, it is possible to combine
the methods described above to form a dipole factorisation formula. This is essentially an
expansion of the expression in Eq. (4.20), as a sum over spectator partons k, and is written
as [15]:

〈Mn+1|Mn+1〉 =
∑
k 6=i,j

Dij,k(p1, ..., pn+1) + finite terms ,

Dij,k =− 1

Sij
〈Mn| Cij,kVij,k |Mn〉 ,

(4.27)

where Sij = (pi + pj)
2 and Cij,k contains the relevant colour structure. The finite terms are

those that are non-singular in the limit pi · pj → 0.

The mapping used for this dipole, in a final state without any initial-state partons, to describe
the splitting p̃ij → pi + pj , is:

p̃µij = pµi + pj −
yij,k

1− yij,k
pµk , (4.28a)

p̃µk =
1

1− yij,k
pµk , (4.28b)

where pk is the spectator momentum and yij,k is given by:

yij,k =
pi · pj

pi · pj + pj · pk + pk · pi
. (4.29)

The total momentum before and after the emission is conserved, i.e. pi + pj + pk = p̃ij + p̃k
and both the emitter and spectator momenta are on-shell. In Eq. (4.27), Vij,k corresponds
to splitting matrices in the helicity space of the emitter that depend on yij,k, zi and zj . The
variable zi is defined as:

zi =
pi · pk

pj · pk + pi · pk
=

pip̃k
p̃ij p̃k

, (4.30)

and zj = 1 − zi. These variables take different forms in the soft and collinear limits to
reproduce the expected factorisation expressions from Sec. 4.3.1.

In the collinear limit, Eq. (4.27) can be related to the known splitting functions, from Eq. (4.5).
The dipole variables in the collinear limit can be written as:

zi = 1− zj → z ,

yij,k → −
k2
⊥

2z(1− z)p · pk
,

p̃k → pk , p̃ij → p .

(4.31)

This results in Vij,k being equivalent to:

Vij,k → 8πµ2εαsP̂(ij),i(z, k⊥; ε) , (4.32)
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where P̂(ij),i are the collinear splitting functions. This expression can be inserted into Eq. (4.27)
to give the collinear factorisation result from Eq. (4.26).

In the soft limit, the dipole variables become:

zi → 1 , zj → 0 , yij,k → 0 ,

p̃k → pk , p̃ij → pi ,
(4.33)

where the momentum pj = λq and λ→ 0. The expression for Vij,k can then be written as:

λVij,k → 16πµ2εαsT
2
ij

pk · pi
(pi + pk) · q

. (4.34)

When this is inserted into Eq. (4.27), the soft eikonal factor from Eq. (4.24) is reproduced.
This shows that dipole factorisation can reproduce both the soft and collinear factorisation
results.

The splitting kernels Vij,k are helicity dependent, which gives rise to azimuthal correlations
that are essential for determining the local counter-term dσA. There are different factorisation
formulae and mappings used for different dipoles, e.g. final-final, initial-final, final-initial,
initial-initial, that are given in [15]. The discussion in this section is applies to the massless
case, that is relevant to the work in this thesis. The massive case is addressed in [53].

4.4. Comparison of Existing Parton Showers

As was introduced in Sec. 3.2.1, parton showers facilitate the decay of high energy partons
from the hard process via a shower algorithm. This algorithm requires the known splitting
functions, from Sec. 4.1.1, and must evolve using an evolution variable of choice. The kine-
matic mapping used is also an important choice as this determines how the recoil from the
emissions is distributed.

There are two main type of parton showers, angular-ordered and dipole showers, where for
angular-ordered showers the emissions are ordered in decreasing angle. Angular ordering is
motivated by colour coherence, that shows that for a hard scattering process the colour lines
will be scattered through a small angle. This leads to a suppression of large-angle radiation,
which is analogous to the QED Chudakov effect. Analysis of antenna radiation shows the
property of angular ordering for soft emissions, i.e. each emission is emitted at an angle
less than the angle between the two antenna particles. To implement these properties in a
parton shower, a coherent-branching algorithm can be used, where the evolution variable is
proportional to the opening angle of the emission. Coherent branching can describe soft and
collinear emissions, where each parton radiates proportional to its colour charge squared.

Some dipole showers implement colour coherence via an angular veto, that imposes angular
ordering. This also relates to the choice of evolution variable, e.g. θ, p⊥, that for angular-
ordered showers has to be directly related to the angle between emission and emitter. For
dipole showers there is more flexibility in the choice of ordering variable, however, the most
common choice is some form of the transverse momentum of the emission relative to the
emitter.

Another important feature that differs between parton-shower methods is the distribution of
recoil. An angular-ordered shower distributes the recoil globally across all partons in the initial
or final state. The design of a dipole shower is usually such that the recoil is shared between
the dipole partners and therefore locally within the dipole frame. Both Pythia and Sherpa
have a default dipole shower with local recoil, whereas Herwig has a default angular-ordered



4.5. Challenges and Potential Solutions 29

shower but also offers a dipole shower. There are also two shower plug-ins, VINCIA [54, 55]
and Dire [56], which are both compatible with Pythia, Dire is also compatible with Sherpa.

Both angular and dipole showers agree in the soft and collinear limits, however, there are
inconsistencies in small regions of phase space away from these limits, that are increasingly
important for non-global observables. The work in this thesis is directly applicable to dipole
showers and therefore the discussion here will focus on the concepts used in dipole showers.
The first implementation of a dipole approach was in Ariadne [57], which is based on the
concept of a colour flow composed of colour lines between colour-singlet pairs. In the soft-
gluon and large-Nc limit each colour line emits independently. Transverse momentum is the
natural ordering variable to use for dipole showers, as the dipole approximation is valid when
the transverse momentum of the emission, with respect to the emitter, is much smaller than
the scales of the preceding parent emissions.

The Ariadne shower makes use of the colour dipole model from [58], where the recoil from an
emission is absorbed by both partons of the emitting dipole, although the transverse recoils
are distributed differently depending on the type of dipole i.e. q − g or g − g. The ordering
variable used is the transverse momentum, p⊥, which is defined as [24]:

p2
⊥ = Sdip(1− x1)(1− x2) , (4.35)

where Sdip is the invariant mass squared of the dipole and xi = 2Ei/
√
Sdip. The rapidity can

then be defined as:

y =
1

2
ln

1− x1

1− x2
, (4.36)

which gives an approximation of the splitting function as D(p⊥, y) ∝ dy d ln p⊥, to be used
in the shower algorithm. The Pythia 8 shower, from [59], also uses transverse momentum as
the ordering variable but it is defined slightly differently for initial and final state radiation
(ISR/FSR):

p2
⊥evol =(1− z)Q2 → ISR ,

p2
⊥evol =z(1− z)Q2 → FSR ,

(4.37)

where Q2 is the virtuality of the off-shell intermediate parton and z is the momentum fraction.

Both the Herwig dipole shower [60] and the shower in Sherpa [61] are based on the Catani-
Seymour (CS) dipole formalism [15, 53], that is outlined in Sec. 4.3. The dipole subtraction
terms are used to derive shower splitting operators via the large-Nc limit and performing the
sum and average over spins. The four possible dipole combinations between the initial and
final states have to be accounted for and are labelled according to FF, IF, FI and II, where
initial = I and final = F. The transverse momentum of an emission relative to the emitter
beam particle is used as the evolution variable. Some of the benefits of this type of shower
include local momentum conservation due to the recoil being balanced within the dipole and
the eikonal factor from soft factorisation maps to two CS dipoles, which is in agreement with
the soft colour coherence for QCD.

There are still many areas to be improved, that are poorly described by existing parton
showers. Some of the flaws and potential ways forward to fix these issues are described in the
next section.

4.5. Challenges and Potential Solutions

Parton showers are built using soft and collinear approximations. They are by definition not
exact and are not designed to deal with hard wide-angle radiation or multi-jet final states
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which are important for some observables. They are also only valid within a limited energy
range, down to the scale at which perturbation theory no longer holds and hadronisation
models need to be used. The main purpose of parton showers is to include leading logarithmic
contributions and to be process independent. They are restricted to MC integration and
perturbative scales. In comparison, resummation methods are analytical calculations at low
p⊥ that can re-sum all logs. They can probe to higher orders in perturbation theory, which
then also leads to non-perturbative structures. The problem with resummation is that the
low p⊥ factorisation is process dependent and requires inclusive final states.

Therefore, to describe exclusive final states, parton showers are needed as a vital part of MC
event generators. As observables from experiments are measured with increasing precision,
the development of the simulations has to compete to increase the accuracy of the event
generator predictions. One obvious way to do this is to include higher order corrections to
the hard matrix element. As discussed in Sec. 3.2.2, it is necessary to match or merge these
higher-order calculations with the parton shower to avoid double counting. To include higher
order corrections in parton showers they need to go beyond 2 → 3 splittings, which is the
current standard in dipole showers. The next order of splittings includes the 2→ 4 branchings
with both one and two emitters, that results in splitting functions accurate to O(α2

s).

The collinear two-emission splitting functions were calculated by Catani and Grazzini and
given in [62]. In recent years there have been steps towards including second-order emissions
in parton showers, in the context of the VINCIA antenna shower [63] a showering algorithm
has been developed to include higher-order branching. Also for the Dire framework [64] an
algorithm has been shown that makes use of the splitting functions to describe triple-collinear
emissions. The implementation was tested in combination with Pythia and Sherpa, with a
potential for ∼ 1% effects in differential jet rates. However, as of yet there has been no
integration of second-order splittings in the default parton shower of an event generator or in
a matching or merging method.

Current parton shower approaches lack a systematic expansion of uncertainties to higher
orders, that makes the numerical size of theoretical uncertainties very difficult to measure.
Especially as showers are tuned to experimental observables, they can often be very precise,
but potentially with large uncertainties. To avoid theory uncertainties becoming dominant
in MC simulations, it is necessary to address this within parton showers.

Another issue with current showers is the lack of proper treatment of colour and azimuthal
correlations. The splitting functions and algorithms used in parton shower are defined at the
cross-section level which implies colour and spin averaging. This affects the colour evolution
in the shower and also the subsequent cluster formation, as cluster are formed from colour
singlets that are close in phase space. To account for MPI events in Herwig, a colour re-
connection model was introduced in [65], to connect partons that are close in phase space
but originate from different hard processes. However, this could also be correcting the colour
evolution from the parton shower and covering up the loss of information about the colour
correlations, that needs to be addressed at the level of each emission.

Fundamental issues with the logarithmic accuracy of both dipole [66] and angular ordered
showers [67] have recently been highlighted, which calls for a restructuring of currently applied
methods. For global observables, issues arise for next-to-leading logarithms (NLL) at leading
colour and for leading logarithms (LL) at next-to-leading colour. Dipole showers can describe
non-global and global observables correctly at LL accuracy, at leading colour, but not at NLL
accuracy. Angular ordered showers are also only LL accurate for both non-global and global
observables. There are specific errors from angular ordered showers at NLL accuracy, that are
due to the failure of coherent branching for the non-global case. The most clear example of
where dipole showers fail is that for two emissions from a qq̄ dipole, where both emissions are
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either soft or collinear and are widely separated in rapidity. The double emission probability
in this case should have the colour factor C2

F . What is actually produced by dipole showers
in the soft-collinear region of phase space is the factor CFCA/2 which gives an incorrect
contribution at sub-leading colour.

Jet substructure studies often require access to a large range of energy scales that can only
be predicted by parton showers. It is important that these predictions are accurate and that
the issues introduced above are addressed. One potential source of problems is that dipole
showers are designed so that the spectator only absorbs longitudinal recoil. This results in a
loss of the original jet direction, as the emitter is shifted as it absorbs the transverse recoil. To
have a parton shower that is NLL accurate, for non-global observables, it is necessary to be
able to resolve two emissions separately. Whereas for global observables, azimuthal averaging
can still be used to provide an accurate shower. This implies that to describe both non-global
and global observables to higher logarithmic accuracy, serious redevelopment is required at
the level of the kinematic mapping and of the parton-evolution algorithm.

Based on proposed criteria for parton showers to be accurate at next-to-leading logarithmic
(NLL) order, two new showers, PanLocal and PanGlobal [68], with local and global recoil
respectively, were developed. These criteria are defined in the large-NC limit and for NLL
accuracy require that in the limit where every pair of emissions has distinct values for at
least one of the logarithmic variables (e.g. energy, angle), the shower can correctly reproduce
the squared tree-level matrix element. Additionally, the showers are required to reproduce
analytical NLL resummations for recursively infrared and collinear safe observables (rIRC)
[69], which is a measure of the virtual corrections. For both the local and global-recoil showers
agreement is shown with analytical NLL calculations of global and non-global observables.

There has also been activity in the development of an amplitude-level parton branching al-
gorithm [70], with the aim to go beyond leading colour and include spin correlations. The
soft-gluon evolution algorithm from [71] is used as a starting point and improved to include
collinear emissions, spin dependence and recoil. This can provide a clear link between resum-
mation calculations and parton showers and can be systematically improved to include NLL
accuracy. Subsequently, a new dipole shower was derived in [72] that combines aspects of
existing dipole and angular ordered showers and can describe observables to NLL accuracy as
well as the wide-angle soft radiation pattern at leading colour. It is however, defined at lead-
ing colour, which limits the capabilities of the shower. The MC code CVolver [73] makes use
of the improved parton branching algorithm to include terms beyond leading colour. It builds
on work on colour-flow evolution for soft gluons from [74], which uses the colour-flow basis.
The results produced show deviation from the leading-colour approximation for soft-gluon
effects in jet-veto cross sections.

Within this thesis steps are taken to develop a new kinematic mapping to be implemented
in parton showers, that aims to distribute recoil globally and facilitate amplitude-level fac-
torisation without explicitly taking soft or collinear limits. This mapping is also part of a
larger framework [75], to factorise soft and collinear emissions, that aims to provide a solution
that can also be extended to higher orders. The Herwig implementation of the new mapping
for the single-emission case is shown in Chapter 8. Some results are shown of the analysis of
cluster mass and jet variables for the multiple-emission mapping and two other new mappings
compared to the Herwig dipole and angular-ordered showers.





CHAPTER 5

Single-Emission Factorisation

The factorisation of soft and collinear emissions from an amplitude is facilitated by a kinematic
mapping, which is commonly a Sudakov decomposition as used in [15]. The typical features
of such a mapping are the relations for the momenta after an emission parametrised in terms
of the momenta before the emission. In Sec. 5.1 the combinatorics of the single-emission dia-
grams, that can give singular contributions to the cross section, are outlined. The grouping of
these contributions into an emission kernel, defined by a collinear combination, is shown, with
the help of partitioning factors to separate the collinear sectors. In this chapter, two different
single-emission mappings will be discussed. Firstly, in Sec. 5.2 a slightly modified version of
the Sudakov decomposition that still treats the recoil locally within the dipole is introduced.
Secondly, in Sec. 5.3 a mapping with global recoil treatment via a Lorentz transformation and
more general parameters for the soft and collinear behaviour is developed. Results for the
first mapping are shown in detail to confirm the correct collinear behaviour and the ability
to determine the single-emission splitting functions. For the second mapping the calcula-
tions were repeated and similar results obtained. Additionally, the phase-space factorisation,
shown in Sec. 5.3.1, was calculated for the mapping with the Lorentz transformation, as this
is needed for the phase-space integration and cannot be directly obtained from known results.

5.1. Combinatorics and Partitioning

The aim here is to show how dipole factorisation, as outlined in Sec. 4.3, can be reproduced
using the cut diagram formalism, as given in Sec. 2.3.3, with an applied partitioning of singu-
larities. Considering a cross section containing the tree-level QCD matrix element |Mn+1|2,
as shown in Eq. (4.20), the singular behaviour can be factorised to give |Mn|2 and a singular
factor dependent on the momenta and quantum numbers of the final-state partons.

As in the dipole formalism, three partons are labelled, i, j, k, where any of the three could
become singular and a sum is taken over these indices to include all the final-state partons.
To factorise from an n + 1 to an n-parton state, one of the partons must be labelled as the
emission and the other two are the emitter and spectator. The different combinations that
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can give IR-singular contributions to the cross section, can be represented by the following
sub-amplitudes:

σ[n] =

∫ [∑
i<j

M(i, j)M∗(i, j) +
∑
i<j<k

2Re{M(i, j)M∗(j, k) (5.1)

+M(i, j)M∗(i, k) +M(i, k)M∗(j, k)}
]
u(1, ..., n+ 1)dφ(1, ..., n+ 1)

+ finite terms

=

∫ [ ∑
i<j

j

i +
∑
i<j<k

2Re

 k

i

j

+

k

j

i +

j

i

k


]
u(1, ..., n+ 1)dφ(1, ..., n+ 1)

+ finite terms ,

where u is the measurement function and dφ is the phase space. The lines in the diagrams
correspond to a generic parton and the ‘blobs’ represent the n-parton hard amplitude. These
sub-amplitudes can be further expanded with the use of an explicit splitting operator, Spab =
Sp(qa, qb, qa + qb), that defines the splitting of a parton with momentum qa + qb, into two
partons a and b, with momenta qa and qb respectively. Multiple splittings can be described
by the combination of splitting operators, which is shown in Sec. 6.1. The diagrams from
Eq. (5.1) can then be expressed using the single-emission splitting operator as:

M(i, j)M∗(j, k) = 〈M̃|Sp†jkSpij |M̃〉 =

k

i

j . (5.2)

To be able to construct a collinear splitting kernel, all diagrams containing terms that con-
tribute to the collinear limit of interest need to be added together. The different collinear
limits in a diagram can be separated using partitioning factors which add up to one. The
partitioning factors, wij , are illustrated for one of the exchange amplitudes below:

〈M̃|Sp†jkSpij |M̃〉 = 〈M̃|Sp†jkSpij |M̃〉
(

wij|jk

wij|jk + wjk|ij
+

wjk|ij

wij|jk + wjk|ij

)
,

= 〈M̃|Sp†jkSpij |M̃〉
(
Pd1
ij + Pd1

jk

)
.

(5.3)

The w factors on the numerator cancel one of the invariants on the denominator arising from
the propagators. The resulting term is only singular in one collinear limit, i.e. for wij|jk the
(jk) factor is cancelled and only the singularity for (ij) collinear remains. The numerator
and denominator terms together make the partitioning factor which can also be labelled as
Pdij where the indices ij refer to the collinear terms which will be kept for a diagram d. A
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generalised version of this partitioning will be discussed in Sec. 6.3. To check that the correct
behaviour is given in the collinear limit, this formalism is used to reproduce the collinear
splitting functions, Pab(z), that can be obtained from the relevant amplitudes multiplied
by partitioning factors. Here Uij,k is defined as an emission kernel containing all collinear
contributions from diagrams times partitioning factors, where ij are collinear and k is the
spectator parton. This can be written as:

Uij,k =
∑
d

PdijAd , (5.4)

where the sum is carried out over all singular sub-diagrams in the set Ad, multiplied by a
diagram specific partitioning factor Pdij . This expression, in the case where partons i and j
are collinear, can be written in terms of the following amplitude combinations:

Uij,k = 〈M̃|Sp†ijSpij |M̃〉+ 2Re{〈M̃|Sp†jkSpij |M̃〉
wij|jk

wij|jk + wjk|ij

+ 〈M̃|Sp†ikSpij |M̃〉
wij|ik

wij|ik + wik|ij
} .

(5.5)

The set of diagrams for this case includes three combinations, one self-energy type and two
exchange diagrams. The self-energy type diagram does not need a partitioning factor as it
only has one possible collinear pair. Additionally, (ij) = (ji) holds for the expressions above.
These emission kernels are distinct from the Altarelli-Parisi splitting functions as they do
not require an explicit limit to be taken. However, they can reproduce the known splitting
functions in the collinear limit. Combining all the results for the emission kernels allows the
cross section to be re-expressed as follows:

σ[n] =

∫ [ ∑
i<j<k

(Uij,k + Uik,j + Ujk,i)

]
u(1, ..., n+ 1)dφ(1, ..., n+ 1) + finite terms . (5.6)

The Uij,k kernels can be related to Dij,k from [15], which is discussed in Sec. 4.3, as when
evaluated in the ij collinear limit the result gives a factor that contains the Altarelli-Parisi
splitting function times an amplitude with one less parton.

Uij,k =
∑
d

P dijAd(n+ 1)
pi·pj→0−−−−−→ − 1

Sij
〈M̃n| Cij,kV̂ij,k |M̃n〉 , (5.7)

where V̂ij,k in this case additionally contains the denominator from the partitioning factor.
It can be shown that the partitioning factors do not contribute singular terms in any limit
and therefore this expression is equivalent to the Catani-Seymour expression in Eq. (4.27).

The behaviour of the emission kernels away from the collinear limit and the colour correla-
tions that arise from an amplitude-level approach, are of interest to this thesis. The colour
correlations need to be understood to successfully construct a parton shower beyond NLO
including multiple emissions. In the next section the kinematics are outlined that are needed
to carry out the full factorisation calculation for one emission. In the next chapter a more
generalised approach will be discussed.

5.2. Basic Kinematic Mapping

The mapping shown below is a modification of the basic Sudakov decomposition in Eq. (4.25),
that has the same essential function, to factorise collinear and soft emissions from an emitter-
spectator dipole. The aim is to investigate the soft and collinear singularities whilst keeping
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them accessible i.e. without loss of information. Shown here is the ability to reproduce the
well known single-emission splitting functions from [42] using this mapping. The mapping
defined below describes the relation between momenta before emission, pi and pj , and the
momenta after emission, qi, q and qj which are all on-shell:

qi = zpi + y(1− z)pj +
√
yz(1− z)n⊥ ,

q = (1− z)pi + yzpj −
√
yz(1− z)n⊥

qj = (1− y)pj ,

qi.qi = qj .qj = pi.pi = pj .pj = 0 ,

pi · n⊥ = pj · n⊥ = 0 .

(5.8)

Some useful identities from the above mapping are:

qi.q = y(1− 2z(1− z))pi.pj − yz(1− z)n2
⊥j ,

qj .q = (1− z)(1− y)pi.pj ,

qi.qj = z(1− y)pi.pj ,

qi + q = pi + ypj ,

qj + q = (1− z)pi + (1− y + zy)pj −
√
yz(1− z)n⊥ .

(5.9)

From the on-shell conditions above it can be shown that:

qi · qi = 0 = 2yz(1− z)pi · pj + yz(1− z)n2
⊥ =⇒ n2

⊥ = −2pi · pj , (5.10)

where it can be considered that y → λ2y in the collinear limit and y, (1− z)→ λy, λ(1− z) in
the soft limit, as discussed in Sec. 2.2. The soft and collinear limits are approached as λ→ 0,
which allows the singular terms to be expanded as a series in powers of λ. The singular terms
from a diagram arise from the denominator factors of the propagators, that are proportional
to 1/λ2 for the collinear scaling. In order to calculate the splitting functions only the leading
collinear-singular terms need to be included, i.e. those O(1/λ2). As the kinematic mapping
will be used to expand the numerator terms of each diagram, it is possible to reduce the
expressions by ignoring terms which will give sub-leading terms when combined with the
denominator i.e. any term in the mapping with a power of λ1/2 or higher. Ignoring these
sub-leading terms gives a reduced form of the mapping which can be used to simplify the
calculation for a diagram when it is known that the denominator contains terms O(1/λ2):

qi = zpi , qi + q = pi + ypj , (5.11)

q = (1− z)pi + yzpj , qj + q = (1− z)pi + pj ,

qj = (1− y)pj .

The expressions for the sum of two momenta are particularly useful for the exchange diagram
calculations. This mapping, in both the full and reduced forms, will be used in the context of
cut diagrams in Sec. 5.2.2 via the Feynman rules and conventions outlined in Sec. 2.3. Next
it is important to put the mapping from Eq. (5.8) into the context of the phase space.

5.2.1. Phase Space

The Born-level cross section for a QCD process with n partons in the final state can be
expressed in terms of the phase space dφn, the QCD matrix elementMn and the jet-defining

function F
(n)
J as [15]:

dσB = dφn |Mn|2 F (n)
J . (5.12)
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For a jet observable of interest the jet-defining function, F
(n)
J , gives its value in terms of the

final state partons. The Born-level cross section can be used to give the leading order cross
section for an observable via:

σLO =

∫
n

dσB . (5.13)

For an n-parton final state the d-dimensional phase space is written as:[
n∏
l=1

ddql
(2π)d−1

δ+(q2
l )

]
(2π)dδ(d)(q1 + ...+ qn −Q) ≡ dφn(q1, ..., qn;Q) . (5.14)

The aim is to factorise the phase space, including the three partons after the emission, into
a dipole phase space and a factor for the singular parton. The expressions given here are
essentially a reworking of the phase-space factorisation given in [15], as the mapping given
in Eq. (5.8) can be considered to be equivalent to the dipole mapping from Eq. (4.28) in
the collinear limit. The final-state phase space includes the following terms, from the three
partons with momenta qi, q and qj :

dφ(qi, q, qj ;Q) =
ddqi

(2π)d−1
δ+(q2

i )
ddq

(2π)d−1
δ+(q2)

ddqj
(2π)d−1

δ+(q2
j ) (2π)dδ(d)(Q− qi − q − qj) ,

(5.15)
where Q is the total momentum for the three-parton system which is the same before and
after the emission. The plus prescription selects the positive-energy solution, i.e. δ+(q2

a) ≡
δ(q2

a)θ(q0). The phase space can then be rewritten in terms of the momenta before the
emission i.e. the dipole momenta pi and pj , and the emission q:

dφ(qi, q, qj ;Q) = dφ(pi, pj ;Q) [dq(pi, pj)] ,

= dφ(pi, pj ;Q)
ddq

(2π)d−1
δ+(q2)J (q; pi, pj) .

(5.16)

The Jacobian needed for this phase space is the same as in the Catani-Seymour case, because
the mappings are equivalent in the collinear limit. Using the mapping variables z and y, the
Jacobian factor can be written as:

J (q; pi, pj) = Θ(1− z) Θ(1− y)
(1− y)d−3

1− z . (5.17)

Using the mapping for q, given in Eq. (5.8), the emission phase space, dq, can be expressed
in terms of the kinematic variables. This allows the phase space and splitting function to be
easily combined. The phase-space terms that are relevant in this case, are those that remain
in the collinear limit in four dimensions, i.e. ε → 0. The emission phase space can then be
written as:

[dq(pi, pj)] =
1

16π2

dp2
⊥dz

z(1− z)

∫
dφ

2π
, (5.18)

where dφ results from taking the four-dimensional limit of the element of solid angle, that is
perpendicular to pi and pj , given in the d-dimensional expression in [15]. The substitution,
y = p2

⊥/(z(1− z)2pi · pj) has been used, that is a result of the mapped emission momentum
being on-shell. This expression will be useful at the end of the next section, where it can
combined with the results from the splitting-function calculations.

5.2.2. Results with Basic Mapping

To illustrate the application of this kinematic mapping, it was used to reproduce the spin-
averaged splitting functions in the collinear limit for a gluon emission from a quark emitter
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and a gluon emission from a gluon emitter i.e. 〈P̂qq〉 and 〈P̂gg〉 as given in Eq. (4.12). The
mapping shown in Eq. (5.8) will be used for the examples in this section and can also be used in
the reduced form that applies in the collinear limit. Following the dipole formalism from [15],
which is outlined in Sec. 4.3, the diagrams that need to be included can be determined from
the combinatorics in Sec. 5.1. The calculation is shown at an amplitude level using the cut
diagram formalism outlined in Sec. 2.3.3, where the splitting function is the result of the sum
over cut diagrams. For these examples a covariant gauge is used with the gluon polarisation
tensor defined as dµν = −gµν . First the quark-emitter case is discussed and then the gluon-
emitter case where the inclusion of the triple gluon vertex increases the complexity of the
calculation.

5.2.2.1. Quark Emitter

The possible combinations of indices were investigated in Sec. 5.1, where it was established
that there are both self-energy and exchange type diagrams that give singular contributions
to the cross section in the collinear limit. There are three possible diagrams that contribute
to the calculation of a gluon emission from a quark, these are shown below:

|M(E)
qg |2 =

q

qi

qj

, (|M(E)
qg |2)† =

qi

q

qj

, (5.19)

|M(SE)
qg |2 =

q

qi
, (5.20)

where the superscripts (E) and (SE) label the exchange and self energy amplitudes respec-
tively. These diagrams represent the squared matrix elements of all possible ways a singular
emission can connect to partons i and j on both sides of the amplitude for a given observ-
able. However, as was also mentioned in Sec. 5.1, two of these diagrams are equivalent when
only considering the real part, namely the exchange diagram and its conjugate, shown in
Eq. (5.19). This allows the sum over amplitudes, used to determine the emission kernel Uij,k
in Eq. (5.5), to be written as:

Uij,k =
∑
i<j<k

2Re|M(E)
qg |2 +

∑
i<j

|M(SE)
qg |2 , (5.21)

where here j indexes the emission momentum. In this expression no partitioning factors are
used as the aim is to reproduce the splitting functions by taking the explicit collinear limit.
Using the QCD Feynman rules, given in Sec. 2.3.1, the exchange amplitude is given by:

|M(E)
qg |2 = −gµν

[
(/qi)(−igsγ

µ(tci )
k
l)
i(/qi + /q)

(qi + q)2

]
αβ

[−i(−/qj − /q)
(qj + q)2

(igsγ
ν(−tcj)mn)(−/qj)

]
γδ

,

=
g2
s(t

c
i )
k
l(t

c
j)
m
n

4(qi.q)(qj .q)
[(/qi)γ

λ(/qi + /q)]αβ[(/qj + /q)γλ(/qj)]γδ ,

=
g2
s(t

c
i )
k
l(t

c
j)
m
n

4(qi.q)(qj .q)
N (E)
qg .

(5.22)
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The square bracket notation is used here to separate the momenta flowing through each
hard line, which after factorising the singular terms should just contain the momenta before
emission, pi and pj . Simplification and expansion steps are then carried out by commuting
the gamma matrices and using the identity /pi/pj = 2pi.pj − /pj/pi. As the aim is to reproduce

the splitting function where only the leading collinear singular terms contribute, these terms
are identified with the help of the scaling as they are proportional to 1/λ2.

The numerator from Eq. (5.22) can be expanded and mapped using the mapping from
Eq. (5.8) to give:

N (E)
qg =[(/qi)γ

λ(/qi + /q)]αβ[(/qj + /q)γλ(/qj)]γδ

=[(z/pi)γ
λ(/pi + y/pj)]αβ[((1− z)/pi + /pj)γλ((1− y)/pj)]γδ

=(1− y)[−zγλ/pi(/pi + y/pj) + 2zpλi (/pi + y/pj)][((1− z)/pi + /pj)γλ/pj ]

=(1− y)z{−y[γλ/pi/pj ][((1− z)/pi + /pj)γλ/pj ] + 2[/pi + y/pj ][/pj/pi/pj ]}
=(1− y)z{y[γλ/pi/pj ][((1− z)/pi + /pj)/pjγλ]− 2y[γλ/pi/pj ][((1− z)/pi + /pj)pjλ]

+ 4(pi.pj)[/pi + y/pj ][/pj ]}
=(1− y)z{y(1− z)[γλ/pi/pj ][/pi/pjγλ]− 2y(1− z)[/pj/pi/pj ][/pi]
− 4y(pi.pj)[/pj ][/pj ] + 4(pi.pj)[/pi + y/pj ][/pj ]} .

(5.23)

For the splitting function, only in the leading collinear-singular behaviour is of interest. There-
fore, all sub-leading terms that arise can be neglected. The two [/pj ][/pj ] terms cancel, that

gives a final form of N (E)
qg containing the leading order term relevant to the splitting function.

Here the pj momentum is written with a minus sign because it belongs to the anti-quark.
The resulting expression for the numerator is:

N (E)
qg = −4(1− y)z(pi.pj)[/pi][−/pj ] . (5.24)

Substituting this back into the full matrix element gives:

|M (E)
qg |2 =

∑
j 6=i

g2
s(t

c
i )
k
l(t

c
j)
m
n

4(qi.q)(qj .q)
(−4)(1− y)z(pi.pj)[/pi]αβ[−/pj ]γδ

=
∑
j 6=i

−g2
s(t

c
i )
k
l(t

c
j)
m
n

2(qi.q)

2z

1− z [/pi]αβ[−/pj ]γδ

=
4παsCF
2(qi.q)

2z

1− z [/pi]αβ[−/pj ]γδ .

(5.25)

The exchange diagram and its conjugate give the same result, as here only the real part of the
amplitude is considered. This can be accounted for as a factor of two. The matrix element
squared for the self-energy-type diagram is expressed as follows:

|M (SE)
qg |2 = −gµν [

−i(/qi + /q)

(qi + q)2
(igsγ

µ(tci )
r
l)(/qi)(−igsγ

ν(tci )
k
r)
i(/qi + /q)

(qi + q)2
]αβ[−/qj ]γδ

=
−g2

s(t
c
i )
r
l (t

c
i )
k
r

4(qi.q)2
[(/qi + /q)γ

µ(/qi)γµ(/qi + /q)]αβ[−/qj ]γδ .
(5.26)

To establish the collinear-leading terms in the numerator it is first necessary to look at the
scaling in the denominator. In the collinear limit a factor of y2 appears in the denominator
after the mapping is applied, that corresponds to a scaling O(1/λ4):

1

(qi.q)2
≈ 1

(λ4)y2(pi.pj)2
. (5.27)
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The same reduced mapping as used for diagram (E) cannot be used in this case due to the
different factors on the denominator. For this diagram only terms with a factor of y2 will be
finite. The numerator in this case can be mapped and expanded as:

N (SE)
qg =[(/qi + /q)γ

λ(/qi)γλ(/qi + /q)]αβ[−/qj ]γδ
=[(/pi + y/pj)γ

λ(z/pi + y(1− z)/pj)γλ(/pi + y/pj)][−(1− y)/pj ]

=(1− y)[((−γλ(/pi + y/pj)) + 2(pλi + ypλj ))(z/pi + y(1− z)/pj)γλ(/pi + y/pj)][−/pj ]
=(1− y){[(−γλ(y(1− z)/pi/pj + zy/pj/pi)γλ(/pi + y/pj)] + 2[y2(1− z)/pj/pi/pj

+ yz/pi/pj/pi]}[−/pj ]
=(1− y)y(pi.pj){[2γλ((1− z)/pi + zy/pj)γλ − 4(z/pi + y(1− z)/pj)]

+ 4[y(1− z)/pj + z/pi]}[−/pj ]
=2(1− y)y(pi.pj)[(2− d)((1− z) /pi + zy/pj)][−/pj ] ,

(5.28)

where the identity γλ/piγλ = (2− d)/pi has been used. The [/pj ][/pj ] term can be neglected as it

is finite in this case, where the denominator is proportional to y2. Considering dimensional
regularisation, where d = 4− 2ε, the final result for the numerator is:

N (SE)
qg = 4(1− y)y(pi.pj)((1− z)(ε− 1))[/pi][−/pj ] . (5.29)

Substituting this back into the full matrix element gives:

|M (SE)
qg |2 =

−g2
s(t

c
i )
r
l(t

c
i )
k
r

4(qi.q)2
(4(1− y)y(pi.pj)(−(1− z)(1− ε)))[/pi]αβ[−/pj ]γδ

=
g2
s(t

c
i )
r
l(t

c
i )
k
r

2(qi.q)
(2(1− z)(1− y)(1− ε))[/pi]αβ[−/pj ]γδ

=
4παsCF
2(qi.q)

(2(1− z)(1− y)(1− ε))[/pi]αβ[−/pj ]γδ .

(5.30)

To add the three contributions together, colour conservation needs to be applied, that allows
the colour operators to be simplified as shown in Sec. 2.3.2. This sum applied to the case
where parton i is a quark gives:

−
∑
j 6=i

Ti.Tj = CF .

The sum arises from the dipole factorisation formulae, that imply a sum over all emissions
and over all dipoles to describe the cross section. The result for the gluon emission from a
quark emitter is obtained by carrying out the sum:

∑
i<j<k

2Re
{
|M(E)

qg |2
}

+
∑
i<j

|M(SE)
qg |2 =

8παsCF
2(qi.q)

(
2z

1− z + (1− z)(1− ε)
)

[/pi]αβ[−/pj ]γδ ,

(5.31)

plus additional terms that are ignored because they are finite or contain only integrable
singularities. The terms in brackets correspond to the z terms from the splitting function for
a quark emitter, 〈P̂qq〉, from Eq. (4.12) and the remaining momenta in square brackets give
the factorised dipole amplitude in terms of the momenta before the emission. To reproduce
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the full splitting function the phase space also has to be included. The result of combining
the phase space factor, from Eq. (5.18), with the matrix element pre-factor gives:

1

16π2

dp2
⊥dz

z(1− z)

∫
dφ

2π
× 8παs

2(qi.q)

=
αs
2π

dp2
⊥dz

z(1− z)(1)× z(1− z)
p2
⊥

,

=
αs
2π

dp2
⊥

p2
⊥
dz .

(5.32)

Resulting in the final form that reproduces 〈P̂qq(z; ε)〉 and the corresponding phase space
factor from [15]:

αsdp
2
⊥dz

2πp2
⊥

CF

(
2z

1− z + (1− z)(1− ε)
)

[/pi]αβ[−/pj ]γδ . (5.33)

This is validation that this mapping reproduces the correct behaviour in the collinear limit.
This mapping will go on to act as a starting point for a more complex and powerful mapping
that can capture both soft and collinear-singular behaviour for multiple emissions and access
a wider range of phase space. The generalised mapping is discussed in Sec. 6.4.

5.2.2.2. Gluon Emitter

The second example shown here is the case of a gluon emitter and a gluon emission, that
involves the consideration of four cut diagrams with two triple gluon vertices per diagram. The
triple gluon vertex results in a more complicated tensor structure and there are more terms
in the final expressions. This case is additionally complicated as the emitter and emission
are now indistinguishable, that requires the two cases where momentum q or momentum
qi is the exchanged gluon to be considered. Each of the gluon-exchange diagrams carries a
factor of two due to the addition of the conjugate diagram, that is equivalent to twice the
real contribution, as was the case for the quark emitter. The self-energy diagram in this
case requires the calculation of a ghost-loop diagram, that contains contributions from the
loop propagating both clockwise and anti-clockwise. This is due to the choice to carry out
this calculation in a covariant gauge. Details of the calculation are given in App. A.1. The
diagrams involved are:

|M(E)
g1g2
|2 =

q

qi

qj

, |M(E)
g2g1
|2 =

qi

q

qj

, (5.34)

|M(SE)
gg |2 =

qi

q

, |MG
gg|2 =

qi

q

. (5.35)

The collinear leading terms, which as in the previous section are those O(1/λ2), from the first
diagram, are:

|M (E)
g1g2
|2 =

−g2
s(−Ti.Tj)
4(qi.q)

[
gµν

(pi)σ(pi)ρ
(pi · pj)

(1− z2)

1− z − 2gµνgρσ
(1 + z)

1− z

]
. (5.36)
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This allows the total squared amplitude for gluon splitting to be written as:

|Msplit|2 + |Mself |2 =
n∑
i

n∑
j 6=i

{
2 Re

[
|M (E)

g1g2
|2] + 2 Re[|M (E)

g2g1
|2
]

+ |M (SE)
gg |2 + |M (G)

gg |2
}
.

(5.37)

When considering a collinear limit where y ≈ 0 the contributions from the exchanged-gluon
diagrams can be reduced to the following terms:

|M (E)
g1g2
|2 = −Ti.Tj

4παs
2(qi.q)

[(−gµν)
piσpiρ
pi.pj

(1− z2)

2(1− z) + (−gµν)(−gσρ)
(

1

1− z +
z

1− z

)
] ,

|M (E)
g2g1
|2 = −Ti.Tj

4παs
2(qi.q)

[(−gµν)
piσpiρ
pi.pj

(2− z)
2

+ (−gµν)(−gσρ)
(

1

z
+

1− z
z

)
] .

(5.38)

To rearrange the z terms the following expressions are used:

1

1− z = 1 +
z

1− z ,
1

z
= 1 +

1− z
z

. (5.39)

This then results in the
2z

1− z and
2(1− z)

z
terms expected. The result of adding these two

diagrams and ignoring finite contributions gives:

|Msplit|2 =

n∑
i

n∑
j 6=i

2 Re
(
|M (E)

g1g2
|2 + |M (E)

g2g1
|2
)

=
8παsCAδadδbe

2(qi.q)

[
(−gµν)(−gσρ)

2z

1− z + (−gµν)(−gσρ)
2(1− z)

z

]
,

(5.40)

where the sum over j for a gluon emitter results in the colour factor CA. The next step is to
add these diagrams to the gluon self-energy and ghost-loop diagrams that together give the
following singular contributions:

|Mself |2 =
16παsCAδab

2(qi.q)

(
(−gµν)− 2(1− ε)z(1− z) nµ⊥n

ν
⊥

2(pi.pj)

)
, (5.41)

where the n⊥ terms are the leading singular contributions that remain after the applying the
kinematic mapping to qi and q. The total combination of the splitting terms above and the
self-energy term also containing factors of z, where (−gσρ) can be factored out as it only
relates to the spectator gluon, and 2pi · pj = n2

⊥ has been used to give:

|Msplit|2 + |Mself |2 =
16παsCAδadδbe

2(qi.q)
[−gµν

(
z

1− z +
(1− z)
z

)
− 2(1− ε)z(1− z)n

µ
⊥n

ν
⊥

n2
⊥

] ,

=
8παs

2(qi.q)
〈µ| P̂gg(z, n⊥; ε) |ν〉 .

(5.42)

This reproduces the form of the splitting function that still depends on the spin indices of
the gluon, µ and ν, as given in [15]. The process of averaging over the spins removes the n⊥
dependence, as illustrated in Sec. 4.1.1, and gives the spin-averaged splitting function 〈P̂gg〉,
shown in Eq. (4.12).

These two examples, for both a gluon and quark emitter, demonstrate the ability of the
mapping to reproduce the correct collinear behaviour. Throughout this process several terms



5.3. Mapping with Lorentz Transformation 43

were ignored because they do not contribute in the collinear limit, they do however give
important contributions in the soft and soft-collinear limits. The power of the mapping and
the parametrisation of the soft and collinear scaling through the variables y and z gives the
flexibility to access other IR-singular terms. This idea will be extended in the next section
as the mapping is further developed.

5.3. Mapping with Lorentz Transformation

Although the mapping used in the previous section does have some benefits, it also suffers
from some of the same flaws as existing methods, the main one that is addressed here is the
recoil. In a traditional dipole method the recoil of the emission is absorbed within the dipole
i.e. by the emitter and spectator partons. This recoil method can lead to problems for more
than one emission when the process is iterated, which is what happens in most parton showers,
some such issues are discussed in Sec. 4.4. With the aim here in mind to incorporate more
than one emission into the mapping, it is first vital to address the recoil scheme. The solution
explored here is to distribute the recoil globally, across all possible spectator partons, via a
Lorentz transformation. The momenta before the emission are labelled p, after the emission
q and the emission momentum is k1. Considering the case where there are n momenta before
the emission and (n+ 1) momenta after the emission gives the sets of momenta:

{p1, ..., pn} → {q1, ..., qn; k1} , (5.43)

where Q is the total momentum defined as:

Q =
∑
k

pk = pi +
∑
r 6=i

pr = qi + k1 +
∑
r 6=i

qr . (5.44)

To maintain overall energy-momentum conservation either all the momenta before or after
the emission need to be transformed. This mapping is constructed with the parameters α1,
β1 and y to describe the soft and collinear limits and the recoil is distributed via the Lorentz
transformation Λµν with a scaling factor α. The Lorentz transformation is applied to the
emitter and spectator momenta, in this case denoted by pi and pr:

kµ1 = α1αΛµνp
ν
i + yβ1 n

µ +
√
yα1β1n

µ
⊥,1 ,

qµi = (1− α1)αΛµνp
ν
i + y (1− β1)nµ −

√
yα1β1n

µ
⊥,1 ,

qµr = αΛµνp
ν
r , r = 1, ..., n , r 6= i .

(5.45)

Where as before the following on-shell conditions apply: q2
i = k2

1 = q2
r = p2

i = n2 = 0, and
n⊥ is defined so that pi · n⊥ = n · n⊥ = 0. The k1 on-shell condition fixes n2

⊥ = −2pi · n and
from the on-shell condition for qi it can be shown that for this case β1 = 1 − α1. Which for
α1 = (1−z) gives the mapping from the previous section, modulo the Lorentz transformation,
in terms of y and z without the need for a third parameter. Although for the two or more
emission case this does not hold and the βl parameter is not degenerate.

The Lorentz transformation, Λµν , needs to be a proper orthochronous transformation to pre-
serve the time ordering of the system. The transformation proposed is based on the solution
for transforming a momentum p to momentum p̂ given in App. A.2 . For the physical case
considered here, the required action of the transformation to fulfil momentum conservation
is:

ΛµνQ
ν =

Qµ − ynµ
α

. (5.46)
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In the collinear limit of y → 0, α → 1 this transformation reduces to δµν . For full details of
Λµν see App. A.2. From the form of the transformation it becomes clear that nµ must be
some function of Q and pi and is required to be on-shell. One suitable solution has the form:

nµ = Qµ − Q2

2pi.Q
pµi . (5.47)

The transformation times the factor α is useful to define, where α =
√

1− y and the form of
n given above has been used:

αΛµν =pµi piν
−y2Q2

4(pi ·Q)2(1 +
√

1− y − y
2 )

+ pµi Qν
y(1 +

√
1− y)

2pi ·Q(1 +
√

1− y − y
2 )

+Qµpiν
(y2 − y − y√1− y)

2pi ·Q(1 +
√

1− y − y
2 )

+ δµν
√

1− y .
(5.48)

The action of Λµν on pνi yields
1

α
pµi and hence for the single-emission case the mapping can

be simplified using: αΛµνp
ν
i = pµi . This is a useful result, as can be seen in the context of

the mapping from Eq. (5.45), as it corresponds to the first component of the emitter and
emission.

5.3.1. Phase Space

Once the mapping is established the next step is to look at the phase space. In this case
the mapping is not equivalent to the Sudakov decomposition in the collinear limit and so
the phase space needs to be investigated in more detail. The general structure of the phase-
space factorisation can be carried out in a familiar way. However, the Jacobian for this
mapping needs to be determined as this provides the key additional terms and facilitates the
factorisation of the emission. To establish the Jacobian for this mapping it is helpful to invert
it i.e. express pi and pk in terms of k1, qi and qk. It can be used that in the single emission
case α1 = 1− β1. Using this and inverting the expressions above for k1 and qi gives:

pµi =qµi + kµ1 − ynµ ,

pµk =
1

α
Λµνq

ν
k .

(5.49)

Rewriting like this and using the expression for n given in Eq. (5.47) allows pi ·Q to be written
as:

pi ·Q = qi ·Q+ k1 ·Q−
y

2
Q2 (5.50)

The general n+m parton phase space considered is:

dφn+m(q1, ..., qn, k1, ..., km|Q) =

(
n∏
k=1

ddqk
(2π)d−1

δ̃(qk)
m∏
l=1

ddkl
(2π)d−1

δ̃(kl)

)
δ

(
n∑
k=1

qk +
m∑
l=1

kl −Q
)

(5.51)
where δ̃(q) ≡ δ̃(q, 0) and δ̃(q,m) = δ(q2−m2)θ(q0). The action of the mapping defined above,

with the specific choice of p1,n =

n∑
k=1

pk, gives:

nµ(p1,n, p1) = pµ1,n −
p2

1,n

2p1,n · p1
pµ1 , (5.52)

and an emitter with momentum p1 and where here k > 1:

qµk =
√

1− y Λµν(p1,n, p1)pνk qµ1 = pµ1 − kµ1,m + y nµ(p1,n, p1) . (5.53)
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The action of the Lorentz transformation gives:

Λµν(p1,n, p1)pν1,n =
pµ1,n − y nµ(p1,n, p1)

√
1− y , Λµν(p1,n, p1)pν1 =

1√
1− yp

µ
1 . (5.54)

Now the phase space can be rewritten using q =
n∑
k=2

qk:

dφn+m(q1, ..., qn, k1, ..., km|Q) = dφm+2(q1, {q,m}, k1, ..., km|Q)
dm2

2π
dφn−1(q2, ..., qn|q) ,

(5.55)
where {q,m} now indicates that the momentum q is to be constrained to a mass m. Consid-
ering the equivalent expressions for the transformations given in Eq. (5.53):

qµk =
√

1− yΛµν(p1 + p, p1)pνk , qµ =
√

1− yΛµν(p1 + p, p1)pν ,

qµ1 = pµ1 − kµ1,m + y nµ(p1 + p, p1) ,
(5.56)

gives agreement with the original expressions when q = q2,n and p = p2,n. Since the trans-
formation (including y) is now a function of p1, p, k1,m, the factored measure transforms
independently as:

dφn−1(
√

1− yΛp2, ...,
√

1− yΛpn|
√

1− yΛp) = (1−y)
(n−1)(d−2)−d

2 dφn−1(p2, ..., pn|p) , (5.57)

and by construction q1 + q + k1,m = p1 + p. y can then be determined from q2
1 = p2

1. The
phase space measure is then written in full as:

m∏
l=1

ddkl
(2π)d−1

δ̃(kl) × dφn−1(p2, ..., pn|p)
ddp1

(2π)d−1
δ(p2

1) δ(p1 + p−Q)ddp ×

(1− y)
(n−1)(d−2)−d

2

(2π)d−1
θ(p0

1 − k0
1,m + y n0(p1 + p, p1))δ((1− y)p2 −m2)θ(p0)

dm2

2π

∣∣∣∣∂(q1, q)

∂(p1, p)

∣∣∣∣ .
(5.58)

For Q = p1 + p this can be simplified to:

m∏
l=1

ddkl
(2π)d−1

δ̃(kl) × dφn−1(p2, ..., pn|p)
(1− y)

(n−1)(d−2)−d
2

(2π)2d−1
× J . (5.59)

The full details of the Jacobian calculation are given in App. A.2.1. In the massless limit the
result agrees with the expression given in [15] (for n = 3) as shown below:

J =
p0p0

1

q0q0
1

(z11z22 − z21z12)

(
m2 −Q2(−1 + y)2

m2 +Q2(−1 + y)

)d−2

m,k2→0
=

(1− y)d−3

z
.

(5.60)

This shows that for the massless limit the phase-space factorisation functions in a very similar
way to that of the mapping used by Catani-Seymour and importantly that the mapping can
be used for collinear single-emission calculations.
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5.3.2. Behaviour in Soft and Collinear Limits

In this section the aim is to again reproduce the single-emission splitting functions that
requires the same diagrams to be evaluated as shown in Sec. 5.2.2. However, the recoil is now
distributed globally instead of only within the dipole. For the determination of the splitting
functions it is relevant to examine how the mapping behaves in the collinear and soft limits.
The scaling in the soft and collinear limits was introduced in Sec. 2.2, that when applied to
this mapping gives the following scaling:

• Collinear scaling: y → λ2y

• Soft scaling: α1 → λα1, y → λy, β1 → λβ1

Using the simplification αΛµνp
ν
i = pµi and α2 = (1 − y) the invariants for this mapping can

be written as:

qi · k1 = (α1 + β1)ypi · n ,
qr · k1 = α1(1− y)pi · pr + yβ1αΛµνp

ν
rnµ +

√
yα1β1αΛµνp

ν
r (n⊥,1)µ ,

qi · qr = (1− α1)(1− y)pi · pr + y(1− β1)αΛµνp
ν
rnµ −

√
yα1β1αΛµνp

ν
r (n⊥,1)µ .

(5.61)

The invariants scale in the soft and collinear limits with the factors shown in Table 5.1.
Where || indicates that the momenta are collinear and k1 → 0 is the soft-emission case. For

qi||k1 k1 → 0 qr||k1

qi · k1 λ2 λ 1

qr · k1 1 λ λ2

qi · qr 1 1 1

Table 5.1.: Scaling of the invariants in the soft and collinear limits.

the collinear case in the first column, which is of interest for the single-emission splitting
functions, the behaviour is the same as for the mapping discussed in the previous chapter.
The results for each of the emission diagrams are equivalent to those from the previous
mapping and thus the splitting-function expressions for both a quark and gluon emitter can
be obtained as in Sec. 5.2.2.

5.4. Conclusions from the Single-Emission Case

In this chapter two different kinematic mappings have been introduced and examined. The
first is used to calculate the collinear splitting functions for a gluon emission from a quark and
a gluon emitter, in agreement with the known results from [42]. The y parameter controls
the collinearity and z the softness of the emission and the combination of the two parameters
describes the spectrum of IR singularities.

The knowledge from this first mapping is then extended, with an important modification
to allow for a global treatment of the recoil from the emission. The aim is to develop a
new mapping that maintains the important features of the previous mapping and behaves
in the same way in the collinear limit but improves upon the recoil treatment and is more
easily extended beyond the one emission case. The scaling in the soft and collinear limits
is verified to illustrate the consistency of this mapping and a suitable form for the Lorentz
transformation is established.
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However, the interesting aspect of this mapping is the ability to go beyond the one-emission
case, where k1 is an example of the first emission and this can be easily extended to k2, k3

etc. The case of multiple emitters can also be considered. A more general mapping based
on this one but with some additional improvements is described in Sec. 6.4. The issue with
more emissions is then the determination of the splitting functions and inclusion of these in
a parton shower. This will be discussed in the next chapters.

The global recoil distribution is already an important modification, although the effect of
this is not apparent when only looking at the single-emission splitting functions. The imple-
mentation of a global recoil scheme in the context of a parton-shower simulation is shown in
Chapter 8. The contrast to local recoil schemes is also strongest for multiple emissions as the
issues with current recoil schemes only arise at the two-emission level and beyond.

In the next chapter, the formalism for multiple emissions will be developed and a suitable
mapping outlined. This builds on the discussion so far and uses the mapping with the Lorentz
transformation as a starting point with some modifications.





CHAPTER 6

The Big Picture

Having discussed the single-emission case in detail, this chapter focuses on the generalisation
of the concepts used previously, to the k-emissions case, where k is an arbitrary number of
emissions. The factorisation theorem holds for any number of IR emissions. Therefore, if a
suitable kinematic mapping can be found, the IR singular momenta can be factorised from
the hard amplitude. The first step, in Sec. 6.1, is to extend the factorisation formalism to the
two-emission case whilst continuing to work at the matrix-element level. This is then further
extended in Sec. 6.2 to the general k-emissions case and the possible pairings of partons are
discussed. It is also possible to rewrite these expressions in terms of a density operator, that is
a convenient representation for use in showering algorithms, this is shown in Sec. 6.2.1. Then
in Sec. 6.3 a partitioning algorithm for the general case is outlined and an example is given
for the single-emission case. For the general k-emissions case the kinematic mapping and
phase space are defined in Sec. 6.4 and Sec. 6.5 respectively. In Chapter 7, this framework
will be applied to the two-emission case.

6.1. Extension to the Two-Emission Case

In the single-emission case, factorisation is discussed in terms of a matrix element with (n+1)
partons factorised to a state with n partons, where there is a soft or collinear emission. The
factor describing such an emission is Vij,k in the dipole formalism, given in Sec. 4.3. This
same concept can be extended to an arbitrary number of emissions.

The process is the same for any number of emissions, namely to factorise IR-singular emissions
from a general hard amplitude. This will be shown first for the single and double-emission
cases and later for the fully general case. The expression in Eq. (6.1) describes a matrix
element with external legs 1 to n, where qn is the momentum of parton n and αn contains
the colour and spin indices. This is the expansion to second order in αs that contains the
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single and double-emission cases, where the notation [...]ij indicates that the set of partons
considered does not include partons i and j:

〈q1...qn;α1...αn|M(q1...qn;α1...αn)〉

= gs

n∑
i<j

∑
β

〈qi, qj ;αi, αj |Sp(qi, qj , qi + qj ;αi, αj , β)〈[q1...qn;α1...αn]ij |M([q1...qn]ij , qi + qj ; [α1...αn]ij , β)〉

+ g2
s

n∑
i<j<k

∑
β

〈qi, qj , qk;αi, αj , αk|Sp(qi, qj , qk, qi + qj + qk;αi, αj , αk, β)〈[q1...qn;α1...αn]ijk

× |M([q1...qn]ijk, qi + qj + qk; [α1...αn]ijk, β)〉

+ g2
s

n∑
i<j

n∑
k<l

k,l 6=i,j

∑
β,β′

〈qi, qj ;αi, αj |Sp(qi, qj , qi + qj ;αi, αj , β1)〈qk, ql;αk, αl|Sp(qk, ql, qk + ql;αk, αl, β2)

× 〈[q1...qn;α1...αn]ijkl|M([q1...qn]ijkl, qi + qj , qk + ql; [α1...αn]ijkl, β1, β2)〉
+O(g3

s) + finite terms .

(6.1)

The first term in Eq. (6.1) describes a single splitting of (qi + qj) to qi and qj and the second
and third terms describe double splittings, sequentially or independently. To establish the
diagrams that give singular contributions to the cross section, the expressions above need to
be squared. Upon squaring, not all possible combinations contribute as there are restrictions,
including those coming from the observable. Some abbreviated notation will be used:

〈q1...qn;α1...αn|M(q1...qn;α1...αn)〉 = 〈n|M(n)〉 ,
〈qi, qj ;αi, αj |Sp(qi, qj , qi + qj ;αi, αj , β) = 〈i, j|Sp(i, j, i+ j) ,

〈[q1...qn;α1...αn]ij |M([q1...qn]ij , qi + qj ; [α1...αn]ij , β)〉 = 〈[n]ij |M([n]ij , i+ j)〉 .
(6.2)

Indices i and j will be used for the original amplitude and k and l used for the conjugate
amplitude. Using the above abbreviations, the matrix element can be written as a sum of
contributions for single and double splittings up to the order g3

s . Where ‘Single’ refers to
the one-emission case, ‘Triplet’ to the two-emission one-emitter case and ‘Pairs’ is the two-
emission two-emitter case, the following is equivalent to Eq. (6.1):

〈n|M(n)〉 = 〈n|MSingle(n)〉+ 〈n|MTriplet(n)〉+ 〈n|MPairs(n)〉+O(g3
s) . (6.3)

To illustrate the combinatorics, i.e. the relevant diagrams giving singular contributions, an
example is shown for the single-emission case that corresponds to the matrix-element squared,
but only to the first order in αs or equivalently g2

s :

〈n|MSingle〉2 = g2
s

n∑
i<j

∑
β

〈i, j|Sp(i, j, i+ j)〈[n]ij |MSingle([n]ij , (i+ j))〉

×
n∑
k<l

∑
β′

〈MSingle([n]kl, (k + l))|[n]kl〉Sp†(k, l, k + l)|k, l〉∆kl
ij ,

|MS(n)|2 =
∑
i<j

∑
k<l

M(i, j)M∗(k, l)∆kl
ij .

(6.4)

The possible index pairings are:

∆kl
ij = (δikδjl + δ̄ikδjl + δjk + δil + δ̄jlδik) , (6.5)
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where δ̄ij ≡ 1− δij . These allow the splitting to be expanded to the following:

|MS(n)|2 =
∑
i<j

∑
k<l

M(i, j)M∗(k, l)(δikδjl + δ̄ikδjl + δjk + δil + δ̄jlδik) ,

=
∑
i<j

M(i, j)M∗(i, j) +
∑

i<j,k<j

M(i, j)M∗(k, j)

+
∑
i<j<l

M(i, j)M∗(j, l) +
∑
k<i<j

M(i, j)M∗(k, i)

+
∑

i<j,i<l

M(i, j)M∗(i, l) .

(6.6)

After relabelling the partons and applying an ordered sum over the three indices i, j, k it is
possible to rewrite these terms as:

|MS(n)|2 =
∑
i<j

M(i, j)M∗(i, j) +
∑
i<j<k

2Re{M(i, j)M∗(j, k)

+M(i, j)M∗(i, k) +M(i, k)M∗(j, k)} .
(6.7)

The above gives a complete set of all the relevant diagrams for the single-emission case. The
examples for the two-emission case can be found in App. B.1.

6.2. General k-emissions Case

The general case can be described by considering a hard process with n external legs and
k additional emissions, that can be factorised to the underlying n-particle hard amplitude
multiplied by emission diagrams for the singular emissions. The different emission diagrams
can be characterised by the splitting function Sp and a sum over the set of possible splittings
Sn,q,k. For the most general case the number of emitters is not fixed and therefore a sum
needs to be carried out over all possible cases, where the number of emitters p can range from
1 to k, where k is the number of emissions. The general amplitude considered here is written
as a vector in spin and colour space and for the case of one emitter and k emissions reads:

|Mn+k(p1...pn+k)〉 =
k∑
p=1

∑
r∈Sn,p,k

Sp(q1|k11|...|k1`1
)...Sp(qp|kp1|...|kp`p )

×|Mn(p1, ..., (q1|k11|...|k1`1), ..., (qp|kp1|...|kp`p), ..., pn+k)〉 .
(6.8)

Here the notation used is:

(qi|ki1|...|ki`i) = qi + ki1 + ...+ ki`i . (6.9)

For the case where the emissions are infrared singular, i.e. contain soft and/or collinear
singularities, Eq. (6.8) can be represented diagramatically as:

n + k

1

M singular terms−−−−−−−→
k∑
p=1

∑
r∈Sn,p,k

rplp

rp1

r1l1

r11

M̃
Sp

Sp

(6.10)
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To obtain the singular behaviour of the cross section, the amplitude vector needs to be
combined with its conjugate, either to form a matrix-element squared or a density-operator
structure. The method used in the previous sections takes the matrix-element squared ap-
proach. The density operator requires the development of a projector formalism, which is
discussed in [75]. The density operator has the benefit of being a more generalised framework
that is helpful for the the discussion of iterated emissions at the amplitude level.

6.2.1. Projector Formalism

The generalised amplitudes can be combined and written in terms of a density-type operator
instead of a squared amplitude, that can operate on external amplitudes. Using the same
notation as above, this is written as:

|Mn+k(1, ..., n+ k)〉〈Mn+k(1, ..., n+ k)| =
k∑
p=1

k∑
p̄=1

∑
r∈Sn,p,k

∑
r̄∈Sn,p̄,k

Sp(r1)...Sp(rp)|Mn(1, ..., (r1), ..., (rp), ..., n+ k)〉

〈Mn(1, ..., (r̄1), ..., (r̄p̄), ..., n+ k)|Sp†(r̄1)...Sp
†
(r̄p̄) × ∆̂r

r̄ , (6.11)

where the splitting momenta have been abbreviated to (ri) = (ri1|...|ri`i). ∆̂r
r̄ is a general-

isation of Eq. (6.5), and takes the form of tensor to single out relevant parton pairings i.e.
diagram topologies that give rise to singular behaviour in the IR limits.

The tensor expression from [75] is derived using Kronecker-deltas, as in Eq. (6.5). For the
permutations σ of a set S̄n,p,k, the decomposition of possible combinations is given as:

D̂r
r̄ ≡

1

nσ

∑
σ

min(p,p̄)∏
g=1

lg∏
l=1

(
δ
rgl
σ(r̄gl)

+ bσ(g)δ̄
rgl
σ(r̄gl)

)
, (6.12)

where the number of permutations is nσ and p ≤ p̄. The index g labels the splitting group and
the length of that group corresponds to the value of lg. The parameters bg give the number
of possible unconnected lines for each splitter group. The function D̂ can then be used to
generate the tensor, ∆̂r

r̄, that contains the permutations for the possible parton combinations:

∆̂r
r̄ ≡

min(p,p̄)∑
n=0

p̄∑
ḡ=1

∂n

∂bnḡ
D̂r
r̄

∣∣∣
bḡ=0

. (6.13)

For a specific number of emissions, ∆̂r
r̄ can be used to determine all possible combinations of

partons which can give diagrams containing singular contributions.

To be able to determine the singular contributions in such a framework, a decomposition is
used to separate the different components of the numerator momenta into different ‘boxes’.
This is particularly effective, because a scaling can then be applied to each component of the
external and internal lines in a diagram. When this scaling is compared to the denominator
scaling, some contributions can be immediately neglected, which simplifies the calculations.
Additionally, it is possible to determine all relevant contributions to the soft and collinear lim-
its without taking either limit explicitly, and to determine the combinations which contribute
in an algorithmic way. This formalism is developed and discussed in detail in [75].

The aim of this formalism is to be able to examine parton branching at the amplitude level,
as opposed to the standard method of cross-section level subtractions. The cross section
result can be obtained from the density operator by tracing over colour and spin indices.
For iterated emissions, an amplitude-level treatment is particularly important due to existing
knowledge of inaccuracies beyond the one emission case as discussed in Sec. 4.5.



6.3. Partitioning 53

6.3. Partitioning

After all the potentially singular topologies have been identified, it remains to examine the
different singular limits they include. In order to be able to describe an emission kernel for one
collinear configuration, the relevant terms need to be extracted from the set of contributing
diagrams. The emission kernels can then be used to generate probabilistic splittings as part
of a parton-shower algorithm, but also retain information about potential spin and colour
correlations in both the soft and soft-collinear limits. The calculation of a two-emission
splitting kernel is shown in Sec. 7.2 as a cross check for the kinematics and methods used.

The splitting kernel, Uij , is defined as the sum over all possible contributions to a specific
collinear limit involving the partons labelled i and j. This is obtained from a set of squared

sub-amplitudes for the possible splittings, Ad, multiplied by a partitioning factor, P(d)
ij , which

is specific to the diagram and collinear configuration. The emission kernel for the ij collinear
case for a single emission can be described by:

Uij =
∑
d∈D1

[
P(d)
ij Ad

]
. (6.14)

Where Ad are the squared amplitudes, in this case from the set of one-emission diagrams D1,
the same principle can be extended to any number of emissions. The general partitioning
functions, where c denotes the singular configuration and d the diagram, can be written as:

P(d)
c ≡

F
(d)
c

F(d)
. (6.15)

The cancelling factors F (d)
c can be determined from:

F (d)
c =

( ∏
Sc′∈Sd

c

Sc′ D(Ad)
)−1

ςp, (6.16)

where Sdc is the set of singular S factors appearing in the denominator of diagram d for a
collinear configuration c. The cancelling factor for a specific configuration can be described as
the inverse of the singular factors from the denominator of the diagram for that combination,
multiplied by the full denominator of the diagram, written here as D(Ad). The scale ςp is
introduced to match the mass dimensions from the different factors so that all the factors are
dimensionless. The denominator term of the partitioning functions is the sum over all of the
cancelling factors:

F(d) ≡
∑
c∈Cd

F (d)
c , (6.17)

where Cd is the set of collinear combinations for which diagram d gives singular contributions.
As an example, consider the one-emission exchange diagram described in Sec. 5.2.2.1, this can
contribute to two different collinear limits. The two cases are: either the emission is collinear
to the emitter or the emission is collinear to the spectator. Using three indices to label the
partons, where i corresponds to the emitter, j to the emission and k to the spectator allows the
singular behaviour to be described generically. The singular factors are in the denominator
of the amplitude and arise from the propagators in the diagrams, they can be described by
Sij = (pi + pj)

2. The denominator terms for the single emission exchange diagram can be
written as:

Denom(|M(E)
ij |2) = D(AE1) =

1

SijSjk
, (6.18)
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where each S factor is singular in a different collinear limit. A partitioning factor for each
limit can be defined using the cancelling factors which are:

F
(E1)
ij =

(
Sij

1

SijSjk

)−1

= Sjk , F
(E1)
jk = Sij . (6.19)

Giving partitioning factors:

P(E1)
ij =

Sjk
Sij + Sjk

, P(E1)
jk =

Sij
Sij + Sjk

. (6.20)

This allows the contribution from this diagram to the ij-collinear emission kernel to be written
as:

P(E1)
ij AE1 =

Sjk
Sij + Sjk

N (AE1)

D(AE1)
=

1

Sij(Sij + Sjk)
N (AE1) , (6.21)

where N (AE1) contains the numerator terms from this diagram. A further example of the
partitioning for a two-emission diagram is given in C.1.

This partitioning formalism is particularly useful for constructing splitting kernels that require
contributions from only one collinear limit. When considering a case with multiple emissions
there are more possible collinear limits and they can overlap and interact with one another.
The partitioning is needed to separate these overlapping collinear singularities smoothly whilst
retaining the correct soft behaviour. To effectively factorise the IR emissions, the partitioning
formalism has to fulfil several requirements that will be discussed below.

6.3.1. Partitioning Checks

One of the most important conditions is that the partitioning factors themselves should not
give collinear-singular contributions, i.e. they are non-singular in all possible collinear limits.
Additionally the partitioning should not affect the soft-collinear and soft limits. The checks
shown below are for the two-emission case, however, these conditions should hold generally
for any number of emissions.

For all of the two-emission exchange amplitudes, given in App. B.2, for which there is a
defined partitioning factor, via the formalism given above, the behaviour of the propagator
factors from the conjugate recoiler in the collinear limit was checked. The aim is to show
that there are only sub-leading contributions from the partitioning factor denominator in
the collinear limit corresponding to the emissions being collinear to the recoiler. The scaling
was checked for all ten double-exchange single-spectator topologies that are relevant in the
triple-collinear QCD case. In all cases the scaling was found to be either finite or O(1/λ2)
which are sub-leading contributions, where for the two-emission case the leading collinear
contributions are O(1/λ4).

In Table 6.1 the scaling of the different invariants in different limits is shown, this was used
when determining the scaling of the partitioning factors. The following limits were tested, not
only to check the collinear behaviour, but also to ensure that the scaling in the double-soft
and soft-collinear cases is not affected by the partitioning:

• Collinear triplets: (ijk), (ijl), (ikl), (jkl)

• Collinear pairs: (ij, kl), (ik, jl), (il, jk)

• Double soft: (ij), (ik), (il), (jk), (jl), (kl)

• Soft-collinear: (ij, k/l), (ik, j/l), (il, j/k), (jk, i/l), (jl, i/k), (kl, i/j)
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Limit Sij Sik Sjk Sil Sjl Skl

Collinear i||j||k λ2 λ2 λ2 1 1 1

Collinear i||j, k||l λ2 1 1 1 1 λ2

Double soft (i, j → 0) λ2 λ λ λ λ 1

Soft-collinear i||j, (k → 0) λ2 λ λ 1 1 λ

Table 6.1.: Scaling of invariants in different IR limits, from [75].

The leading scaling in the collinear, soft and soft-collinear limits for all of the two-emission
topologies is O(1/λ4), when both numerator and denominator terms are included. The de-
nominator multiplied by the partitioning factor scales differently in the collinear limit for two
different groups of the exchange topologies. Those containing a self-energy like loop have a
scaling of O(1/λ6) in the collinear limit. However, when combined with the leading terms
from the numerator the total collinear scaling is O(1/λ4), due to the corresponding O(λ2)
terms in the numerator. The other exchange diagrams have a collinear scaling O(1/λ4) from
just the denominator and partitioning factor, and contain only O(1) terms in the numerator.

CC CS SC SS

{A1} 1/λ4 1/λ4 1/λ2 1/λ4

{A2} 1/λ4 1/λ3 1/λ3 1/λ4

{A3} 1/λ4 1/λ3 1/λ2 1/λ4

{A4} 1/λ6 1/λ4 1/λ3 1/λ5

{A5} 1/λ6 1/λ3 1/λ3 1/λ6

{B1} 1/λ6 1/λ6 1/λ3 1/λ4

{B2} 1/λ6 1/λ4 1/λ5 1/λ4

{E1} 1/λ8 1/λ6 1/λ4 1/λ4

{E2} 1/λ8 1/λ5 1/λ5 1/λ4

{E3} 1/λ8 1/λ5 1/λ4 1/λ5

Table 6.2.: Scaling for denominator times partitioning factor of two-emission single-emitter
topologies.

In Table 6.2 the scaling for each of the two-emission single-emitter topologies in the possible
limits are shown. The limits can be described by labelling the hard parton i and the second
and first emissions j and k respectively. ‘CC’ is the double collinear limit where i||j||k, ‘SS’
is the double soft limit where both j and k are soft, ‘CS’ is the soft-collinear case where of i
and j are collinear and k is soft and ‘SC’ is the alternative soft-collinear combination where
i and k are collinear and j is soft.

Then for the two-emission two-emitter topologies the scaling of the denominator times par-
titioning factor is given in Table 6.3. Here the indices have to be reinterpreted as the hard
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partons are labelled i and l and the emissions are j and k from i and l respectively. The
indices involved in each limit are modified correspondingly, ‘CC’ is for i collinear to j and k
collinear to l, ‘CS’ is the soft-collinear combination of j collinear to i and k soft, ‘SC’ is the
soft-collinear combination of k collinear to l and j soft and ‘SS’ is the double soft limit for
both emissions, j and k, soft. This knowledge of the scaling behaviour for the denominator

CC CS SC SS

{B3} 1/λ6 1/λ4 1/λ6 1/λ4

{B4} 1/λ4 1/λ3 1/λ4 1/λ3

{X} 1/λ4 1/λ4 1/λ4 1/λ4

{E4} 1/λ8 1/λ6 1/λ6 1/λ4

Table 6.3.: Scaling for denominator times partitioning factor of two-emission two-emitter
topologies.

and partitioning, makes is easy to determine which terms from the numerator are leading in
each of the limits for each topology. The contributions from the partitioning factors are of
order (1/λ2) or less and therefore do not affect the behaviour in any of the possible limits as
they are always sub-leading. The self-energy type topologies do not require partitioning as
they only contain one type of collinear singularity. Though they also display similar scaling
behaviour to the exchange diagrams with a self-energy type loop, i.e. O(1/λ8) denominator
scaling in the collinear limit which is combined with numerator terms to give total collinear
scaling O(1/λ4).

Additional details of the partitioning checks carried out are given in [75]. A possible appli-
cation of the splitting kernels would be the implementation in a multiple-emission parton
shower, that needs to be combined with a kinematic mapping to facilitate the factorisation.
One possible such mapping is discussed in the next section.

6.4. Kinematics for k-emissions

For the k-emissions case the concepts applied to the single-emission mapping are extended to
a generalised picture of an emitter with any number of emissions, as illustrated in Eq. (6.10).
Where each emitter is part of a system of emitter and spectator momenta, which partially
absorb the recoil. The final-state system is described by a set S of “splitters” or emitters qi,
the sets of emisisons Ei associated to each emitter and containing momenta kil and finally
a set R of recoil momenta qr. The kinematic mapping that relates the momenta before any
emission to those after k-emissions is written in terms of the light-cone momenta pi and ni,

transverse momenta n
(i)
⊥,l and recoil momentum pr:

qr ≡
1

α̂
Λpr ,

qi ≡
1

α̂
Λ
[
(1−Ai)pi +

(
yi − (1−Ai)Bi

)
ni −

√
1−Aiñ(i)

⊥

]
,

kil ≡
1

α̂
Λ
[
αil pi + (1−Ai)βil ni +

√
1−Ai

√
αilβil n

(i)
⊥,l

]
.

(6.22)

Where the following abbreviations are used:

Ai ≡
∑
l∈Ei

αil , Bi ≡
∑
l∈Ei

βil , ñ
(i)
⊥ ≡

∑
l∈Ei

√
αilβil n

(i)
⊥,l . (6.23)
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This momentum mapping is the same as that presented in [75]. The use of the light-cone
momenta is to preserve the backward direction from the hard process and with that correctly
distribute the recoil for multiple emissions. Here, as in Sec. 5.3, a Lorentz transformation is
used to conserve the total momentum and the momenta pi, pr, ni, qi, qr and kil are assumed to
be on-shell. The changes compared to the previous version include applying the transforma-
tion to all of the momenta before emission, including the backwards and transverse momenta.
The y dependence was removed from the transverse and the backward momentum compo-
nents to ensure consistency of the collinear scaling across the momenta. The (1−Ai) factors
were added to ensure that the definition of yi does not contain any additional singularities.
The conservation of the total momentum transfer, Q, for this mapping is written as:

Q =
∑
i∈S

qi +
∑
l∈Ei

kil

+
∑
r∈R

qr =
1

α̂
Λ

[∑
i∈S

(pi + yini) +
∑
r∈R

pr

]
. (6.24)

The action of the transformation therefore has to fulfil:

Λµν [Qν +Nν ] = α̂Qµ, (6.25)

where N =
∑

i∈S
yini. Given that Λ is a proper orthochronous transformation the scaling

factor α̂ can be defined as:

α̂ =

√
(Q+N)2

Q2
. (6.26)

The full expression for the Lorentz transformation is:

Λµν = gµν −
(Nµ +Qµ)(Nν + (α̂+ 1)Qν) + α̂2QµQν

N2 + (α̂+ 2)N ·Q+ (α̂+ 1)Q2

+
α̂Qµ(Nν +Qν)(N2 + 2(α̂+ 1)N ·Q+ (2α̂+ 1)Q2)

(N2 + 2N ·Q+Q2)(N2 + (α̂+ 2)N ·Q+ (α̂+ 1)Q2)
.

(6.27)

The choice of the backward light-cone vector is constrained to be on-shell and backwards,
i.e. pi · ni should be large. There is more than one possible form of this vector but for the
examples in later sections ni is chosen to be:

nµi = Qµ − Q2

2pi ·Q
pµi . (6.28)

The transverse component from the mapping is defined as being perpendicular to the light-

cone momenta and therefore, pi·n(i)
⊥,l = ni·n(i)

⊥,l = 0. Expanding the expression for kil as an

on-shell momentum fixes the square of the transverse component to be
(
n

(i)
⊥,l

)2
= −2pi·ni.

From applying the on-shell conditions for the momenta kil and qi, yi can be parametrised as:

yi = (1−Ai)Bi −
(ñ

(i)
⊥ )2

2pi · ni
. (6.29)

The mapping coefficients αil, βil and yi all have values between 0 and 1 and parametrise

the soft and collinear limits. The scaling of the parameters, where Ki =
∑

l
kil, in each of

the limits is given in Table 6.4. The yi scaling only applies if all of the emissions from that
emitter are collinear or soft, because the definition of yi contains the sum over βil. In the
soft collinear limit the αil and βil parameters scale correspondingly to the emission as above,
and yi scales as in the soft case, due to the contribution from the soft βil. The choice of
mapping coefficients changes the number of degrees of freedom available, this has an impact
on the phase space integration. The phase space for this mapping will be outlined in the next
section.



58 6. The Big Picture

αil βil yi

Ki soft λ λ λ

Ki, qi collinear 1 λ2 λ2

Table 6.4.: Scaling for mapping parameters in soft and collinear limits.

6.5. Phase Space for k-emissions

Here, the factorised final-state phase space is defined for the mapping given in Eq. (6.22),
with on-shell momenta as defined in the previous section. The total momenta for the emitters
and recoilers before emission and the mass of the recoil momenta, m, are defined as:

PS =
∑
i∈S

pi , PR =
∑
r∈R

pr , QR =
1

α̂
ΛPR ,

Q2
R =m2 , P 2

R = α̂2m2 .

(6.30)

The full final-state phase space, for the sets of momenta including the emitters, recoilers and
emissions, where {qi}S = {q1, ..., qn} for i ∈ S, is written in terms of the momenta before the
emission and the emission phase space:

dφ ({qi}S, {qr}R, {kil}Ei |Q)

= dφ ({p}R|PR) α̂d−nR(d−2)(2π)dδ
(
PS + PR −Q

)
× dm2

2π

dd−1PR

(2π)d−12ω(~PR, α̂m)

ω(~PR, α̂m)

ω( ~QR,m)
Θ(Q0

R)

×
∏
i∈S

dd−1pi
(2π)d−12ω(~pi)

ω(~pi)

ω(~qi)
Θ(i0)

∣∣∣∣∣∂({~q}S, ~QR)

∂({~p}S, ~PR)

∣∣∣∣∣ ∏
l∈Ei

dd−1kil

(2π)d−12ω(~kil)
Θ(k0

il). (6.31)

Further details of the phase space factorisation are described in [75] including the Jacobian
calculation for this mapping. The resulting Jacobian is:

|J | = α̂1−d

4
(2pi ·ni)

d−1
2 (αilβil)

d−4
2 (1−Ai)

d−2
2

(
αil + β̃il

)
. (6.32)

This is needed to determine the phase space of the emission momenta that factorise from the
total phase space, and to regulate IR divergences when integrating over the phase space. The
resulting expression for the emission phase space is:

[dkil] =
1

(2π)d−1
Θ(αil)Θ(βil)

α̂2−d

4
[2pi·ni(1−Ai)]

d−2
2 (αilβil)

d−4
2 dαil dβil dΩd−3 . (6.33)

The phase-space factorisation is an important component of the parton evolution using this
mapping and needs to be included in the parton-shower code to give the correct behaviour.
This is relevant for any implementation of the methods discussed in this Chapter.

6.6. Conclusions from the Big Picture

Here, the development of a kinematic mapping for k-emissions has been shown and corre-
sponding methods established to enumerate the diagrams relevant to the IR singular limits.
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A partitioning framework has been introduced to separate overlapping collinear sectors. The
aim is to provide a mapping that can expose soft and collinear-singular contributions for all
possible cases within one method, so that the limits can be correctly reproduced without loss
of information about the regions between different limits.

The motivation for developing such a mapping includes the issues raised in Sec. 4.5, and was
inspired by aspects of both dipole and angular-ordered showers. One benefit of using the
light-cone parametrisation of p and n is that the backwards direction of the hard process
can be preserved, which is important when describing multiple emissions. This mapping and
associated framework is well suited to be combined with the parton branching algorithm
from [70], as it is designed at the amplitude level with the goal of keeping all information
about the colour evolution. A first implementation of this mapping for the one-emission case
is shown in Chapter 8, which gives a useful comparison to the existing dipole and angular-
ordered showers in Herwig. However, it is not expected that this has any large affect on
the shower output as the emission kernels and branching algorithm used in Herwig remain
unchanged. A more promising option for the implementation of the mapping is the code,
CVolver [73], that is designed around the amplitude-level branching algorithm mentioned
above. Such an implementation is left for future work.





CHAPTER 7

Two-Emission Examples

This chapter starts by outlining the kinematics for two emissions in the one and two-emitter
cases, in Sec. 7.1. Then a result using the one-emitter two-emissions mapping is given in
Sec. 7.2, that shows that this mapping reproduces the correct collinear-singular behaviour.
Having obtained the result for the collinear limit, it is helpful to show the relation between the
splitting function and the soft and soft-collinear functions, discussed in Sec. 7.3. Understand-
ing the singular terms in each of the IR limits allows subtraction terms to be constructed,
and illustrates the overlap between the different singular limits.

7.1. Two-Emission Kinematics

The two-emission case includes diagrams with either one emitter or two emitters and one or
two spectators. To fully describe the soft and collinear behaviour at this order, all of the
possible combinations are required. Here the mapping is outlined, for the momenta after the
emissions in terms of the momenta before the emissions, pi, pr, and two additional vectors to

describe the backward and transverse directions, ni and n
(i)
⊥,l, respectively.

The generalised mapping in Sec. 6.4, for massless partons, is shown here for the case of a
single emitter and two emissions where qr is the spectator, qi the emitter and ki1, ki2 are the
emission momenta:

qr =
1

α̂
Λpr ,

qi =
1

α̂
Λ

[
(1− αi1 − αi2) pi + (yi − (1− αi1 − αi2)(βi1 + βi2))ni

−
√

(1− αi1 − αi2)
(√

αi1βi1n
(i)
⊥,1 +

√
αi2βi2n

(i)
⊥,2

)]
,

ki1 =
1

α̂
Λ

[
αi1pi + (1− αi1 − αi2)βi1 ni +

√
(1− αi1 − αi2)

√
αi1βi1n

(i)
⊥,1

]
,

ki2 =
1

α̂
Λ

[
αi2pi + (1− αi1 − αi2)βi2 ni +

√
(1− αi1 − αi2)

√
αi2βi2n

(i)
⊥,2

]
,

(7.1)

where as in the previous chapter, pi, pr, ni, qi, qr, ki1 and ki2 are on-shell and pi and ni are

transverse to all n
(i)
⊥,l. The choice of ni = Q− Q2

2pi ·Q
pi gives α̂ =

√
1 + yi.
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Solving the qi on-shell condition for yi and using invariants to simplify the expression gives:

yi =
S(ki1, ki2) + S(qi, ki1) + S(qi, ki2)

2ni · pi
, (7.2)

where the invariants S(qa, qb) = (qa + qb)
2.

The mapping for two emissions and two emitters is parametrised as:

qr =
1

α̂
Λpr ,

qi =
1

α̂
Λ

[
(1− αi1)pi + (yi − (1− αi1)βi1)ni −

√
(1− αi1)

√
αi1βi1n

(i)
⊥,1

]
,

ki1 =
1

α̂
Λ

[
αi1pi + (1− αi1)βi1 ni +

√
(1− αi1)

√
αi1βi1n

(i)
⊥,1

]
,

qj =
1

α̂
Λ

[
(1− αj1)pj + (yj − (1− αj1)βj1)nj −

√
(1− αj1)

√
αj1βj1n

(j)
⊥,2

]
,

kj1 =
1

α̂
Λ

[
αj1pj + (1− αj1)βj1 nj +

√
(1− αj1)

√
αj1βj1n

(j)
⊥,1

]
.

(7.3)

For the same choice of ni and nj , in this case α̂ =

√
1 + yi + yj +

yiyj
2pi ·Qpj ·Q

pi · pj .

Each emitter in the two-emitter mapping has almost identical properties to the emitter in the
single-emission case. The on-shell condition for the emitters in this case results in yi = βi1
and yj = βj1.

For both the one and two-emitter cases, the invariants, S(i, j), which appear in the amplitude
expressions, can be written as an expansion of the mapping variables, that allows the scaling
to be checked. The scaling for αil, βil and yi remain the same as in Table 6.4 and give the
corresponding scaling of the invariants, i.e. for two collinear or two soft momenta O(λ2) and
for a single soft momentum O(λ).

7.2. Two-Emission Splitting Function Result

As an illustration of the function of the two-emission mapping, the triple-collinear splitting
function for the emission of two gluons from a quark was determined, using the one-emitter
two-emission mapping given in the previous section. As discussed in Sec. 6.1, there are many
different exchange diagrams for the two-emission case, including combinations of the one and
two-emitter amplitudes. In the previous examples for the one-emission case a covariant gauge
was used, however, for two emissions the number of exchange diagrams greatly increases and
the calculations become more complicated. Therefore, for the two-emission case a light-
cone gauge was chosen, that results in only the self-energy type diagrams contributing in
the collinear limit. This simplifies the calculation and uses the gauge terms to include the
terms that would contribute from the exchange diagrams in a covariant gauge. The gluon
polarisation tensor, for the light-cone gauge used, takes the form:

dµν(q) = −gµν +
qµnν + nµqν

q · n , (7.4)

as introduced in Sec. 2.3, where nµ is an arbitrary gauge vector.

The generalised collinear-factorisation formula, given in [62] for m collinear partons, is anal-
ogous to the single collinear factorisation formalism as discussed in [15]:

|Ma1,...,am,...(p1, ..., pm, ...)|2 '
(

8παS
s1...m

µ2ε

)m−1

T ss′a,...(xp, ...) P̂
ss′
a1...am , (7.5)
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where µ is the dimensional regularisation scale, T is the spin polarisation tensor describing
the flavour a of the parent parton, P̂ is the d-dimensional spin-dependent splitting function,
and s1...m is equivalent to the Sij factors already introduced, for up to m partons. x is the
sum over all xi, that is a factor used in the kinematics given in [62]. In the following, the
spin averaged splitting functions, 〈P̂a1...am〉, will be discussed, that are obtained by averaging
over all possible polarisations. There are no spin correlations for the case of a parent fermion.
For a parent gluon averaging over the spin correlations requires use of the gluon polarisation
tensor as given in Eq. (7.4).

The spin-averaged splitting function 〈P̂ggq〉, as given in [62] contains an abelian and a non-
abelian part, distinguished by the factors C2

F and CFCA. Firstly, the diagrams, from [75],
that contribute to the abelian terms are:

{
p̂i |

2

i

1
| p̂i +

[
p̂i |

2

i

1

| p̂i + (1↔ 2)

] }
C2

F

(7.6)

=
1

λ4

(
8παS
α̂Si12

µ2ε

)2

C2
F 〈P̂ (ab)

ggq 〉/̂pi +O
(

1

λ3

)
, (7.7)

where the second diagram also has non-abelian contributions but here only the abelian terms
are taken. The abelian part of the splitting function is given by:

〈P̂ (ab)
ggq 〉 =

{
S2
i12

2Si2Si1
(1− αi1 − αi2)

(
−ε
(
α2
i2 + α2

i1

)
αi1αi2

+
(1− αi1 − αi2)2 + 1

αi1αi2
− ε(ε+ 1)

)

+
Si12

Si2

(
(1− αi2)(1− αi1 − αi2) + (1− αi1)3

αi1αi2
− (1− αi1)

αi1αi2
ε
(
α2
i2 + αi2αi1 + α2

i1

)
+ (2− αi1 − αi2)ε2

)
+ (1− ε)

(
ε− Si1(1− ε)

Si2

)}
+ (1↔ 2) .

(7.8)

The following terms factorise from the calculation of the diagrams: µ4ε/α̂2S2
i12, which includes

the regulator, as well as a factor of g2
s that results in the corresponding coefficient given in

Eq. (7.5) for the m = 3 case times 1/α̂2, which is the scaling factor from the mapping. The
leading collinear terms are those with a scaling proportional to 1/λ4, that agree with the full
expression in [62].

The evaluation of the cut-diagram amplitudes was carried out in a very similar way to the
single emission examples shown in Sec. 5.2.2. The general method can be described by the
following steps:

1. Write down the amplitude for the cut diagram using the cutting rules.

2. Expand the numerator algebra then apply the kinematic mapping.

3. Apply the kernel-appropriate partitioning factor to denominator.

4. Apply the appropriate collinear scaling to the numerator and expand to leading order.

5. Map the invariants and cancel possible terms between numerator and denominator.

To complete the splitting function the non-abelian terms also have to be determined. The
diagram above now contributes its non-abelian terms and the other diagrams are those arising
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from the known self-energy topologies, given in Fig. B.1, containing a triple gluon vertex, that
are illustrated below:

µ2ε

α̂2S2
i12

{
p̂i |

i
| p̂i +

[
p̂i |

2

i

1

| p̂i + p̂i |
2

i
| p̂i1

+ p̂i |
i

2

| p̂i1
+ (1↔ 2)

] }
CACF

=

(
8παS
α̂Si12

µ2ε

)2

CACF 〈P̂ (nab)
ggq 〉/̂pi +O

(
1

λ3

)
, (7.9)

where the non-abelian part of the splitting function is given by:

〈P̂ (nab)
ggq 〉 =

{
(1− ε)

(
t212,i

4S2
12

− ε

2
+

1

4

)
+
Si12

2S12

(
(1− ε)

(
αi2
(
α2
i2 − 2αi2 + 2

)
− αi1

(
α2
i1 − 6αi1 + 6

))
αi1(αi1 + αi2)

+
2ε((1− αi1 − αi2)(αi2 − 2αi1)− αi1)

αi1(αi1 + αi2)

)
+
Si12

2Si2

[
(1− αi1)ε

(
α2
i2 + α2

i1

αi1αi2
− ε
)

− (1− αi2)(1− αi1 − αi2) + (1− αi1)3

αi1αi2
+

(1− ε)
(
(1− αi1)3 − αi1 + (1− αi1 − αi2)2

)
αi1(αi1 + αi2)

− ε
(
−αi2 +

2(1− αi1)(αi1 − (1− αi1 − αi2))

αi1(αi1 + αi2)
+ αi1

)]
+

S2
i12

2S12Si2

(
α2
i1(1− ε) + 2(1− αi1)

αi1 + αi2
+

(αi1 + αi2)2(1− ε) + 2(1− αi1 − αi2)

αi1

)
− S2

i12

4Si2Si1
(1− αi1 − αi2)

(
(αi1 + αi2)2(1− ε) + 2(1− αi1 − αi2)

αi1αi2
+ (1− ε)ε

)}
+ (1↔ 2) ,

(7.10)

and:

t12,i ≡ 2
αi2Si1 − αi1Si2

αi1 + αi2
+
αi2 − αi1
αi1 + αi2

S12 . (7.11)

The same steps as before were applied to these amplitudes and the result in the collinear limit
agrees with the non-abelian terms in the expression derived by Catani-Grazzini (CG) [62].
The expressions given here are equivalent to those from CG when the following substitutions
are used:

αi1 = z2 , αi2 = z1 , αi1 + αi2 = 1− z3 ,

Si12 = s123 , Si2 = s13 , Si1 = s23 .
(7.12)

This result verifies that the kinematic mapping developed has the correct behaviour in the
collinear limit, as well as being able to describe other singular behaviour. What is now useful
to examine is the relationship between the two-emission splitting function and the double-soft
and soft-collinear functions, as full understanding of these functions is needed to subtract IR
singularities.
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7.3. Comparison of IR Limits

Having focused on the collinear limit in the previous section, in this section the double-soft
and soft-collinear limits and the relations between the different limits will be looked at in
detail. As was discussed in Sec. 4.2, to calculate higher-order cross sections it is necessary to
construct a counter term that contains the singular behaviour of the real part of the cross
section. The singular behaviour includes all possible IR limits, i.e. soft, collinear and soft-
collinear, these need to be understood to construct the counter term. The splitting functions
that factorise in the collinear limit also contain soft terms and so it is necessary to look at
the soft limit to determine the purely soft and purely collinear terms.

In this section a comparison is made of the terms from the splitting function in both the
double-soft and the soft-collinear limits with the double-soft and soft-collinear functions. This
comparison gives valuable information about how these terms can be used in a subtraction
scheme. There is an extended discussion of the double-soft and soft-collinear functions in [62],
that is the basis for most of the following discussion.

The results in Sec. 7.2 reproduce the spin-averaged splitting function, 〈P̂g1g2q3〉, where the
momenta are labelled as, p3 = qi, p1 = q2 and p2 = q1 in relation to the diagrams and
mapping given in the previous sections. The kinematic parametrisation of the momenta used
by CG is as follows:

pi = xip−
k2
⊥i

2n · pxi
n+ k⊥i , zi =

xi∑
j xj

=
n · qi∑
j n · qj

. (7.13)

For this mapping in the collinear limit the momenta pi can be approximated by pi → xip.
The relations between the variables used here and those from Eq. (7.1) are given below, as
well as the relations between the invariants that will be used to describe the IR functions:

z1 = αi2 , z2 = αi1 , z3 = 1− αi1 − αi2 ,
s123 = Si12 , s13 = Si2 , s23 = Si1 ,

(7.14)

where sij = (pi+pj)
2. These variables are used to allow a direct comparison to the expressions

given in [62], where the factorisation in each of the limits of interest is shown. The aim in
this section is to show the connection between the terms that factorise in the different limits
and how they can be combined to give terms that are singular in only one limit.

7.3.1. Double-Soft Limit

In both the soft and soft-collinear cases the emissions factorise from the amplitude and the
terms that factorise are described by the soft and soft-collinear currents respectively. At the
single-emission level the soft current consists of an eikonal function. For two emissions the
factorisation is more complicated, as there is a double-eikonal term and a more complicated
double-soft function, which together give the soft current. For a generic squared amplitude,
where the soft gluons have momenta q1 and q2, the factorised terms are described by the
square of the two-gluon soft current, that is given by:

[Ja1a2
µρ (q1, q2)]†dµν(q1)dρσ(q2)Ja1a2

νσ (q1, q2) =
1

2
{J2(q1),J2(q2)}

− CA
n∑

i,j=1

Ti ·Tj Sij(q1, q2) + ...
(7.15)

Here a1 and a2 are the colour indices of the two soft gluons and the lower indices of J are the
corresponding spin indices. The ‘...’ refers to terms that are proportional to the total colour
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charge and do not contribute in the factorised case. It can also be seen that the second term
on the right-hand side is purely non-abelian and that in the abelian case only the first term
contributes. The two-gluon soft function is given by:

Sij(q1, q2) = 2

(
1

s12s13

n · q3(n · q1 + 2n · q2)

n · q2(n · q1 + n · q2)
− 1

s13s23

(n · q3)2

2n · q1n · q2

+
1

(n · q1 + n · q2)(s13 + s23)

[
1

s12

n · q3(n · q1 − 3n · q2)

n · q2
− 1

s13

(n · q3)2

n · q1

]
+

1

s2
12

(1− ε)((n · q1s23 − n · q2s13)2 + n · q1n · q2(s13 + s23)2 + s13s23(n · q1 + n · q2)2)

(n · q1 + n · q2)2(s13 + s23)2

)
+ (1↔ 2) .

(7.16)

The changes made with respect to the expression given in [62] are that qi = q3 i.e. the
quark momentum, and the j direction has been relabelled as n to allow for direct comparison
with the splitting function. Additionally, the colour factor for the two-gluon soft function is
determined by summing over j, setting j = n and applying colour conservation gives:

− CA
n∑

i,j=1

Ti ·Tj = CFCA . (7.17)

To look at the double-soft behaviour of the splitting function the scaling of the invariants
in the double-soft case needs to be established and applied to the splitting function. From
the two-gluon double-soft factorisation it is expected that the abelian part of the splitting
function will reproduce the double-eikonal and the non-abelian part will give the two-gluon
soft function Sij(q1, q2). Given that in the soft limit λ → 0, the mapping invariants scale as
follows:

s12 → λ2s12, s13, s23 → λs13, λs23 ,

s123 → (λ2s12 + λs13 + λs23) , n · p1, n · p2 → λn · p1, λn · p2 .
(7.18)

Applying this scaling to the abelian and non-abelian parts of the splitting function separately
and only keeping the leading terms gives:

〈P̂ (ab)
g1g2q3〉

∣∣∣
SS

=
(n · q3)2(s13 + 3s23)

n · q1n · q2s13s23(s13 + s23)
+ (1↔ 2) =

4(n · q3)2

n · q1n · q2s13s23
,

〈P̂ (nab)
g1g2q3〉

∣∣∣
SS

=
1

s12s13

n · q3(n · q1 + 2n · q2)

n · q2(n · q1 + n · q2)
− 1

s13s23

(n · q3)2

2n · q1n · q2

+
1

(n · q1 + n · q2)(s13 + s23)

[
1

s12

n · q3(n · q1 − 3n · q2)

n · q2
− 1

s13

(n · q3)2

n · q1

]
+

1

(s13 + s23)2

[
1

s2
12

(1− ε)(n · q1s23 − n · q2s13)2

(n · q1 + n · q2)2

]
+ (1↔ 2) ,

(7.19)

where SS indicates that the behaviour is evaluated in the double-soft limit. The abelian
part of the splitting function gives an eikonal, as expected. Once colour conservation is

considered, all terms from 〈P̂ (nab)
g1g2q3〉

∣∣∣
SS

agree with those in Sij , as the sum over i and j causes

the additional terms in the soft function to vanish. This agreement illustrates the overlap
between the soft and collinear limits, that is important to be aware of when constructing
subtraction terms. However, there is another possible overlap with the soft-collinear limit,
which now also needs to be examined.
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7.3.2. Soft-Collinear Limit

The aim here is to compare the two-emission splitting function, for the emission of two
collinear gluons from a quark, to the corresponding soft-collinear case of one soft gluon and
one collinear gluon. This can however be formulated more generally for any amplitude with
a soft gluon and two collinear partons. For a generic squared amplitude, with a soft gluon,
q, and collinear partons p1 and p2, the soft-collinear factorisation can be described by the
following, as given in [62]:

|Mg,a1,a2,...,an(q, p1, p2, ..., pn)|2

' − 2

s12
(4πµ2εαs)

2 〈Ma,...,an(p, ..., pn)| P̂a1,a2 [J†(12)µ(q)Jµ(12)(q)] |Ma,...,an(p, ..., pn)〉 ,
(7.20)

where on the right hand side the collinear partons a1 and a2 are replaced by a parent parton
a. The terms that factorise are the soft current, Jµ(12)(q), and the single-emission splitting

function for the collinear partons, P̂a1,a2 . The terms arising from the soft-current squared
that are relevant in this case, are those that are collinear singular, namely:

J†(12)µ(q)Jµ(12)(q) '
n∑

i,j=3

Ti ·Tj Sij(q) + 2
n∑
i=3

Ti ·T(12)Si(12)(q) , (7.21)

where Sij(q) = 2sij/(siqsjq) and Si(12)(q) is the corresponding eikonal for the sum of momenta
p1 and p2 and some other momentum pi. The full form of this function is given, with
some relabelling of the notation above, where here q1 is soft and q2 and q3 are collinear for
comparison to the splitting functions:

1

s23
P̂q3g2(z3)[J†(23)µ(q1)Jµ(23)(q1)]

=
1

s23
P̂q3g2(z3)

(
CFSn(23)(q1) +

CA
2
Sn2(q1) + (CF −

CA
2

)Sn3(q1)

)
=

(
(n · q2)2(1− ε) + 2(n · q3)2 + 2n · q2n · q3

)
s12s13s23n · q1n · q2(n · q2 + n · q3)(s12 + s13)

[−CFCA(s12 + s13)(n · q3s12 − n · q2s13)

+ 2C2
F s12(n · q2s13 + n · q3(s12 + 2s13))] .

(7.22)

The single-emission splitting function as a function of z3 has been rewritten using the expres-
sion in terms of n invariants, where q1 does not contribute because it is the soft momentum,
z3 = n · q3/(n · q2 + n · q3). The next step is to apply the soft-collinear limit to the splitting
function to enable a comparison to the soft-collinear factorisation function. The mapping
invariants have the following scaling for the limit where q1 is soft and q2 and q3 are collinear:

s12, s13 → λs12, λs13 , s23 → λ2s23 ,

n · q1 → λn · q1 .
(7.23)

The scaling given above is then applied to the full two-emission splitting function for two
emitted gluons, and results in the following expression:

〈P̂g1g2q3〉
∣∣∣
S1C23

=

(
(n · q2)2(1− ε) + 2(n · q3)2 + 2n · q2n · q3

)
2s12s13s23n · q1n · q2(n · q2 + n · q3)(s12 + s13)

×
[
− CFCA(s12 + s13)(n · q3s12 − n · q2s13)

+ 2C2
F s12(n · q2s13 + n · q3(s12 + 2s13))

]
.

(7.24)

This result agrees with the expression from the factorisation formula above, when the relevant
momenta are used. The difference of a factor of two is due to differences in the full expressions
for the collinear and soft-collinear factorised amplitudes.
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7.3.3. Subtraction

The importance of showing the overlap between the collinear splitting function and the double-
soft and soft-collinear functions is to facilitate the construction of a subtraction scheme for
the singularities arising from these limits. For the two-emission case this would correspond
to NNLO subtraction. As an example of how this would function at NNLO, the principles
can be explained for the NLO case, where the expressions are more manageable. The dipole
subtraction scheme for NLO, from [15], is discussed in Sec. 4.2.

For the subtraction of soft singularities at NNLO the full soft current given in Eq. (7.15)
can be used, when combined with the partitioning to ensure the correct singularities are
subtracted. The single-emission soft current for a soft gluon with momentum q1 emitted from
a quark with momentum q2 is the eikonal, Sn2(q1). To extract the pure collinear part of the
single-emission splitting function, the soft eikonal is subtracted from the splitting function
times the leading singular denominator as illustrated here:

Pq2g1

s12
− CFSn2(q1) =

CFn · q1(1− ε)
(n · q1 + n · q2)s12

. (7.25)

The result here on the right-hand side no longer contains a leading soft singularity, i.e. scaling
of O(1/λ2), for the soft limit, where momentum q1 → λq1 and λ → 0. What remains are
terms describing the collinear limit that therefore contain only collinear leading singularities.

This same process can be repeated to extract the purely soft part from the exchange diagrams,
when working with a light-cone gauge. Since in this gauge the self-energy diagrams are used
to determine the splitting function, the pure soft behaviour must come from the exchange
diagrams. The splitting function evaluated in the soft limit is subtracted from the soft-
singular terms from the exchange diagram for a gluon emission from a quark with a quark
spectator. The resulting terms are:

|Mg1qiqr |2
∣∣
S1
− CFSn2(q1) = CF

[
(q2 · qr)

(q1 · qr)(q1 · q2)
+

n · qr
(qr · q1)(n · q1)

]
, (7.26)

where the eikonal Sn2(q1) corresponds to the soft part of the single-emission splitting function.
By considering the splitting function, where momentum qr is the emitter and taking the soft
limit of this, there is another eikonal produced that can be used to subtract the second term
on the right-hand side above, i.e. Snr(q1). This leaves only the eikonal term without the n
vector, which corresponds to the metric terms from the exchange diagrams.

A test of the subtractions for the two-emission case was carried out in Mathematica using
the results for the two-gluon-emission splitting function. From this process the pure double-
soft, soft-collinear and collinear terms can be obtained. The system of subtraction for the
two-emission case can be summarised by the following expressions:

Cjk = CjCk − SjSk|j+k coll. ,

SCjk = SjCk + SjSk|j coll. ,

CSjk = SkCj + SjSk|k coll. ,

Sjk = SjSk − SjSk|j coll. − SjSk|k coll. + SjSk|j+k coll. ,

(7.27)

where each line refers to the pure behaviour of two emissions in the triple-collinear, soft-
collinear or double-soft limits. Cjk contains the purely collinear terms for the case where the
emissions j and k are collinear and Sjk contains the terms for the double-soft limit where j
and k are soft. The SC and CS terms describe the soft-collinear limit for the two different
combinations, j soft and k collinear or j collinear and k soft. The short-hands CC, SS
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and SC refer to the factorising functions in the triple-collinear, double-soft and soft-collinear
limits respectively and the subscripts show which momenta are soft or collinear in each case.
The full expressions for the factorising functions in the different limits for the ggq case, i.e.
two gluon emissions from a quark, are given in App. D.

7.4. Conclusions from the Two-Emission Case

This formalism has the potential to be built into a subtraction scheme. There is already a
multitude of subtraction schemes available at NNLO, what would be different in this case is the
additional information available from an amplitude-level calculation. The treatment of colour
correlations is one area in which this approach can improve on that of existing approaches.
Additionally, this approach can provide smooth phase-space coverage by including both soft
and collinear singularities in the same framework. The work shown here and in Chapter 6
is part of a collaborative effort to develop a formalism for multi-emission kernels at the
amplitude level, given in [75]. These kernels are designed to encompass all IR limits within
one framework and use QCD amplitudes to allow full-colour evolution to be accessed.

Implementation of this mapping and associated formalism in the context of a parton shower
is also of interest. Such an approach, where the soft and collinear singular terms can be
factorised at the amplitude level, can be combined with the parton-branching algorithm
introduced in [70]. There is also the possibility to implement this mapping in existing showers,
although this does restrict the performance due to the use of an existing showering algorithm.
An MC implementation of the kinematic mapping, for one emission, in the Herwig dipole
shower is shown in the next chapter.





CHAPTER 8

Herwig Implementation

The previous chapters have focused on the development and testing of a kinematic mapping,
given in Sec. 6.4, that distributes recoil across all partons in the final state via a Lorentz
transformation. To test the performance of this mapping in comparison to the currently
available parton showers, it had to be implemented within an MC event generator, in this
case Herwig 7. Firstly, the current dipole shower in Herwig is introduced in Sec. 8.1 and
the kinematic mapping used is given in Eq. (8.2). Then the multi-emission mapping from
Eq. (6.22) is illustrated for the one-emission case in Sec. 8.2, as is suitable for implementation
in the parton shower code.

Two other mappings are included in the analysis for comparison, inspired by work from
[72], that are closely linked and are essentially only distinguishable by the inclusion of the
parameter y′. This parameter takes the value of 1 to give the minimally-modified mapping
‘Minmod’, or can be set to y′ = y to give a mapping which has the same structure as the
PanGlobal mapping from [68]. These two mappings are introduced in Sec. 8.3.

Then in Sec. 8.4 the implementation of these new mappings in the Herwig dipole shower is
described. To compare the mappings, the implementation was then tested in two analyses,
one at the parton level and one at the cluster level. These analyses are introduced in Sec. 8.5
and some first results are shown. The conclusions of the analyses and implementation are
given in Sec. 8.6, with a discussion of potential improvements and suggestions for future work.

8.1. Herwig Dipole Shower

The default shower in Herwig is the angular-ordered shower, although it also contains a
dipole shower, from [60], which was introduced in Sec. 4.4. The dipole shower is ordered in
transverse momentum given by:

p2
⊥ =

2pi · qq · pk
pipk

, (8.1)

for a gluon emission with momentum q from the dipole (i, k). This ordering reproduces
multiple soft, strongly-ordered gluon emissions in the most probable way as defined by the
eikonal approximation.
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Since the mapping that was developed in previous chapters is in the context of massless final-
state radiation, the description here focuses on the massless F-F dipole where both emitter
and emission are in the final state. The kinematic mapping used in the dipole shower for final
state radiation, which describes the splitting (pi, pr)→ (qi, ki1, qr), is:

qi = zpi + y(1− z)pr + k⊥ , (8.2a)

ki1 = (1− z)pi + yz pr − k⊥ , (8.2b)

qr = (1− y)pr , (8.2c)

where the emitter, emission and spectator correspond to qi, ki1, qr respectively. The transverse
component k⊥ is defined so that k⊥ ·pi = k⊥ ·pr = 0 and k2

⊥ = −p2
⊥. The expression for p⊥ in

Eq. (8.1), can then be written using the equivalent notation from Eq. (8.2) for the momenta
before emission, pi, pr, and the emission momentum, ki1. In this case, {pi, pr} and {qi, ki1, qr}
are on-shell momenta which results in the following expression for y:

k2
⊥ =− 2pi · pr(1− z)yz ,

y =− k2
⊥

2pi · prz(1− z)
.

(8.3)

From [60], y and z are defined as:

y =
p2
⊥

z(1− z)sij
, z =

pj · qi
pi · pj

, (8.4)

which agrees with the expression for y in Eq. (8.3) when sij = 2pi · pr. The recoil from the
emission is balanced locally within the dipole after each emission, which also means that after
each emission all momenta can be put on-shell.

8.2. Multiple Emission Mapping

For implementation in the Herwig dipole-shower infrastructure a mapping for one emission
must be used and then iterated via the parton-shower algorithm to produce multiple emissions.
The mapping given in Eq. (6.22) is defined for an arbitrary number of emissions, however, it
can be written for the one emission case as:

qi =
1

α̂
Λ
[
(1− αi1) pi +

(
yi − (1− αi1)βi1

)
ni −

√
1− αi1

√
αi1βi1n

(i)
⊥,1

]
, (8.5a)

ki1 =
1

α̂
Λ
[
αi1pi + (1− αi1)βi1 ni +

√
1− αi1

√
αi1βi1n

(i)
⊥,1

]
, (8.5b)

qr =
1

α̂
Λpr. (8.5c)

where the momenta, qi, ki1, qr, pi, pr and ni are on-shell and as before qi, ki1, qr correspond
to the emitter, emission and spectator. For this case the variable βi1 = yi which arises from
the on-shell conditions, and αi1 is equivalent to (1− z) used in the Herwig code. Solving the
mapped expression for k2

i1 = 0 gives:

(n
(i)
⊥,1)2 =− 2pi · ni ,

yi =− k2
⊥

2pi · niz(1− z)
,

(8.6)
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where, z = (1− αi1) and k⊥ =
√
yiz(1− z)n(i)

⊥,1. The Lorentz transformation is the same as
defined in Eq. (6.27), and can be written for the single emission case, where N = yini and
N2 = 0, as:

Λµν = gµν −
(yin

µ
i +Qµ)(yiniν + (α̂+ 1)Qν) + α̂2QµQν

(α̂+ 2)yini ·Q+ (α̂+ 1)Q2

+
α̂Qµ(yiniν +Qν)(2(α̂+ 1)yini ·Q+ (2α̂+ 1)Q2)

(2yini ·Q+Q2)((α̂+ 2)yini ·Q+ (α̂+ 1)Q2)
,

(8.7)

and for this case it can also be shown that α̂ =
√

1 + yi. The expression used for ni is:

ni = Q− Q2

2pi ·Q
pi , (8.8)

as in Sec. 6.4. The z variable can be used for this mapping in the same way as for the mapping
already implemented in Herwig. However, it can be seen above that the expression for yi is
not the same as the definition in Eq. (8.3), and so y has to be defined separately for this
mapping. The Lorentz transformation expression is also important for the method to apply
the recoil to the momenta.

8.3. Minimally Modified Mapping

Here, the framework for the minimally modified mapping is given, that originates from the
shower developed in [72]. This is a dipole shower that combines components of existing dipole
and angular ordered showers. Two different versions of the mapping are implemented for the
values of y′ = 1 or y′ = y. Both versions of the mapping are defined in the massless limit,
where qi is the emitter, ki1 is the emission and qr and ql are spectators:

qi = κΛzpi, (8.9a)

ki1 = κΛ((1− z) pi + (1− y) pr ± k⊥), (8.9b)

qr = κΛ y′ pr, (8.9c)

ql = κΛ pr ∀ l ∈ event | l 6= i, r. (8.9d)

The sign of k⊥ is an arbitrary choice and is chosen to be minus for this implementation as
this agrees with the Herwig dipole-shower mapping. The total momentum in the lab frame
is defined as:

Q =
∑

∀ l∈event

pl , (8.10)

and the total momentum in the dipole frame is given by:

T = Q± k⊥ + (1− y) pr − (1− y′) pr . (8.11)

The Lorentz transformation is constructed to conserve momentum in both the dipole and lab
frames as:

κΛµνT
ν = Qµ , (8.12)

where κ is a scaling parameter. Momentum conservation requires that the Lorentz transfor-
mation takes the form:

Λµν = gµν +
2κQµTν
Q2

− 2(Q+ κT )µ(Q+ κT )ν
(Q+ κT )2

≈ gµν ±O(k⊥) , (8.13)
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which in the collinear limit gives the metric as the leading term. From squaring Eq. (8.12)
the expression for κ is found to be:

κ =

√
Q2

T 2
≈ 1−O(k2

⊥) . (8.14)

For the case of the minimal mapping, where y′ = 1, the requirement that the emissions ki1 is
on-shell gives:

y = 1∓ k2
⊥

(1− z)2pi · pr
. (8.15)

The other case, where y′ = y, has the same expression for y, but the expression for T is
different. Introducing the extra factor of y to a spectator parton is expected to affect the
showering for hard emissions in the anti-collinear limit. This is a region of phase space that is
only relevant at next-to-leading order as it is suppressed by the partitioning from the dipole.
The y′ = y, ‘Pglobal’ mapping is essentially an analogue of the PanGlobal mapping from [68],
which is given by:

p̄k =akp̃i + bkp̃j + k⊥ , (8.16a)

p̄i =(1− ak)p̃i , (8.16b)

p̄j =(1− bk)p̃j , (8.16c)

where a boost is subsequently applied to the p̄i,j,k momenta to conserve momentum. This
results in the momenta pi, pj , pk which are equivalent to qi, qr, ki1 from Eq. (8.9) respectively.

8.4. Implementation

Now that all of the mappings have been introduced, their implementation within the Herwig
7 parton shower can be discussed. As was shown in Sec. 8.1, Herwig contains a dipole shower
based on the Catani-Seymour dipole formalism and an angular-ordered shower. The first point
of comparison is the dipole shower as this is also where the mapping will be implemented.
However, the angular-ordered shower is also included in final plots to show the difference
between the two shower approaches.

The dipole-shower infrastructure in Herwig can treat both massive and massless dipoles, as
well as all possible combinations of final and initial-state dipoles. As the formalism developed
in Sec. 6 is directly applicable to final-final (FF) state dipoles, it was chosen to implement
the mappings for this case. The final-final dipole kinematics, in the massless case, are de-
fined within the class ‘FFlightkinematics’, where there is a defined function to carry out the
kinematic mapping. To enable the user to access the different mappings, a switch first had to
be included for each dipole that is accessible from the Herwig input file. The switch variable
is called ‘theRecoilScheme’ and has a default value of 0 that corresponds to the standard
Herwig dipole shower. The other mappings are associated with the following values:

• theRecoilScheme = 1→ ‘Multi-emission’ mapping

• theRecoilScheme = 2 → ‘Minmod’ mapping y′ = 1

• theRecoilScheme = 3 → ‘Pglobal’ mapping y′ = y

For each of the settings given above the relevant kinematic mapping was implemented with
the corresponding expressions for y and k⊥. The total momentum in the lab frame, Q had to
be introduced as a new variable as well as N for the multi-emission mapping and T for the
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‘Minmod’ and ‘Pglobal’ mappings, which are needed to define the Lorentz transformation.
The scaling factors α̂ and κ are defined in the previous sections and these were combined
with the transformation into one method. The transformation and scaling are implemented
within a method called ‘transform’ that has the equivalent effect of:

transform(p) ≡ 1

α̂
Λµνp

ν , (8.17)

for the multi-emission mapping. For the ‘Minmod’ and ‘Pglobal’ mappings κ replaces the 1/α̂
and the corresponding expression for Λµν is used. There are already boosts defined within
Herwig and so the same tools could be used to implement the Lorentz transformation.

As a first test of the implementation the input file was modified to only produce one mass-
less emission and some debugging had to be carried out to ensure that there were no large
momentum violations. This implementation of the different mappings can also be combined
with the appropriate phase space and splitting functions, this is left to future work and will
be discussed in more detail in Sec. 8.6.

8.5. Analysis

The aim here is to compare the different shower mappings at the parton and cluster level.
As was shown in Sec. 8.4, the implementation focuses on the kinematic mapping and so
statements can only be made based on the effect of the mapping. It is possible that the
future inclusion of phase-space effects might also affect results. It would be beneficial to
compare the new mappings to data although this will require more rigorous testing and a
more complete shower implementation that could be carried out in the future.

All plots shown are from analyses with 100,000 events, which is sufficient for the purpose of
comparing the showers to each other. To compare the showers to experimental data more
events would usually be required. The generator set up used is for e+e− annihilation, as this
provides a clean environment in terms of final state QCD radiation, and could be used to
compare to LEP data. The LEP Matchbox input file, provided with the Herwig installation,
was used and slightly modified for each of the analyses. In both cases the QED initial state
radiation was switched off. The plots in this section are made using Rivet [76].

The abbreviations PL and CM refer to the parton-level and cluster-mass analyses respectively
and the labelling of the showers used in the plots is as follows:

• Angular = Herwig angular-ordered shower

• Default = Herwig dipole shower Sec. 8.1

• Multi = multi-emission mapping Sec. 8.2

• Minmod = minimally-modified mapping Sec. 8.3, y′ = 1

• Pglobal = analogue of PanGlobal shower Sec. 8.3, y′ = y

The two analyses used are custom analyses to look at parton-level and cluster-level observ-
ables. The parton-level analysis should show most clearly any direct effects from the parton
shower, as the simulated data at this level is the end-result of the shower.

8.5.1. Parton Level

The input file was set up for this analysis with hadronisation and decays switched off as the
output from the simulation should be at the parton level. The analysis is designed for e+e−
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to jets events and gives plots for ALEPH jet rates and event shapes. One of the most common
event-shape variables, which is also IR safe, is thrust, that is defined as [77]:

T = max

∑
i |~pi · ~n|∑
i ~pi

, (8.18)

where pi are final-state parton momenta and n is an arbitrary unit vector. The maximum is
obtained for the vector nT which corresponds to the thrust axis and should lie in the direction
of the jet formed by the momenta pi.

Once the thrust axis has been defined it is possible to define two axes perpendicular to it.
These two other axes correspond to two other variables, thrust major, Tmajor, and thrust
minor, Tminor. The thrust major vector, nMa, is defined in the same way as the thrust vector,
but with the additional condition that nMa must lie in the plane perpendicular to nT :

Tmajor = max
~nMa⊥~nT

( |~pi · ~nMa|∑
i |~pi|

)
. (8.19)

Thrust minor is defined in the same way as the thrust major, except that the minimum
instead of the maximum is taken:

Tminor = min
~nmin⊥~nT

( |~pi · ~nmin|∑
i |~pi|

)
. (8.20)

The plots for two event-shape variables are shown below, these are τ = 1 − T and thrust
minor. 1 − T is used as a measure of the shape of the final state, where τ = 0 describes
back-to-back jets and τ > 0 is a measure of how isotropic the final state is.
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Figure 8.1.: 1− T and Tminor for different showers from the parton-level analysis, ratio w.r.t
the angular-ordered shower.

As the event simulation is set up for LEP collisions, a large number of two-jet events are
expected, as is shown by the peak around zero for 1 − T in Fig. 8.1. The lines from the
Herwig dipole and angular-ordered shower can be considered to be close to data as these are
tuned to LEP data. A clear distinction can be seen in both plots between the ‘Minmod’
and ‘Pglobal’ showers and the other three showers. This is expected, because there is a clear
difference in the distribution of transverse momentum for those two mappings when compared
to the others, although the same branching method was used. Potentially, this indicates that
there is a flaw in the implementation that could be related to the phase space or the splitting
functions needing to be adjusted for these mappings. Future work will aim to investigate this
discrepancy further and improve the implementation.
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8.5.2. Cluster Mass

For this analysis it was necessary to go one step further with the simulation and include
hadronisation. Therefore, the input-file setup for this case had just the decays switched
off. This cluster-mass analysis shows the distribution of the cluster masses before and after
hadronisation. This gives an indication of the mass distribution for the colour singlets coming
out of the parton shower and can be used to check for pre-confinement.

Pre-confinement is derived from the basic properties of QCD and states that the mass of
a colour singlet, i.e. cluster, is limited by a power law ≈ (MC/Q0)−4. Where Q0 is the
perturbative cut-off and MC is the cluster mass. This is a result of the cluster constituents
being close in momentum space and gives a peak in the cluster-mass distribution at low
masses, O(1 GeV). As a QCD concept this was established in [34] and was discussed in the
context of Herwig++ in [78]. Hard jets from different hard interactions should be colour
connected when they are close in momentum space. Non-perturbative hadronisation models
do not contain such correlations between jets and so a colour reconnection model has to be
added to describe MPI.

The plots shown below correspond to the cluster-mass distribution before hadronisation, ‘first
cluster mass’, and after hadronisation, ‘last cluster mass’.
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Figure 8.2.: First and last cluster-mass distributions, ratio w.r.t the angular-ordered shower.

It is already known that the initial cluster-mass spectrum should be affected by the per-
turbative model used in the shower and so it is expected to see a difference between the
angular-ordered and dipole shower. What is interesting, in Fig. 8.2, is that the ‘Minmod’ and
‘Pglobal’ showers are closer to the behaviour of the angular ordered shower, that is usually
considered to be a better description of pre-confinement. After hadronisation the mass distri-
bution shows a higher density at lower masses, that is expected as the cluster-fission process
is designed to break down heavy clusters into lighter ones. None of the dipole showers suffer
from the same artefact as the angular ordered shower in the last cluster-mass distribution,
which is assumed to be the result of a cut-off in the angular-ordered shower.

8.6. Conclusions from the Implementation

This Chapter has outlined three different mappings that were implemented in the Herwig
dipole-shower code. This was done to compare the behaviour of these other mappings to that
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of the default dipole mapping, which is based on Catani-Seymour dipole factorisation. It
was also possible to compare to the angular-ordered shower to give an idea of the differences
between parton-shower approaches.

The plots from the parton-level analysis show a difference between the ‘Minmod’ approach
and the multi-emission mapping, which can largely be attributed to the different distribution
of the transverse recoil. For the cluster-mass plots the ‘Minmod’ and ‘Pglobal’ mappings are
in better agreement with the angular-ordered shower than the other dipole showers. This is
also a better description of the cluster pre-confinement which could indicate that they result
in a more physical parton evolution.

There are many possibilities to improve this implementation that will be the subject of future
work. The implementation was carried out at the mapping level and uses the existing dipole-
shower framework in Herwig. The first steps would be to introduce the same switch used
for the different mappings into the phase-space cut-off and Jacobian. This would include
the different expressions for y for each of the mappings in the shower and the corresponding
Jacobian factors.

The switches for the ‘Minmod’ and ‘Pglobal’ mappings can also be used to give different
expressions for the splitting functions. The mapping as given in [72], contains a dipole par-
titioning to conserve longitudinal momentum in the same way as an angular-ordered shower.
This partitioning was not included in this implementation and could have affected the differ-
ences observed between these mappings and the others. It would be of interest to implement
this in the shower as part of future work.

With the development of the CVolver code [73], which makes use of amplitude-level branching
to go beyond leading colour, there is an ideal framework for the implementation of not only
the multi-emission mapping but the whole formalism shown in this thesis. This would include
splitting amplitudes combined with partitioning functions to give emission kernels capable of
describing both soft and collinear behaviour. As was developed in previous chapters, such
a formalism can be used for not only one emission but two or more emissions and so would
result in a higher-order parton shower.

The NLL errors, produced by both angular-ordered and dipole showers, have been exposed in
recent years and this has motivated work towards new solutions. It would also be of interest
in future work to aim to describe variables shown in [68] to determine if the new mappings are
NLL accurate. If such a mapping is found that is NLL accurate, then it would be of interest
to include this in the Herwig dipole shower to improve the description of higher logarithmic
terms. This would of course need to be fully tested and validated before being included in a
future Herwig release.



CHAPTER 9

Summary and Outlook

This thesis has investigated the process of IR factorisation of QCD amplitudes for more than
one emission. Knowledge of IR singularities is an important component of theory predictions
for the LHC and other high-energy physics experiments. The accuracy of the predictions for
both signal and background effects must be improved to keep up with experimental develop-
ments. MC event generators play an important role in these predictions and the comparison
of data to theory. Improved comparisons can exclude theories and give clues to guide the
construction of new physics theories.

The current paradigm of MC event generators is introduced in Chapter 3, with an emphasis
on the methods used in parton showers in Chapter 4. This introduces the different generator
frameworks, and the differences in the parton showers and hadronisation models available.
The Catani-Seymour dipole formalism is discussed in detail, because this can be used as the
basis of a dipole shower, such as that in Herwig. At the end of Chapter 4, a summary is given
of the logarithmic accuracy for both dipole and angular-ordered showers. The known errors
for NLL accuracy are explained and some possible solutions and new methods are introduced.
There are examples of ad-hoc fixes that are applied at the shower or hadronisation stage, for
issues that could be better addressed by a systematic expansion within the parton shower.
Such an expansion would give higher-order predictions and provide a better estimation of
uncertainties.

In this thesis, a kinematic mapping and associated formalism is developed with the aim to
determine an emission kernel that can describe all IR limits using one mapping. Firstly,
in Chapter 5, a decomposition of the cross-section is shown and compared to the dipole
formalism to illustrate which diagrams contribute to a specific kernel. The kernels are defined
by a specific collinear limit, with the help of a partitioning factor, but also contain soft and
soft-collinear behaviour. Then a mapping and its associated phase-space factorisation are
introduced, that is based on a Sudakov decomposition and is the same as the mapping used
in the Herwig dipole shower. This mapping is used to calculate the single-emission diagrams
for a gluon emission from both a quark and gluon emitter. The collinear limit is taken to
check the collinear behaviour of the mapping, where the splitting functions are reproduced.

Chapter 5 includes a second kinematic mapping, that introduces a Lorentz transformation to
distribute the recoil from an emission across multiple final-state partons. The phase space in
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this case requires detailed calculation due to the inclusion of a Lorentz transformation. This
resulting expression for the factorised phase space is given, including the Jacobian factor, and
is shown to be equal to the factor from the Catani-Seymour mapping in the massless limit.
The behaviour of this mapping in the soft and collinear limits is discussed and it is shown
that the splitting functions can again be obtained in the collinear limit.

In Chapter 6 the framework for multiple emissions is described by first extending the com-
binatorics from the one-emission case to the two-emission case. This is then generalised to
k-emissions, that allows the possible diagrams that will contribute to the singular limits, for
any number of emissions, to be identified. The decomposition of the matrix element can
also be rewritten as a density-type operator, that is particularly useful for implementation
in a parton-shower algorithm. To define an emission kernel for a specific collinear limit the
different collinear regions need to be partitioned. The partitioning formalism is developed for
an arbitrary number of emissions and checked carefully for one and two emissions, to ensure
that the partitioning factors themselves do not contribute to the singular terms. To com-
bine the partitioning with specific amplitudes it is necessary to define a kinematic mapping
for k-emissions with associated phase-space factorisation. This mapping also makes use of a
Lorentz transformation to distribute recoil, but introduces new parameters to describe the
soft and collinear limits of each emission for multiple emitters.

To test the general mapping from Chapter 6, the two-emission case is examined in Chapter 7.
First, the mapping for two emissions, both with one emitter and two emitters is defined. The
one-emitter two-emissions mapping is then used to derive the two-emission splitting func-
tion for two collinear-gluon emissions from a quark. This illustrates that the mapping and
partitioning formalism reproduce the correct behaviour in the collinear limit. The splitting
function also contains soft and soft-collinear terms that can be extracted by taking the cor-
responding limits. It is of interest to compare the different terms from the splitting function
to the double-soft and soft-collinear functions, that can also be determined for two gluon
emissions from a quark. These different functions can be combined to determine the terms
corresponding to the pure singular behaviour in each of the possible limits, and can be used
to construct counter terms for NNLO subtraction.

In Chapter 8, the multi-emission mapping from Chapter 6 is implemented in Herwig 7. The
Herwig dipole-shower framework is used for the implementation and a switch is included to
allow the user to choose the mapping from the input file. For comparison, the analyses are
run with five different shower options, the Herwig dipole and angular ordered showers, the
multi-emission mapping and two versions of the minimally-modified mapping. The multi-
emission and minimally-modified mappings use a Lorentz transformation to distribute recoil,
that needed to be incorporated into the dipole shower code. The results of the analyses show
slight variations from the standard Herwig showers, although it has to be acknowledged that
the phase space has not yet been modified for the new mappings. As part of future work,
the implementation could be improved to include phase-space variations and changes to the
splitting kernels used.

The mapping and partitioning developed in Chapter 6 are important parts of a formalism
to describe multi-emission kernels, presented in [75]. This formalism establishes a method
to decompose emission amplitudes for an arbitrary number of emissions and to collect the
IR singular behaviour for different collinear sectors into emission kernels. The amplitude-
level approach allows access to spin and colour information, that can be used to improve the
spin and colour evolution of a parton shower. The parton-branching algorithm from [70],
can be readily combined with the formalism from [75] as they are both defined for emission
amplitudes. Future work on the emission-kernel formalism could extend the current massless
treatment to the massive case and include initial-state radiation, since the current definitions
only apply to emitters and spectators in the final state.
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In terms of the MC-event-generator implementation of the mapping and partitioning, shown
in this thesis, there are many possible directions for future development. The current imple-
mentation in Herwig 7 can be improved by including the relevant phase-space factors and the
splitting-function partitioning for the minimally-modified mapping. To include higher-order
emissions in the parton shower the two-emission kernels and mapping can be implemented
in the shower. This would make it possible to construct NNLO matching schemes, and give
better predictions for observables that have large NNLO corrections.

It is also important to address the issues of logarithmic accuracy, shown in [66] and [67],
that were discussed in Sec. 4.5. The shower presented in [72] has already been shown to be
NLL accurate for some observables, but is limited by definition to leading colour. The im-
plementation of the methods outlined in this thesis, in combination with an improved shower
algorithm has the potential to give predictions at higher logarithmic accuracy and beyond
leading colour. An MC code for beyond-leading-colour predictions, in the soft approximation,
has been established in CVolver [73], and is still under development to include hard emissions
and incoming hadrons. The combination of an amplitude-level emission-kernel formalism and
the CVolver code, would allow hadron-collider observables to be simulated beyond leading
colour. The resulting parton shower would be able to predict both global and non-global jet
observables, with higher accuracy than currently available parton showers.





APPENDIX A

Details of Single-Emission Calculation

A.1. Single Emission, Gluon Emitter - Old Mapping

Shown here are the detailed calculations of the diagrams needed to reproduce the collinear
splitting function for a gluon emission from a gluon emitter. The relevant diagrams are shown
in Eq. (5.34) and Eq. (5.35). The matrix element for the gluon-exchange diagram is written
down using the Feynman rules defined in Sec. 2.3.1. The exchanged gluon gives a factor of
−gµν , in a covariant gauge, from the cutting rules as explained in Sec. 2.3.3. The exchange
diagram matrix-element squared can be expanded as:

|M (E)
g1g2
|2 = (−)[−gsfabc(gµν(2qi + q)λ + gνλ(−qi + q)µ + gλµ(−qi − 2q)ν)

−i
(qi + q)2

]νµ

× [
i

(qj + q)2
(−gsf cde)(gλσ(2q + qj)ρ + gσρ(−2qj − q)λ + gρλ(qj − q)σ)]ρσ

=
−g2

sf
abcf cde

4(qi.q)(qj .q)
[gµν(2qi + q)λ + gνλ(−qi + q)µ + gλµ(−qi − 2q)ν ]νµ

× [gλσ(2q + qj)ρ + gσρ(−2qj − q)λ + gρλ(qj − q)σ]ρσ .

(A.1)

After algebraic manipulation and implementation of the kinematic mapping, the collinear-
singular terms can be extracted. Namely, those not containing any power of y because the
denominator contains a factor 1/y. The collinear-singular terms from the numerator are as
follows:

N (E)
g1g2

= gµν(pi)σ(pi)ρ
(
1− z2

)
− 2gµνgρσ(pi · pj)(1 + z) . (A.2)

Plugging this result back into the matrix element, using the fabc colour algebra given in
Sec. 2.3.2 and the substitution that qj · q = (1− z)pi · pj in the collinear limit gives:

|M (E)
g1g2
|2 =

−g2
s(−Ti.Tj)

4(qi.q)(qj .q)
[gµν(pi)σ(pi)ρ

(
1− z2

)
− 2gµνgρσ(pi · pj)(1 + z)]

=
−g2

s(−Ti.Tj)
4(qi.q)

[
gµν

(pi)σ(pi)ρ
(pi · pj)

(1− z2)

1− z − 2gµνgρσ
(1 + z)

1− z

]
.

(A.3)
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In the total sum over diagrams there is a factor of two times this result, due to the conjugate
diagram. The calculation of the triple-gluon vertex is dependent on the order and direction
of the momentum vectors q, qi and qj . To account for the symmetry between the emitter and
emission in this case, it is necessary to calculate the exchange diagram with q and qi swapped,
this is expected to result in the cancellation of some of the final terms found above.

|M (E)
g2g1
|2 = (−)[−gsfabc(gµν(qi + 2q)λ + gνλ(qi − q)µ + gλµ(−2qi − q)ν)

−i
(qi + q)2

]νµ

× [
i

(qj + qi)2
(−gsf cde)(gλσ(2qi + qj)ρ + gσρ(−2qj − qi)λ + gρλ(qj − qi)σ)]ρσ

=
−g2

sf
abcf cde

4(qi.q)(qj .qi)
[gµν(qi + 2q)λ + gνλ(qi − q)µ + gλµ(−2qi − q)ν)]νµ

× [(gλσ(2qi + qj)ρ + gσρ(−2qj − qi)λ + gρλ(qj − qi)σ)]ρσ .

(A.4)

After manipulating the gluon vertex terms and applying the kinematic mapping the following
singular terms survive:

N (E)
g2g1

= gµν(pi)σ(pi)ρz(2− z) + gµνgσρ(pi.pj)2(z − 2) . (A.5)

The numerator terms in the context of the full matrix element, after using the substitution
that qj · qi = zpi · pj in the collinear limit, can be written as:

|M (E)
g2g1
|2 =

−g2
s(−Ti.Tj)

4(qi.q)(qj .qi)
[gµν(pi)σ(pi)ρz(2− z)− gµνgσρ(pi.pj)2(2− z)]

=
−g2

s(−Ti.Tj)
4(qi.q)

[
gµν

(pi)σ(pi)ρ
(pi · pj)

(2− z)− 2gµνgσρ
(2− z)
z

]
.

(A.6)

The above result is the same as the q exchanged result with q and qi swapped, that in the
collinear limit is equivalent to z → (1 − z). Executing the sum over indices i and j gives
a factor of CA from colour conservation for a gluon emitter. The matrix element for the
self-energy-type diagram, containing a cut gluon loop propagating clockwise, can be written
down as:

|M (SE)
gg |2 = [

−i
(qi + q)2

(−gsfacg)(gµλ(qi + 2q)τ + gλτ (qi − q)µ + gτµ(−2qi − q)λ)

× (−gsf cbg)(gλν(qi + 2q)τ + gντ (−2qi − q)λ + gτλ(qi − q)ν)
i

(qi + q)2
]νµ

=
g2
sf

cbgfacg

4(qi.q)2
[(gµλ(qi + 2q)τ + gλτ (qi − q)µ + gτµ(−2qi − q)λ)

× (gλν(qi + 2q)τ + gντ (−2qi − q)λ + gτλ(qi − q)ν)]νµ .

(A.7)

After simplification of the numerator algebra and using the identity, gλτgλτ = D, where D is
the number of dimensions, the numerator terms are:

N (SE)
gg = gµν(8qi · q) + (D − 6)((qi)

ν(qi)
µ + (q)ν(q)µ) + (−D − 3)((qi)

ν(q)µ + (q)ν(qi)
µ)

(A.8)

Substituting this result back into the full amplitude gives:

|M (SE)
gg |2 =

g2
sf

cbgfacg

4(qi · q)2
[gµν(8qi · q) + (D − 6)((qi)

ν(qi)
µ + (q)ν(q)µ)

+ (−D − 3)((qi)
ν(q)µ + (q)ν(qi)

µ)] .

(A.9)
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At this point it is appropriate to consider the contributions from the ghost loop, which have
to first be determined. The ghost-loop diagram corresponds to two separate diagrams, each
with the loop propagating in a different direction, which correspond to the results for G1 and
G2 shown below. Both need to be added to the gluon loop to give the correct result in a
covariant gauge, such as is used here. The first ghost-loop diagram can be written as:

|M (G1)
gg |2 = [

i

(qi + q)2
(gsf

bgc(−qν)(−)(gsf
acgqµi )

−i
(qi + q)2

]νµ

=
g2
sf

bgcfacg

4(qi.q)2
[qνqµi ]νµ .

(A.10)

The diagram containing the ghost loop propagating in the opposite direction is given and
then added to the first result to give the total contribution from the ghost loop:

|M (G2)
gg |2 =

g2
sf

bgcfacg

4(qi.q)2
[qνi q

µ]νµ ,

|M (G)
gg |2 = |M (G1)

gg |2 + |M (G2)
gg |2 =

g2
sf

bgcfacg

4(qi.q)2
[qνqµi + qνi q

µ]νµ .

(A.11)

Given that f cbgfacg = −CAδab = f bgcfacg, it becomes clear that the pre-factors for the gluon
and ghost-loop diagrams are equivalent and so the terms can be directly added. When D is
considered in dimensional regularisation it can be written as (4− 2ε). The total of the result
from the gluon loop added to both contributions from the ghosts gives:

|Mself |2 = |M (SE)
gg |2 + |M (G)

gg |2

=
−g2

sCAδab
4(qi · q)2

[gµν(8qi · q) + (D − 6)(qνi q
µ
i + qνqµ) + (−D − 3)(qνi q

µ + qνqµi )

+ (qνqµi + qνi q
µ)]

=
g2
sCAδab
2(qi.q)

[4(−gµν) + (4− 2D)
(qνi q

µ
i + qνqµ)

2(qi.q)
+ (D + 2)

(qi + q)ν(qi + q)µ

2(qi · q)
]

=
16παsCAδab

2(qi.q)
[(−gµν)− (1− ε)(qνi q

µ
i + qνqµ)

2(qi.q)
+

(3− ε)
2

(qi + q)ν(qi + q)µ

2(qi.q)
] .

(A.12)

The next step is to implement the mapping as for the exchange diagrams, where the expression
can be further simplified by assuming that the momenta connected to the hard amplitude
are on-shell and so any pνi or pµi momenta can be taken to be zero. This is a statement of
transversality of the amplitude. When considering the collinear splitting function only the
leading collinear-singular terms are needed i.e. those with a scaling of 1/λ2 in the collinear
limit. In this case (qi + q)ν(qi + q)µ term can be neglected as it maps to a term with factor
y2 and so is finite in the collinear limit. The resulting singular terms are:

|Mself |2 =
16παsCAδab

2(qi.q)

(
(−gµν)− 2(1− ε)z(1− z) nµ⊥n

ν
⊥

2(pi.pj)

)
. (A.13)

The final result shown in Eq. (5.42) is the combination of the self energy and exchange diagram
results which reproduces the known collinear splitting function.

A.2. Single Emission - LT Mapping

The Lorentz transformation is designed to conserve the total momentum before and after the
emissions which requires the following action:

αΛµνQ
ν = Qµ − ynµ , (A.14)
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where α is a scaling factor. The solution which will be used here is the proper orthochronus
transformation given by:

Λµνp
ν = p̂µ, p2 = p̂2 = M2 ,

Λµν = ηµν −
1

M2 + p · p̂ (pµpν + p̂µp̂ν + pµp̂ν) +
M2 + 2p · p̂

M2(M2 + p · p̂) p̂
µpν .

(A.15)

Which for pν = Qν and p̂µ = (Qµ − ynµ)/α gives:

Λµν =
ynµ(Qν − ynν) +Qµ(y(1 + α)nν − (1 + α+ α2)Qν)

α(−yn ·Q+ (1 + α)Q2)

+
(ynµ −Qµ)Qν(2yn ·Q− (2 + α)Q2)

αQ2((1 + α)Q2 − yn ·Q)
+ δµν .

(A.16)

Squaring Eq. (A.14) gives in the solution α =
√

1− y. This allows the following results to
be determined in terms of pi and Q:

αΛµνp
ν
i = pµi ,

2αnµΛµνp
ν
i = 2pi ·Q .

(A.17)

To investigate the mapping it is useful to determine the dot products between the momenta,
where n2

⊥,1 = −2αΛµνp
ν
i nµ, the result above has been used to give n2

⊥,1 = −2pi ·Q. The dot
products are as follows:

k1 · qi = (α1 + β1)ypi ·Q ,

k1 · qk = ((1− y)α1 − yβ1
Q2

2pi ·Q
)pi · pk + yβ1pk ·Q+

√
α1β1y(1− y)pk · n⊥,1 ,

qi · qk = ((1− y)(1− α1)− y(1− β1)
Q2

2pi ·Q
)pi · pk + y(1− β1)pk ·Q

−
√
y(1− y)α1β1 pk · n⊥,1 .

(A.18)

It can be shown that α1 = 1− β1, which is only true for the single-emission case (α1 is com-
parable to (1− z) in the mapping used in Sec. 5.2). This results in the following expressions:

kµ1 = (α1 − y(1− α1)
Q2

2pi ·Q
)pµi + y (1− α1) Qµ +

√
yα1(1− α1)nµ⊥,1 ,

qµi =

(
1− α1 − yα1

Q2

2pi ·Q

)
pµi + yα1Q

µ −
√
yα1(1− α1)nµ⊥,1 ,

qµk = αΛµνp
ν
k = A1p

µ
i +A2Q

µ +
√

1− y pµk .

(A.19)

The invariants are also redefined as:

k1 · qi = ypi ·Q ,

k1 · qk = ((1− y)α1 − y(1− α1)
Q2

2pi ·Q
)pi · pk + y(1− α1)pk ·Q

+
√
α1(1− α1)y(1− y)pk · n⊥,1 ,

qi · qk = ((1− y)− α1(1− y + y
Q2

2pi ·Q
)pi · pk + yα1pk ·Q

−
√
α1(1− α1)y(1− y) pk · n⊥,1 .

(A.20)

The collinear splitting function can be calculated using this mapping, where the calculations
give results equivalent to those in Sec. 5.2.2.
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A.2.1. Jacobian Calculation

Here the details are given of the calculation of the Jacobian, for the mapping used in the
previous section and given in Eq. (5.45). The Jacobian is a necessary component of the
phase-space factorisation. The total momentum Q is defined as p1 + p, that allows Q2 and
thus n to be expressed as:

Q2 = p2 + 2p1 · p ,

nµ(p1 + p, p1) = pµ1 + pµ − p2 + 2p1 · p
2p1 · p

pµ1 = pµ − p2

2p1 · p
pµ1 .

(A.21)

At this stage it is useful to apply the on-shell conditions, p2 =
m2

1− y and p2
1 = 0. Then q1

and q can be written as follows:

q1 =p1 + y(p− p1
m2

(1− y)2p1 · p
)− k1,m ,

q =p− y(p− p1
m2

(1− y)2p1 · p
) .

The emitter momentum, q1, is set on-shell and so q2
1(1 − y) = 0. This can be solved to give

two expressions for y, only one of which is sensible in the massless case:

y =−
−k2 − 2k · p+ 2k · p1 + m2k·p1

p·p1
+ 2p · p1

4(k · p− p · p1)

−

√(
k · k + 2k · p− 2k · p1 − m2k·p1

p·p1
− 2p · p1

)2
− 8(k2 − 2k · p1)(k · p− p · p1)

4(k · p− p · p1)
.

(A.22)

In the massless limit:

y = − k · p1

k · p− p · p1
. (A.23)

The full expression for y can then be substituted into the expressions above for q1 and q
before differentiating to give the Jacobian. It is also useful to define z in terms of the dot
products between the momenta:

z = 1 +
m2k · p1

2(1− y)(p · p1)2
− k · p
p · p1

. (A.24)

The above expressions for z and y can be rearranged to express the invariants as:

k · p1 = yz(p · p1) +
k2

2
,

k · p =
m2k2 + 2p · p1

(
m2yz + 2(1− y)(1− z)p · p1

)
4(1− y)p · p1

.

(A.25)

The phase-space limits are constrained by the term under the square root in y, that can be
rewritten using the expressions for k · p1 and k · p from above:√(

k · k + 2k · p− 2k · p1 −
m2k · p1

p · p1
− 2p · p1

)2

− 8(k2 − 2k · p1)(k · p− p · p1)

=
m2yk2 + 2z(p · p1)

(
m2y2 + 2(−1 + y)2(p · p1)

)
2(−1 + y)(p · p1)

.

(A.26)
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Using this expression, y can be rewritten as:

y =−
−k2 − 2k · p+ 2k · p1 + m2k·p1

p·p1
+ 2p · p1

4(k · p− p · p1)

− m2yk2 + 2z(p · p1)
(
m2y2 + 2(−1 + y)2(p · p1)

)
8(−1 + y)(p · p1)(k · p− p · p1)

.

(A.27)

The Jacobian is defined as the determinant of the matrix of the partial derivatives of the
momenta before the mapping w.r.t. the momenta after the mapping:

J =

∣∣∣∣∂(q1, q)

∂(p1, p)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂qµ1
∂pν1

∂qµ1
∂pν

∂qµ

∂pν1

∂qµ

∂pν
.

∣∣∣∣∣∣∣∣
As a first step in evaluating the Jacobian, the derivatives of all the dot products are defined.
However, since the on-shell conditions have already been applied, the energy component
can be taken out as a ratio and will be factored in later. These derivatives are w.r.t. the
momentum component carrying index b:

∂p · p1

∂pb1
=
p0

p0
1

p1b − pb ,

∂p · p1

∂pb
=
p0

1

p0
pb − p1b ,

∂k · p1

∂pb1
=
k0

p0
1

p1b − kb ,

∂k · p
∂pb

=
k0

p0
pb − kb .

The elements of the Jacobian are given by:

∂qa1
∂pb1

=δab +
∂y

∂pb1
(pa − pa1

m2

(1− y)2p1 · p
) + y

∂

∂pb1
(pa − pa1

m2

(1− y)2p1 · p
) ,

∂qa1
∂pb

=
∂

∂pb
(y(pa − pa1

m2

(1− y)2p1 · p
)) ,

∂qa

∂pb1
=− ∂

∂pb1
(y(pa − pa1

m2

(1− y)2p1 · p
)) ,

∂qa

∂pb
=δab −

∂

∂pb
(y(pa − pa1

m2

(1− y)2p1 · p
)) .

To evaluate the Jacobian it is useful to work in a frame where p and p1 are back-to-back and
both have a zero transverse component:

pµ1 =

(
Q2 − m2

1−y
2Q

,~0⊥,
Q2 − m2

1−y
2Q

)
,

pµ =

(
Q2 + m2

1−y
2Q

,~0⊥,

m2

1−y −Q2

2Q

)
.

(A.28)
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In this frame the longitudinal component is denoted by the superscript l e.g. pl =
Q2 − m2

1−y
2Q

,

the following expressions can be written as:

2p1 · p = Q2 − m2

(1− y)
,

pµ − pµ1
m2

(1− y)Q2 −m2
=

(
Q

2
,~0⊥,

−Q
2

)
,

k · p = k0p0 − klpl = k0 (1− y)Q2 +m2

2Q(1− y)
− kl (1− y)Q2 −m2

2Q(1− y)

=
Q

2
(k0 − kl) +

m2

2Q(1− y)
(k0 + kl) ,

k · p1 = k0p0
1 − klpl1 = k0 (1− y)Q2 −m2

2Q(1− y)
+ kl

(1− y)Q2 −m2

2Q(1− y)

=
Q

2
(k0 + kl)− m2

2Q(1− y)
(k0 + kl) .

(A.29)

The expressions for the dot products are then substituted into those for y and z to give frame
specific definitions in terms of y, z,m2, Q2, k2 and k0 and kl. These are then solved to give
expressions for k0 and kl. In the massless limit of m2 → 0 and k2 → 0 these are:

k0 =
Q

2
(1− z + yz) ,

kl =
Q

2
(−1 + z + yz) .

(A.30)

This allows the derivatives to be written in terms of z, y,m2, Q2 and k2 when considering this
specific frame.

The resulting terms present in the Lagrangian all contain pa, pa1 or δab . This gives a zero
column in the transverse-z block which allows the determinant to be reduced and the only
transverse-transverse terms contributing are from δab . Expanding along the zero columns
gives:

J =
p0p0

1

q0q0
1

(z11z22 − z21z12)

∣∣∣∣∣∣∣∣
m2(1 + y)−Q2(1− y)

m2 −Q2(1− y)
1⊥, y 1⊥

y
m2

Q2(1− y)−m2
1⊥, (1− y) 1⊥

∣∣∣∣∣∣∣∣
=
p0p0

1

q0q0
1

(z11z22 − z21z12)

(
m2 −Q2(−1 + y)2

m2 +Q2(−1 + y)

)d−2

,

where the z terms are the z−z components of each of the partial derivatives determined above.
To determine the z terms only the longitudinal component of the momentum vectors needs
to be considered e.g. pa → pl, δab → 1. The resulting terms are multiplied and subtracted to
evaluate (z11z22 − z21z12) .

In the massless limit the energies and the longitudinal terms should agree with the Catani-

Seymour case and give a factor of
1

z(1− y)
. Using Mathematica the expression was evaluated

and the massless limit checked:

(z11z22 − z21z12)
m→0
= 1 + y

(
−1 +

1

z

)
. (A.31)
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Multiplied by the external factors also in the massless limit, this gives:

p0p0
1

q0q0
1

(z11z22 − z21z12)
m→0
=

1

z − yz , (A.32)

which agrees with the expected result. For the full Jacobian this needs to be multiplied with
the transverse result to give:

J =
p0p0

1

q0q0
1

(z11z22 − z21z12)

(
m2 −Q2(−1 + y)2

m2 +Q2(−1 + y)

)d−2

m,k2→0
=

(1− y)d−3

z
.

(A.33)



APPENDIX B

Combinatorics

B.1. Two-Emission Combinatorics

The two-emission case results in cross-section contributions that are proportional to the sec-
ond order in αs. From squaring Eq. (6.3), there are three terms proportional to g4

s . Each
combination will be discussed in this section and the possible matching of the indices for each
shown.

The first O(α2
s) term is the triplet with triplet combination:

〈n|MTriplet(n)〉2 = g4
s

n∑
i<j<k

∑
β

〈i, j, k|Sp(i, j, k, i+ j + k)〈[n]ijk|M([n]ijk, (i+ j + k))〉

×
n∑

l<m<r

∑
β′

〈M([n]lmr, (l +m+ r))|[n]lmr〉Sp(l,m, r, l +m+ r)|l,m, r〉∆lmr
ijk

|MT (n)|2 =
∑
i<j<k

∑
l<m<r

M(i, j, k)M∗(l,m, r)∆lmr
ijk

(B.1)

The possible index pairings are:

∆lmr
ijk = (δilδjmδkr + δilδjmδ̄kr + δilδjr δ̄km + δimδjr δ̄kl + δilδkmδ̄jr

+ δilδkr δ̄jm + δimδkr δ̄jl + δjmδkr δ̄il + δjlδkr δ̄im + δjlδkmδ̄ir) .
(B.2)

Which after relabelling indices in the case of an ordered sum gives the following final terms:

|MT (n)|2 =
∑
i<j<k

M(i, j, k)M∗(i, j, k) +
∑

i<j<k<l

2Re{M(i, j, k)M∗(i, j, l)

+M(i, j, k)M∗(i, k, l) +M(i, j, l)M∗(i, k, l) +M(i, j, l)M∗(j, k, l)
+M(j, k, l)M∗(i, j, k) +M(j, k, l)M∗(i, k, l)} .

(B.3)

The above expression contains a self-energy term and six exchange amplitudes between or-
dered triplets. This result can also be seen by considering all possible ordered triplets from
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four indices, (ijk, ijl, ikl, jkl). Taking pairs between the triplets gives a total of six combina-
tions.

The second term for the double emission case is that of two pairs with two pairs. This contains
a self-energy diagram, and double-exchange diagrams with one and two spectators :

〈n|MPairs(n)〉2 =g4
s

n∑
i<j

n∑
k<l

∑
β

∑
γ

〈i, j|Sp(i, j, i+ j)〈i, j|Sp(k, l, k + l)〈[n]ijkl|M([n]ijkl, (i+ j), (k + l))〉

×
n∑

m<r

n∑
s<t

∑
β∗

∑
γ∗

〈M([n]mrst, (m+ r), (s+ t))|[n]mrst〉Sp(s, t, s+ t)|s, t〉

× Sp(m, r,m+ r)|m, r〉∆mrst
ijkl ,

|MP (n)|2 =
∑
i<j

∑
k<l

∑
m<r

∑
s<t

M(i, j, k, l)M∗(m, r, s, t)∆mrst
ijkl .

(B.4)

For this term the possible scenarios are:

∆mrst
ijkl = δimδjrδksδlt + δisδjtδkmδlr + δimδjsδkrδlt + δimδjsδktδlr + δisδjmδktδlr

+ δisδjmδkrδlt + δimδjsδkr δ̄lt + δ̄imδjsδkrδlt + δimδjsδ̄ktδlr + δ̄imδjsδktδlr

+ δisδjmδ̄ktδlr + δisδ̄jmδktδlr + δisδjmδkr δ̄lt + δisδ̄jmδkrδlt ,

(B.5)

where the first two terms are self-energy diagrams, equivalent to twice the single-emission self-
energy diagram. The other terms with four deltas are exchange diagrams with one spectator.
The terms with three deltas and one delta-bar correspond to exchange diagrams with two
spectators. After applying these functions and relabelling indices for an ordered sum over all
indices, the final terms are:

|MP (n)|2 =
∑

i<j<k<l

(
M(i, j, k, l)M∗(i, j, k, l) +M(i, k, j, l)M∗(i, k, j, l) +M(j, k, i, l)M∗(j, k, i, l)

+ 2Re{M(i, j, k, l)M∗(i, k, j, l) +M(i, j, k, l)M∗(j, k, i, l) +M(i, k, j, l)M∗(j, k, i, l)}
)

+
∑

i<j<k<l,m

(
2Re{M(i, j, k, l)M∗(i, k, j,m) +M(i, j, k, l)M∗(j, k, i,m)

+M(i, k, j, l)M∗(j, k, i,m)}
)
.

(B.6)

The third term to be considered is the cross term between the triplet and two pairs, that
when squaring the expanded terms will carry a factor of two in the final expression. This does
not contain a self-energy diagram, although it does contribute to the one and two-spectator
double-exchange cases:

〈MTriplet(n)|n〉〈n|MPairs(n)〉 = g4
s

n∑
i<j<k

∑
β,β∗,γ∗

〈i, j, k|Sp(i, j, k, i+ j + k)〈[n]ijk|M([n]ijk, (i+ j + k))〉

×
n∑

m<r

n∑
s<t

〈M([n]mrst, (m+ r), (s+ t))|[n]mrst〉

× Sp(s, t, s+ t)|s, t〉Sp(m, r,m+ r)|m, r〉∆mrst
ijk .

(B.7)
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For this term the possible scenarios are:

∆mrst
ijk = δimδjr(δks + δkt) + δimδjs(δkr + δkt) + δimδjtδkr

+ δisδjt(δkm + δkr) + δisδjm(δkt + δkr) + δisδjrδkt

+ δirδjsδkt + δitδjmδkr +

(
δitδjr(δ̄ks + δ̄km)

+ δimδjr(δ̄ks + δ̄kt) + δimδjs(δ̄kr + δ̄kt) + δimδjtδ̄kr

+ δisδjt(δ̄km + δ̄kr) + δisδjm(δ̄kt + δ̄kr) + δisδjr δ̄kt

+ δirδjt(δ̄ks + δ̄km) + δirδjsδ̄kt + δitδjmδ̄kr

)
+

(
δ̄itδjr(δks + δkm) + ....

)
+

(
δitδ̄jr(δks + δkm) + ....

)
.

(B.8)

The dots in the last line refer to the same terms repeated, as in the terms with δ̄ for k, with
the δ̄ containing the i or j index respectively. Any possible combination not shown in the
delta expressions is either against the ordering of indices or not allowed by the observable,
i.e. singular emissions connecting to the hard amplitude.

|MTP (n)|2 =
∑

i<j<k<l

(
M(i, j, k)M∗(i, j, k, l) +M(i, j, k)M∗(i, k, j, l) +M(i, j, k)M∗(j, k, i, l)

)

+
∑

i<j<k<l,m

(
M(i, j, k)M∗(j, l, k,m) +M(i, j, k)M∗(k, l, j,m)

+M(i, j, k)M∗(i, l, k,m) +M(i, j, k)M∗(k, l, i,m)

+M(i, j, k)M∗(i, l, j,m) +M(i, j, k)M∗(j, l, i,m)

)
.

(B.9)

Shown above are the terms which correspond to the topologies for two exchanged partons for
both one and two spectators. This formalism can be extended to the k-emissions case which
is discussed in Sec. 6.2.

B.2. Two-Emission Diagrams

Using the combinatorics from the previous section, all of the two-emission diagrams can
be illustrated. Distinctions can be made between self-energy-type diagrams and exchange
diagrams. Within these there are both triplet-triplet and pairs-pairs combinations. The
triplet-pairs combinations are only relevant to the exchange diagrams, that includes the one
and two-spectator exchange diagrams. The following diagrams are completely general i.e. the
lines can represent any partons. Some of these will only appear in the non-abelian case as
they require one or more triple gluon vertices.

Firstly the self-energy type diagrams are shown, where both the emissions connect to the
emitter line on both sides of the diagram.
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E
(1)
ijk =

k j

i E
(2)
ijk =

k

j

i

E
(3)
ijk =

k j

i
E

(4)
ijkl =

j

i

k

l

Figure B.1.: Self energy diagrams

B.2.1. Exchange Diagrams with One Spectator

The following diagrams are the topologies relevant for two emissions exchanged between an
emitter and a spectator. These first five diagrams are labelled triplet-triplet where both the
emissions are exchanged from the emitter to spectator:

A
(1)
ijkl =

k
j

i

l

A
(2)
ijkl =

k
j

i

l

A
(3)
ijkl = i

k

l

j

A
(4)
ijkl =

j

i

l

k A
(5)
ijkl =

1

2


i

k

l

j


Figure B.2.: Triplet-triplet exchange diagrams

The next group of diagrams are the triplet-pairs combinations which involve only one of the
emissions being exchanged from the emitter to the spectator:

B
(1)
ijkl =

1

2


j

i

l

k

 B
(2)
ijkl =

k

i

l

j

B
(3)
ijkl =

1

2


j

i

l

k

 B
(4)
ijkl =

j

i

l

k

Figure B.3.: Triplet-pairs exchange diagrams.
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The last exchange diagram with one spectator, i.e. with a total of four momenta involved,
is the so called X-diagram which is the combination of two pairs-splitting amplitudes and is
symmetric in (i↔ l) and (j ↔ k):

Xijkl =
j

k

i

l

Figure B.4.: Pairs-pairs exchange diagram

B.2.2. Exchange Diagrams with Two Spectators

This set of topologies show the possible cases for two emissions exchanged between an emitter
and two spectators. The nine diagrams below show the resulting combinations from the
triplet-pairs case where only two indices are matched:

F
(1)
ijklm =

k
j

i

l

m

F
(2)
ijklm =

j

i

l

k
m

F
(3)
ijklm =

j

i

l

k
m

F
(4)
ijklm =

j

i

l

m
k

F
(5)
ijklm =

j

i

l

m
k

F
(6)
ijklm =

j

k

i

l

m

F
(7)
ijklm =

k
j

i

l

m

F
(8)
ijklm =

j

i

l

k
m

F
(9)
ijklm =

j

i

l

m
k

Figure B.5.: Two spectator triplet-pairs diagrams

The final three two spectator topologies come from the pairs-pairs combinations with four
indices on each side but only three of them matched resulting in five momenta:

F
(10)
ijklm =

j

i

k

l
m

F
(11)
ijklm = l

j

i

k
m

F
(12)
ijklm =

m

l

j

i

k

Figure B.6.: Two spectator pairs-pairs diagrams





APPENDIX C

Partitioning

C.1. Partitioning Example for Two Emissions

Here the partitioning will be illustrated for the two emission exchange diagram B2, making
use of the formalism outlined in Sec. 6.3.

B2 =

k

i

l

j

Figure C.1.: Diagram B2, a two-emission triplet-pairs exchange diagram.

The denominator for this diagram contains the following factors:

D(B2) =
1

SijSijkSikSjl
. (C.1)

The set of singular configurations for this diagram, CB2 , corresponds to the first column in
the Table C.1. The numerator terms for the partitioning factors, as defined in Eq. (6.15),
which cancel the non-singular terms, for this diagram are:

F
(B2)
(ijk) = (SijSikSijkD(B2))−1 = ς2 Sjl ,

F
(B2)
(ijl) = (SijSjlD(B2))−1 = ς SijkSik ,

F
(B2)
(ij)(kl) = (SijD(B2))−1 = SijkSikSjl .

(C.2)

These terms are the non-vanishing terms given in table C.1. All of these factors can then be
applied to the full denominator to give a sum of the contributions to different collinear limits:∑

c∈CB2

P(B2)
c D(B2) =

1

ς2Sjl + ς(SijkSik + SijSijk) + SijSijkSjl + SijSijkSik + SijkSikSjl

×
(

ς2

SijSikSijk
+

ς

SijSjl
+

ς

SikSjl
+

1

Sik
+

1

Sjl
+

1

Sij

)
.

(C.3)
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configuration vanishing non-vanishing

(i ‖ j ‖ k) SijSikSijk Sjl

(i ‖ j ‖ l) SijSjl SijkSik

(i ‖ k ‖ l) Sik SijSijkSjl

(j ‖ k ‖ l) Sjl SijSijkSik

(i ‖ j), (k ‖ l) Sij SijkSikSjl

(i ‖ k), (j ‖ l) SikSjl SijSijk

Table C.1.: Singular configurations and the contributing denominator factors for the two
emission diagram B2.

Only the first three terms in Eq. (C.3) give leading contributions in the collinear limit to
the corresponding splitting kernels U(ijk), U(ijl) and U(ik)(jl). The other three terms give
sub-leading contributions to the kernels U(ikl), U(jkl) and U(ij)(kl).

The full set of collinear combinations, for all two-emission diagrams with one spectator,
includes four possible triplets and three sets of pairs given by:

C = {(ijk), (ijl), (ikl), (jkl), (ij)(kl), (ik)(jl), (il)(jk)} . (C.4)

C.2. Collinear Contributions for All Topologies

The tables below show the different double-collinear limits and the denominator terms from
each diagram that are singular in each of the limits. The two-emission topologies for both one
and two spectators are shown in App. B.2. There are three classes of exchange topologies,
triplet-triplet (A), triplet-pairs (B) and pairs-pairs (X) and all two-spectator topologies are
labelled F .

A
(1)
ijkl A

(2)
ijkl A

(3)
ijkl A

(4)
ijkl A

(5)
ijkl

SijSklSijkSjkl SijSjlSijkSjkl SijSjlSijkSijl SijSjkSijkSjkl S
2
ijSijkSijl

i ‖ j ‖ k SijSijk SijSijk SijSijk SijSjkSijk S2
ijSijk

i ‖ j ‖ l Sij SijSjl SijSjlSijl Sij S2
ijSijl

i ‖ k ‖ l Skl 5 5 5 5

j ‖ k ‖ l SklSjkl SjlSjkl Sjl SjkSjkl 5

(i ‖ j), (k ‖ l) SijSkl Sij Sij Sij S2
ij

(i ‖ k), (j ‖ l) 5 Sjl Sjl 5 5

(i ‖ l), (j ‖ k) 5 5 5 Sjk 5

Table C.2.: Collection of S-invariants giving rise to singularities w.r.t. the set of collinearity
structures for two-emission triplet-triplet diagrams.
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B
(1)
ijkl B

(2)
ijkl B

(3)
ijkl B

(4)
ijkl Xijkl

S
2
ijSklSijk SijSikSjlSijk SijS

2
klSjkl SijSklSjlSjkl SijSikSjlSkl

i ‖ j ‖ k S2
ijSijk SijSikSijk Sij Sij SijSik

i ‖ j ‖ l S2
ij SijSjl Sij SijSjl SijSjl

i ‖ k ‖ l Skl Sik S2
kl Skl SikSkl

j ‖ k ‖ l Skl Sjl S2
klSjkl SklSjlSjkl SjlSkl

(i ‖ j), (k ‖ l) S2
ijSkl Sij SijS

2
kl SijSkl SijSkl

(i ‖ k), (j ‖ l) 5 SikSjl 5 Sjl SikSjl

(i ‖ l), (j ‖ k) 5 5 5 5 5

Table C.3.: Collection of S-invariants giving rise to singularities w.r.t. the set of collinearity
structures for two-emission triplet-pairs and pairs-pairs diagrams.

E
(1)
ijk E

(2)
ijk E

(3)
ijk E

(4)
ijkl

S
2
ijS

2
ijk SijSikS

2
ijk SijSjkS

2
ijk S

2
ijS

2
kl

i ‖ j ‖ k S2
ijS

2
ijk SijSikS

2
ijk SijSjkS

2
ijk S2

ij

i ‖ j ‖ l S2
ij Sij Sij S2

ij

i ‖ k ‖ l 5 Sik 5 S2
kl

j ‖ k ‖ l 5 5 Sjk S2
kl

(i ‖ j), (k ‖ l) S2
ij Sij Sij S2

ijS
2
kl

(i ‖ k), (j ‖ l) 5 Sik 5 5

(i ‖ l), (j ‖ k) 5 5 Sjk 5

Table C.4.: Collection of S-invariants giving rise to singularities w.r.t. the set of collinearity
structures for two-emission self-energy diagrams.
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F
(1)
ijklm F

(2)
ijklm F

(3)
ijklm F

(4)
ijkl F

(5)
ijklm F

(6)
ijklm

SijSjlSkmSijk SijSkmSklSjkl SijSklSjmSjkm SjlSkmSjkSijk SijSkmSjkSjkl SijSklSjkSjkm

i ‖ j ‖ k SijSijk Sij Sij SjkSijk SijSjk SijSjk

i ‖ j ‖ l SijSjl Sij Sij Sjl Sij Sij

i ‖ j ‖ m Sij Sij SijSjm 5 Sij Sij

i ‖ k ‖ l 5 Skl Skl 5 5 Skl

i ‖ k ‖ m Skm Skm 5 Skm Skm 5

i ‖ l ‖ m 5 5 5 5 5 5

j ‖ k ‖ l Sjl SklSjkl Skl SjkSjl SjkSjkl SjkSkl

j ‖ k ‖ m Skm Skm SjmSjkm SjkSkm SjkSkm SjkSjkm

j ‖ l ‖ m Sjl 5 Sjm Sjl 5 5

k ‖ l ‖ m Skm SklSkm Skl Skm Skm Skl

(i ‖ j), (k ‖ l) Sij SijSkl SijSkl 5 Sij SijSkl

(i ‖ j), (k ‖ m) SijSkm SijSkm Sij Skm SijSkm Sij

(i ‖ j), (l ‖ m) Sij Sij Sij 5 Sij Sij

(i ‖ k), (j ‖ l) Sjl 5 5 Sjl 5 5

(i ‖ k), (j ‖ m) 5 5 Sjm 5 5 5

(i ‖ k), (l ‖ m) 5 5 5 5 5 5

(i ‖ l), (j ‖ k) 5 5 5 Sjk Sjk Sjk

(i ‖ l), (j ‖ m) 5 5 Sjm 5 5 5

(i ‖ l), (k ‖ m) Skm Skm 5 Skm Skm 5

(i ‖ m), (j ‖ k) 5 5 5 Sjk Sjk Sjk

(i ‖ m), (j ‖ l) Sjl 5 5 Sjl 5 5

(i ‖ m), (k ‖ l) 5 Skl Skl 5 5 Skl

(l ‖ m), (j ‖ k) 5 5 5 Sjk Sjk Sjk

(k ‖ m), (j ‖ l) SkmSjl Skm 5 SjlSkm Skm 5

(k ‖ l), (j ‖ m) 5 Skl SklSjm 5 5 Skl

Table C.5.: Collection of S-invariants giving rise to singularities w.r.t. the set of collinearity
structures for two-emission diagrams with two spectators.



APPENDIXD

Soft and Collinear functions

The tables below show the different infrared singular functions in different limits and can be
used as a reference to construct subtraction terms. 〈P̂ggq〉 is the collinear splitting function,
E23(p1)Pq3g2 is the soft-collinear function and E2 is the double-eikonal double-soft function.
The limits applied are:

• S1S2 = double soft limit, where partons 1 and 2 are soft

• S1C23 = soft-collinear limit where parton 1 is soft and partons 2 and 3 are collinear

• S2C13 = soft-collinear limit where parton 2 is soft and partons 1 and 3 are collinear

• C1C2 = triple-collinear limit where partons 1 and 2 are collinear to parton 3

These expressions are referred to in Sec. 7.3.3.

S1S2

〈P̂ggq〉
4C2

F (n · p3)2

n · p1n · p2s13s23
+ CFCA P

(nab)
ggq

∣∣∣
SS

E23(p1)Pq3g2

2CFn · p3(CA(n · p2s13 − n · p3s12) + 4CFn · p3s12)

n · p1n · p2s12s13s23

E2 4C2
F (pj · p3)(pl · p3)

pj · p1pl · p2s13s23
+ CFCA

∑
i,j

Sij(q1, q2)

S1C23

〈P̂ggq〉
(
np2

2(1− ε) + 2np2
3 + 2np2np3

)
2s12s13s23np1np2(np2 + np3)(s12 + s13)

[
− CFCA(s12 + s13)(np3s12 − np2s13)

+2C2
F s12(np2s13 + np3(s12 + 2s13))

]
E23(p1)Pq3g2

(
np2

2(1− ε) + 2np2
3 + 2np2np3

)
s12s13s23np1np2(np2 + np3)(s12 + s13)

[
− CFCA(s12 + s13)(np3s12 − np2s13)

+2C2
F s12(np2s13 + np3(s12 + 2s13))

]
E2 2CFn · p3((2CF − CA)n · p3s12 + CAn · p2s13)

n · p1n · p2s12s13s23
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S2C13

〈P̂ggq〉 Pggq|S1C2
(1↔ 2)

E23(p1)Pq3g2

2CF (2CF − CA)(n · p3)2

n · p1n · p2s13s23

E2 2CFn · p3((2CF − CA)n · p3s12 + CAn · p1s23)

n · p1n · p2s12s13s23

C1C2

〈P̂ggq〉 〈P̂ggq〉

E23(p1)Pq3g2

(
np2

2(1− ε) + 2np2
3 + 2np2np3

)
s12s13s23np1np2(np2 + np3)(s12 + s13)

[
− CFCA(s12 + s13)(np3s12 − np2s13)

+2C2
F s12(np2s13 + np3(s12 + 2s13))

]
E2 4C2

F (n · p3)2

n · p1n · p2s13s23
+ CFCA

∑
i,j

Sij(q1, q2)

The full expressions for the abelian and non-abelian parts of the splitting function for two
gluon emissions from a quark are given by:

〈P̂ (ab)
ggq 〉 =

{
S2
i12

2Si2Si1
(1− αi1 − αi2)

(
−ε
(
α2
i2 + α2

i1

)
αi1αi2

+
(1− αi1 − αi2)2 + 1

αi1αi2
− ε(ε+ 1)

)

+
Si12

Si2

(
(1− αi2)(1− αi1 − αi2) + (1− αi1)3

αi1αi2
− (1− αi1)

αi1αi2
ε
(
α2
i2 + αi2αi1 + α2

i1

)
+ (2− αi1 − αi2)ε2

)
+ (1− ε)

(
ε− Si1(1− ε)

Si2

)}
+ (1↔ 2)

(D.1)

〈P̂ (nab)
ggq 〉 =

{
(1− ε)

(
t2123

4S2
12

− ε

2
+

1

4

)
+
Si12

2S12

(
(1− ε)

(
αi2
(
α2
i2 − 2αi2 + 2

)
− αi1

(
α2
i1 − 6αi1 + 6

))
αi1(αi1 + αi2)

+
2ε((1− αi1 − αi2)(αi2 − 2αi1)− αi1)

αi1(αi1 + αi2)

)
+
Si12

2Si2

[
(1− αi1)ε

(
α2
i2 + α2

i1

αi1αi2
− ε
)

− (1− αi2)(1− αi1 − αi2) + (1− αi1)3

αi1αi2
+

(1− ε)
(
(1− αi1)3 − αi1 + (1− αi1 − αi2)2

)
αi1(αi1 + αi2)

− ε
(
−αi2 +

2(1− αi1)(αi1 − (1− αi1 − αi2))

αi1(αi1 + αi2)
+ αi1

)]
+

S2
i12

2S12Si2

(
α2
i1(1− ε) + 2(1− αi1)

αi1 + αi2
+

(αi1 + αi2)2(1− ε) + 2(1− αi1 − αi2)

αi1

)
− S2

i12

4Si2Si1
(1− αi1 − αi2)

(
(αi1 + αi2)2(1− ε) + 2(1− αi1 − αi2)

αi1αi2
+ (1− ε)ε

)}
+ (1↔ 2) .

(D.2)
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