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1. Introduction

The main Cosmological Constant Problem (CCP1) can be phrased as
follows (Pauli, 1933; Bohr, 1948; Veltman, 1974; see [1, 2] for two reviews):

why do the quantum fields in the vacuum not produce naturally a large
cosmological constant Λ in the Einstein gravitational field equation?

The magnitude of the problem is enormous:

|Λtheory|/|Λexperiment| ≥ 1054 ,

where the large number on the RHS will be explained on the next slide.

From now on, c = 1 and ~ = 1.
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1. Introduction
With the ATLAS and CMS results [3, 4] in support of the Higgs
mechanism, it is clear that the EWSM in the laboratory involves a
vacuum energy density of order

∣∣ǫ (EWSM)
V

∣∣ ∼
(
100 GeV

)4
∼ 1044 eV4 .

Moreover, this energy density can be expected to change as the

temperature T of the Universe drops,

ǫ
(EWSM)
V = ǫ

(EWSM)
V (T ) .

How can the Universe then end up with a vacuum energy density

∣∣Λ(obs)
∣∣ < 10−28 g cm−3 ∼ 10−10 eV4 ?

Here, there are 54 orders of magnitude to explain:∣∣Λ(obs)/ǫ (EWSM)
V

∣∣
≤ 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 .
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1. Introduction

In short, the main cosmological constant problem is

CCP1 – why |Λ| ≪ (EQCD)
4 ≪ (Eelectroweak)

4 ≪ (EPlanck)
4 ?

Still more CCPs after the discovery of the “accelerating Universe”:

CCP2a – why Λ 6= 0 ?

CCP2b – why Λ ∼ ρmatter
∣∣
present ∼ +10−11 eV4 ?

Hundreds of papers have been published on CCP2. But, most likely:

CCP1 needs to be solved first, before CCP2 can even be addressed.
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1. Introduction

Here, a discussion of one particular approach to CCP1 by Volovik and
the speaker, which goes under the name of q–theory [5, 6, 7, 8, 9, 10]
(a brief review appears in App. A of [11]).

Originally, we considered four explicit realizations of q–theory using

1. a three-form gauge field [12, 13, 14, 15],

2. a massless vector-field [16, 17],

3. a spacetime 4D-brane [18],

4. an elasticity tetrad from a spacetime crystal [19].

The present talk will, however, focus on an entirely new and attractive
realization.
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1. Introduction

OUTLINE:

1. Introduction

2. Basics of q–theory ←− original idea

3. Postulated three-form gauge field

4. Metric determinant ←− new approach

5. Metric determinant: Cosmology

6. Conclusion

7. References
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2. Basics of q–theory

Crucial insight [5]: there is vacuum energy and vacuum energy.

More specifically and introducing an appropriate notation:

the vacuum energy density ǫ appearing in the action

need not be the same as

the vacuum energy density ρV in the Einstein field equation.

How could this happen concretely . . .
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2. Basics of q–theory

Assume the full quantum vacuum to be a self-sustained medium
(as is a droplet of water in free fall).

That medium would be characterized by some conserved charge .

Study, then, the macroscopic equations of this conserved microscopic
variable (later called q), whose precise nature need not be known.

An analogy:

� Take the mass density ρ of a liquid, for example, liquid Argon.

� This ρ describes microscopic quantities (ρ = mAr nAr with
number density nAr and mass mAr of the atoms).

� Still, ρ obeys the macroscopic equations of hydrodynamics,
because of particle-number conservation and mass conservation.
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2. Basics of q–theory

However, is the quantum vacuum similar to a “normal” liquid?

No, the quantum vacuum behaves like a liquid but not like
a “normal” liquid.

Seminar (online) — NTU Athens, Greece, October 12, 2022 (v1.01) – p. 9



2. Basics of q–theory

In fact, the quantum vacuum is known to be Lorentz invariant
(cf. experimental limits at the 10−15 level in the photon sector [20]).

The Lorentz invariance of the vacuum rules out the standard type of
charge density, which arises from the time component j0 of a
conserved vector current jµ.

Needed is a new type of relativistic conserved charge , called the
vacuum variable q.

In other words, look for a relativistic generalization (q) of the number
density (n) which characterizes the known material liquids.
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2. Basics of q–theory

With such a variable q(x), the vacuum energy density of the effective
action can be a generic function

ǫ = ǫ(q) = Λbare + ǫnonconstant(q) , (1)

including a possible constant term Λbare from the zero-point energies
of the fields of the Standard Model (SM).

From 1© thermodynamics and 2© Lorentz invariance follows that [5]

PV

1©
= −

(
ǫ − q

d ǫ

d q

)
2©
= −ρV , (2)

where the first equality corresponds to an integrated form of the
Gibbs–Duhem equation for chemical potential µ ≡ dǫ/dq.

Recall GD eq: N dµ = V dP − S dT ⇒ dP = (N/V ) dµ for dT = 0.
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2. Basics of q–theory

Both terms entering ρV from (2) can be of order (EPlanck)
4, but they

cancel exactly for an appropriate value q0 of the vacuum variable q.

Hence, for a generic function ǫ(q),

∃ q0 = const : Λ ≡ ρV =
[
ǫ(q) − q

d ǫ(q)

d q

]
q=q0

= 0 , (3)

with constant vacuum variable q0 [a similar constant variable is known
to play a role for the Larkin–Pikin effect (1969) in solid-state physics].

Great, CCP1 solved, in principle . . .

But, is such a relativistic vacuum variable q possible at all?

Yes, there exist several theories which contain such a q variable and
one example will be given in Sec. 3.
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3 Postulated three-form gauge field
Vacuum variable q may arise from a 3–form gauge field A [12, 13].

Start from the effective action of GR+SM,

Seff[g, ψ] =

∫

R4

d4x
√
− det g

(
KN R[g] + ΛSM + Leff

SM[ψ, g]
)
, (4)

with gravitational coupling constant KN ≡ 1/(16πGN ) and c = 1 = ~.

Add a 3–form gauge field A and get [6, 7]:

S̃eff[A, g, ψ] =

∫

R4

d4x
√
− det g

(
K(q)R[g] + ǫ(q) + Leff

SM[ψ, g]
)
, (5a)

q ≡ − 1
24 ǫ

αβγδ∇αAβγδ /
√−g , (5b)

where ǫ(q) is a generic function of q, which arises from the 4-form field
strength F = dA. The gravitational coupling K(q) is a positive function.

Variational principle gives generalized Einstein and Maxwell equations:
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3 Postulated three-form gauge field

2K(q)
(
Rαβ − gαβ R/2

)
= −2

(
∇α∇β − gαβ �

)
K(q)

+ρV (q) gαβ − TM
αβ , (6a)

dρV (q)

dq
+ R

dK(q)

dq
= 0 , (6b)

with a vacuum energy density,

ρV = ǫ− q
(
dǫ

dq
+R

dK

dq

)
= ǫ− q µ , (7)

for integration constant (chemical potential) µ. Eq. (7) is precisely of the
Gibbs–Duhem form (2) in Minkowski spacetime (R = 0). Technically, the
extra gαβ term on the RHS of (6a) appears because q = q(A, g).

The expression (5b) shows that q is a non-fundamental scalar field,
which invalidates Weinberg’s no-go theorem (see [7] for details).
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4. Metric determinant – Preliminaries

Preliminaries:

We have several examples of potential q-fields (e.g., 4-form field
strength and 4D-brane), but all were added by hand.

The idea, here, is to use only the known fields from GR+SM, but
perhaps to reinterpret them differently.

In fact, we propose to use the metric determinant

g(x) ≡ det
(
gαβ(x)

)
. (8)

Yet, g(x) is not a scalar but only a scalar density. Still, it is a scalar if
coordinate transformations are restricted to those of unit Jacobian:

det
(
∂x′α/∂xβ

)
= 1 . (9)
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4. Metric determinant – Preliminaries

This reminds us of the so-called unimodular-gravity approach to the
CCP [21, 22, 2], which uses restricted coordinate invariance and
eliminates g as a dynamical variable (Λ then arises as a constant of
integration).

For us, g is not eliminated from the dynamics, but plays an essential
role in the cancellation of the cosmological constant.

In short, the metric determinant is a dynamical variable.
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4. Metric determinant – Motivation

Motivation (cond-mat inspired, courtesy of G.E. Volovik):

It is possible that the metric field gαβ(x) arises from a spacetime
crystal with elasticity tetrads [19]. Then, the density of lattice points
n(x)

[
with dimension of 1/length4] would be proportional to the metric

determinant,

M−4 n(x) =
√
−g(x) , (10)

where the crystal has a fundamental length scale ℓ ≡ 1/M .

The total number of lattice points is given by

N =

∫
d4xn(x) , (11)

and it is natural to assume that this number is conserved.
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4. Metric determinant – Motivation

Then there is a Lagrange multiplier in the action:

SN = −µN = −µ
∫
d4x n(x) , (12)

where µ is the corresponding (dimensionless) chemical potential.

The crucial observation is that n can enter the matter action, provided
coordinate invariance is restricted by (9). (The possibility of adding
extra

√−g terms in the matter action was already noted in, e.g.,
Ref. [22], but was not pursued further.)

We, next, simplify the theory to the bare minimum. In fact, we only
need a standard real scalar X(x) for the appropriate expansion of the
FRW-type model later on.
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4. Metric determinant – Action

Action [23]:

S = SG + SM + SΛ−plus + SN , (13a)

SG =

∫
d4x
√−g R

16πGN
, (13b)

SM =

∫
d4x
√−g

[
1

2
gαβ ∂αX ∂βX +

1

2
g2M

2X2

]
, (13c)

SΛ−plus =

∫
d4x
√−g ǫ(Λ, n) =

∫
d4x
√−g

[
Λ + ζ n

]
, (13d)

SN = −µ
∫
d4x n(x) , (13e)

n(x) =
√
−g(x)M4 , (13f)

where we have used the simplest possible Ansätze in (13c) and (13d),
with real parameters ζ > 0 and g2 ≥ 0.
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4. Metric determinant – Action

Strictly speaking, the only new input is the single term n ∝ √−g in the
potential (13d), consistent with having coordinate invariance restricted
by (9).

The resulting gravitational field equation reads:

1

8πGN

(
Rαβ −

1

2
gαβ R

)
= ρvac gαβ + TM

αβ , (14a)

ρvac = Λ+ 2 ζ n− µM4 , (14b)

n =
√−g M4 , (14c)

Λ = λM4 , (14d)

where the chemical potential µ traces back to the action term (13e).
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4. Metric determinant – Action

Taking the covariant divergence of (14a) and using the contracted
Bianchi identities, the following combined energy-momentum
conservation relation is obtained:

(
ρvac gαβ + TM

αβ

);β

= 0 , (15)

where the semicolon stands for a covariant partial derivative (the colon
stands for a standard partial derivative).

If the matter component is separately conserved,
(
TM
αβ

); β
= 0, then

equally so for the vacuum component, so that ρ , β
vac = 0.
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5. Metric determinant: Cosmology

With diffeomorphisms restricted to those of unit Jacobian, the appro-
priate spatially-flat Robertson–Walker (RW) metric is given by [22]

ds2 = gαβ(x) dx
α dxβ = −Ã(t) dt2 + R̃ 2(t) δij dx

i dxj , (16)

where t is the cosmic time coordinate from x0 = c t = t and Ã(t) > 0
an additional Ansatz function.

For Ã(t) = const > 0, we recover the standard spatially-flat RW metric.

Remark that the extended RW metric (16) gives the vacuum variable

n ∝ √−g = (Ã )1/2 |R̃ |3. (17)
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5. Metric determinant: Cosmology

Henceforth, we set

EPlanck ≡ 1/
√
GN =M , (18)

and introduce the following dimensionless quantities (the chemical
potential µ is already dimensionless):

t→ τ , ρX(t)→ rχ(τ) , Ã(t)→ a(τ) , (19a)

X(t)→ χ(τ) , PX(t)→ pχ(τ) , R̃(t)→ r(τ) , (19b)

n(t)→ n(τ) , Λ→ λ , (19c)

where n(τ) is dimensionless and equal to
√
a(τ) |r(τ)|3.
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5. Metric determinant: Cosmology

From the field equations of the action (13) for the RW metric (16) and
using the homogeneous perfect fluid from the χ scalar, we obtain the
following ODEs:

ṙχ + 3 (1 + wM )

(
ṙ

r

)
rχ = 0 , (20a)

3

(
ṙ

r

)2

= 8π a
(
rχ + rvac

)
, (20b)

2 r̈

r
+

(
ṙ

r

)2

−
(
ȧ

a

) (
ṙ

r

)
= −8π a

(
wM rχ − rvac

)
, (20c)

rvac = λ+ 2 ζ
√
a |r|3 − µ , (20d)

where the overdot stands for differentiation with respect to τ . These
ODEs have three real parameters: the matter equation-of-state
parameter wM ≡ pχ/rχ > −1 and two parameters, ζ > 0 and µ 6= 0,
entering the vacuum energy density rvac.
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5. Metric determinant: Cosmology

We can get analytic Friedmann-type and deSitter-type solutions from
the following Ansatz functions:

a(τ) = α τ−2 p , (21a)

r(τ) = α−1/6 r̂ τp/3 , (21b)

rχ(τ) = α−1 χ̂ τ−m , (21c)

with positive parameters α, p, r̂, χ̂, and m.

The corresponding dimensionless Ricci and Kretschmann curvature
scalars read:

R =
2

3
p
(
5 p− 3

) 1

α
τ−2 (1−p) , (22a)

K =
4

27
p2

(
9− 24 p+ 17 p2

) 1

α2
τ−4 (1−p) . (22b)
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5. Metric determinant: Cosmology

Assuming µ > 0 and λ < µ, the analytic Friedmann-type solution with
rvac = 0 has parameters:

αF-sol > 0 , pF-sol =
2

3 + wM
, r̂F-sol =

[
1

2 ζ

(
µ− λ

)]1/3
, (23a)

mF-sol =
2 (1 + wM )

3 + wM
, χ̂F-sol =

1

6π (3 + wM )
2 , (23b)

so that the Ricci and Kretschmann scalars (22) drop to 0 asymptotically.

Assuming µ > 0 and 0 < λ < µ, a particular analytic deSitter-type
solution with rvac = λ has parameters:

αdeS-sol =
1

24π λ
, pdeS-sol = 1 , r̂deS-sol = 3

√
µ

2 ζ
, (24a)

χ̂ deS-sol = 0 , (24b)

so that the Ricci and Kretschmann curvature scalars (22) are constant.
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5. Metric determinant: Cosmology

The ODEs (20) give a constant vacuum energy density, ṙvac = 0. But,
with rvac > 0 initially, particle creation by the spacetime curvature [24]
will result in a decrease of rvac and an increase of rχ.

The modified ODEs with vacuum-matter energy exchange are given by

ṙχ + 4

(
ṙ

r

)
rχ = Γ , (25a)

ṙvac = −Γ , (25b)

3

(
ṙ

r

)2

= 8π a
(
rχ + rvac

)
, (25c)

1

8π a

[
2 r̈

r
+ 2

(
ṙ

r

)2

−
(
ṙ

r

) (
ȧ

a

)]
=

4

3
rvac , (25d)

rvac = λ+ 2 ζ
√
a |r|3 − µ . (25e)
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5. Metric determinant: Cosmology

As the left-hand side of (25d) is proportional to the Ricci scalar, we have
R ∝ rvac. Therefore, we can write the Zeldovich–Starobinsky-type [24, 8]
source term (Γ ∝ R2) as the following simpler expression:

Γ = γ̃ |ṙ/r| (rvac)
2 , (26a)

γ̃(τ) = γ

[
τ2 − τ2bcs

τ2 + 1

]2
, (26b)

γ ≥ 0 , (26c)

where we have added a smooth switch-on function γ̃(τ) for initial
boundary conditions at τ = τbcs, in order to ease the numerical
evaluation of the ODEs.
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5. Metric determinant: Cosmology

We have obtained numerical solutions of the ODEs (25) with source
term (26), for initial boundary conditions at or near the analytic
Friedmann-type solution, which also holds for nonzero positive γ.

We have also obtained numerical solutions for initial boundary
conditions from the analytic deSitter-type solution, which is a solution
only for the γ = 0 case.

Full numerical results are given in Ref. [23]. Here, we only present
some results with a start from the deSitter-type solution of the
unmodified ODEs (20). → Figs. 1–2
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5. Metric determinant: Cosmology
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Fig. 1: Numerical solution of the modified ODEs (25) with source term (26) and parameters wM = 1/3,

ζ = 1, µ = 3, λ = 10−4 , and γ = 0 (quantum-dissipative effects turned off). The initial boundary con-

ditions are taken from the analytic de-Sitter-type solution (21) and (24), having α ≡ αdeS-sol = 132.629

and r ≡ rdeS-sol = 1.14471. The top row shows the three basic variables: the metric functions r(τ) and

a(τ) and the dimensionless energy density rχ. The bottom row shows three derived quantities: the dimen-

sionless Ricci curvature scalar R, the dimensionless Kretschmann curvature scalar K, the dimensionless

gravitating vacuum energy density rvac from (25e).
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5. Metric determinant: Cosmology
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Fig. 2: Same as Fig. 1, but now with γ = 2× 1011 (quantum-dissipative effects turned on).
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6 Conclusions

To summarize, the q–theory approach to the main Cosmological
Constant Problem (CCP1) provides a solution. For the moment, this is
only a possible solution, because it is not known for sure that the
“beyond-the-Standard-Model” physics contains such a q–type variable.

GENERAL REMARK: it is clear that the SM harbors huge vacuum
energy densities, which somehow need to be cancelled by new d.o.f.,
possibly related to the fundamental theory of spacetime and gravity.

BAD NEWS: nothing is known for sure about these fundamental d.o.f.

GOOD NEWS: even though the detailed (high-energy) microphysics is
unknown, it may be possible to describe the macroscopic (low-energy)
effects along the lines of q–theory, just as for the hydrodynamics of water.

GOOD NEWS (cont.): it is also possible that gravity is an emerging
phenomenon and that the metric determinant can play the role of a
q-type variable and cancel the cosmological constant.
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