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1. Introduction

BRIEF HISTORY:

� 1915: Einstein’s general relativity (GR).

� 1935: Einstein-Rosen bridge connecting different parts of spacetime,
but a traveller cannot go across, as he/she will run into a black hole.

� 1950’s: Wheeler’s spacetime foam teeming with (Euclidean)
wormholes of Planckian length scales (lP ≡

√
~G/c3 ∼ 10−35 m).

Here, an emblematic picture from Wheeler’s 1955 “Geons” paper:

� 1988: Morris&Thorne’s result that certain Lorentzian wormholes
may, in principle, be traversable , but at a high price: exotic matter .
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2. Exotic-matter wormhole

Morris and Thorne (MT) have discussed a simple metric in Box 2 of
their 1988 paper. Specifically, this special case of a more general
metric is given by (setting c = 1)

ds2
∣∣∣
(EBMT-worm-spec)

≡ gµν(x) dx
µ dxν

∣∣∣
(EBMT-worm-spec)

= −dt2 + dl2 +
(
b20 + l2

) [
dθ2 + sin2 θ dφ2

]
, (1)

with a nonzero real constant b0 (taken to be positive, for definiteness).

The coordinates t and l in (1) range over (−∞, ∞) and θ ∈ [0, π] and
φ ∈ [0, 2π) are the standard spherical polar coordinates [strictly speaking,
we should use two coordinate patches for the 2-sphere, for example,
by stereographic projections from the North Pole and the South Pole].

Earlier discussions of this type of metric have appeared in Ellis-1973
and Bronnikov-1973. Hence, we have added “EB” to the suffix of (1).
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2. Exotic-matter wormhole

The resulting Ricci and Kretschmann curvature scalars are

R
∣∣∣
(EBMT-worm-spec)

= −2
b20

(b20 + l2)
2 , (2a)

K
∣∣∣
(EBMT-worm-spec)

= 12

(
b20
)2

(b20 + l2)
4 , (2b)

both of which are seen to vanish as l → ±∞.

Indeed, two distinct flat Minkowski spacetimes are approached for
l → ±∞. → Figure

This EBMT wormhole is traversable, as shown by items (d) and (e) of
Box 2 in Morris–Thorne-1988 (see also Fig. 6 in Ellis-1973).
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2. Exotic-matter wormhole

Embedding diagram (t = const, θ = π/2, 2 ρ ≡ 2 b0 > 0, r ≡
√

b20 + l2 ) :

2ρ

[Image credit: O. James, E. von Tunzelmann, P. Franklin, and K. S. Thorne, “Visualizing
Interstellar’s Wormhole, Am. J. Phys. 83, 486 (2015), arXiv:1502.03809]
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2. Exotic-matter wormhole

The crucial question, however, concerns the dynamics :

can this wormhole metric be a solution of the Einstein equation?

Morris and Thorne’s brilliant idea was to use an engineering approach :

fix the desired specifications and see what it takes.
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2. Exotic-matter wormhole

Fixing the metric to (1) for a traversable wormhole, the Einstein
equation, Rµν − 1

2 gµν R = 8πG Tµν , then requires the following
components of the energy-momentum tensor [MT-1988]:

T t
t

∣∣∣
(EBMT-worm-spec)

=
1

8πG

b20

(b20 + l2)
2 , (3a)

T l
l

∣∣∣
(EBMT-worm-spec)

= −
1

8πG

b20

(b20 + l2)
2 , (3b)

T θ
θ

∣∣∣
(EBMT-worm-spec)

=
1

8πG

b20

(b20 + l2)
2 , (3c)

T φ
φ

∣∣∣
(EBMT-worm-spec)

=
1

8πG

b20

(b20 + l2)
2 , (3d)

with all other components vanishing.
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2. Exotic-matter wormhole

As the energy density is given by ρ = T tt = −T t
t, we have ρ < 0 from

(3a), which definitely corresponds to exotic matter.

For the radial null vector k
µ
= (1, 1, 0, 0), we obtain the inequality

T µ
ν kµ k

ν
∣∣∣
(EBMT-worm-spec)

=
1

8πG

b20

(b20 + l2)
2

[
− 1− 1

]
< 0 , (4)

which corresponds to a violation of the Null-Energy-Condition (NEC).

Problem: not clear if the needed exotic matter exists.
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3. New wormhole

We now propose a somewhat different metric:

ds2
∣∣∣
(K-worm-spec)

= −dt2+
ξ2

ξ2 + λ2
dξ2+

(
b20 + ξ2

) [
dθ2+sin2 θ dφ2

]
, (5)

with nonzero real constants λ and b0 (both taken to be positive, for
definiteness) and coordinates t and ξ ranging over (−∞, ∞).

The resulting Ricci and Kretschmann curvature scalars are

R
∣∣∣
(K-worm-spec)

= −2
b20 − λ2

(b20 + ξ2)
2 , (6a)

K
∣∣∣
(K-worm-spec)

= 12

(
b20 − λ2

)2

(b20 + ξ2)
4 , (6b)

both of which are finite, smooth, and vanishing as ξ → ±∞.
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3. New wormhole

The metric gµν(x) from (5) is degenerate with a vanishing determinant
g(x) ≡ det[gµν(x)] at ξ = 0.‡

In physical terms, this 3-dimensional hypersurface at ξ = 0
corresponds to a “spacetime defect” and the Einstein equation is
defined at ξ = 0 by continuous extension from its limit ξ → 0.

The terminology “spacetime defect” is by analogy with crystallographic
defects in an atomic crystal (these crystallographic defects are typically
formed during a rapid crystallization process).

The new wormhole metric (5) did not fall out of the sky but is a direct
follow-up of earlier work on a particular “time defect” that regularizes
the big bang [Klinkhamer, 2019].

———————————————————-
‡ The metric from (1) is nondegenerate, as its determinant vanishes

nowhere, provided two coordinate patches are used for the 2-sphere.
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3. New wormhole

Using Morris and Thorne’s engineering approach, the Einstein equation,
Rµν − 1

2 gµν R = 8πG Tµν , now requires for this new metric:

T t
t

∣∣∣
(K-worm-spec)

=
1

8πG

b20 − λ2

(b20 + ξ2)
2 , (7a)

T ξ
ξ

∣∣∣
(K-worm-spec)

= −
1

8πG

b20 − λ2

(b20 + ξ2)
2 , (7b)

T θ
θ

∣∣∣
(K-worm-spec)

=
1

8πG

b20 − λ2

(b20 + ξ2)
2 , (7c)

T φ
φ

∣∣∣
(K-worm-spec)

=
1

8πG

b20 − λ2

(b20 + ξ2)
2 . (7d)
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3. New wormhole

Compared to the previous results (3), we see that the previous factors
b20 in the numerators have been replaced by new factors (b20 − λ2) in (7).
Starting from λ2 = 0+, these new numerator factors then change sign
as λ2 increases above b20 and we no longer require exotic matter.

Indeed, we have from (7a) that ρ = −T t
t > 0 for λ2 > b20 . Moreover,

we readily obtain, for any null vector k µ and parameters λ2 ≥ b20 , the
inequality

T µ
ν kµ k

ν
∣∣∣
(K-worm-spec)

λ2≥b2
0

≥ 0 , (8)

which verifies the NEC.

New wormhole with degenerate metric (5) for λ2 ≥ b20
does not need exotic matter.
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3. New wormhole

In fact, the special case λ2 = b20 has the energy-momentum tensor
vanishing altogether,

T µ
ν

∣∣∣
(K-worm-spec)

λ2=b2
0

= 0 , (9)

and so do the curvature scalars (6).

In other words, we have:

an exact wormhole-type solution of the vacuum Einstein equation.

The corresponding spacetime is flat but different from Minkowski
spacetime. How can that be? The short answer: different topology.

Time permitting, here are some details . . .
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4.1 New wormhole – Other coordinate

Changing the spatial ξ coordinate to

l̃ = ξ
√
1 + λ2/ξ2 ∈ (−∞, −λ] ∪ [λ, ∞) (10)

gives a metric similar to (1),

ds2 = −dt2 + dl̃ 2 +
(
b20 + l̃ 2 − λ2

) [
dθ2 + sin2 θ dφ2

]
. (11)

But this coordinate transformation ξ → l̃ is not a diffeomorphism.

Remark also that the coordinate l̃ is unsatisfactory for a proper description
of the whole spacetime manifold, because, for given values of {t, θ, φ},

both coordinates l̃ = −λ and l̃ = λ correspond to a single point of the
manifold (with the single coordinate ξ = 0).

Still, we can get a useful picture as an “amputated” version of the

surface on slide 6 with l replaced by l̃ and b20 by b20 − λ2.
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4.2 New wormhole – Topology/orientability

With the coordinates
{
l̃, θ, φ

}
in the metric (11) for general λ > 0 and

b0 > 0, we get the following two sets of Cartesian coordinates [one for
the “upper” (+) universe and another for the “lower” (-) universe]:





Z+

Y+

X+



 = l̃





cos θ

sin θ sinφ

sin θ cosφ



 , for l̃ ≥ λ > 0 , (12a)





Z−

Y−

X−



 = l̃





cos θ

sin θ sinφ

sin θ cosφ



 , for l̃ ≤ −λ < 0 , (12b)

{Z+, Y+, X+}
∧
= {Z−, Y−, X−} , for | l̃ | = λ , (12c)

where the last relation implements the identification of “antipodal”
points on the two 2-spheres S 2

± with | l̃ | = λ.
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4.2 New wormhole – Topology/orientability

Note that the two coordinates sets {Z±, Y±, X±} from (12a) and (12b)
have different orientation .

The spatial topology of our degenerate-wormhole spacetime (5) is that
of two copies of the Euclidean space E3 with the interior of two balls
removed and “antipodal” identification (12c) of their two surfaces.

It can be verified that the defect-wormhole spacetime from (5) and (12)
is simply connected (all loops in space are contractible to a point).

The defect-wormhole topology is different from that of the original
exotic-matter EBMT wormhole, which is multiply connected (there are
noncontractible loops in space, for example, a loop in the upper universe
encircling the wormhole mouth).

For the moment, we stick to the “antipodal” identification from (12c),
with the corresponding change of orientation at ξ = 0.
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4.3 New wormhole – Radial geodesics

We can get explicitly the radial geodesics ξ(t) passing through the
vacuum-wormhole throat at ξ = 0:

θ(t)
∣∣∣
(K-worm-spec)

vacuum sol ; rad-geod
= π/2 , (13a)

φ(t)
∣∣∣
(K-worm-spec)

vacuum sol ; rad-geod
= 0 , (13b)

ξ(t)
∣∣∣
(K-worm-spec)

vacuum sol ; rad-geod
=

{
±
√
(B t)2 + 2B λ t , for t ≥ 0 ,

∓
√
(B t)2 − 2B λ t , for t ≤ 0 ,

(13c)

with a dimensionless constant B ∈ (0, 1] and different signs (upper or
lower) in front of the square roots for motion in opposite directions.
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4.3 New wormhole – Radial geodesics

The radial geodesic (13) with the upper signs has the following
trajectory in terms of the Cartesian coordinates (12):

Z±(t)
∣∣∣
(K-worm-spec)

vacuum sol ; rad-geod
= 0 , for t ∈ (−∞, ∞) , (14a)

Y±(t)
∣∣∣
(K-worm-spec)

vacuum sol ; rad-geod
= 0 , for t ∈ (−∞, ∞) , (14b)

X−(t)
∣∣∣
(K-worm-spec)

vacuum sol ; rad-geod
= −λ+ B t , for t ≤ 0 , (14c)

X+(t)
∣∣∣
(K-worm-spec)

vacuum sol ; rad-geod
= +λ+ B t , for t ≥ 0 , (14d)

with X− = −λ and X+ = +λ identified at t = 0.
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4.3 New wormhole – Radial geodesics

The curves in the (t, X−) and (t, X+) planes, have two parallel
straight-line segments, shifted at t = 0, with equal constant positive
slope B ≤ 1 (velocity magnitude in units with c = 1).

Plot of the radial geodesic (13)–(14) with λ = 1 and B = 1/2 :
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4.3 New wormhole – Radial geodesics

This equal Minkowski-space velocity before and after the defect
crossing is the main argument for using the “antipodal” identification in
(12), rather than a “direct” identification on the two 2-spheres S 2

±,

which would correspond to replacing the prefactors l̃ in (12a) and (12b)

by | l̃ | and would have a unique spatial orientation (but apparently
nonsmooth motion along defect-crossing geodesics).

Such a “direct” identification of the points on the two 2-spheres at
| l̃ | = λ would match the original exotic-matter wormhole from (1), with
surgery to remove the open l interval (−λ, +λ).

As said before, we stick to the “antipodal” identification from (12c), with
the corresponding change of orientation at ξ = 0.
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4.4 New wormhole – Travel advisory

WARNING:

If the “advanced civilization” of Morris-Thorne1988 has access to
our type of defect-wormhole, then it should perhaps start exploration
by sending in parity-invariant machines or robots.

The reason is that humans of finite size and with right-handed DNA
may not be able to pass safely through this particular wormhole-throat
defect at ξ = 0, which separates two universes with different 3-space
orientation.
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5.1 New wormhole – General Ansatz

The special degenerate metric (5) can be generalized as follows:

ds2
∣∣∣
(K-worm-gen)

= −e2 φ̃(ξ) dt2 +
ξ2

ξ2 + λ2
dξ2 + r̃ 2(ξ)

[
dθ2 + sin2 θ dφ2

]
,

(15)

with a positive length scale λ and real functions φ̃(ξ) and r̃(ξ). Again,
the coordinates t and ξ range over (−∞, ∞), while θ ∈ [0, π] and
φ ∈ [0, 2π) are the standard spherical polar coordinates [as mentioned
before, we should really use two coordinate patches for the 2-sphere].

If we assume that φ̃(ξ) remains finite everywhere and that r̃(ξ) is
positive with r̃(ξ) ∼ |ξ| for ξ → ±∞, then the spacetime from (15)
corresponds to a wormhole.
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5.1 New wormhole – General Ansatz

If the global minimum of the function r̃(ξ) has the value b0 > 0 at

ξ = ξ0 ≡ 0 and if the function φ̃(ξ) is essentially constant near ξ = 0,
then we expect interesting behavior for λ2 of the order of b20 or larger.

In fact, using power series in ξ2 for φ̃(ξ) and r̃ 2(ξ), we get
energy-momentum components without singular behavior at ξ = 0.

Work in progress . . .
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5.2 New wormhole – Recap vacuum solution

Awaiting the general analysis, we recall that we already have an exact
wormhole-type solution of the vacuum Einstein gravitational field
equation, as discussed on slide 14 for the special-case metric.

In terms of the general Ansatz (15), the solution reads

{
φ̃(ξ), r̃ 2(ξ)

} ∣∣∣
(K-worm-gen)

vacuum sol
=

{
0, λ2 + ξ2

}
, (16a)

T µ
ν(ξ)

∣∣∣
(K-worm-gen)

vacuum sol
= 0 . (16b)

Unlike Minkowski spacetime, this flat vacuum-wormhole spacetime has
asymptotically two flat 3-spaces with different orientations.
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6. New wormhole – Two final remarks

First, the vacuum-wormhole solution (16) has the length scale λ as a
free parameter and, if there is a preferred value λ in Nature, then that
value can only come from a theory beyond GR.

An example of such a theory would be nonperturbative superstring
theory in the formulation of the IKKT matrix model [Ishibashi–Kawai–
Kitazawa–Tsuchiya, 1997], also known as IIB matrix model.

That matrix model could give rise to an emergent spacetime with or
without spacetime defects [Klinkhamer, 2021].

If defects do appear, then the typical length scale λ of a remnant
vacuum-wormhole defect would be related to the IIB-matrix-model
length scale ℓ (the Planck length lP ∝ G1/2 might also be related to ℓ ).
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6. New wormhole – Two final remarks

Second, the main objective of the present talk has been to reduce
the hurdles to overcome in the quest of traversable wormholes.
Specifically, we have removed the requirement of exotic matter.

But there remains, at least, one important hurdle, namely to construct
a suitable spacetime defect or to harvest one, if already present as a
remnant from an early phase.
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