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Admittedly, a rather formidable title...

For now, no definitive answers, only explorative results.

Talk based on arXiv:2009.06525, further references on slides 13–14.
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1. Standard FLRW cosmology

The Einstein gravitational field equation of general relativity (GR) reads [1]:

Rµν −
1

2
gµν R = −8πG T (SM)

µν , (1)

with Rµν the Ricci tensor, R the Ricci scalar, Tµν the energy-momentum
tensor of the matter (Standard Model), and G Newton’s gravitational
coupling constant. The spacetime indices µ, ν run over {0, 1, 2, 3}.

For cosmology, the spatially flat Robertson–Walker metric is

ds2
∣∣∣
(RW)

≡ gµν(x) dx
µ dxν

∣∣∣
(RW)

= −dt2 + a2(t) δij dx
i dxj , (2)

with x0 = c t and c = 1. The spatial indices i, j run over {1, 2, 3}.
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1. Standard FLRW cosmology

For a homogeneous perfect fluid with energy density ρM (t) and pressure
PM (t), we get the spatially flat Friedmann equations [1]:

(
ȧ

a

)2

=
8πG

3
ρM , (3a)

ä

a
+

1

2

(
ȧ

a

)2

= −4πGPM , (3b)

ρ̇M + 3
ȧ

a

[
ρM + PM

]
= 0 , (3c)

PM = PM

(
ρM
)
, (3d)

where the overdot stands for differentiation with respect to t and (3d)
corresponds to the equation-of-state (EOS) relation between pressure
and energy density of the fluid.
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1. Big bang in FLRW cosmology

For relativistic matter with constant EOS parameter wM ≡ PM/ρM = 1/3,
the Friedmann–Lemaître–Robertson–Walker solution a(t) is given by [1]

a(t)
∣∣∣
(wM=1/3)

FLRW
=

√
t/t0 , for t > 0 , (4a)

ρM (t)
∣∣∣
(wM=1/3)

FLRW
= ρM0/a

4(t) ∝ 1/t2 , for t > 0 , (4b)

where the cosmic scale factor has normalization a(t0) = 1 at t0 > 0.

The FLRW solution displays the big bang singularity for t → 0+,

lim
t→0+

a(t) = 0 , (5)

with diverging curvature and energy density. But, at t = 0, the theory
(GR+SM) is no longer valid and we can ask what happens really at the
big bang? Or, more precisely, how to describe the birth of the Universe?
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2. Regularized big bang

First, let us try to control the divergences by considering a new Ansatz
for a “regularized” big bang [2]:

ds2
∣∣∣
(reg-bb)

≡ gµν(x) dx
µ dxν

∣∣∣
(reg-bb)

= −
t2

t2 + b2
dt2 + a2(t) δij dx

i dxj , (6a)

b2 > 0 , (6b)

a2(t) > 0 , (6c)

t ∈ (−∞, ∞) , xi ∈ (−∞, ∞) , (6d)

where we set x0 = c t and c = 1.

This metric gµν(x) is degenerate , with a vanishing determinant at t = 0.
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2. Regularized big bang

With the standard Einstein equation (1) and a homogeneous perfect fluid,
get modified spatially flat Friedmann equations:

[
1 +

b2

t2

] (
ȧ

a

)2

=
8πG

3
ρM , (7a)

[
1 +

b2

t2

] (
ä

a
+

1

2

(
ȧ

a

)2
)

−
b2

t3
ȧ

a
= −4πGPM , (7b)

ρ̇M + 3
ȧ

a

[
ρM + PM

]
= 0 , (7c)

PM = PM

(
ρM
)
, (7d)

where the overdot stands again for differentiation with respect to t.
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2. Bounce or new phase?
For constant EOS parameter wM = 1/3, the new solution a(t) is

a(t)
∣∣∣
(wM=1/3)

mod. FLRW
= 4

√(
t2 + b2

)/(
t20 + b2

)
, (8)

which is perfectly smooth at t = 0
as long as b 6= 0. Figure compares
with the singular FLRW solution, as
shown by the dashed curve.
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Two possibilities:

1. nonsingular bouncing cosmology [3, 4] from t = −∞ to t = ∞
(valid for b ≫ lPlanck?) [gravitational waves generated in the pre-
bounce epoch keep on propagating into the postbounce epoch];

2. new phase at t = 0 pair-produces [5] a “universe” for t > 0 and
an “antiuniverse” for t < 0 (valid for b ∼ lPlanck?). ⇐ THIS TALK
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3. IIB matrix model

For an explicit description of such a new phase, we can use the IIB
matrix model [6, 7], which has been suggested as a nonperturbative
definition of superstring theory (M–theory).

The model has N ×N traceless Hermitian matrices, ten bosonic matri-
ces Aµ and essentially eight fermionic (Majorana–Weyl) matrices Ψα.

The partition function Z is defined by a “path” integral [6, 7, 8]:

Z =

∫
dAdΨ exp

(
i S/ℓ4

)
=

∫
dA exp

(
i Seff/ℓ

4
)
, (9a)

S=−Tr

(
1

4

[
Aµ, Aν

] [
Aρ, Aσ

]
η̃µρ η̃νσ +

1

2
Ψβ Γ̃

µ
βα η̃µν

[
Aν , Ψα

]
)
, (9b)

η̃µν =
[
diag

(
− 1, 1, . . . , 1

)]
µν

. (9c)

The model length scale “ℓ” has been introduced, so that Aµ has the
dimension of length and Ψα the dimension of (length)3/2.
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3. Emergence of a classical spacetime?

Well, the matrices Aµ and Ψα in (9a) are merely integration variables
and there is no obvious small dimensionless parameter to motivate a
saddle-point approximation, so the question is:

where is the classical spacetime?

Recently, we have suggested to revisit an old idea, the large-N master
field of Witten [9], for a possible origin of classical spacetime in the
context of IIB matrix model [10].

In this short talk, we have only time to remind you of this mysterious
master field (name coined by Coleman) and to give you the final result.
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3. Large-N factorization

The gauge-invariant bosonic observable

wµ1 ... µm = Tr
(
Aµ1 . . . Aµm

)
(10)

has expectation values

〈wµ1 ... µm wν1 ... νn · · · 〉 =
1

Z

∫
dA
(
wµ1 ... µm wν1 ... νn · · ·

)
ei Seff/ℓ

4

. (11)

Now, the following factorization property holds to leading order in N :

〈wµ1 ... µm wµ1 ... µm 〉
N
= 〈wµ1 ... µm〉 〈wµ1 ... µm〉 , (12)

without sums over repeated indices.

This leading-order equality (12) states that the expectation value of the
square of w equals the square of the expectation value of w, which is a
truly remarkable result for a statistical (quantum) theory.
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3. Large-N master field

According to Witten [9], the factorization (12) implies that the path
integrals (11) are saturated by a single configuration, namely by the

so-called master field Â
µ.

Considering one observable w, for simplicity, we then have the
following expectation value:

〈wµ1 ... µm〉
N
= Tr

(
Âµ1 . . . Âµm

)
, (13)

and similarly for the other expectation values (11). Hence, we “only”
need ten complex-number matrices to get all expectation values (11).
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3. Emergent classical spacetime

Now, the meaning of the previous suggestion [10] is clear:

classical spacetime resides in the master-field matrices Âµ.

In fact, it is possible to extract the spacetime points x̂µ
k and the emergent

inverse metric gµν(x) [the metric gµν(x) is obtained as matrix inverse].

It is even possible [11] that the large-N master field of the Lorentzian
IIB matrix model gives rise to the regularized-big-bang metric (6) of GR.

Final result: effective length parameter b of the regularized-big-bang
metric (6) calculated in terms of the IIB-matrix-model length scale ℓ,

beff ∼ ℓ
?
∼ lPlanck ≡

√
~G/c3 ≈ 1.62× 10−35 m . (14)

Details skipped in this short talk (→ slides after the References).

Outstanding task: get the exact IIB-matrix-model master field Âµ or,
at least, a reliable approximation...
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A. Extraction of spacetime points

Make a particular global gauge transformation [8] on the matrices Âµ

of the IIB-matrix-model master field,

Â
µ

= Ω Âµ Ω † , Ω ∈ SU(N) , (15)

so that the transformed 0-component is diagonal and has ordered
eigenvalues α̂i ∈ R,

Â
0

= diag
(
α̂1, α̂2, . . . , α̂N−1, α̂N

)
, (16a)

α̂1 ≤ α̂2 ≤ . . . ≤ α̂N−1 ≤ α̂N , (16b)

N∑

i=1

α̂i = 0 . (16c)

The ordering (16b) will turn out to be crucial for the time coordinate t̂
obtained later.
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A. Extraction of spacetime points

A relatively simple procedure [10] approximates the eigenvalues of the

spatial matrices Â
m

but still manages to order them along the diagonal.

This procedure corresponds, in fact, to a type of coarse graining of
some of the information contained in the master field.

We start from the following trivial observation:

if M is an N ×N Hermitian matrix, then any n× n block centered on
the diagonal of M is also Hermitian, which holds for n ≥ 1 and n ≤ N .

Let K be an odd divisor of N , so that

N = K n , K = 2L+ 1 , (17)

where both L and n are positive integers.
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A. Extraction of spacetime points

Consider, in each of the ten matrices Â
µ
, the K blocks of size n× n

centered on the diagonal.

We already know the diagonalized blocks of Â
0

from (16a), which
allows us to define the following time coordinate t̂ (σ) for σ ∈ (0, 1]:

x̂ 0
(
k/K

)
≡ c̃ t̂

(
k/K

)
≡


 1

n

n∑

j=1

α̂(k−1)n+j


 , (18)

with k ∈ {1, . . . , K} and a velocity c̃ to be set to unity later. The time
coordinates from (18) are ordered,

t̂
(
1/K

)
≤ t̂

(
2/K

)
≤ . . . ≤ t̂

(
1− 1/K

)
≤ t̂

(
1
)
, (19)

because the α̂i are, according to (16b).
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A. Extraction of spacetime points

Next, obtain the eigenvalues of the n× n blocks of the nine spatial

matrices Â
m

and denote these real eigenvalues by
(
β̂m
)
i
, with

i ∈ {1, . . . , N}.

Define, just as for the time coordinate in (18), the following nine spatial
coordinates x̂m(σ) for σ ∈ {(0, 1]:

x̂m
(
k/K

)
≡

1

n

n∑

j=1

[
β̂m

]
(k−1)n+j

, (20)

with k ∈ {1, . . . , K}.

Aspects of Gravity — Bielefeld, Oct. 6–8, 2020 (v2.0) – p. 18



A. Extraction of spacetime points

The expressions (18) and (20) may provide suitable spacetime points,
which, in a somewhat different notation, are denoted

x̂µ
k =

(
x̂ 0
k , x̂

m
k

)
≡
(
x̂ 0
(
k/K

)
, x̂m

(
k/K

) )
, (21)

where k runs over {1, . . . , K}.

Each of these ten coordinates has the dimension of length, which
traces back to the dimension of the bosonic matrix variable Aµ as
mentioned below (9c).

To summarize, the extracted spacetime points x̂µ
k are obtained as

averaged eigenvalues of the n× n blocks along the diagonals of

the gauge-transformed master-field matrices Â
µ

from (15)–(16).
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B. Extraction of spacetime metric

The points x̂µ
k effectively build a spacetime manifold with continuous

(interpolating) coordinates xµ if there is also an emerging metric gµν(x).

By considering the effective action of a low-energy scalar degree of
freedom φ “propagating” over the discrete spacetime points x̂µ

k , the
following expression for the emergent inverse metric is obtained [7, 10]:

gµν(x) ∼

∫

RD

dDy ρav(y) (x− y)µ (x− y)ν f(x− y) r(x, y) , (22a)

ρav(y) ≡ 〈〈 ρ(y) 〉〉 , (22b)

with continuous spacetime coordinates xµ having the dimension of
length and spacetime dimension D = 9+1 = 10 for the original model.

The average 〈〈 ρ(y) 〉〉 corresponds, for the extraction procedure
described earlier, to averaging over different block sizes n and block

positions along the diagonal in the master-field matrices Â
µ
.
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B. Extraction of spacetime metric

The quantities that enter the integral (22) are the density function

ρ(x) ≡
K∑

k=1

δ(D)
(
x− x̂k

)
, (23)

the density correlation function r(x, y) defined by

〈〈 ρ(x) ρ(y) 〉〉 ≡ 〈〈 ρ(x) 〉〉 〈〈 ρ(y) 〉〉 r(x, y) , (24)

and a sufficiently localized function f(x) from the scalar effective action.

As r(x, y) is dimensionless and f(x) has dimension 1/(length)2, the
inverse metric gµν(x) from (22) is seen to be dimensionless.

The metric gµν is simply obtained as the matrix inverse of gµν .

To summarize, the emergent metric is obtained from correlations of
the extracted spacetime points.
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C. What emergent spacetime?

The obvious question, now, is what spacetime and metric do we get?

We don’t know, as we do not know the IIB-matrix-model master field.

But, awaiting the final result on the master field, we can already
investigate what properties the master field would need to have in
order to be able to produce certain desired emerging metrics.

The results presented here are, therefore, solely exploratory.
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C. Emergent Minkowski and RW metrics

We restrict ourselves to four “large” spacetime dimensions [8], setting

D = 3 + 1 = 4 , (25)

and use length units that normalize the IIB-matrix-model length scale,

ℓ = 1 . (26)

Then, it is possible to choose appropriate functions ρav(y), f(x− y),
and r(x, y), so that the Minkowski metric is obtained [formally given by
(6a) for b2 = 0 and a2(t) = 1].

Similarly, it is possible to choose appropriate functions ρav(y), f(x− y),
and r(x, y), so that the spatially flat Robertson–Walker metric is obtained
[formally given by (6a) for b2 = 0].
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C. Emergent regularized-big-bang metric

In order to get an inverse metric whose component g00 diverges at
t = 0, it is necessary to relax the convergence properties of the y0

integral in (22a) by adapting the functions ρav(y), f(x− y), and r(x, y).

In this way, it is possible to obtain the following inverse metric [11]:

gµν(eff) ∼





−
t2 + c−2

t2
, for µ = ν = 0 ,

1 + c2 t
2 + c4 t

4 + . . . , for µ = ν = m ∈ {1, 2, 3} ,

0 , otherwise ,

(27)

with real dimensionless coefficients cn that result from the requirement
that the tn terms, for n > 0, vanish in g00.
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C. Emergent regularized-big-bang metric

The matrix inverse of (27) gives the following metric:

g(eff)
µν ∼





−
t2

t2 + c−2
, for µ = ν = 0 ,

1

1 + c2 t
2 + c4 t

4 + . . .
, for µ = ν = m ∈ {1, 2, 3} ,

0 , otherwise ,

(28)

which has, for c−2 > 0, a vanishing determinant at t = 0 and is,
therefore, degenerate.
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C. Emergent regularized-big-bang metric

The emergent metric (28) has indeed the structure of the regularized-
big-bang metric (6a), with the following effective parameters:

b2eff ∼ c−2 ℓ2 , (29a)

a2eff(t) ∼ 1− c2
(
t/ℓ
)2

+ . . . , (29b)

where the IIB-matrix-model length scale ℓ has been restored and
where the leading coefficients c−2 and c2 have been calculated.

By choosing the Ansatz parameters appropriately, we get c2 < 0 in
(29b), so that the emerged classical spacetime corresponds to the
spacetime of a nonsingular cosmic bounce at t = 0, as obtained in (8)
from Einstein’s gravitational field equation with a wM = 1/3 perfect
fluid.

Aspects of Gravity — Bielefeld, Oct. 6–8, 2020 (v2.0) – p. 26



C. Cosmological interpretation

The proper cosmological interpretation of the emerged classical
spacetime is perhaps as follows.

The new physics phase is assumed to be described by the IIB matrix
model and the corresponding large-N master field gives rise to the
points and metric of a classical spacetime.

If the master field has an appropriate structure, the emerged metric
has a tamed big bang, with a metric similar to the regularized-big-bang
metric of GR [2] but now having an effective length parameter beff
proportional to the IIB-matrix-model length scale ℓ .

In fact, one possible interpretation is that the new phase has produced
a universe-antiuniverse pair [5], that is, a “universe” for t > 0 and an
“antiuniverse” for t < 0.
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