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0. Preliminary remarks

� The present talk is really a “UFBSM” talk, where the extravagant
acronym is explained as follows:

� BSM=Beyond the Standard Model of elementary particle physics

� FBSM=Far-BSM, also including gravity
(
EPlanck ≈ 1019 GeV

)

� UFBSM=Ultra -FBSM, also including the emergence of spacetime

Disclaimer:

� The present talk, with a rather formidable title, provides no
definitive answers (the Sphinx of Giza knows the answers but does not tell us...).
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1a. M-theory – Universality class

M-theory is a hypothetical theory that
unifies all five consistent versions of
10D superstring theory (cf. [1, 2, 3]);
see the well-known “nerve-cell” sketch.

The assumption is that all theories of the figure belong to the same
universality class .

For an explicit description, we use the IIB matrix model of Kawai and
collaborators [4, 5], which has been proposed as a nonperturbative
formulation of type-IIB superstring theory and, thereby, of M-theory.
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1b. IIB matrix model

The IIB matrix model has a finite number of N ×N traceless Hermitian
matrices: ten bosonic matrices Aµ and essentially eight fermionic
(Majorana–Weyl) matrices Ψα.

The partition function Z of the IIB matrix model is defined by the
following “path” integral [4, 5]:

Z =

∫
dAdΨ exp

(
−S/ℓ4

)
=

∫
dA exp

(
−Seff/ℓ

4
)
, (1a)

S=−Tr

(
1

4

[
Aµ, Aν

] [
Aρ, Aσ

]
δ̃µρ δ̃νσ +

1

2
Ψβ Γ̃

µ
βα δ̃µν

[
Aν , Ψα

]
)
, (1b)

δ̃µν =
[
diag

(
1, 1, . . . , 1

)]
µν

, for µ, ν ∈ {1, 2, . . . , 10} . (1c)

Expectation values of further observables will be discussed later.
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1b. IIB matrix model

Two technical remarks:

1. The model shown in (1) is the original model with “Euclidean”

coupling constants δ̃µν , but it is also possible to consider a
“Lorentzian” version [6, 7] with a complex Feynman phase factor
exp

(
i S/ℓ4

)
in the path integral and coupling constants

η̃µν =
[
diag

(
− 1, 1, . . . , 1

)]
µν

for µ, ν ∈ {0, 1, . . . , 9}.

2. A model length scale “ℓ” has been introduced, so that Aµ has the
dimension of length and Ψα the dimension of (length)3/2.
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1c. Conceptual question

Now, the IIB matrix model (1) just gives numbers , Z and further
expectation values (see later), while the matrices Aµ and Ψα in (1a)
are merely integration variables.

Moreover, there is no obvious small dimensionless parameter to
motivate a saddle-point approximation.

Hence, the conceptual question: where is the classical spacetime?

Recently, we have suggested to revisit an old idea, the large-N master
field of Witten [8], for a possible origin of classical spacetime in the
context of the IIB matrix model [9].

In this relatively short talk, we have only time to remind you of this
mysterious master field (a name coined by Coleman) and to give some
preliminary results.

F.R. Klinkhamer, BSM-2021, March 29, 2021 (v1.05) – p. 7



2a. Suggested answer – Large-N factorization

Consider the gauge-invariant bosonic observable

wµ1 ... µm = Tr
(
Aµ1 · · · Aµm

)
. (2)

Arbitrary strings of these w observables have expectation values

〈wµ1 ... µm wν1 ... νn · · · 〉 = 1

Z

∫
dA
(
wµ1 ... µm wν1 ... νn · · ·

)
e−Seff/ℓ

4

, (3)

with normalization 〈 1 〉 = 1.

For a string of two identical w observables, the following factorization
property holds to leading order in N :

〈wµ1 ... µm wµ1 ... µm 〉 N
= 〈wµ1 ... µm〉 〈wµ1 ... µm〉 , (4)

without sums over repeated indices. Similar large-N factorization
properties hold for all expectation values (3).

The leading-order equality (4) is a truly remarkable result for a
statistical (quantum) theory.
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2b. Large-N master field

Indeed, according to Witten [8], the factorization (4) implies that
the path integrals (3) are saturated by a single configuration,

the so-called master field Â
µ.

Considering one w observable for simplicity, we then have for its
expectation value:

〈wµ1 ... µm〉 N
= Tr

(
Âµ1 · · · Âµm

)
≡ ŵ µ1 ... µm , (5)

and similarly for the other expectation values,

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz〉 N
= ŵ µ1 ... µm ŵ ν1 ... νn · · · ŵ ω1 ... ωz . (6)

Hence, we do not have to perform the path integrals on the right-hand
side of (3): we “only” need ten traceless Hermitian matrices Âµ to get
all these expectation values from the simple procedure of replacing
each Aµ in the observables by Âµ.
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2c. Emergent classical spacetime

Now, the meaning of the suggestion on slide 7 is clear:

classical spacetime may reside in the master-field matrices Âµ.

Heuristics:

� The expectation values 〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz 〉 from (3)
correspond to a large part of the information content of the IIB
matrix model (but, of course, not all the information).

� That same information is contained in the master-field matrices Âµ,
which give the same numbers (ŵ µ1 ... µm ŵν1 ... νn · · · ŵ ω1 ... ωz),
at least to leading order in N and where ŵ is the observable w

evaluated for Â.

� From these master-field matrices Âµ, it appears possible to extract
the points and metric of an emergent classical spacetime (recall
that the original matrices Aµ were merely integration variables).
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2c. Emergent classical spacetime

Next, assume that the matrices Âµ of the IIB-matrix-model master
field are known and that they are approximately band-diagonal.

Then, it is possible [9] to extract a discrete set of spacetime points {x̂µ
k }

with an index k ∈ {1, . . . , K} for integer K = N/n.

These discrete spacetime points sample a smooth manifold with conti-
nuous spacetime coordinates xµ and an emergent inverse metric gµν(x),
for which we have an explicit expression [9].

The metric gµν(x) is obtained as matrix inverse of gµν(x).

It has been established [10, 11, 12] that, in principle, it is possible to get,
from appropriate distributions of the extracted spacetime points {x̂µ

k },
the metrics of the Minkowski and the spatially flat Robertson–Walker
spacetimes.

For discussion relating to a “tamed” big bang, see the recent review [13].
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3a. Some details – Extracted spacetime points

Assume that the matrices Âµ of the IIB-matrix-model master field are
known and that they are approximately band-diagonal (as suggested
by numerical results [6, 7]).

Then, skipping over a few subtleties, the spacetime points are obtained
as follows:

Let n be a divisor of N ,

N = K n , (7)

where both K and n are positive integers. Now, the extracted spacetime
points x̂µ

k , for k ∈ {1, . . . , K}, are obtained as averaged eigenvalues

of the n× n blocks along the diagonals of the master-field matrices Âµ.

Further details on the extracted spacetime points are given in App. 6A.
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3b. Extracted spacetime metric

By considering the effective action of a low-energy scalar degree of
freedom σ “propagating” over the discrete spacetime points x̂µ

k , the
following expression for the emergent inverse metric is obtained [5, 9]:

gµν(x) ∼
∫

RD

dDy ρav(y) (x− y)µ (x− y)ν f(x− y) r(x, y) , (8)

with continuous spacetime coordinates xµ having the dimension of
length and spacetime dimension D = 9+1 = 10 for the original model.

The multiple integral (8) contains several functions which follow from
the distributions of the extracted discrete spacetime points. As such,
these functions are determined by the master-field matrices Âµ.

The emergent metric gµν(x) is obtained as matrix inverse of gµν(x).

Further details on the emergent inverse metric are given in App. 6B.
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3c. Emerging Lorentzian signature

The matrix model (1) has been defined with “Euclidean” coupling

constants δ̃µν , but the emergent spacetime metric from (8) need not
necessarily have a Euclidean signature.

It can be shown that an appropriate behavior of the functions in the
integrand of (8) can give rise to a Lorentzian signature.

See App. B in Ref. [9] and App. D in Ref. [13] for some toy-model
calculations.

Here, further details on the emerging Lorentzian signature are given
in App. 6C.
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4. Conclusions

It is conceivable that a new physics phase gives rise to classical
spacetime, gravity, and matter, as described by our current theories
(General Relativity and the Standard Model).

For an explicit calculation, we have considered the IIB matrix model ,
which has been proposed as a nonperturbative formulation of type-IIB
superstring theory (M-theory).

The crucial insight is that the emergent classical spacetime may reside

in the large-N master field Â
µ of the IIB matrix model.

In principle, the IIB-matrix-model master field Âµ can produce the
metrics of the Minkowski and the spatially flat Robertson–Walker
spacetimes.

At this moment, the outstanding task is to calculate the exact IIB-matrix-
model master field Âµ or, at least, to get a reliable approximation of it ...
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6A. Extraction of the spacetime points

Aoki et al. [5] have argued that the eigenvalues of the matrices Aµ of
model (1) can be interpreted as spacetime coordinates , so that the
model has a ten-dimensional N = 2 spacetime supersymmetry.

Here, we will turn to the eigenvalues of the master-field matrices Âµ.
Assume that the matrices Âµ of the Lorentzian-IIB-matrix-model
master field are known and that they are approximately band-diagonal
with width ∆N < N (as suggested by numerical results [6, 7]). Then,
make a particular global gauge transformation [6],

Â
µ

= Ω Âµ Ω † , Ω ∈ SU(N) , (9)

so that the transformed 0-component matrix is diagonal and has
ordered eigenvalues α̂i ∈ R,

Â
0

= diag
(
α̂1, α̂2, . . . , α̂N−1, α̂N

)
, (10a)

α̂1 ≤ α̂2 ≤ . . . ≤ α̂N−1 ≤ α̂N ,
N∑

i=1

α̂i = 0 . (10b)
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6A. Extraction of the spacetime points

A relatively simple procedure [9] approximates the eigenvalues of the

spatial matrices Â
m

but still manages to order them along the diagonal ,
matching the temporal eigenvalues α̂i from (10).

We start from two trivial observations:

� If M is an N ×N Hermitian matrix, then any n× n block centered
on the diagonal of M is also Hermitian, which holds for 1 ≤ n ≤ N .

� If the matrix M is, moreover, band-diagonal with width ∆N < N ,
then the eigenvalues of the n× n blocks on the diagonal
approximate the original eigenvalues of M , provided n & ∆N .

Now, let K be an odd divisor of N , so that

N = K n , K = 2L+ 1 , (11)

where both L and n are positive integers.
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6A. Extraction of the spacetime points

Consider, in each of the ten matrices Â
µ
, the K adjacent blocks of

size n× n centered on the diagonal.

We already know the diagonalized blocks of Â
0

from (10a), which
allows us to define the following time coordinate t̂ (σ) for σ ∈ (0, 1]:

x̂ 0
(
k/K

)
≡ c̃ t̂

(
k/K

)
≡ 1

n

n∑

j=1

α̂(k−1)n+j , (12)

with k ∈ {1, . . . , K} and a velocity c̃ to be set to unity later. The time
coordinates from (12) are ordered,

t̂
(
1/K

)
≤ t̂

(
2/K

)
≤ . . . ≤ t̂

(
1− 1/K

)
≤ t̂

(
1
)
, (13)

precisely because the α̂i are, according to (10b).
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6A. Extraction of the spacetime points

Next, obtain the eigenvalues of the n× n blocks of the nine spatial

matrices Â
m

and denote these real eigenvalues by
(
β̂m
)
i
, with a label

i ∈ {1, . . . , N} respecting the order of the n-dimensional blocks.

Define, just as for the time coordinate in (12), the following nine spatial
coordinates x̂m(σ) for σ ∈ {(0, 1]:

x̂m
(
k/K

)
≡ 1

n

n∑

j=1

[
β̂m

]
(k−1)n+j

, (14)

with k ∈ {1, . . . , K}.
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6A. Extraction of the spacetime points

If the master-field matrices Â
µ

are approximately band-diagonal
(width ∆N < N ) and if the eigenvalues of the spatial n× n blocks
(with n & ∆N ) show significant scattering , then the expressions (12)
and (14) may provide suitable spacetime points. In a somewhat
different notation, these points are denoted

x̂µ
k =

(
x̂ 0
k , x̂

m
k

)
≡
(
x̂ 0
(
k/K

)
, x̂m

(
k/K

) )
, (15)

where k runs over {1, . . . , K}.
Each of these coordinates x̂µ

k has the dimension of length, which
traces back to the dimension of the bosonic matrix variable Aµ.

To summarize, with N = K n and n & ∆N , the extracted space-
time points x̂µ

k , for k ∈ {1, . . . , K}, are obtained as averaged
eigenvalues of the n×n blocks along the diagonals of the gauge-

transformed master-field matrices Â
µ

from (9)–(10).
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6B. Extraction of the spacetime metric

The points x̂µ
k effectively build a spacetime manifold with continuous

(interpolating) coordinates xµ if there is also an emerging metric gµν(x).

By considering the effective action of a low-energy scalar degree of
freedom σ “propagating” over the discrete spacetime points x̂µ

k , the
following expression for the emergent inverse metric is obtained [5, 9]:

gµν(x) ∼
∫

RD

dDy ρav(y) (x− y)µ (x− y)ν f(x− y) r(x, y) , (16a)

ρav(y) ≡ 〈〈 ρ(y) 〉〉 , (16b)

with continuous spacetime coordinates xµ having the dimension of
length and spacetime dimension D = 9+1 = 10 for the original model.

The average 〈〈 ρ(y) 〉〉 corresponds, for the extraction procedure of App. 6A,
to averaging over different block sizes n and block positions along the

diagonal in the master-field matrices Â
µ
.
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6B. Extraction of the spacetime metric

The quantities that enter the integral (16) are the density function

ρ(x) ≡
K∑

k=1

δ(D)
(
x− x̂k

)
, (17)

the density correlation function r(x, y) defined by

〈〈 ρ(x) ρ(y) 〉〉 ≡ 〈〈 ρ(x) 〉〉 〈〈 ρ(y) 〉〉 r(x, y) , (18)

and a localized real function f(x) from the scalar effective action,

Seff[σ] ∼
∑

k, l

1

2
f
(
x̂k − x̂l

) (
σk − σl

)2
, (19)

where σk is the field value at the point x̂k (the scalar degree of freedom σ

arises from a perturbation of the master field Â
µ
; see App. A in Ref. [9]).

As r(x, y) is dimensionless and f(x) has dimension 1/(length)2, the
inverse metric gµν(x) from (16) is seen to be dimensionless.
The metric gµν is simply obtained as the matrix inverse of gµν .
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6B. Extraction of the spacetime metric

A few heuristic remarks [12] may help to clarify expression (16a).

In the standard continuum theory [i.e., a scalar field σ(x) propagating
over a given continuous spacetime manifold with metric gµν(x)],
two nearby points x′ and x′′ have approximately equal field values,
σ(x′) ∼ σ(x′′), and two distant points x′ and x′′′ generically have very
different field values, |σ(x′)− σ(x′′′)|/|σ(x′) + σ(x′′′)| & 1.

The logic is inverted for our discussion. Two approximately equal field
values, σ1 ∼ σ2, may still have a relatively small action (19) if f(x̂1 − x̂2)
∼ 1 and inserting f ∼ 1 in (16a) gives a “large” value for the inverse
metric gµν and, hence, a “small” value for the metric gµν , meaning that
the spacetime points x̂1 and x̂2 are close (in units of ℓ).

Two different field values σ1 and σ3 have a small action (19) if f(x̂1 − x̂3)
∼ 0 and inserting f ∼ 0 in (16a) gives a “small” value for the inverse metric
gµν and, hence, a “large” value for the metric gµν , meaning that the space-
time points x̂1 and x̂3 are separated by a large distance (in units of ℓ).
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6B. Extraction of the spacetime metric

To summarize, the emergent metric, in the context of the IIB matrix
model, is obtained from correlations of the extracted spacetime points
and the master-field perturbations.

The obvious question, now, is which spacetime and metric do we get?

We don’t know, as we do not have the IIB-matrix-model master field.

But, awaiting the final result on the master field, we can already
investigate what properties the master field would need to have in
order to be able to produce certain desired emerging metrics.
Some exploratory results were presented in Refs. [11, 12].

[Note that, in principle, the origin of the expression (16) need not be
the IIB matrix model but can be an entirely different theory, as long as
the emerging inverse metric is given by a multiple integral with the
same basic structure.]
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6C. More on the Lorentzian signature

In Refs. [9, 11, 12], we have considered the Lorentzian IIB matrix
model, which has two characteristics:

1. the “Lorentzian” coupling constants η̃µν in the action:

2. the Feynman phase factor ei S/ℓ
4

in the “path” integral.

From the master field of this Lorentzian matrix model, we obtained
the spacetime points from expressions (12) and (14) in App. 6A and
the inverse spacetime metric from expression (16) in App. 6B.

Several Lorentzian inverse metrics were found in Refs. [11, 12], where
the used Ansätze relied on having “Lorentzian” coupling constants η̃µν .

But there is another way [9] to obtain Lorentzian inverse metrics,
namely by making an appropriately odd Ansatz for the correlations
functions entering (16), so that the resulting matrix is off-diagonal.
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6C. More on the Lorentzian signature

With this appropriately odd Ansatz, it is, in principle, also possible
to get a Lorentzian inverse metric from the Euclidean matrix model,

which has nonnegative coupling constants δ̃µν in the action and a

weight factor e−S/ℓ4 in the path integral. The spacetime points are
extracted from the Euclidean master field (no gauge transformation
needed) by the expression (14), where m now runs over {1, . . . , D}.

The details of a toy-model calculation are as follows (expanding on
a parenthetical remark in the last paragraph of App. B in Ref. [9]).

The calculation starts from the multiple integral (16) for spacetime
dimension D = 4 by writing in the integrand

f(x− y) r(x, y) = f(x− y) r̃(y − x) r(x, y) = h(y − x) r(x, y) , (20)

where the new function r(x, y) has a more complicated dependence
on x and y than the combination x− y.
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6C. More on the Lorentzian signature

The D = 4 multiple integral (16), with y0 replaced by y4, is then
evaluated at the spacetime point

xµ = 0 , (21a)

with the replacement (20) in the integrand, two further simplifications,

〈〈 ρ(y) 〉〉 = 1 , r(x, y) = 1 , (21b)

and symmetric cutoffs on the integrals,

∫ 1

−1

dy1 . . .

∫ 1

−1

dy4 . (21c)

The only nontrivial contribution to the integrand of (16) now comes
from the correlation function h as defined by (20).
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6C. More on the Lorentzian signature

From (16) and (21), we then get the emergent inverse metric at xµ = 0

gµνtest,E4(0) ∼
∫ 1

−1

dy1
∫ 1

−1

dy2
∫ 1

−1

dy3
∫ 1

−1

dy4 yµ yν h(y) . (22)

Next, take an appropriate Ansatz for the correlation function h ,

h(y) = 1− γ
(
y1 y2 + y1 y3 + y1 y4 + y2 y3 + y2 y4 + y3 y4

)
, (23)

where γ multiplies monomials that are odd in two coordinates and even
in the two others.

Note that the Ansatz (23) treats all coordinates y1, y2, y3, and y4 equally,

in line with the coupling constants δ̃µν of the Euclidean matrix model.
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6C. More on the Lorentzian signature

The integrals of (22) with Ansatz function (23) are trivial and we obtain

gµνγ (0) ∼ 16

9




3 −γ −γ −γ
−γ 3 −γ −γ
−γ −γ 3 −γ
−γ −γ −γ 3


 , (24a)

where the matrix on the right-hand side has the following eigenvalues
and corresponding (normalized) eigenvectors:

Eγ =
16

9

{
(3− 3 γ) , (3 + γ) , (3 + γ) , (3 + γ)

}
, (24b)

Vγ =





1

2




1

1

1

1


 ,

1√
2




1

−1
0

0


 ,

1√
2




0

0

1

−1


 ,

1

2




1

1

−1
−1








. (24c)
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6C. More on the Lorentzian signature

From (24b), we have the following signatures:

(+−−−) for γ ∈ (−∞, −3) , (25a)

(+ + ++) for γ ∈ (−3, 1) , (25b)

(−+++) for γ ∈ (1, ∞) . (25c)

Hence, we obtain Lorentzian signatures for parameter values γ
sufficiently far away from zero, γ > 1 or γ < −3.
The conclusion is that it is, in principle, possible to get a Lorentzian
emergent inverse metric from the Euclidean IIB matrix model, provided
the correlation functions have the appropriate structure.

This observation, if applicable, would remove the need for working with
the (possibly more difficult) Lorentzian IIB matrix model.
—————————————————————————————————-
Figure credits: https://www.egypttoday.com/siteimages/Larg/72515.jpg (Sphinx picture);

https://commons.wikimedia.org (M-theory sketch)
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