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0.1 Introduction

The main Cosmological Constant Problem (CCP1) can be phrased as
follows (Pauli, 1933; Bohr, 1948; Veltman, 1974; see [1, 2] for two reviews):

why do the quantum fields in the vacuum not produce naturally a large
cosmological constant Λ in the Einstein field equations?

The magnitude of the problem is enormous:

|Λtheory|/|Λexperiment| ≥ 1054 .

The large number on the RHS arises as follows.
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0.1 Introduction
With the ATLAS and CMS results [3, 4] in support of the Higgs
mechanism, it is clear that the EWSM in the laboratory involves a
vacuum energy density of order

∣∣ǫ (EWSM)
V

∣∣ ∼
(
100 GeV

)4 ∼ 1044 eV4 .

Moreover, this energy density can be expected to change as the

temperature T of the Universe drops,

ǫ (EWSM)
V = ǫ (EWSM)

V (T ) .

How can the Universe then end up with a vacuum energy density

∣∣Λ(obs)
∣∣ < 10−28 g cm−3 ∼ 10−10 eV4 ?

Here, there are 54 orders of magnitude to explain:∣∣Λ(obs)/ǫ (EWSM)
V

∣∣
≤ 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 .
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0.1 Introduction

Still more CCPs after the discovery of the “accelerating Universe”:

CCP1 – why |Λ| ≪ (EQCD)
4 ≪ (Eelectroweak)

4 ≪ (EPlanck)
4 ?

CCP2a – why Λ 6= 0 ?

CCP2b – why Λ ∼ ρmatter
∣∣
present ∼ +10−11 eV4 ?

Hundreds of papers have been published on CCP2. But, most likely:

CCP1 needs to be solved first before CCP2 can even be addressed.
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0.1 Introduction

Here, a discussion of one particular approach to CCP1 by Volovik
and the speaker, which goes under the name of q–theory [5, 6, 7]
(a brief review appears in [8]).

It is instructive to consider two explicit realizations of q–theory:

1. with a three-form gauge field [9, 10, 11, 12],

2. with a massless vector-field [13, 14].

The vector-field realization, in particular, is found to give
Minkowski spacetime as an attractor of the field equations.

But a new problem arises: the danger of ruining the standard
Newtonian physics of small self-gravitating systems [15].

This disaster can, however, be avoided by a special model with two
vector fields [16, 17].
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0.2 Outline

1. Basics of q–theory ←− most important part of talk

2. Two realizations

3 Newtonian gravity recovered ←− no collateral damage

4. Conclusion

5. References
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1. Basics of q–theory

Crucial insight [5]: there is vacuum energy and vacuum energy.

More specifically and introducing an appropriate notation:

the vacuum energy density ǫ appearing in the action

need not be the same as

the vacuum energy density ρV in the Einstein field equations.

How can this happen concretely . . .
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1. Basics of q–theory

Consider the full quantum vacuum to be a self-sustained medium
(as is a droplet of water in free fall).

That medium would be characterized by some conserved charge .

Study, then, the macroscopic equations of this conserved microscopic
variable (later called q), whose precise nature need not be known.

An analogy:

� Take the mass density ρ of a liquid, for example, liquid Argon.

� This ρ describes microscopic quantities (ρ = mAr nAr with number
density nAr and mass mAr of the atoms).

� Still, ρ obeys the macroscopic equations of hydrodynamics,
because of particle-number and mass conservation.

However, is the quantum vacuum just like a normal liquid?
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1. Basics of q–theory

No, as the quantum vacuum is known to be Lorentz invariant
(cf. experimental limits at the 10−15 level in the photon sector [18]).

The Lorentz invariance of the vacuum rules out the standard type of
charge density, which arises from the time component j0 of a
conserved vector current jµ.

Needed is a new type of relativistic conserved charge , called the
vacuum variable q.

In other words, look for a relativistic generalization (q) of the number
density (n) which characterizes the known material liquids.
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1. Basics of q–theory

With such a variable q(x), the vacuum energy density of the effective
action can be a generic function

ǫ = ǫ(q) = Λbare + ǫvar(q) , (1)

including a possible constant term Λbare from the zero-point energies of
the fields of the Standard Model (SM).

From 1© thermodynamics and 2© Lorentz invariance follows that [5]

PV
1©
= −

(
ǫ− q d ǫ

d q

)
2©
= −ρV , (2)

where the first equality corresponds to an integrated form of the
Gibbs–Duhem equation for chemical potential µ ≡ dǫ/dq.
Recall GD eq: N dµ = V dP − S dT ⇒ dP = (N/V ) dµ for dT = 0.
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1. Basics of q–theory

Both terms entering ρV from (2) can be of order (EPlanck)
4, but they

cancel exactly for an appropriate value q0 of the vacuum variable q.

Hence, for a generic function ǫ(q),

∃ q0 = const : Λ ≡ ρV =
[
ǫ(q)− q d ǫ(q)

d q

]
q=q0

= 0 , (3)

with constant vacuum variable q0 [a similar constant variable is known
to play a role for the Larkin–Pikin effect (1969) in solid-state physics].

Great, CCP1 solved, in principle . . .

But, is a relativistic vacuum variable q possible at all?

Yes, there exist several theories which contain such a q (see Sec. 2).
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2. Two realizations

Start with two obvious questions:

Q1: How does the adjustment-type solution (3) of CCP1 circumvent
Weinberg’s no–go “theorem” [2]?

Answer: q is a non-fundamental scalar field; see Sec. 2.1.

Q2: How did the Universe get the right value q0?

One possible answer is that q0 (or the corresponding chemical
potential µ0) is fixed globally as an integration constant, being
conserved throughout the history of the Universe [6].

Another possible answer uses a generalization of q–theory, for
which the ‘correct’ value q0 arises dynamically; see Sec. 2.2.
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2.1 Four-form realization
Vacuum variable q may arise from a 3–form gauge field A [9, 10].

Start from the effective action of GR+SM,

Seff[g, ψ] =

∫

R4

d4x
√
− det g

(
KN R[g] + ΛSM + Leff

SM[ψ, g]
)
, (4)

with gravitational coupling constant KN ≡ 1/(16πGN ) and ~ = c = 1.

Change this theory by the introduction of one field, A, to get [6, 7]:

S̃eff[A, g, ψ] =

∫

R4

d4x
√
− det g

(
K(q)R[g] + ǫ(q) + Leff

SM[ψ, g]
)
, (5a)

q ≡ − 1
24
ǫαβγδ∇αAβγδ /

√−g , (5b)

where q arises from the four-form field strength F = dA.

Variational principle gives generalized Einstein and Maxwell equations:
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2.1 Four-form realization

2K(q)
(
Rαβ − gαβ R/2

)
= −2

(
∇α∇β − gαβ �

)
K(q)

+ρV (q) gαβ − TM
αβ , (6a)

dρV (q)

dq
+ R

dK(q)

dq
= 0 , (6b)

with a vacuum energy density,

ρV = ǫ− q
(
dǫ

dq
+R

dK

dq

)
= ǫ− q µ , (7)

for integration constant (chemical potential) µ. Eq. (7) is precisely of the
Gibbs–Duhem form (2) in Minkowski spacetime (R = 0). Technically, the
extra gαβ term on the RHS of (6a) appears because q = q(A, g).

Answer to Q1: (5b) shows that q is a non-fundamental scalar field,
which invalidates Weinberg’s argument (see [7] for details).
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2.2 Vector-field realization

Vacuum variable q comes from an aether-type velocity field uβ [13, 14],
setting EUV = EPlanck. For a flat RW metric with cosmic time t, there is
an asymptotic solution for uβ = (u0, ub) and Hubble parameter H(t):

u0(t) → q0 t , ub(t) = 0 , H(t)→ 1/t , (8a)

u β
α ≡ ∇α u

β → q0 δ
β

α . (8b)

Define v ≡ u0/EPlanck, τ ≡ t EPlanck, h ≡ H/EPlanck, and λ ≡ Λ/(EPlanck)
4.

With an action quadratic in the variable u β
α , the field equations are [13]:

v̈ + 3h v̇ − 3h2 v = 0 , (9a)

2λ− (v̇)2 − 3 (h v)2 = 6h2 , (9b)

with the overdot standing for differentiation with respect to τ . Starting
from a de-Sitter universe with λ > 0, there is a unique value of q̂0 ≡
q0/(EPlanck)

2 to end up with a static Minkowski spacetime, q̂0 =
√
λ/2.
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2.2 Vector-field realization

Fig. 1: Four numerical solutions of ODEs (9ab) for λ = 2 and boundary conditions v(1) = 1± 0.25 and

v̇(1) = ±1.25.

⇒ Minkowski value q̂0 =
√
λ/2 = 1 arises dynamically [see left panel].

⇒ Minkowski spacetime is an attractor in this aether-type theory [7].

But. as mentioned above, there is serious collateral damage which
needs to be avoided (→ Sec. 3)
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2.3 Recap

To summarize, the q–theory approach to the main Cosmological
Constant Problem (CCP1) provides a solution.

For the moment, this is only a possible solution, because it is not
known for sure that the “beyond-the-Standard-Model” physics contains
such a q–type variable.

GENERAL REMARK: it is clear that the SM harbors huge vacuum
energy densities, which somehow need to be cancelled by new d.o.f.,
possibly related to the fundamental theory of spacetime and gravity.

Bad news: nothing is known about these fundamental d.o.f.

Good news: even though the detailed (high-energy) microphysics is
unknown, it may be possible to describe the macroscopic (low-energy)
effects along the lines of q–theory, just as for the hydrodynamics of water.
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3. Newtonian gravity

As mentioned in the Introduction, the original Dolgov model [13] leads
to an unacceptable modification of the standard Newtonian physics of
small self-gravitating systems (first noted by Rubakov and Tinyakov [15]).

SPECIAL MODEL [16]:

Two massless vector fields Aα(x) and Bα(x) with effective action:

Seff = −
∫
d4x
√−g

(
1

2
(EPlanck)

2R + ǫ(QA, QB) + Λ

)
, (10a)

QA ≡
√
Aα;β Aα;β , QB ≡

√
Bα;β Bα;β , (10b)

EPlanck ≡ (8πGN )−1/2 ≈ 2.44× 1018 GeV . (10c)

GR Seminar — DAMTP, 18 Sep 2012 (v1) – p. 18



3. Newtonian gravity

The vacuum energy density ǫ is taken to have the following structure:

ǫ =
Q4

A −Q4
B

Q2
AQ

2
B

, (11a)

For later use, we give the corresponding results for the gravitating
vacuum energy density ǫ̃ and inverse vacuum compressibility X−1 :

ǫ̃ ≡ ǫ−QA
dǫ

dQA
−QB

dǫ

dQB
=
Q4

A −Q4
B

Q2
AQ

2
B

= ǫ , (11b)

X−1 ≡ Q2
A

d2ǫ

dQA dQA
+Q2

B

d2ǫ

dQB dQB
+ 2QAQB

d2ǫ

dQA dQB
= 0 . (11c)
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3. Newtonian gravity

The Dolgov-type Ansatz for the vector fields Aα(x) and Bβ(x) and for
the metric gαβ(x) is:

A0 = A0(t) ≡ V (t) , A1 = A2 = A3 = 0 , (12a)

B0 = B0(t) ≡W (t) , B1 = B2 = B3 = 0 , (12b)

(gαβ) = diag
(
1, −a(t), −a(t), −a(t)

)
, (12c)

where a(t) is the cosmic scale factor of the spatially flat
Friedmann–Robertson–Walker (FRW) universe considered.

Solving the field equations from (10a) for the Ansatz fields (12) gives
the explicit functions V (t) ∝ t, W (t) ∝ t, and a(t) ∝ t.
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3. Newtonian gravity

MAIN ARGUMENT:

Small-scale perturbations around the background solution from (10a)
and (12) give the following equation for the metric perturbation:

(8πGN )−1
{

“ ∂2 ĥ ”
}(GR)

+
[
Λ+ ǫ̃

]
asymp

{
“ ĥ ”

}

+
[
X−1

]
asymp

{
t2 “ ∂2 ĥ ” + t “ ∂ ĥ ” + “ ĥ ”

}

+
[
ǫ− ǫ̃

]
asymp

{
t2 “ ∂2 ĥ ” + t “ ∂ ĥ ” + “ ĥ ”

}
= Text . (13a)

The Minkowski-attractor solution of the special model with (11) gives
[
Λ + ǫ̃

]
asymp = 0 , (13b)

[
X−1

]
asymp =

[
ǫ− ǫ̃

]
asymp = 0 . (13c)
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3. Newtonian gravity

Hence, the linear equation (13a) from the special model is the same as
the linear equation from standard GR, which reduces to the standard
Poisson equation of standard Newtonian gravity.

Newtonian gravity is indeed restored, but the Hubble expansion is too
fast: H(t) ≡ ȧ/a = t−1.

Possible to have another model [17] with non-minimal gravitational
couplings, which has the standard FRW expansion [H(t) = (1/2) t−1]
and the standard local Newtonian dynamics [G = GN ].

This last paper also gives a mathematical discussion of the attractor
behavior.
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4. Conclusion

Self-adjustment of a special type of vacuum variable q can give
ρV (q0) = 0 in the equilibrium state q = q0 = const. In principle, this
solves the main cosmological constant problem (CCP1).

A generic problem of adjustment-type solutions of CCP1 is the
catastrophic modification of the Newtonian dynamics of small
self-gravitating systems [e.g., G = G(t) 6= GN ’].

For a very special model with two massless vector-fields, it is possible
to have asymptotically both a standard FRW universe on large scales
and standard Newtonian dynamics on small scales.

The physical interpretation of this particular type of model is, however,
unclear. Somehow, the two vector fields conspire to give a self-adjusting
fluid with infinite compressibility (i.e., perfectly soft and flexible).

Such a fluid may have applications not only to cosmology but even to
cosmetics . . .
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