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0.1 Introduction

The main Cosmological Constant Problem (CCP1) can be phrased as
follows (Pauli, 1933; Bohr, 1948; Veltman, 1974; see [1, 2] for reviews):

why do the quantum fields in the vacuum not produce naturally a large
cosmological constant Λ in the Einstein field equations?

The magnitude of the problem is enormous:

|Λtheory|/|Λexperiment| ≥ 1042 .
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0.1 Introduction
Indeed, it is known that QCD in the laboratory involves a vacuum
energy density (e.g., gluon condensate) of order

∣∣ǫ (QCD)
V

∣∣ ∼
(
100 MeV

)4 ∼ 1032 eV4 .

Moreover, this energy density can be expected to change as the

temperature T of the Universe drops,

ǫ (QCD)
V = ǫ (QCD)

V (T ) .

How can the Universe then end up with a vacuum energy density

∣∣Λ(obs)
∣∣ < 10−28 g cm−3 ∼ 10−10 eV4 ?

Here, there are 42 orders of magnitude to explain:
∣∣Λ(obs)/ǫ (QCD)

V

∣∣ ≤ 0.000 000 000 000 000 000 000 000 000 000 000 000 000 001 .
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0.1 Introduction

Even more CCPs after the discovery of the “accelerating Universe”:

CCP1 – why |Λ| ≪ (EQCD)4 ≪ (Eelectroweak)
4 ≪ (EPlanck)

4 ?

CCP2a – why Λ 6= 0 ?

CCP2b – why Λ ∼ ρmatter
∣∣
present ∼ +10−11 eV4 ?

Hundreds of papers have been published on CCP2. But, most likely:

CCP1 needs to be solved first before CCP2 can even be addressed.
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0.1 Introduction

Here, a review of one particular approach to CCP1 by Volovik and the
speaker, which goes under the name of q–theory [3, 4, 5].

Turning to CCP2, some brief remarks on three possible mechanisms
for the creation of a positive remnant vacuum energy density ρV (tpresent)

[or effective cosmological constant Λeff] from:

� nonperturbative QCD [6, 7];

� new TeV–scale physics [8, 9];

� light massive neutrinos [10].
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0.2 Outline

1. Basics of q–theory ←− most important part of talk

2. Two questions

3. Remnant ρV (tpresent ) ←− predictions?

4. Conclusions

5. References
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1. Basics of q–theory

Crucial insight [3]: there is vacuum energy and vacuum energy.

More specifically and introducing an appropriate notation:

the vacuum energy density ǫ appearing in the action

need not be the same as

the vacuum energy density ρV in the Einstein field equations.

How can this happen concretely . . .
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1. Basics of q–theory

Consider the full quantum vacuum to be a self-sustained medium
(as is a droplet of water in free fall).

That medium would be characterized by some conserved charge .

Study, then, the macroscopic equations of this conserved microscopic
variable (later called q), whose precise nature need not be known.

An analogy:

� Take the mass density ρ of a liquid, for example, liquid Argon.

� This ρ describes microscopic quantities (ρ = mAr nAr with number
density nAr and mass mAr of the atoms).

� Still, ρ obeys the macroscopic equations of hydrodynamics,
because of particle-number and mass conservation.

However, is the quantum vacuum just like a normal liquid?
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1. Basics of q–theory

No, as the quantum vacuum is known to be Lorentz invariant
(cf. exp. limits at the 10−15 level in the photon sector [11, 12, 13]).

The Lorentz invariance of the vacuum rules out the standard type of
charge density, which arises from the time component j0 of a
conserved vector current jµ.

Needed is a new type of relativistic conserved charge , called the
vacuum variable q.

In other words, look for a relativistic generalization (q) of the number
density (n) which characterizes the known material liquids.
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1. Basics of q–theory

With such a variable q(x), the vacuum energy density of the effective
action can be a generic function

ǫ = ǫ(q) = Λbare + ǫvar(q) , (1)

including a possible constant term Λbare from the zero-point energies of
the fields of the Standard Model (SM).

From 1© thermodynamics and 2© Lorentz invariance follows that [3]

PV
1©
= −

(
ǫ− q d ǫ

d q

)
2©
= −ρV , (2)

where the first equality corresponds to an integrated form of the
Gibbs–Duhem equation for chemical potential µ ≡ dǫ/dq.
Recall GD eq: N dµ = V dP − S dT ⇒ dP = (N/V ) dµ for dT = 0.
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1. Basics of q–theory

Both terms entering ρV from (2) can be of order (EPlanck)
4, but they

cancel exactly for an appropriate value q0 of the vacuum variable q.

Hence, for a generic function ǫ(q),

∃ q0 = const : Λ ≡ ρV =
[
ǫ(q)− q d ǫ(q)

d q

]

q=q0

= 0 , (3)

with constant vacuum variable q0 [a similar constant variable is known
to play a role for the Larkin–Pikin effect (1969) in solid-state physics].

Great, CCP1 solved, in principle . . .

But, is a relativistic vacuum variable q possible at all?

Yes, there exist several theories which contain such a q (see later).
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2. Two questions

Q1: How does the adjustment-type solution (3) of CCP1 circumvent
Weinberg’s no–go “theorem” [1]?

Answer: q is a non-fundamental scalar field; see Sec. 2.1.

Q2: How did the Universe get the right value q0?

One possible answer is that q0 (or the corresponding chemical
potential µ0) is fixed globally as an integration constant, being
conserved throughout the history of the Universe [4].

Another possible answer uses a generalization of q–theory, for
which the ‘correct’ value q0 arises dynamically; see Sec. 2.2.
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2.1 Four-form realization
Vacuum variable q may arise from a 3–form gauge field A [14, 15].

Start from the effective action of GR+SM,

Seff[g, ψ] =

∫

R4

d4x
√
− det g

(
KN R[g] + ΛSM + Leff

SM[ψ, g]
)
, (4)

with gravitational coupling constant KN ≡ 1/(16πGN ) and ~ = c = 1.

Change this theory by the introduction of one field, A, to get [4, 5]:

S̃eff[A, g, ψ] =

∫

R4

d4x
√
− det g

(
K(q)R[g] + ǫ̃(q) + Leff

SM[ψ, g]
)
, (5a)

q ≡ − 1
24 ǫ

αβγδ∇αAβγδ /
√−g , (5b)

where q arises from the four-form field strength F = dA.

Variational principle gives generalized Einstein and Maxwell equations:
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2.1 Four-form realization

2K(q)
(
Rαβ − gαβ R/2

)
= −2

(
∇α∇β − gαβ �

)
K(q)

+ρV (q) gαβ − TM
αβ , (6a)

dρV (q)

dq
+R

dK(q)

dq
= 0 , (6b)

with a vacuum energy density,

ρV = ǫ̃− q
(
dǫ̃

dq
+R

dK

dq

)
= ǫ̃− q µ , (7)

for integration constant (chemical potential) µ. Eq. (7) is precisely of the
Gibbs–Duhem form (2) in Minkowski spacetime (R = 0). Technically, an
extra gαβ term on the RHS of (6a) appears because q = q(A, g).

Answer to Q1: (5b) shows that q is a non-fundamental scalar field,
which invalidates Weinberg’s argument (see [5] for details).
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2.2 Vector-field realization

Realization of vacuum variable q by aether-type velocity field uβ [17, 18],
setting EUV = EPlanck. For a flat RW metric with cosmic time t, there is
an asymptotic solution for uβ = (u0, ub) and Hubble parameter H(t):

u0(t) → q0 t , ub(t) = 0 , H(t)→ 1/t , (8a)

u β
α ≡ ∇α u

β → q0 δ
β

α . (8b)

Define v ≡ u0/EPlanck, τ ≡ t EPlanck, h ≡ H/EPlanck, and λ ≡ Λ/(EPlanck)
4.

Then, the field equations are [17]:

v̈ + 3h v̇ − 3h2 v = 0 , (9a)

2λ− (v̇)2 − 3 (h v)2 = 6h2 , (9b)

with the overdot standing for differentiation with respect to τ . Starting
from a de-Sitter universe with λ > 0, there is a unique value of q̂0 ≡
q0/(EPlanck)

2 to end up with a static Minkowski spacetime, q̂0 =
√
λ/2.
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2.2 Vector-field realization

Fig. 1: Four numerical solutions of ODEs (9ab) for λ = 2 and boundary conditions v(1) =

1 ± 0.25 and v̇(1) = ±1.25.

⇒ Minkowski value q̂0 =
√
λ/2 = 1 arises dynamically [see left panel].

⇒ Minkowski spacetime is an attractor in this aether-type theory [5].

(Incidentally, this theory may be relevant to the early Universe but not
the present one [19].)
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2.3 Recap

To summarize, the q–theory approach to the main Cosmological
Constant Problem (CCP1) provides a solution.

For the moment, this is only a possible solution, because it is not
known for sure that the “beyond-the-Standard-Model” physics harbors
an appropriate q–type variable.

Still, better to have one possible solution than none.
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3. Remnant ρV

Now, the remaining problems (or puzzles, rather):

CCP2a – why Λeff 6= 0 ?

CCP2b – why Λeff ∼ ρmatter
∣∣
now ∼ 10−29 g cm−3 ∼ 10−11 eV4 ?

Last one also goes under the name of ‘cosmic coincidence puzzle’ (ccp).

Here, discuss three possible mechanisms in the framework of q–theory.

(If time is short, fast forward.)
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3.1 Remnant ρV – QCD

Gluon condensate [20] from quantum chromodynamics (QCD):

q̃ ≡ 〈 1

4π2
Ga µν Ga

µν 〉 = 〈 1

4π2
Ga κλ g

κµgλν Ga
µν 〉 , (10)

with Yang–Mills field strength Ga
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν

for su(3) structure constants fabc.

Particle physics experiments: q̃ ∼ (300 MeV)4.

Observational cosmology: ρV ∼ (2 meV)4.

⇒ How to reconcile the typical QCD vacuum energy density
ǫQCD ∼ 1034 eV4 with the observed value ρV ∼ 10−11 eV4 ?

General q–theory argument (Sec. 1):

in equilibrium, q̃ has self-adjusted to the value q̃0 with ρV (q̃0) = 0.
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3.1 Remnant ρV – QCD

Effective action for the gluon condensate q from (10) [dropping tilde]:

Seff = Sgrav +Svac =

∫
d4x

√
−det(g)

( 1

16πGN
R[g]+ ǫvac(q)

)
. (11)

Energy-momentum tensor for the gravitational field equations:

T vac
αβ = − 2√−g

δSvac

δgαβ
= ǫvac(q) gαβ − 2

dǫvac(q)

dq

δq

δgαβ

=

(
ǫvac(q)− q

dǫvac(q)

dq

)
gαβ ≡ ρV (q) gαβ , (12)

which is, again, of the Gibbs–Duhem form (2).

⇒ equilibrium state: q = q0 with ρV (q0) = 0 and gαβ(x) = ηMinkowski
αβ .
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3.1 Remnant ρV – QCD

In a nonequilibrium state such as the expanding Universe [with Hubble
parameter H(t) 6= 0], there is a perturbation of the vacuum:

q = q0 + δq(H) 6= q0 ⇒ ρV (q) ∼ dρV

dq
δq(H) 6= 0 . (13)

For QCD, this is a difficult IR problem (cf. [21, 22]). A priori, can have

ρV (H) ∼ 0 +H2 Λ2
QCD +H4 + · · ·

+ |H|Λ3
QCD + |H|3 ΛQCD + · · · (14)

Linear term in H gives correct order of magnitude for asymptotic ρV [6].

As a spatially-flat RW universe has Ricci scalar R = 6
(
2H2 + Ḣ

)
, the

|H|Λ3
QCD term suggests a modified-gravity action with term |R|1/2 |q|3/4.

This QCD-scale modified-gravity universe fits astronomical data well [7].
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3.2 Remnant ρV – Electroweak kick

Reconsider the four-form realization of q, taken to be operative at an
UV (Planckian) energy scale.

In the very early Universe, the vacuum energy density ρV (t) rapidly
drops to zero and stays there, but small effects may occur at cosmic
temperatures T of the order of the TeV scale . . .

Simple picture:

Take a glass of water and shake the glass⇒ water responds.

If vacuum energy density is really like a liquid, then it can be ‘shaken.’
Here, the ‘shaking’ is done by massive particles.
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3.2 Remnant ρV – Electroweak kick

Key steps of frozen-electroweak-kick mechanism [8, 9]:

� Presence of massive particles with electroweak interactions
[ average mass < M > = Eew ∼ TeV ] changes the expansion rate
H(t) of the Universe compared to the radiation-dominated case.

� Change of the expansion rate kicks ρV (t) away from zero.

� Quantum-dissipative effects operating at cosmic time tew set by
Eew may result in finite remnant value of ρV .

� Phenomenological description of this process with a simple
field-theoretic model.

� Required Eew value ranges from 2 to 20 TeV, depending on the
number of new particles and details of the model.
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3.3 Remnant ρV – Massive neutrinos

In the very early Universe, vacuum energy density ρV (t) drops fast.

Consider the effects from massive SM fermions (larger in number than
the SM bosons). These fermions get a mass as the temperature drops
below a critical value and decrease ρV (t) in a stepwise manner [10].

In fact, the mass effects on the zero-point energies of the SM quark
and charged-lepton fields are:

ρ(charged fermion)
V ∼

∫ (Ecutoff) d3p

(2π)3

(
−

√
|p|2 +M2 + |p|

)

∼ −M2 (Ecutoff)2 ∼ −M2 (Eew)2 , (15)

with Ecutoff ∼ Eew in the last step (cf. symmetry restoration at Tc ∼ Eew).
But a massive neutrino is different and may have Ecutoff ∼Mν , so that:

ρ(neutrino)
V ∼ −(Mν)4 . (16)
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3.3 Remnant ρV – Massive neutrinos
ρvac

 t 
 tpresent 

 Λpresent 

 tew  tQCD 

 (EQCD)4 

 (Eew)4 

 (EPlanck)4 

 tPlanck 

Fig. 2: Approximate double-log plot of the relaxation of the vacuum energy density.
Dashed curve: relaxation according to < ρvac(t) >∼ (EPlanck)

2/t2 from Ref. [4].
Full curve: dissipative processes and cosmological phase transitions included [10].
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3.3 Remnant ρV – Massive neutrinos

Key steps of non-equilibrated-neutrino mechanism [10]:

� The last fermions to get massive are the neutrinos,
consider the heaviest one.

� This neutrino gives, in principle, the change ∆ρV ∼ −(Mν)4,
aiming for ρV,∞ = 0 of the self-sustained equilibrium state
from q–theory.

� But perhaps interactions of virtual neutrinos in the quantum
vacuum are too weak to make the transition.

� Lack of negative contribution corresponds to a positive ρV value.

Final formula for a single light massive neutrino:

ρV (tpresent) ∼ 0 + (Mν)4 . (17)

For three neutrino flavors with near-maximal mixing, neutrino mass
spectrum is close to the minimal one: 0 . mνn . 0.05 eV for n = 1, 2, 3.
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4. Conclusions

CCP1: Self-adjustment of a special type of vacuum variable q can
give ρV (q0) = 0 in the equilibrium state q = q0 = const.

CCP2: Within the q–theory framework, a finite remnant value of ρV (t)

may result from

(i) nonperturbative “finite-size effects” of QCD
⇒ verified by lattice-gauge-theory simulations?

or

(ii) a “kick” by massive particles with M ∼ Eew

⇒ new TeV–scale physics beyond the SM?

or

(iii) non-equilibrated neutrinos in the quantum vacuum
⇒ small neutrino masses, mνn . 0.05 eV?
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App. A1: Relaxation of ρV (t)

Spatially-flat (F)RW universe with two types of matter, massive (‘type 1’)
and massless (‘type 2’) particles. From fields eqs. (6), get ODEs [4]:

6

(
H
dK

dq

dq

dt
+KH2

)
= ρV + ρM1 + ρM2 , (A.1a)

6
dK

dq

(
dH

dt
+ 2H2

)
=

dρV

dq
, (A.1b)

dρM1

dt
+ 3

[
1 + wM1

]
H ρM1 = 0 , (A.1c)

dρM2

dt
+ 4H ρM2 = 0 , (A.1d)

with equation-of-state (EOS) function wM1(t).
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App. A1: Relaxation of ρV (t)

If Universe starts out with ρV ∼ (EPlanck)
4 at t ∼ tPlanck, then ρV → 0 by

oscillations of q(t) and coupling to the gravitational field.

Indeed, with simple Ansätze

K(q) = 1
2 q , (A.2a)

ρV (q) = 1
2 (q − q0)2 + O

(
(q − q0)3

)
, (A.2b)

the following behavior is found [4]:

q(τ)/q0 − 1 ∼ τ−1 sin τ , (A.3a)

rV (τ) ∼ τ−2 sin2 τ , (A.3b)

in terms of the dimensionless cosmic time τ and the dimensionless
vacuum energy density rV obtained by scaling with q0 = (EPlanck)

2.
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App. A1: Relaxation of ρV (t)

Fig. A1: Flat (F)RW model universe [4] with ultrarelativistic matter (wM ≡ PM/ρM = 1/3)
and dynamic vacuum energy density (wV ≡ PV/ρV = −1). The dimensionless q–type
variable is denoted by f . Asymptotic behavior on bottom-row panels: |f − 1| ∝ 1/τ ,
h ∝ 1/τ , and rV ∝ 1/τ2.
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App. A2: Remnant ρV from EW kick

Theoretical value of the effective cosmological constant given by

Λtheory ≡ lim
t→∞

ρtheory
V (t) = rnum

V (Eew)8 /(EPlanck)
4 , (A.4)

with number rnum
V ≡ rV (τfreeze) from solution ODEs (cf. Fig. A2).

Eq. (A.4) already suggested in [16], but first calculated in [8, 9].

Equating (A.4) to the experimental value Λexp ≈ (2 meV)4 gives

Eew =

(
Λexp

rnum
V

)1/8

(EPlanck)
1/2 ≈ 3.8 TeV

(
0.013

rnum
V

)1/8

. (A.5)

Analytic bound: rnum
V . 1 ⇒ Eew & 2 TeV.

Numerical results for rnum
V give Eew estimates of Table A1.
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App. A2: Remnant ρV from EW kick

Fig. A2 (same as Fig. B4 in App. B2): Sudden presence of massive (type–1) particles
kicks vacuum energy density rV (t) away from zero. Quantum-dissipative effects freeze
rV (t) to a nonzero value as t → ∞.
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App. A2: Remnant ρV from EW kick

Table A1: Preliminary estimates [9, (a)] of the energy scale Eew for hierarchy parame-
ter ξ ≡ (EPlanck/Eew)4 ≫ 1. Both massive type–1 and massless type–2 particles are
assumed to have been in thermal equilibrium before the “kick” and the number of type–2
particles is taken as Neff,2 = 102. See App. B2 for details.
Left: Prescribed kick with type–1 particles of equal mass M = Eew and, for dissipative
coupling constant ζ = 2, Eew shown as a function of the effective number of d.o.f. Neff,1.
Right: Dynamic kick with case–A type–1 mass spectrum (N1a, M1a ; N1b, M1b) =

(40, 2 × Eew; 60, 1/3 × Eew) and Eew =< M1i > shown as a function of ζ.

ζ Neff,1 Eew [TeV]

2 1 8.5

2 101 4.9

2 102 3.2

2 103 2.8

2 104 2.7

ζ Neff,1 Eew [TeV]

0.2 102 14.8

2 102 3.8

20 102 5.6
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App. A3: Remnant ρV from mν

For three neutrino flavors with near-maximal mixing, a heuristic
argument suggests [10]:

ρV (tpresent)
?
= cν

(
(mν1)

2 +(mν2)
2 +(mν3)

2
) ∣∣∣mν1mν2mν3

∣∣∣
2/3

, (A.6)

where cν is a positive coefficient assumed to be of order unity.

With neutrino-oscillation data, then have 3 equations for 3 unknowns.
Taking cν = 1, the solutions for the two possible hierarchies are:

(
mν1, mν2, mν3

)∣∣∣
(cν=1) ?

=

{
(2.793× 10−6, 8.775, 48.99)×meV,

(48.99, 49.77, 1.783× 10−7)×meV.
(A.7)

These neutrino masses cannot be detected by the KATRIN tritium
beta-decay detector (0.2–eV design sensitivity).

Table A2 shows that the same conclusion holds for cν ≥ 10−8.
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App. A3: Remnant ρV from mν

Table A2: Neutrino masses [in units of meV] from (A.6) and neutrino-oscillation data
(mν3)2 − (mν1)2 = ± 2400 and (mν2)2 − (mν1)2 = 77.

cν mν1 mν2 mν3 mν1 mν2 mν3

1 2.793× 10−6 8.775 48.99 48.99 49.77 1.783× 10−7

10−2 2.793× 10−3 8.775 48.99 48.99 49.77 1.783× 10−4

10−4 2.638 9.163 49.06 48.99 49.77 0.1783

10−6 48.13 48.93 68.68 62.95 63.56 39.54

10−8 172.4 172.6 179.2 177.0 177.2 170.1

10−10 551.9 552.0 554.1 553.3 553.4 551.2

⇒ neutrino masses from cν & 10−4 are close to the minimal values
needed to explain the neutrino-oscillation data.
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App. B1: Electroweak kick

Analytic solution [8] of the ODEs (A.1) which

• starts from a standard radiation-dominated FRW universe with ρV = 0,

• is perturbed around t = tew ∼ EPlanck/(Eew)2 with ρV 6= 0,

• resumes the standard radiation-dominated expansion with ρV = 0.

Specifically, the vacuum energy density for t ∼ tew is given by

ρV (t) ∼ (1− 3wM1)
2(t)H(t)4 , (B.1)

which has a peak value of order (tew)−4 ∼
(
(Eew)2 /EPlanck

)4

but vanishes as t→∞.

⇒ standard (nondissipative) dynamic equations of q–theory do not
produce a constant ρV, remnant > 0 from the electroweak kick.
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App. B1: Electroweak kick

As argued in [8], quantum-dissipative effects of the vacuum energy
density may lead to a finite remnant value of order

Λ ≡ ρV, remnant ∼
(
(Eew)2 /EPlanck

)4 ∼ (10−3 eV)4 , (B.2)

for Eew ∼ 1 TeV and EPlanck ∼ 1015 TeV. In fact, expression (B.2) was
already suggested by Arkani-Hamed, Hall, Kolda, and Murayama [16].

It is possible [9, (a)] to modify the “classical” q–theory equations (A.1)
in such a way as to recover (B.2).
Even better, a simple field-theory model has been presented in [9, (b)].

Details for modified ODEs in App. B2 and for simple model in App. C.
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App. B2: Model universe

Model universe with three components (see App. A of [9, (a)]):

0. Vacuum variable q entering the gravitational coupling K(q).

1. Massive ‘type 1’ particles (subspecies i = a, b, c, . . .) with masses
Mi of order Eew ∼ 1 TeV and electroweak interactions.

2. Massless ‘type 2’ particles with electroweak interactions.

Now, proceed as follows:

� Consider a flat RW universe with Hubble parameter H(t).

� Allow for energy exchange between the two matter components,
so that total type–1 energy density peaks around tew ≡ EPlanck/(Eew)2.

� Get EOS function κM1i(t) ≡ 1− 3wM1i(t) with κM1i(t) ∼ 0 for
t≪ tew in the ultrarelativistic regime.

� Introduce a dissipative coupling constant ζ = O(1) and a function
γ(t) which equals 1 for t≪ tew and drops to zero for t > tew.
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App. B2: Model universe

Modified q–theory ODEs (standard ODEs recovered for ζ = 0 and γ = 1):

6
(
HK′ q̇ +KH2

)
= ρV +

∑

i=a,b,c,...

ρM1i + ρM2 , (B.3a)

6K′
(
Ḣ + 2H2

)
= γ ρ′V +

(
1− γ

)K′

K

[
2ρV +

∑

i

1
2 κM1i ρM1i

]
, (B.3b)

ρ̇M1i + (4− κM1i)HρM1i =
N1i

N1

[λ21

tew
ω̂ ρM2 −

ζ

γ
q ρ̇ ′

V

]
− λ12

tew
ν̂ ρM1i,(B.3c)

ρ̇M2 + 4H ρM2 = −λ21

tew
ω̂ ρM2 +

λ12

tew
ν̂

∑

i

ρM1i , (B.3d)

where the overdot [prime] stands for differentiation with respect to t [q].
Functions γ, ω̂, and ν̂ shown in Figs. B1–B4 below.
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App. B2: Model universe

Use simple Ansätze: ρV (q) ∝ (q − q0)2 and K(q) ∝ q.

With tew and ξ ≡ (EPlanck/Eew)4 ≫ 1, define dimensionless variables:

τ ≡ (tew)−1 t , h ≡ tew H , (B.4a)

rV ≡ (tew)4 ρV , rMn ≡ ξ−1 (tew)4 ρMn , (B.4b)

x ≡ ξ
(
q/q0 − 1

)
. (B.4c)

Figures B1–B3 and B4 show numerical results for ξ = 102 and ξ =∞ .
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App. B2: Model universe

Fig. B1: Numerical solution [9, (a)] of standard (nondissipative) q–theory ODEs (B.3) for
ζ = 0 and γ = 1. The hierarchy parameter is ξ = 102 [oscillatory effects suppressed for
larger values of ξ, recovering the smooth behavior of (B.1)]. Further coupling constants
{λ21, λ12} = {18, 2} and case–A type–1 mass spectrum (N1a, M1a ; N1b, M1b) =

(40, 2 Eew; 60, 1/3 Eew).
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App. B2: Model universe

Fig. B2: Same as Fig. B1, but now for the modified q–theory ODEs (B.3) with dissipative
coupling constant ζ = 2 and γ(τ) = 0 for τ ≥ τfreeze = 3.
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App. B2: Model universe

Fig. B3: Same as Fig. B2, but evolved further.
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App. B2: Model universe

Fig. B4: Same as Fig. B2, but now for ξ = ∞.
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App. C: Field-theoretic model

Simple field-theoretic model [9, (b)] generates an effective cosmological
constant (remnant vacuum energy density) of order Λeff ∼ (meV)4 from
TeV–scale ultramassive particles with electroweak intera ctions .

The model is simple in the sense that it involves only a few types of
fields and two energy scales, EPlanck and Eew.

Specifically, two types of scalars:

� ultramassive (type–1) fields φa for a = 1, . . . , N1;

� massless (type–2) fields ψb for b = 1, . . . , N2;

� take N1
1©
= N2

2©
= 102 from 2© SM and 1© SUSY?.

Basic model equations are (~ = c = k = 1; signature −, +, +, +):
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App. C: Field-theoretic model

Seff, T =

∫

R4

d4x
√−g

(
KT (q)R[g] + ǫV (q) + LM

eff, T [φ, ψ, g]
)
, (C.1a)

q ≡ − 1

24
ǫαβγδ∇[αAβγδ] /

√−g , (C.1b)

ρV (q) ≡ ǫV (q)− µ0 q =
1

2

(
q − q0

)2
, (C.1c)

KT (q) =





q/2 for T > T
(+)

c, K ,

q0/2 for T ≤ T (+)
c, K ,

(C.1d)

q0 = 1/(8π GN ) ≡ (EPlanck)
2 ≈ (2.44× 1018 GeV)2 . (C.1e)
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App. C: Field-theoretic model

LM
eff, T =

1

2
∂αψ · ∂αψ +

1

2
∂αφ · ∂αφ+

1

2
M2 (φ · φ)

+gT (ψ · ψ) (φ · φ) , (C.2a)

gT =

{
g0

(
1−

(
T/Tc, g

)2
)

for T ≤ Tc, g ,

0 for T > Tc, g ,
(C.2b)

M = Eew , (C.2c)

Tc, g = O(Eew) . (C.2d)

Tc, g > T
(+)

c, K = O(Eew) . (C.2e)

ξ ≡ (EPlanck/Eew)4 . (C.3)
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App. C: Field-theoretic model

Spatially flat, homogeneous, and isotropic (F)RW universe.

Timescale set by

tew ≡ EPlanck/(Eew)2 =
(
1/meV

) (
TeV/Eew

)2
. (C.4)

Dimensionless variables:

τ ≡ (tew)−1 t , h ≡ tew H , (C.5a)

rMn ≡ ξ−1 (tew)4 ρMn , rV ≡ (tew)4 ρV = x2/2 , (C.5b)

x ≡ ξ
(
q/q0 − 1

)
. (C.5c)
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App. C: Field-theoretic model

Dimensionless ODEs:

(
ḣ+ 2h2

) (
x2/2 + ξ

(
rM1 + rM2 − 3h2

))
− hx ẋ = 0 , (C.6a)

ṙM1 + (4− κM1)h rM1 − λ21 rM2 + λ12 rM1 = 0 , (C.6b)

ṙM2 + 4h rM2 + λ21 rM2 − λ12 rM1 = 0 , (C.6c)

3h ẋ θ
[
rM2(τ)− rc, K

]
−

(
x2/2 + ξ

(
rM1 + rM2 − 3h2

))
= 0 , (C.6d)

with EOS function κM1 from [9, (a)] and coupling parameters
[
λ ∝ (g0)

2
]
:

λ12(τ) = λ θ[rc, g − rM2]

(
1−

√
rM2/rc, g

)2

, (C.6e)

λ21(τ) = λ12(τ) exp

[
−

(
πN2

30 rM2(τmin)

)1/4
a(τ)

a(τmin)

M

Eew

]
. (C.6f)
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App. C: Field-theoretic model

Model universe has early phase given by a standard radiation-dominated
FRW universe⇒ fully determined boundary conditions of ODEs.

Fig. C1: Numerical solution [9, (b)] of the dimensionless ODEs (C.6). Model pa-
rameters are {ξ, λ, rc, g, rc, K} = {107, 104, 12, 3}. The ODEs are solved over the
interval [τmin, τmax] = [0.01, 3] with the boundary conditions at τ = τbcs = 0.25:
{x, h, a, rM1, rM2} = {0, 2, 1, 0, 12}. Essentially the same results for ξ = 1060.
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App. C: Field-theoretic model

The calculated value rV, remnant ≈ 2.4× 10−3 gives Eew ≈ 4.7 TeV,
according to (A.5).

But, here, main focus on the physical content of a theory capable of
generating the observed cosmological “constant” of our Universe.

Hence, analytic result of interest:

lim
τ→∞

rV (τ)
∣∣∣
ξ=∞

=
1

8

(
κM1(τfreeze) rM1(τfreeze)

)2 ∣∣∣
rM2(τfreeze)=rc, K

. (C.7)
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