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0.1 Introduction

The main Cosmological Constant Problem (CCP1) can be phrased as
follows (Pauli, 1933; Bohr, 1948; Veltman, 1974; see [1, 2] for reviews):

why do the quantum fields in the vacuum not produce naturally a large
cosmological constant A in the Einstein field equations?

The magnitude of the problem is enormous:

‘Atheoryl/lAexperimentl > 1042 .




0.1 Introduction

Indeed, it is known that QCD in the laboratory involves a vacuum
energy density (e.g., gluon condensate) of order

Q9P| (100 MeV)" ~ 10°% eV*.

Moreover, this energy density can be expected to change as the

temperature T' of the Universe drops,

CD CD
o = e,

How can the Universe then end up with a vacuum energy density

AP < 10728 gem™ ~ 10710 eV* ?

Here, there are 42 orders of magnitude to explain:

| A©PS) /e RV < 0.000 000 000 000 000 000 000 000 000 000 000 000 000 001 .




0.1 Introduction

Even more CCPs after the discovery of the “accelerating Universe”:
CCP1 - Why |A| < (EQCD)4 < (Eelectroweak)4 < (EPIanck)4 ?
CCP2a—- wWhy A #£0 ?

— 4
CCPZb - Why A g pmatter ’present ~J _|_1O 1 eV ?

Hundreds of papers have been published on CCP2. But, most likely:

CCP1 needs to be solved first before CCP2 can even be addressed.




0.1 Introduction

Here, a review of one particular approach to CCP1 by Volovik and the
speaker, which goes under the name of g-theory [3, 4, 5].

Turning to CCP2, some brief remarks on three possible mechanisms
for the creation of a positive remnant vacuum energy density py (¢present)

[or effective cosmological constant Agg] from:
B nonperturbative QCD [6, 7];
B new TeV-scale physics [8, 9];

B light massive neutrinos [10].




0.2 Outline

1. Basics of g—-theory «—— most important part of talk
2. Two questions

3. Remnant pv (fpresent ) «—— predictions?

4. Conclusions

5. References




1. Basics of g—theory

Crucial insight [3]: | there is vacuum energy and vacuum energy.

More specifically and introducing an appropriate notation:

the vacuum energy density | € | appearing in the action

need not be the same as
the vacuum energy density | py | in the Einstein field equations.

How can this happen concretely ...




1. Basics of g—theory

Consider the full guantum vacuum to be a self-sustained medium
(as is a droplet of water in free fall).

That medium would be characterized by some conserved charge .

Study, then, the macroscopic equations of this conserved microscopic
variable (later called ¢), whose precise nature need not be known.
An analogy:

B Take the mass density p of a liquid, for example, liquid Argon.

B This p describes microscopic quantities (p = mar nar With number
density na, and mass mp, of the atoms).

B Still, p obeys the macroscopic equations of hydrodynamics,
because of particle-number and mass conservation.

However, is the quantum vacuum just like a normal liquid?




1. Basics of g—theory

No, as the quantum vacuum is known to be Lorentz invariant
(cf. exp. limits at the 10~ 1° level in the photon sector [11, 12, 13)).

The Lorentz invariance of the vacuum rules out the standard type of
charge density, which arises from the time component j, of a
conserved vector current j,.

Needed is a new type of relativistic conserved charge , called the
vacuum variable q.

In other words, look for a relativistic generalization (¢) of the number
density (n) which characterizes the known material liquids.




1. Basics of g—theory

With such a variable ¢(x), the vacuum energy density of the effective
action can be a generic function

€ = G(Q) = Apare + €var(CI) 3 (1)

iIncluding a possible constant term Apae from the zero-point energies of
the fields of the Standard Model (SM).

From () thermodynamics and (2) Lorentz invariance follows that [3]

d
—(e—qd—;>@—pv, @)

where the first equality corresponds to an integrated form of the
Gibbs—Duhem equation for chemical potential ;. = de/dq.

Recall GD eq: Nduy =V dP — SdT' = dP = (N/V)du for dT' = 0.

G

Py




1. Basics of g—theory

Both terms entering py- from (2) can be of order (Epjanck)?, but they
cancel exactly for an appropriate value g, of the vacuum variable g.

Hence, for a generic function €(q),

de
dgo=const : A =py = [e(q)—q d(Q)] =0, (3)
q Jg9=qo

with constant vacuum variable ¢, [a similar constant variable is known
to play a role for the Larkin—Pikin effect (1969) in solid-state physics].

Great, CCP1 solved, in principle . ..

But, is a relativistic vacuum variable ¢ possible at all?
Yes, there exist several theories which contain such a ¢ (see later).




2. Two gquestions

Q1. How does the adjustment-type solution (3) of CCP1 circumvent
Weinberg’s no—go “theorem” [1]?

Answer: ¢ is a non-fundamental scalar field; see Sec. 2.1.

Q2. How did the Universe get the right value ¢¢?

One possible answer is that ¢ (or the corresponding chemical
potential 1) is fixed globally as an integration constant, being

conserved throughout the history of the Universe [4].

Another possible answer uses a generalization of g—theory, for
which the ‘correct’ value ¢ arises dynamically; see Sec. 2.2.




2.1 Four-form realization

Vacuum variable ¢ may arise from a 3—form gauge field A [14, 15].

Start from the effective action of GR+SM,
Seff[.gﬂvb] — / d4CC V detg (KN R[g] + ASM + Lgfllc/l [ng])) (4)
R4
with gravitational coupling constant Ky = 1/(167Gy) and A = ¢ = 1.

Change this theory by the introduction of one field, A, to get [4, 5]:

S*MA, g, = /R4 d"“w\/—detg(K(Q)R[g]+'€(Q)+£§f§4[¢,g]>, (5a)
¢ = —37 € Vadpys [ V=9, (5b)

where ¢ arises from the four-form field strength ' = d A.

Variational principle gives generalized Einstein and Maxwell equations:




2.1 Four-form realization

2K(q) (Rag — Jaf R/Q) = -2 (Vavﬁ — Jap D) K(Q)
+ov(q) gap — Tag » (62)
dPV(Q) R dK(Q) - 0, (6b)
dq dq

with a vacuum energy density,

» de dK »
py =€e—q| —+R—)=€e—qu, (7)
dq dq

for integration constant (chemical potential) . Eq. (7) is precisely of the

Gibbs—Duhem form (2) in Minkowski spacetime (R = 0). Technically, an
extra g, term on the RHS of (6a) appears because ¢ = q(A4, g).

Answer to Q1: (5b) shows that ¢ is a nhon-fundamental scalar field,
which invalidates Weinberg’s argument (see [5] for details).




2.2 VVector-field realization

Realization of vacuum variable ¢ by aether-type velocity field ug [17, 18],
setting Eyy = Epianck- FOr a flat RW metric with cosmic time ¢, there is
an asymptotic solution for ug = (ug, u,) and Hubble parameter H (t):

up(t) — qot, up(t)=0, H()—1/t, (8a)
uwl =Veu® — qd”. (8b)

Define v = uo/ Epjancks T = t Epjancks b = H/Epjanck, and A = A/(EPIanck)éI:-
Then, the field equations are [17]:

v4+3h0—3h*v = 0, (9a)
2X — (0)* =3 (hv)* = 6h7, (9b)

with the overdot standing for differentiation with respect to 7. Starting
from a de-Sitter universe with A > 0, there is a unique value of ¢, =

g0/ (Epianck)? to end up with a static Minkowski spacetime, gy = /)\/2.




2.2 VVector-field realization
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Fig. 1: Four numerical solutions of ODEs (9ab) for A\ = 2 and boundary conditions v(1) =
1+0.25and v(1) = £+1.25.

= Minkowski value gy = /A\/2 = 1 arises dynamically [see left panel].
= Minkowski spacetime is an attractor in this aether-type theory [5].

(Incidentally, this theory may be relevant to the early Universe but not
the present one [19].)




2.3 Recap

To summarize, the g—theory approach to the main Cosmological
Constant Problem (CCP1) provides a solution.

For the moment, this is only a possible solution, because it is not

known for sure that the “beyond-the-Standard-Model” physics harbors
an appropriate ¢g—type variable.

Still, better to have one possible solution than none.




3. Remnant py,

Now, the remaining problems (or puzzles, rather):
ccP2a—- Why Agg £ 0 ?

CCP2b— Why At ~ pmatter ’ ~ 107% g cm— ~ 1071 ev* ?

now

Last one also goes under the name of ‘cosmic coincidence puzzle’ (ccp).

Here, discuss three possible mechanisms in the framework of ¢—theory.

(If time is short, fast forward.)




3.1 Remnant py — QCD

Gluon condensate [20] from quantum chromodynamics (QCD):

1 1

~ apy ,a _ T
q <47_‘_2 G G ,Lw> <47_‘_2

Garx ™9 G, ) (10)

with Yang—Mills field strength G, = 9, A%, — 9, A%, + fobc A® A°,
for su(3) structure constants fab¢.

Particle physics experiments: ¢ ~ (300 MeV)%.

Observational cosmology: py ~ (2meV)i

= How to reconcile the typical QCD vacuum energy density
eocp ~ 10%* eV* with the observed value py ~ 10711 eV* ?

General g—theory argument (Sec. 1):

in equilibrium, ¢ has self-adjusted to the value gy with py(gp) = 0.




3.1 Remnant py — QCD

Effective action for the gluon condensate ¢ from (10) [dropping tilde]:

Seff = Sgrav + Svac = /d433 \/—det(g) ( R[g] + evac(Q)) . (11)

167G N

Energy-momentum tensor for the gravitational field equations:

2 48 devac(q) 9dq
vac vacC vac
p— _— p— o - 2
v = evac(4) 9o g 5408
de
= (EvaC(Q) —(q VSZ(Q)> Jas = PV (Q) gaps s (12)

which is, again, of the Gibbs—Duhem form (2).

= equilibrium state: ¢ = go with py(go) = 0 and ga(x) = i oK.




3.1 Remnant py — QCD

In a nonequilibrium state such as the expanding Universe [with Hubble
parameter H(t) = 0], there is a perturbation of the vacuum:

q=qo+0q(H)#q = pv(@)Nf—q5q(H)#0- (13)

For QCD, this is a difficult IR problem (cf. [21, 22]). A priori, can have
pv(H) ~ 0+ H?Ajep +H* + -
+ ‘H|A%CD+ ‘H|3AQCD—|—"' (14)

Linear term in H gives correct order of magnitude for asymptotic py [6].

As a spatially-flat RW universe has Ricci scalar R = 6(2 H? + H), the
|H| Adcp term suggests a modified-gravity action with term |R|/2 |q|3/4.

This QCD-scale modified-gravity universe fits astronomical data well [7].




3.2 Remnant py — Electroweak kick

Reconsider the four-form realization of ¢, taken to be operative at an
UV (Planckian) energy scale.

In the very early Universe, the vacuum energy density py (¢) rapidly
drops to zero and stays there, but small effects may occur at cosmic
temperatures T' of the order of the TeV scale ...

Simple picture:
Take a glass of water and shake the glass = water responds.

If vacuum energy density is really like a liquid, then it can be ‘shaken.
Here, the ‘shaking’ is done by massive particles.




3.2 Remnant py — Electroweak kick

Key steps of frozen-electroweak-kick mechanism  [8, 9]:

B Presence of massive particles with electroweak interactions

[average mass < M > = FEg, ~ TeV] changes the expansion rate
H (t) of the Universe compared to the radiation-dominated case.

B Change of the expansion rate kicks py (t) away from zero.

B Quantum-dissipative effects operating at cosmic time te,, set by
Few may result in finite remnant value of py, .

B Phenomenological description of this process with a simple
field-theoretic model.

B Required FEe, value ranges from 2 to 20 TeV, depending on the
number of new particles and details of the model.




3.3 Remnant py,, — Massive neutrinos

In the very early Universe, vacuum energy density py (¢) drops fast.

Consider the effects from massive SM fermions (larger in number than
the SM bosons). These fermions get a mass as the temperature drops
below a critical value and decrease py (t) in a stepwise manner [10].

In fact, the mass effects on the zero-point energies of the SM quark
and charged-lepton fields are:

. (Ecutoff) d3
h df P
piyreraediommon / 2n)3 (— VIp? + M2 + Ipl)

~ _M2 (E’cutoﬂ’)2 ~ _M2 (Evew)2 ) (15)

with E ot ~ Few IN the last step (cf. symmetry restoration at T, ~ E.,).
But a massive neutrino is different and may have E_, o ~ M, SO that:

pgeutrino) -~ —(M,/)4 . (16)
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3.3 Remnant py,, — Massive neutrinos

4
(BEew) T
4
(Eqcp) T
/\present T t
i | i | >
tpianck Law locp Thresent

Fig.2: Approximate double-log plot of the relaxation of the vacuum energy density.
Dashed curve: relaxation according to < pvac(t) >~ (Epjanck)?/t? from Ref. [4].
Full curve: dissipative processes and cosmological phase transitions included [10].




3.3 Remnant py,, — Massive neutrinos

Key steps of non-equilibrated-neutrino mechanism  [10]:

B The last fermions to get massive are the neutrinos,
consider the heaviest one.

B This neutrino gives, in principle, the change Apy ~ —(M,)4,

aiming for py - = 0 of the self-sustained equilibrium state
from g—theory.

B But perhaps interactions of virtual neutrinos in the quantum
vacuum are too weak to make the transition.

B Lack of negative contribution corresponds to a positive py value.
Final formula for a single light massive neutrino:
PV (tpresent) ~ 0+ (Mu)4 . (17)

For three neutrino flavors with near-maximal mixing, neutrino mass
spectrum is close to the minimal one: 0 < m,,, < 0.05eV forn =1,2,3.

Y




4. Conclusions

CCP1:. Self-adjustment of a special type of vacuum variable ¢ can
give py (qo) = 0 in the equilibrium state ¢ = ¢y = const.

CCP2: Within the g—theory framework, a finite remnant value of py ()
may result from

(i) nonperturbative “finite-size effects” of QCD
= verified by lattice-gauge-theory simulations?

or

(i) a “kick” by massive particles with M ~ FEg,
= new TeV-scale physics beyond the SM?

or

(i) non-equilibrated neutrinos in the quantum vacuum
=- small neutrino masses, m,,, < 0.05 eV?
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App. Al: Relaxation of py (%

Spatially-flat (F)RW universe with two types of matter, massive (‘type 1’)
and massless (‘type 2) particles. From fields egs. (6), get ODEs [4]:

dK d
6 (H=~ L +KH*) = py+puitpuz, (Ala)
dq dt
dK (dH dpv
6 2H? | = =X A.1b
dq (dt i ) dg - (A1)
dpn
o + 3 [1 —I—le} Hpyn = 0, (A.1c)
dpnr2 .
y +4Hppyo = 0, (A.1d)

with equation-of-state (EOS) function w1 ().




App. Al: Relaxation of py (%

If Universe starts out with py ~ (Epjanck)?* @t t ~ tpianck, then py — 0 by
oscillations of ¢(¢) and coupling to the gravitational field.

Indeed, with simple Ansatze

K(q) =

pv(q) =

q, (A.2a)

(¢ — qo0)* + O((C] — 610)3) 7 (A.2Db)

N|— N

the following behavior is found [4]:

q(1)/qo —1 ~ 71 sin 7, (A.3a)

ryv(T) ~ 772 sin®T, (A.3b)

in terms of the dimensionless cosmic time 7 and the dimensionless
vacuum energy density ry, obtained by scaling with gg = (Epjanck)?.




App. Al: Relaxation of py (%
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Fig. Al: Flat (F)RW model universe [4] with ultrarelativistic matter (wy = Pu/pm = 1/3)
and dynamic vacuum energy density (wy = Py/pyv = —1). The dimensionless ¢-type
variable is denoted by f. Asymptotic behavior on bottom-row panels: |f — 1| &« 1/7,
ho1/7,and ry o< 1/72.




App. A2: Remnant py from EW Kkick

Theoretical value of the effective cosmological constant given by

A" = Tim pp®® () = ™ (Eew)® /(Eptanck)* (A%)

t—00

with number '™ = ry (Teeze) from solution ODEs (cf. Fig. A2).
Eq. (A.4) already suggested in [16], but first calculated in [8, 9].

Equating (A.4) to the experimental value A®® ~ (2 meV)? gives

AP 1/8 0.013\ /8
Eew = ( num) (E’F’Iaan)l/2 ~ 3.8 TeV ( ) . (A9)

num
TV TV

Analytic bound: r¥'™ S 1 = Eew 2 2 TeV.
Numerical results for r{*™ give Ee estimates of Table Al.
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App. A2: Remnant py from EW Kkick
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Fig. A2 (same as Fig. B4 in App. B2): Sudden presence of massive (type—1) particles
kicks vacuum energy density ry (t) away from zero. Quantum-dissipative effects freeze
rv (t) to a nonzero value as t — oo.




App. A2: Remnant py from EW Kkick

Table Al: Preliminary estimates [9, (a)] of the energy scale Eew for hierarchy parame-
ter ¢ = (Epjanck/Few)?* > 1. Both massive type—1 and massless type-2 particles are
assumed to have been in thermal equilibrium before the “kick” and the number of type—2
particles is taken as Negr o = 102. See App. B2 for details.

Left: Prescribed kick with type—1 particles of equal mass M = FEew and, for dissipative
coupling constant ¢ = 2, Eew shown as a function of the effective number of d.o.f. N ;.
Right: Dynamic kick with case—A type—1 mass spectrum (Nig, M1g; N1p, M1p) =
(40, 2 X Eew; 60, 1/3 x Eew) and Eew =< M1; > shown as a function of ¢.

G Nett 1 FEew [TeV] ¢ Netf 1 FEew [TeV]
2 1 8.5 0.2 102 14.8

2 10° 4.9 2 102 3.8

2 102 3.2 20 102 5.6

2 103 2.8

2 10% 2.7




App. A3: Remnant py from m,

For three neutrino flavors with near-maximal mixing, a heuristic
argument suggests [10]:

. 2/3
PV (tpresent) = Cy ((myl)2 + (mu2)2 + (mu3)2) |mu1 my2 1My3 , (A.6)

where ¢, is a positive coefficient assumed to be of order unity.

With neutrino-oscillation data, then have 3 equations for 3 unknowns.
Taking ¢, = 1, the solutions for the two possible hierarchies are:

(A7)

(eo=1) » [ (2.793 x 1075, 8.775, 48.99) x meV,
(ml/17 my2, Myp3 —

| (48.99, 49.77, 1.783 x 10~ 7) x meV.

These neutrino masses cannot be detected by the KATRIN tritium
beta-decay detector (0.2—eV design sensitivity).

Table A2 shows that the same conclusion holds for ¢, > 1078.




App. A3: Remnant py from m,

Table A2: Neutrino masses [in units of meV] from (A.6) and neutrino-oscillation data

(m,/g)2 — (mV1)2 = 4+ 2400 and (mV2)2 — (mV1)2 = 77.

Cy my1 my2 my3 myi my2 my3

1 2.793 x 107% 8.775 48.99 | 48.99 49.77 1.783 x 10~”
1072 | 2793 x 1073 8.775 48.99 | 48.99 49.77 1.783 x 10~
10~4 2.638 9.163 49.06 | 48.99 49.77 0.1783
10~ 48.13 48.93 68.68 | 62.95 63.56 39.54
1078 172.4 172.6 179.2 | 177.0 177.2 170.1
10~10 551.9 552.0 554.1 | 553.3 553.4 551.2

= neutrino masses from ¢, > 10~* are close to the minimal values
needed to explain the neutrino-oscillation data.
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App. B1: Electroweak kick

Analytic solution [8] of the ODEs (A.1) which

e starts from a standard radiation-dominated FRW universe with py = 0,
e resumes the standard radiation-dominated expansion with py = 0.

Specifically, the vacuum energy density for ¢ ~ tey IS given by

pv(t) ~ (1 —3wa)?(t) H(t)", (B.1)

which has a peak value of order (tew)™* ~ ((Eew)? /]E?F>|anck)4

but vanishes as t — oc.

=- standard (nondissipative) dynamic equations of g—theory do not
produce a constant py. remnant > 0 from the electroweak kick.




App. B1: Electroweak kick

As argued in [8], quantum-dissipative effects of the vacuum energy
density may lead to a finite remnant value of order

4 _
A= PV, remnant ™~ ((Eew)2 /EPIanck) ~ (10 ’ eV)4 ; (B.2)

for Eew ~ 1 TeV and Epjanck ~ 101° TeV. In fact, expression (B.2) was
already suggested by Arkani-Hamed, Hall, Kolda, and Murayama [16].

It is possible [9, (a)] to modify the “classical” g—theory equations (A.1)
in such a way as to recover (B.2).

Even better, a simple field-theory model has been presented in [9, (b)].

Details for modified ODEs in App. B2 and for simple model in App. C.




App. B2: Model universe

Model universe with three components (see App. A of [9, (a)]):

0.
1.

2.

Vacuum variable ¢ entering the gravitational coupling K (q).

Massive ‘type 1’ particles (subspecies i = a, b, ¢, . ..) with masses
M; of order Eqy ~ 1 TeV and electroweak interactions.

Massless ‘type 2’ particles with electroweak interactions.

Now, proceed as follows:

Consider a flat RW universe with Hubble parameter H ().

Allow for energy exchange between the two matter components,
so that total type—1 energy density peaks around tew = Epjanck/ (Few)?.

Get EOS function Bas14(t) = 1 — 3wps14(¢) with Bpzq;(t) ~ 0 for
t < tew IN the ultrarelativistic regime.

Introduce a dissipative coupling constant ¢ = O(1) and a function
v(¢) which equals 1 for t < tew and drops to zero for ¢ > tey.
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Modified g—theory ODESs (standard ODEs recovered for ( = 0 and v = 1):

6 (HK G+ KH?)=py+ > puii+puz, (B.3a)

t=a,b,c,...

/

: K
6 K (H+2H) = vpy + (1=9) = 200 + > §Fansiparsi] s (B.30)

. _ Ni; [ Aot , Ao
pyv1i + (4 — Ry Hpave = : [ 21w,0M2 — gC] ,0\//] - 225 Pr1i,(B.3C)
Nl Lew Y Lew
. Aot Ao
pre +4H ppo = _ 2 W pPM2 T 29 PM1i s (B.3d)
tew tew

1

where the overdot [prime] stands for differentiation with respect to ¢ [¢].
Functions v, w, and v shown in Figs. B1-B4 below.
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Use simple Ansatze: py(q) < (¢ — qo)? and K(q) x q.

With tew and &€ = (Epjanck/ Eew)? > 1, define dimensionless variables:

T = (tew) h =tew H, (B.4a)
rv = (tew)' pv, ran =& (tew)® prrn (B.4b)
r = &(q/q—1). (B.4c)

Figures B1-B3 and B4 show numerical results for ¢ = 10? and ¢ = ~.
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Fig. B1: Numerical solution [9, (a)] of standard (nondissipative) g—theory ODEs (B.3) for
¢ = 0 and v = 1. The hierarchy parameter is ¢ = 102 [oscillatory effects suppressed for
larger values of &, recovering the smooth behavior of (B.1)]. Further coupling constants
{X21, A2} = {18, 2} and case—A type—1 mass spectrum (Niq, M1iq; N1p, M1p) =
(40, 2 Eew; 60, 1/3 Eew).
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Fig.B2: Same as Fig. B1, but now for the modified g—theory ODEs (B.3) with dissipative
coupling constant { = 2 and v(7) = 0 for 7 > Tyeeze = 3.
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Fig. B3: Same as Fig. B2, but evolved further.
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Fig. B4: Same as Fig.

B2, but now for £ = co.
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App. C: Fleld-theoretic model

Simple field-theoretic model [9, (b)] generates an effective cosmological
constant (remnant vacuum energy density) of order Ae ~ (meV)? from
TeV-scale ultramassive particles with electroweak intera ctions .

The model is simple in the sense that it involves only a few types of
fields and two energy scales, Epjanck and Eey.

Specifically, two types of scalars:
B ultramassive (type-1) fields ¢, fora =1, ..., Nq;
B massless (type-2) fields ¢, forb =1, ..., No;
B take NV, © No @ 102 from 2 SM and (@) SUSY~.

Basic model equations are (h = ¢ = k = 1, signature —, +, +, +):
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S = [ doy=g(Kr(a) Rig) + (@) + £ rlo.v.]) . (a0

1

q = Y 970 V[QAQ,Y(;] /\/— : (C.1b)
1 2

pvia) = ev(a) —pog =3 (¢—qo0), (C.1c)
q/2 for T > TCHI_{) ,

KT(q) = (,+) (C.1d)
q/2 for T <T_ %,

dqo — 1/(87’(’ GN) = (EPIanck)2 ~ (244 X 1018 GEV)2 . (C.1le)
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1 1 1
E%,T = 3 a¢'3a¢+§3a¢'3a¢+§M2(¢'¢)
+9r (Y -¥) (- ), (C.2a)
2
. { 70 (1 — (T/T..,) ) for T<T.,, o)
0 for T >T.,,

M = Feaw, (C.2c)
T.;, = O(Eew)-. (C.2d)
Te g > Tc(,}) = O(Few) - (C.2e)

§ = (EPIanck/Eew)4. (C.3)
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Spatially flat, homogeneous, and isotropic (F)RW universe.

Timescale set by

tew = Epianck/ (Few)? = (1/meV) (TeV/Eey)” . (C.4)

Dimensionless variables:

T = (tew)_1 t, h = tew H, (C.5a)
ran = € (tew)? parn rv = (tew)" pv = 2°/2,  (C.5b)
x = £ (q/qo — 1) . (C.5¢)
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Dimensionless ODEs:

(h+2h2) (:I;2/2+§(7“M1+7“M2—3h2)) — hxx = 0, (C6a)

a1+ (4 —Ry) hrayn — A1 rae + A2ran = 0, (C.6b)

rae F4hraye + A rae — Aiarayn = 0, (C.6e)

3hx 9|:7°M2(’7_) —TC,K] — (:L'2/2+§(7“M1 + rar2 —3h2)> = 0, (C.6d)

with EOS function % from [9, (a)] and coupling parameters | X x (go)?|:

2
Ma2(T) = AOlre g —ruel ( 1 — \/ng/rc,g ) : (C.6e)
N5 t/4 a(T)
A = A — C.6
21(7) 12(7) exp [ (30 M2 (Tmin)> a(Tmin) Eew (€60
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Model universe has early phase given by a standard radiation-dominated
FRW universe = fully determined boundary conditions of ODEs.

-1 44 -1 44 -1 _ 2
0.8 7h 15 107"a" rnyy 1.210 aﬂg,m V2 0.8 40ry =20 x
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40 a 08 kM1 1o A1o/A , Agq/A 0.8 5 (k1 'm1)?
//
3.0 - 0.6 0.9 . —— 06 :
2.0 0.4 —— 0.6 0.4
1.0/~ 02— 0.3 0.2
0 / T 0 T 0 T 0 \¥ T
0051152253 0051152253 0051152253 0051152253

Fig.C1: Numerical solution [9, (b)] of the dimensionless ODEs (C.6). Model pa-
rameters are {&, A\, r¢, 4, e, k } = {107, 104, 12, 3}. The ODEs are solved over the
interval [Tmin, Tmax] = [0.01, 3] with the boundary conditions at = = 7 = 0.25:
{z, h, a, rpr1, T2} = {0, 2, 1, 0, 12}. Essentially the same results for ¢ = 10°0.
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The calculated value ry remnant &~ 2.4 x 1073 gives Egy ~ 4.7 TeV,
according to (A.5).

But, here, main focus on the physical content of a theory capable of
generating the observed cosmological “constant” of our Universe.

Hence, analytic result of interest:

. §=o0 1/ ?
lim ry (1) | =3 (H:M1(7'freeze) TMl(Tfreeze))

T—00

. (C.7)

M2 (Tfreeze):Tc, K
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