DPG-KA2011-GR1.1

Karlsruhe, March 28, 2011

Cosmological constant and q-theory (new title, new talk^{*})

Frans R. Klinkhamer

Institute for Theoretical Physics, University of Karlsruhe,

Karlsruhe Institute of Technology

Email: frans.klinkhamer@kit.edu

^{*} For the announced talk, see arXiv:1103.1569.

The main **Cosmological Constant Problem** (CCP1) can be phrased as follows (Pauli, 1933; Bohr, 1948; Veltman, 1974; see [1, 2] for reviews):

why do the quantum fields in the vacuum not produce naturally a large cosmological constant Λ in the Einstein field equations?

The magnitude of the problem is enormous:

 $|\Lambda^{\text{theory}}|/|\Lambda^{\text{experiment}}| \ge 10^{42}$.

0.1 Introduction

Indeed, it is known that QCD in the laboratory involves a vacuum energy density (e.g., gluon condensate) of <u>order</u>

$$\left|\epsilon_V^{\rm (QCD)}\right| \sim \left(100 \; {\rm MeV}\right)^4 \sim 10^{32} \; {\rm eV}^4 \, . \label{eq:constraint}$$

Moreover, this energy density can be expected to <u>change</u> as the temperature T of the Universe drops,

$$\epsilon_V^{(\text{QCD})} = \epsilon_V^{(\text{QCD})}(T) \,.$$

How can the Universe then end up with a vacuum energy density

$$\left|\Lambda^{(\text{obs})}\right| < 10^{-28} \text{ g cm}^{-3} \sim 10^{-10} \text{ eV}^4$$
 ?

Here, there are 42 orders of magnitude to explain:

0.1 Introduction

Even more CCPs after the discovery of the "accelerating Universe":

- CCP1 why $|\Lambda| \ll (E_{\text{QCD}})^4 \ll (E_{\text{electroweak}})^4 \ll (E_{\text{Planck}})^4$?
- CCP2a why $\Lambda \neq 0$?
- CCP2b why $\Lambda \sim \rho_{\text{matter}} \left|_{\text{present}} \sim +10^{-11} \text{ eV}^4 \right?$

Hundreds of papers have been published on CCP2. But, most likely:

CCP1 needs to be solved first before CCP2 can even be addressed.

Here, a review of one particular approach to CCP1 by Volovik and the speaker, which goes under the name of q-theory [3, 4, 5].

Turning to CCP2, some brief remarks on three possible **mechanisms** for the creation of a positive remnant vacuum energy density $\rho_V(t_{\text{present}})$ [or effective cosmological constant Λ_{eff}] from:

- nonperturbative QCD [6, 7];
- new TeV-scale physics [8, 9];
- light massive neutrinos [10].

0.2 Outline

•

- 1. Basics of q-theory
- 2. Two questions
- 3. Remnant $\rho_V(t_{\text{present}})$
- 4. Conclusions
- 5. References

---- most important part of talk

 \leftarrow predictions?

Crucial insight [3]: there is vacuum energy and vacuum energy.

More specifically and introducing an appropriate notation:

the vacuum energy density ϵ appearing in the action

need not be the same as

the vacuum energy density ρ_V in the Einstein field equations.

How can this happen concretely ...

1. Basics of q-theory

Consider the full quantum vacuum to be a **self-sustained medium** (as is a droplet of water in free fall).

That medium would be characterized by some **conserved charge**.

Study, then, the **macroscopic** equations of this conserved **microscopic** variable (later called q), whose precise nature need not be known.

An analogy:

- Take the mass density ρ of a liquid, for example, liquid Argon.
- This ρ describes microscopic quantities ($\rho = m_{Ar} n_{Ar}$ with number density n_{Ar} and mass m_{Ar} of the atoms).
- Still, *ρ* obeys the macroscopic equations of hydrodynamics, because of particle-number and mass conservation.

However, is the quantum vacuum just like a normal liquid?

No, as the quantum vacuum is known to be **Lorentz invariant** (cf. exp. limits at the 10^{-15} level in the photon sector [11, 12, 13]).

The Lorentz invariance of the vacuum rules out the standard type of charge density, which arises from the <u>time</u> component j_0 of a conserved vector current j_{μ} .

Needed is a new type of **relativistic conserved charge**, called the vacuum variable q.

In other words, look for a relativistic generalization (q) of the number density (n) which characterizes the known material liquids.

1. Basics of q-theory

With such a variable q(x), the vacuum energy density of the effective action can be a generic function

$$\epsilon = \epsilon(q) = \Lambda_{\text{bare}} + \epsilon_{\text{var}}(q) \,, \tag{1}$$

including a possible constant term Λ_{bare} from the zero-point energies of the fields of the Standard Model (SM).

From ① thermodynamics and ② Lorentz invariance follows that [3]

$$P_V \stackrel{\textcircled{1}}{=} -\left(\epsilon - q \; \frac{d \epsilon}{d q}\right) \stackrel{\textcircled{2}}{=} -\rho_V \,, \tag{2}$$

where the first equality corresponds to an integrated form of the Gibbs–Duhem equation for chemical potential $\mu \equiv d\epsilon/dq$.

Recall GD eq:
$$N d\mu = V dP - S dT \Rightarrow dP = (N/V) d\mu$$
 for $dT = 0$.

1. Basics of q-theory

Both terms entering ρ_V from (2) can be of order $(E_{\text{Planck}})^4$, but they cancel exactly for an appropriate value q_0 of the vacuum variable q.

Hence, for a generic function $\epsilon(q)$,

$$\exists q_0 = \text{const} : \quad \Lambda \equiv \rho_V = \left[\epsilon(q) - q \; \frac{d \epsilon(q)}{d q} \right]_{q=q_0} = 0 \;, \tag{3}$$

with constant vacuum variable q_0 [a similar constant variable is known to play a role for the Larkin–Pikin effect (1969) in solid-state physics].

Great, CCP1 solved, in principle ...

<u>But</u>, is a relativistic vacuum variable q possible at all? <u>Yes</u>, there exist several theories which contain such a q (see later).

Q1: How does the adjustment-type solution (3) of CCP1 circumvent Weinberg's no-go "theorem" [1]?

Answer: q is a non-fundamental scalar field; see Sec. 2.1.

Q2: How did the Universe get the right value q_0 ?

One possible answer is that q_0 (or the corresponding chemical potential μ_0) is fixed globally as an integration constant, being conserved throughout the history of the Universe [4].

Another possible answer uses a generalization of q-theory, for which the 'correct' value q_0 arises dynamically; see Sec. 2.2.

2.1 Four-form realization

Vacuum variable q may arise from a 3–form gauge field A [14, 15]. Start from the effective action of GR+SM,

$$S^{\text{eff}}[g,\psi] = \int_{\mathbb{R}^4} d^4x \,\sqrt{-\det g} \,\Big(K_N \,R[g] + \Lambda_{\text{SM}} + \mathcal{L}^{\text{eff}}_{\text{SM}}[\psi,g]\Big), \qquad (4)$$

with gravitational coupling constant $K_N \equiv 1/(16\pi G_N)$ and $\hbar = c = 1$.

Change this theory by the introduction of one field, A, to get [4, 5]:

$$\widetilde{S}^{\text{eff}}[A, g, \psi] = \int_{\mathbb{R}^4} d^4 x \sqrt{-\det g} \left(K(q) R[g] + \widetilde{\epsilon}(q) + \mathcal{L}^{\text{eff}}_{\text{SM}}[\psi, g] \right), \quad \text{(5a)}$$

$$q \equiv -\frac{1}{24} \epsilon^{\alpha\beta\gamma\delta} \nabla_{\alpha} A_{\beta\gamma\delta} / \sqrt{-g}, \quad \text{(5b)}$$

where q arises from the four-form field strength F = d A.

Variational principle gives generalized Einstein and Maxwell equations:

2.1 Four-form realization

$$2K(q) \left(R_{\alpha\beta} - g_{\alpha\beta} R/2 \right) = -2 \left(\nabla_{\alpha} \nabla_{\beta} - g_{\alpha\beta} \Box \right) K(q) + \rho_{V}(q) g_{\alpha\beta} - T^{M}_{\alpha\beta},$$
(6a)

$$\frac{d\rho_V(q)}{dq} + R \frac{dK(q)}{dq} = 0, \qquad (6b)$$

with a vacuum energy density,

$$\rho_V = \tilde{\epsilon} - q \left(\frac{d\tilde{\epsilon}}{dq} + R \frac{dK}{dq}\right) = \tilde{\epsilon} - q \mu, \qquad (7)$$

for integration constant (chemical potential) μ . Eq. (7) is precisely of the Gibbs–Duhem form (2) in Minkowski spacetime (R = 0). Technically, an extra $g_{\alpha\beta}$ term on the RHS of (6a) appears because q = q(A, g).

Answer to Q1: (5b) shows that q is a non-fundamental scalar field, which invalidates Weinberg's argument (see [5] for details).

2.2 Vector-field realization

Realization of vacuum variable q by aether-type velocity field u_{β} [17, 18], setting $E_{\text{UV}} = E_{\text{Planck}}$. For a flat RW metric with cosmic time t, there is an asymptotic solution for $u_{\beta} = (u_0, u_b)$ and Hubble parameter H(t):

$$u_0(t) \rightarrow q_0 t, \quad u_b(t) = 0, \quad H(t) \rightarrow 1/t,$$
 (8a)

$$u_{\alpha}^{\ \beta} \equiv \nabla_{\alpha} \, u^{\beta} \quad \to \quad q_0 \, \delta_{\alpha}^{\ \beta} \,. \tag{8b}$$

Define $v \equiv u_0/E_{\text{Planck}}$, $\tau \equiv t E_{\text{Planck}}$, $h \equiv H/E_{\text{Planck}}$, and $\lambda \equiv \Lambda/(E_{\text{Planck}})^4$. Then, the field equations are [17]:

$$\ddot{v} + 3h\,\dot{v} - 3h^2\,v = 0\,, \tag{9a}$$

$$2\lambda - (\dot{v})^2 - 3(hv)^2 = 6h^2, \qquad (9b)$$

with the overdot standing for differentiation with respect to τ . Starting from a de-Sitter universe with $\lambda > 0$, there is a unique value of $\hat{q}_0 \equiv q_0/(E_{\text{Planck}})^2$ to end up with a static Minkowski spacetime, $\hat{q}_0 = \sqrt{\lambda/2}$.

2.2 Vector-field realization

Fig. 1: Four numerical solutions of ODEs (9ab) for $\lambda = 2$ and boundary conditions $v(1) = 1 \pm 0.25$ and $\dot{v}(1) = \pm 1.25$.

- \Rightarrow Minkowski value $\hat{q}_0 = \sqrt{\lambda/2} = 1$ arises dynamically [see left panel].
- \Rightarrow Minkowski spacetime is an <u>attractor</u> in this aether-type theory [5].

(Incidentally, this theory may be relevant to the early Universe but not the present one [19].)

2.3 Recap

To summarize, the q-theory approach to the main Cosmological Constant Problem (CCP1) provides a solution.

For the moment, this is only a possible solution, because it is not known for sure that the "beyond-the-Standard-Model" physics harbors an appropriate q-type variable.

Still, better to have one possible solution than none.

3. Remnant ρ_V

Now, the remaining problems (or puzzles, rather):

CCP2a – why $\Lambda_{\text{eff}} \neq 0$? CCP2b – why $\Lambda_{\text{eff}} \sim \rho_{\text{matter}} |_{\text{now}} \sim 10^{-29} \text{ g cm}^{-3} \sim 10^{-11} \text{ eV}^4$?

Last one also goes under the name of 'cosmic coincidence puzzle' (ccp).

Here, discuss <u>three</u> possible mechanisms in the framework of q-theory. (If time is short, fast forward.)

3.1 Remnant ρ_V – QCD

Gluon condensate [20] from quantum chromodynamics (QCD):

$$\widetilde{q} \equiv \left\langle \frac{1}{4\pi^2} G^{a\,\mu\nu} G^a{}_{\mu\nu} \right\rangle = \left\langle \frac{1}{4\pi^2} G_{a\,\kappa\lambda} g^{\kappa\mu} g^{\lambda\nu} G^a{}_{\mu\nu} \right\rangle, \tag{10}$$

with Yang–Mills field strength $G^a_{\ \mu\nu} = \partial_\mu A^a_{\ \nu} - \partial_\nu A^a_{\ \mu} + f^{abc} A^b_{\ \mu} A^c_{\ \nu}$ for su(3) structure constants f^{abc} .

Particle physics experiments: $\tilde{q} \sim (300 \text{ MeV})^4$. Observational cosmology: $\rho_V \sim (2 \text{ meV})^4$.

 \Rightarrow How to reconcile the typical QCD vacuum energy density $\epsilon_{\text{QCD}} \sim 10^{34} \text{ eV}^4$ with the observed value $\rho_V \sim 10^{-11} \text{ eV}^4$?

General *q*-theory argument (Sec. 1):

in equilibrium, \tilde{q} has self-adjusted to the value \tilde{q}_0 with $\rho_V(\tilde{q}_0) = 0$.

3.1 Remnant ρ_V – QCD

Effective action for the gluon condensate q from (10) [dropping tilde]:

$$S_{\text{eff}} = S_{\text{grav}} + S_{\text{vac}} = \int d^4x \,\sqrt{-\det(g)} \,\left(\frac{1}{16\pi G_N} R[g] + \epsilon_{\text{vac}}(q)\right).$$
(11)

Energy-momentum tensor for the gravitational field equations:

$$T_{\alpha\beta}^{\text{vac}} = -\frac{2}{\sqrt{-g}} \frac{\delta S_{\text{vac}}}{\delta g^{\alpha\beta}} = \epsilon_{\text{vac}}(q) g_{\alpha\beta} - 2 \frac{\mathsf{d}\epsilon_{\text{vac}}(q)}{\mathsf{d}q} \frac{\delta q}{\delta g^{\alpha\beta}}$$
$$= \left(\epsilon_{\text{vac}}(q) - q \frac{\mathsf{d}\epsilon_{\text{vac}}(q)}{\mathsf{d}q}\right) g_{\alpha\beta} \equiv \rho_V(q) g_{\alpha\beta} , \qquad (12)$$

which is, again, of the Gibbs–Duhem form (2).

$$\Rightarrow$$
 equilibrium state: $q = q_0$ with $\rho_V(q_0) = 0$ and $g_{\alpha\beta}(x) = \eta_{\alpha\beta}^{\text{Minkowski}}$.

3.1 Remnant ρ_V – QCD

In a <u>nonequilibrium</u> state such as the <u>expanding</u> Universe [with Hubble parameter $H(t) \neq 0$], there is a perturbation of the vacuum:

$$q = q_0 + \delta q(H) \neq q_0 \quad \Rightarrow \quad \rho_V(q) \sim \frac{\mathsf{d}\rho_V}{\mathsf{d}q} \,\delta q(H) \neq 0 \,. \tag{13}$$

For QCD, this is a difficult IR problem (cf. [21, 22]). A priori, can have

$$\rho_V(H) \sim 0 + H^2 \Lambda_{\text{QCD}}^2 + H^4 + \cdots + |H| \Lambda_{\text{QCD}}^3 + |H|^3 \Lambda_{\text{QCD}} + \cdots$$
(14)

Linear term in *H* gives correct order of magnitude for asymptotic ρ_V [6]. As a spatially-flat RW universe has Ricci scalar $R = 6(2H^2 + \dot{H})$, the $|H| \Lambda_{\text{QCD}}^3$ term suggests a modified-gravity action with term $|R|^{1/2} |q|^{3/4}$. This QCD-scale modified-gravity universe fits astronomical data well [7].

3.2 Remnant ρ_V – Electroweak kick

Reconsider the four-form realization of q, taken to be operative at an UV (Planckian) energy scale.

In the very early Universe, the vacuum energy density $\rho_V(t)$ rapidly drops to zero and stays there, but small effects may occur at cosmic temperatures T of the order of the TeV scale ...

Simple picture:

Take a glass of water and shake the glass \Rightarrow water responds.

If vacuum energy density is really like a liquid, then it can be 'shaken.' Here, the 'shaking' is done by massive particles.

3.2 Remnant ρ_V – Electroweak kick

Key steps of frozen-electroweak-kick mechanism [8, 9]:

- Presence of massive particles with electroweak interactions [average mass $< M > = E_{ew} \sim \text{TeV}$] changes the expansion rate H(t) of the Universe compared to the radiation-dominated case.
- Change of the expansion rate kicks $\rho_V(t)$ away from zero.
- Quantum-dissipative effects operating at cosmic time t_{ew} set by $\overline{E_{ew}}$ may result in finite remnant value of ρ_V .
- Phenomenological description of this process with a simple field-theoretic model.
- Required E_{ew} value ranges from 2 to 20 TeV, depending on the number of new particles and details of the model.

3.3 Remnant ρ_V – Massive neutrinos

In the very early Universe, vacuum energy density $\rho_V(t)$ drops fast.

Consider the effects from massive SM fermions (larger in number than the SM bosons). These fermions get a mass as the temperature drops below a critical value and decrease $\rho_V(t)$ in a stepwise manner [10].

In fact, the mass effects on the zero-point energies of the SM quark and charged-lepton fields are:

$$\rho_V^{\text{(charged fermion)}} \sim \int^{(E_{\text{cutoff}})} \frac{d^3 \mathbf{p}}{(2\pi)^3} \left(-\sqrt{|\mathbf{p}|^2 + M^2} + |\mathbf{p}| \right)$$
$$\sim -M^2 \left(E_{\text{cutoff}} \right)^2 \sim -M^2 \left(E_{\text{ew}} \right)^2, \tag{15}$$

with $E_{\text{cutoff}} \sim E_{\text{ew}}$ in the last step (cf. symmetry restoration at $T_c \sim E_{\text{ew}}$). But a massive neutrino is different and may have $E_{\text{cutoff}} \sim M_{\nu}$, so that:

$$\rho_V^{\text{(neutrino)}} \sim -(M_\nu)^4 \,.$$
(16)

3.3 Remnant ρ_V – Massive neutrinos

Fig. 2: Approximate double-log plot of the relaxation of the vacuum energy density. <u>Dashed curve</u>: relaxation according to $< \rho_{vac}(t) > \sim (E_{Planck})^2/t^2$ from Ref. [4]. <u>Full curve</u>: dissipative processes and cosmological phase transitions included [10].

3.3 Remnant ρ_V – Massive neutrinos

Key steps of **non-equilibrated-neutrino mechanism** [10]:

- The <u>last</u> fermions to get massive are the neutrinos, consider the heaviest one.
- This neutrino gives, in principle, the change $\Delta \rho_V \sim -(M_\nu)^4$, aiming for $\rho_{V,\infty} = 0$ of the self-sustained equilibrium state from *q*-theory.
- But perhaps interactions of virtual neutrinos in the quantum vacuum are too weak to make the transition.
- **Lack** of negative contribution corresponds to a positive ρ_V value.

Final formula for a single light massive neutrino:

$$\rho_V(t_{\text{present}}) \sim 0 + (M_\nu)^4.$$
(17)

For three neutrino flavors with near-maximal mixing, neutrino mass spectrum is close to the minimal one: $0 \leq m_{\nu n} \leq 0.05$ eV for n = 1, 2, 3.

4. Conclusions

- **CCP1:** Self-adjustment of a special type of vacuum variable q can give $\rho_V(q_0) = 0$ in the equilibrium state $q = q_0 = \text{const.}$
- **CCP2:** Within the *q*-theory framework, a finite remnant value of $\rho_V(t)$ may result from
 - (i) nonperturbative "finite-size effects" of QCD
 - \Rightarrow verified by lattice-gauge-theory simulations?
 - or
 - (ii) a "kick" by massive particles with $M \sim E_{\rm ew}$
 - \Rightarrow new TeV–scale physics beyond the SM?
 - or
 - (iii) non-equilibrated neutrinos in the quantum vacuum \Rightarrow small neutrino masses, $m_{\nu n} \lesssim 0.05$ eV?

5. References

•

- [1] S. Weinberg, RMP 61, 1 (1989); arXiv:astro-ph/9610044.
- [2] J. Polchinski, arXiv:hep-th/0603249; R. Bousso, arXiv:0708.4231.
- [3] F.R. Klinkhamer and G.E. Volovik, PRD 77, 085015 (2008), arXiv:0711.3170.
- [4] F.R. Klinkhamer and G.E. Volovik, PRD 78, 063528 (2008), arXiv:0806.2805.
- [5] F.R. Klinkhamer and G.E. Volovik, JETPL 91, 259 (2010), arXiv:0907.4887.
- [6] F.R. Klinkhamer and G.E. Volovik, PRD79, 063527 (2009), arXiv:0811.4347.
- [7] (a) F.R. Klinkhamer, PRD81, 043006 (2010), arXiv:0904.3276; (b) arXiv:1005.2885.
- [8] F.R. Klinkhamer and G.E. Volovik, PRD 80, 083001 (2009), arXiv:0905.1919.
- [9] (a) F.R. Klinkhamer, PRD 82, 083006 (2010), arXiv:1001.1939; (b) arXiv:1101.1281.
- [10] F.R. Klinkhamer and G.E. Volovik, arXiv:1102.3152.
- [11] A. Kostelecký and M. Mewes, PRD 66, 056005 (2002), arXiv:hep-ph/0205211.
- [12] F.R. Klinkhamer and M. Risse, PRD 77, 117901 (2008), arXiv:0709.2502.
- [13] F.R. Klinkhamer and M. Schreck, PRD 78, 085026 (2008), arXiv:0809.3217.
- [14] M.J. Duff and P. van Nieuwenhuizen, PLB 94, 179 (1980).
- [15] A. Aurilia, H. Nicolai, and P.K. Townsend, NPB 176, 509 (1980).
- [16] N. Arkani-Hamed et al., PRL 85, 4434 (2000), arXiv:astro-ph/0005111.
- [17] A.D. Dolgov, PRD 55, 5881 (1997), arXiv:astro-ph/9608175.
- [18] T. Jacobson, PoS QG-PH, 020 (2007), arXiv:0801.1547.
- [19] V.A. Rubakov and P.G. Tinyakov, PRD 61, 087503 (2000), arXiv:hep-ph/9906239.
- [20] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, NPB 147, 385 (1979).
- [21] R. Schützhold, PRL 89, 081302 (2002); J.D. Bjorken, arXiv:astro-ph/0404233.
- [22] F.R. Urban and A.R. Zhitnitsky, arXiv:0909.2684; B. Holdom, arXiv:1012.0551.

App. A1: Relaxation of $ho_V(t)$

Spatially-flat (F)RW universe with two types of matter, massive ('type 1') and massless ('type 2') particles. From fields eqs. (6), get ODEs [4]:

$$6 \left(H \frac{dK}{dq} \frac{dq}{dt} + K H^2 \right) = \rho_V + \rho_{M1} + \rho_{M2} , \qquad (A.1a)$$

$$6 \frac{dK}{dq} \left(\frac{dH}{dt} + 2H^2 \right) = \frac{d\rho_V}{dq} , \qquad (A.1b)$$

$$\frac{d\rho_{M1}}{dt} + 3\left[1 + w_{M1}\right] H \rho_{M1} = 0, \qquad (A.1c)$$

$$\frac{d\rho_{M2}}{dt} + 4 H \rho_{M2} = 0, \qquad (A.1d)$$

with equation-of-state (EOS) function $w_{M1}(t)$.

App. A1: Relaxation of $ho_V(t)$

If Universe starts out with $\rho_V \sim (E_{\text{Planck}})^4$ at $t \sim t_{\text{Planck}}$, then $\rho_V \to 0$ by oscillations of q(t) and coupling to the gravitational field.

Indeed, with simple Ansätze

$$K(q) = \frac{1}{2} q , \qquad (A.2a)$$

$$\rho_V(q) = \frac{1}{2} \left(q - q_0 \right)^2 + \mathcal{O}\left((q - q_0)^3 \right), \tag{A.2b}$$

the following behavior is found [4]:

$$q(\tau)/q_0 - 1 \sim \tau^{-1} \sin \tau$$
, (A.3a)

$$r_V(\tau) \sim \tau^{-2} \sin^2 \tau$$
, (A.3b)

in terms of the dimensionless cosmic time τ and the dimensionless vacuum energy density r_V obtained by scaling with $q_0 = (E_{\text{Planck}})^2$.

App. A1: Relaxation of $ho_V(t)$

Fig. A1: Flat (F)RW model universe [4] with ultrarelativistic matter ($w_{\rm M} \equiv P_{\rm M}/\rho_{\rm M} = 1/3$) and dynamic vacuum energy density ($w_{\rm V} \equiv P_{\rm V}/\rho_{\rm V} = -1$). The dimensionless *q*-type variable is denoted by *f*. Asymptotic behavior on bottom-row panels: $|f - 1| \propto 1/\tau$, $h \propto 1/\tau$, and $r_{\rm V} \propto 1/\tau^2$.

App. A2: Remnant ρ_V from EW kick

Theoretical value of the effective cosmological constant given by

$$\Lambda^{\text{theory}} \equiv \lim_{t \to \infty} \rho_V^{\text{theory}}(t) = r_V^{\text{num}} (E_{\text{ew}})^8 / (E_{\text{Planck}})^4 , \qquad (A.4)$$

with number $r_V^{\text{num}} \equiv r_V(\tau_{\text{freeze}})$ from solution ODEs (cf. Fig. A2). Eq. (A.4) already suggested in [16], but first calculated in [8, 9].

Equating (A.4) to the experimental value $\Lambda^{exp} \approx (2 \text{ meV})^4$ gives

$$E_{\rm ew} = \left(\frac{\Lambda^{\rm exp}}{r_V^{\rm num}}\right)^{1/8} (E_{\rm Planck})^{1/2} \approx 3.8 \, {\rm TeV} \, \left(\frac{0.013}{r_V^{\rm num}}\right)^{1/8} . \quad (A.5)$$

Analytic bound: $r_V^{\text{num}} \leq 1 \Rightarrow E_{\text{ew}} \geq 2$ TeV. Numerical results for r_V^{num} give E_{ew} estimates of Table A1.

App. A2: Remnant ρ_V from EW kick

•

Fig. A2 (same as Fig. B4 in App. B2): Sudden presence of massive (type–1) particles kicks vacuum energy density $r_V(t)$ away from zero. Quantum-dissipative effects freeze $r_V(t)$ to a nonzero value as $t \to \infty$.

App. A2: Remnant ρ_V from EW kick

Table A1: Preliminary estimates [9, (a)] of the energy scale E_{ew} for hierarchy parameter $\xi \equiv (E_{\text{Planck}}/E_{\text{ew}})^4 \gg 1$. Both massive type–1 and massless type–2 particles are assumed to have been in thermal equilibrium before the "kick" and the number of type–2 particles is taken as $N_{\text{eff},2} = 10^2$. See App. B2 for details.

Left: <u>Prescribed kick</u> with type–1 particles of equal mass $M = E_{ew}$ and, for dissipative coupling constant $\zeta = 2$, E_{ew} shown as a function of the effective number of d.o.f. $N_{eff,1}$. Right: <u>Dynamic kick</u> with case–A type–1 mass spectrum $(N_{1a}, M_{1a}; N_{1b}, M_{1b}) = (40, 2 \times E_{ew}; 60, 1/3 \times E_{ew})$ and $E_{ew} = \langle M_{1i} \rangle$ shown as a function of ζ .

ζ	$N_{{\rm eff},1}$	$E_{ew}\left[TeV\right]$	ζ	$N_{{\rm eff},1}$	$E_{ew}\left[TeV\right]$
2	1	8.5	0.2	10^{2}	14.8
2	10^{1}	4.9	2	10^{2}	3.8
2	10^{2}	3.2	20	10^{2}	5.6
2	10^{3}	2.8			
2	10^{4}	2.7			

App. A3: Remnant ho_V from $m_{ u}$

For three neutrino flavors with near-maximal mixing, a heuristic argument suggests [10]:

$$\rho_V(t_{\text{present}}) \stackrel{?}{=} c_\nu \left((m_{\nu 1})^2 + (m_{\nu 2})^2 + (m_{\nu 3})^2 \right) \left| m_{\nu 1} m_{\nu 2} m_{\nu 3} \right|^{2/3}, \text{ (A.6)}$$

where c_{ν} is a positive coefficient assumed to be of order unity.

With neutrino-oscillation data, then have 3 equations for 3 unknowns. Taking $c_{\nu} = 1$, the solutions for the two possible hierarchies are:

$$(m_{\nu 1}, m_{\nu 2}, m_{\nu 3}) \Big|^{(c_{\nu}=1)} \stackrel{?}{=} \begin{cases} (2.793 \times 10^{-6}, 8.775, 48.99) \times \text{meV}, \\ (48.99, 49.77, 1.783 \times 10^{-7}) \times \text{meV}. \end{cases}$$
(A.7)

These neutrino masses cannot be detected by the KATRIN tritium beta-decay detector (0.2–eV design sensitivity).

Table A2 shows that the same conclusion holds for $c_{\nu} \ge 10^{-8}$.

App. A3: Remnant ho_V from $m_{ u}$

Table A2: Neutrino masses [in units of meV] from (A.6) and neutrino-oscillation data $(m_{\nu 3})^2 - (m_{\nu 1})^2 = \pm 2400$ and $(m_{\nu 2})^2 - (m_{\nu 1})^2 = 77$.

$c_{ u}$	$m_{ u 1}$	$m_{\nu 2}$	$m_{\nu 3}$	$m_{\nu 1}$	$m_{\nu 2}$	$m_{ u3}$
1	2.793×10^{-6}	8.775	48.99	48.99	49.77	1.783×10^{-7}
10^{-2}	2.793×10^{-3}	8.775	48.99	48.99	49.77	1.783×10^{-4}
10^{-4}	2.638	9.163	49.06	48.99	49.77	0.1783
10^{-6}	48.13	48.93	68.68	62.95	63.56	39.54
10^{-8}	172.4	172.6	179.2	177.0	177.2	170.1
10^{-10}	551.9	552.0	554.1	553.3	553.4	551.2

 \Rightarrow neutrino masses from $c_{\nu} \gtrsim 10^{-4}$ are close to the minimal values needed to explain the neutrino-oscillation data.

App. B1: Electroweak kick

Analytic solution [8] of the ODEs (A.1) which

- starts from a standard radiation-dominated FRW universe with $\rho_V = 0$,
- is perturbed around $t = t_{\text{ew}} \sim E_{\text{Planck}}/(E_{\text{ew}})^2$ with $\rho_V \neq 0$,
- resumes the standard radiation-dominated expansion with $\rho_V = 0$.

Specifically, the vacuum energy density for $t \sim t_{\rm ew}$ is given by

$$\rho_V(t) \sim (1 - 3 w_{M1})^2(t) H(t)^4,$$
(B.1)

which has a peak value of order $(t_{ew})^{-4} \sim ((E_{ew})^2 / E_{Planck})^4$ but vanishes as $t \to \infty$.

 \Rightarrow standard (nondissipative) dynamic equations of *q*-theory do not produce a constant $\rho_{V, \text{ remnant}} > 0$ from the electroweak kick.

App. B1: Electroweak kick

As argued in [8], quantum-dissipative effects of the vacuum energy density may lead to a <u>finite remnant value</u> of order

$$\Lambda \equiv \rho_{V, \text{ remnant}} \sim \left((E_{\text{ew}})^2 / E_{\text{Planck}} \right)^4 \sim (10^{-3} \text{ eV})^4 , \qquad (B.2)$$

for $E_{\text{ew}} \sim 1$ TeV and $E_{\text{Planck}} \sim 10^{15}$ TeV. In fact, expression (B.2) was already suggested by Arkani-Hamed, Hall, Kolda, and Murayama [16].

It is possible [9, (a)] to modify the "classical" q-theory equations (A.1) in such a way as to recover (B.2).

Even better, a simple field-theory model has been presented in [9, (b)].

Details for modified ODEs in App. B2 and for simple model in App. C.

Model universe with three components (see App. A of [9, (a)]):

- 0. Vacuum variable q entering the gravitational coupling K(q).
- 1. Massive 'type 1' particles (subspecies i = a, b, c, ...) with masses M_i of order $E_{\text{ew}} \sim 1$ TeV and electroweak interactions.
- 2. Massless 'type 2' particles with electroweak interactions.

Now, proceed as follows:

- Consider a flat RW universe with Hubble parameter H(t).
- Allow for energy exchange between the two matter components, so that total type–1 energy density peaks around $t_{ew} \equiv E_{Planck}/(E_{ew})^2$.
- Get EOS function $\overline{\kappa}_{M1i}(t) \equiv 1 3 w_{M1i}(t)$ with $\overline{\kappa}_{M1i}(t) \sim 0$ for $t \ll t_{ew}$ in the ultrarelativistic regime.
- Introduce a dissipative coupling constant $\zeta = O(1)$ and a function $\gamma(t)$ which equals 1 for $t \ll t_{ew}$ and drops to zero for $t > t_{ew}$.

Modified *q*-theory ODEs (standard ODEs recovered for $\zeta = 0$ and $\gamma = 1$):

6
$$(H K' \dot{q} + K H^2) = \rho_V + \sum_{i=a,b,c,\dots} \rho_{M1i} + \rho_{M2}$$
, (B.3a)

$$6 K' \left(\dot{H} + 2H^2 \right) = \gamma \, \rho_V' + \left(1 - \gamma \right) \frac{K'}{K} \left[2\rho_V + \sum_i \frac{1}{2} \, \overline{\kappa}_{M1i} \, \rho_{M1i} \right], \qquad (B.3b)$$

$$\dot{\rho}_{M1i} + (4 - \overline{\kappa}_{M1i})H\rho_{M1i} = \frac{N_{1i}}{N_1} \Big[\frac{\lambda_{21}}{t_{\text{ew}}} \widehat{\omega} \,\rho_{M2} - \frac{\zeta}{\gamma} q \,\dot{\rho}_V' \Big] - \frac{\lambda_{12}}{t_{\text{ew}}} \widehat{\nu} \,\rho_{M1i}, \text{(B.3c)}$$

$$\dot{\rho}_{M2} + 4 H \rho_{M2} = -\frac{\lambda_{21}}{t_{\text{ew}}} \widehat{\omega} \rho_{M2} + \frac{\lambda_{12}}{t_{\text{ew}}} \widehat{\nu} \sum_{i} \rho_{M1i} , \qquad (B.3d)$$

where the overdot [prime] stands for differentiation with respect to t [q]. Functions γ , $\hat{\omega}$, and $\hat{\nu}$ shown in Figs. B1–B4 below.

Use simple Ansätze: $\rho_V(q) \propto (q-q_0)^2$ and $K(q) \propto q$.

With t_{ew} and $\xi \equiv (E_{\text{Planck}}/E_{\text{ew}})^4 \gg 1$, define dimensionless variables:

$$\tau \equiv (t_{\text{ew}})^{-1} t, \qquad h \equiv t_{\text{ew}} H, \qquad (B.4a)$$

$$r_V \equiv (t_{\text{ew}})^4 \rho_V, \quad r_{Mn} \equiv \xi^{-1} (t_{\text{ew}})^4 \rho_{Mn}, \quad (B.4b)$$

$$x \equiv \xi \left(q/q_0 - 1 \right). \tag{B.4c}$$

Figures B1–B3 and B4 show numerical results for $\xi = 10^2$ and $\xi = \infty$.

Fig. B1: Numerical solution [9, (a)] of <u>standard</u> (nondissipative) q-theory ODEs (B.3) for $\zeta = 0$ and $\gamma = 1$. The hierarchy parameter is $\xi = 10^2$ [oscillatory effects suppressed for larger values of ξ , recovering the smooth behavior of (B.1)]. Further coupling constants $\{\lambda_{21}, \lambda_{12}\} = \{18, 2\}$ and case-A type-1 mass spectrum $(N_{1a}, M_{1a}; N_{1b}, M_{1b}) = (40, 2 E_{\text{ew}}; 60, 1/3 E_{\text{ew}}).$

•

Fig. B2: Same as Fig. B1, but now for the <u>modified</u> *q*-theory ODEs (B.3) with dissipative coupling constant $\zeta = 2$ and $\gamma(\tau) = 0$ for $\tau \ge \tau_{\text{freeze}} = 3$.

•

Fig. B3: Same as Fig. B2, but evolved further.

•

Fig. B4: Same as Fig. B2, but now for $\xi = \infty$.

Simple field-theoretic model [9, (b)] generates an effective cosmological constant (remnant vacuum energy density) of order $\Lambda_{eff} \sim (meV)^4$ from TeV–scale ultramassive particles with electroweak interactions.

The model is **simple** in the sense that it involves only a few types of fields and two energy scales, E_{Planck} and E_{ew} .

Specifically, two types of scalars:

- In ultramassive (type–1) fields ϕ_a for $a = 1, \ldots, N_1$;
- massless (type–2) fields ψ_b for $b = 1, \ldots, N_2$;

• take
$$N_1 \stackrel{\textcircled{1}}{=} N_2 \stackrel{\textcircled{2}}{=} 10^2$$
 from (2) SM and (1) SUSY?.

Basic model equations are ($\hbar = c = k = 1$; signature -, +, +, +):

•

$$S_{\text{eff},T} = \int_{\mathbb{R}^4} d^4x \sqrt{-g} \left(K_T(q) R[g] + \epsilon_V(q) + \mathcal{L}^M_{\text{eff},T}[\phi,\psi,g] \right), \quad \text{(C.1a)}$$

$$q \equiv -\frac{1}{24} \epsilon^{\alpha\beta\gamma\delta} \nabla_{[\alpha} A_{\beta\gamma\delta]} / \sqrt{-g} , \qquad (C.1b)$$

$$\rho_V(q) \equiv \epsilon_V(q) - \mu_0 q = \frac{1}{2} (q - q_0)^2,$$
(C.1c)

$$K_T(q) = \begin{cases} q/2 & \text{for} \quad T > T_{c,K}^{(+)}, \\ q_0/2 & \text{for} \quad T \le T_{c,K}^{(+)}, \end{cases}$$
(C.1d)

$$q_0 = 1/(8\pi G_N) \equiv (E_{\text{Planck}})^2 \approx (2.44 \times 10^{18} \,\text{GeV})^2$$
. (C.1e)

•

$$\mathcal{L}_{\text{eff}, T}^{M} = \frac{1}{2} \partial_{\alpha} \psi \cdot \partial^{\alpha} \psi + \frac{1}{2} \partial_{\alpha} \phi \cdot \partial^{\alpha} \phi + \frac{1}{2} M^{2} (\phi \cdot \phi) + g_{T} (\psi \cdot \psi) (\phi \cdot \phi), \qquad (C.2a)$$

$$g_{T} = \begin{cases} g_{0} \left(1 - \left(T/T_{c,g} \right)^{2} \right) & \text{for } T \leq T_{c,g}, \\ 0 & \text{for } T > T_{c,g}, \end{cases}$$
(C.2b)

$$M = E_{\text{ew}}, \qquad (C.2c)$$

$$T_{c,g} = \mathbf{O}(E_{\mathsf{ew}}). \tag{C.2d}$$

$$T_{c,g} > T_{c,K}^{(+)} = \mathbf{O}(E_{\text{ew}}).$$
 (C.2e)

$$\xi \equiv (E_{\text{Planck}}/E_{\text{ew}})^4.$$
 (C.3)

DPG-KA2011-GR1.1, March 28, 2011 (v1.02) - p. 48

Spatially flat, homogeneous, and isotropic (F)RW universe.

Timescale set by

$$t_{\text{ew}} \equiv E_{\text{Planck}} / (E_{\text{ew}})^2 = \left(1/\text{meV}\right) \left(\text{TeV}/E_{\text{ew}}\right)^2.$$
(C.4)

Dimensionless variables:

$$\tau \equiv (t_{\text{ew}})^{-1} t, \qquad h \equiv t_{\text{ew}} H, \qquad (C.5a)$$

$$r_{Mn} \equiv \xi^{-1} (t_{\text{ew}})^4 \rho_{Mn}, \qquad r_V \equiv (t_{\text{ew}})^4 \rho_V = x^2/2, \quad \text{(C.5b)}$$

$$x \equiv \xi \left(q/q_0 - 1 \right). \tag{C.5c}$$

Dimensionless ODEs:

$$(\dot{h}+2h^2)\left(x^2/2+\xi\left(r_{M1}+r_{M2}-3h^2\right)\right) - h\,x\,\dot{x} = 0,$$
 (C.6a)

$$\dot{r}_{M1} + (4 - \overline{\kappa}_{M1}) h r_{M1} - \lambda_{21} r_{M2} + \lambda_{12} r_{M1} = 0$$
, (C.6b)

$$\dot{r}_{M2} + 4 h r_{M2} + \lambda_{21} r_{M2} - \lambda_{12} r_{M1} = 0$$
, (C.6c)

$$3h \dot{x} \theta [r_{M2}(\tau) - r_{c,K}] - \left(x^2/2 + \xi \left(r_{M1} + r_{M2} - 3h^2\right)\right) = 0, \quad (C.6d)$$

with EOS function $\overline{\kappa}_{M1}$ from [9, (a)] and coupling parameters $[\lambda \propto (g_0)^2]$:

$$\lambda_{12}(\tau) = \lambda \,\theta[r_{c,g} - r_{M2}] \left(1 - \sqrt{r_{M2}/r_{c,g}} \right)^2, \qquad (C.6e)$$

$$\lambda_{21}(\tau) = \lambda_{12}(\tau) \,\exp\left[-\left(\frac{\pi N_2}{30 \, r_{M2}(\tau_{\min})}\right)^{1/4} \frac{a(\tau)}{a(\tau_{\min})} \frac{M}{E_{\text{ew}}} \right]. \qquad (C.6f)$$

Model universe has early phase given by a <u>standard</u> radiation-dominated FRW universe \Rightarrow fully determined boundary conditions of ODEs.

Fig. C1: Numerical solution [9, (b)] of the dimensionless ODEs (C.6). Model parameters are $\{\xi, \lambda, r_{c,g}, r_{c,K}\} = \{10^7, 10^4, 12, 3\}$. The ODEs are solved over the interval $[\tau_{\min}, \tau_{\max}] = [0.01, 3]$ with the boundary conditions at $\tau = \tau_{\text{bcs}} = 0.25$: $\{x, h, a, r_{M1}, r_{M2}\} = \{0, 2, 1, 0, 12\}$. Essentially the same results for $\xi = 10^{60}$.

The calculated value $r_{V, \text{ remnant}} \approx 2.4 \times 10^{-3}$ gives $E_{\text{ew}} \approx 4.7$ TeV, according to (A.5).

But, here, main focus on the <u>physical content</u> of a theory capable of generating the observed cosmological "constant" of our Universe. Hence, analytic result of interest:

$$\lim_{\tau \to \infty} r_V(\tau) \Big|_{\tau_{M2}(\tau_{\text{freeze}}) = \frac{1}{8} \left(\overline{\kappa}_{M1}(\tau_{\text{freeze}}) r_{M1}(\tau_{\text{freeze}}) \right)^2 \Big|_{r_{M2}(\tau_{\text{freeze}}) = r_{c,K}}.$$
(C.7)