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1. Algebraic equation

The master field of the title is essentially determined by an algebraic
equation for D traceless Hermitian matrices @ # of dimension N x N

i(Pk— i) Ay = —[a”, [ay,/a\“ﬂkl—‘rF Pza) aag(;z) + 174y, (1)
P(a) = homogeneous polynomial of degree K , (1b)

K = (D-2)(N*-1), (1c)

(D, F) = (10,1), N>1, (1d)

with matrix indices k, [ running over {1, ... , N} and directional indices
w, v running over {1, ... , D}, while v in (1a) is implicitly summed over.

The py, are fixed uniform random numbers and the 7}, fixed Gaussian
random numbers.
There is an explicit expression for the Pfaffian P to be discussed later.
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1. Algebraic equation

The algebraic equation (1) is quite a challenge for mathematics and
computational science.

But why is that equation also of interest to physics?

Well, the answer is that its solution may contain information about

the emergence of spacetime and the birth of the Universe.

Here, | can only give some background in a ultrashort version,
as the main focus will be on discussing solutions of this algebraic
equation.
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2. Background (ultrashort version)

We start from the [IB matrix model [1], 2], which reproduces the
structure of the light-cone string field theory of type-IIB superstrings.
The 1IB matrix model has a finite number of N x N traceless
Hermitian matrices: ten bosonic matrices A* and eight fermionic
(Majorana—Weyl) matrices v,,.

The partition function Z of the 1IB matrix model is defined by a “path”
integral over A and ¥ with a weight factor exp|[—Spos(A) — Sterm (¥, A)].
The fermionic matrices ¥ can be integrated out exactly (Gaussian
integrals) and then give the Pfaffian P(A).

For strings of bosonic observables, the expectation values are defined
by the same A-integral as Z, that is, involving the exponential weight
factor with the bosonic action, exp|—Spos(A4)], and the Pfaffian P(A).

For large IV, these expectation values can also be obtained by

Inserting the matrices A+ of the so-called master-field [3,, 4] directly
Into the observables, without need of any integration.
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2. Background (ultrashort version)

Recently, we have suggested [5] that precisely the master-field

matrices A* of the 1IB matrix model may give rise to an emergent
classical spacetime (some details are given in Appendix A).

Assuming that the matrices A+ of the I1B-matrix-model master field
are known and that they are approximately band-diagonal, it relatively
easy [5] to extract a discrete set of spacetime points {z/'} and an
interpolating (inverse) metric g"¥ (x).

It has also been established that, in principle, it is possible to get, from
appropriate distributions of the extracted spacetime points {z, }, the

metrics of the Minkowski and the spatially flat Robertson—Walker
spacetimes. See the recent review [6] for further discussion.

But, instead of assuming the matrices A*, we want to calculate them.
And, for that, we need an equation ...
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3. Equation and solutions

GOOD NEWS:

the master-field equation has already been established, nearly 40

years ago, by Greensite and Halpern [4], who write in the first line of
their abstract:

“We derive an exact algebraic (master) equation for the euclidean

master field of any large-N matrix theory, including quantum
chromodynamics.”

Now, “any” means “any” and we may as well consider the large-INV
[IB matrix theory of Kawai and collaborators [1, 2].

F.R. Klinkhamer, Corfu2021, September 22, 2021 (v4) —p. 6



3.1 Bosonic master-field equation

Building on this work by Greensite and Halpern [4], we then have the
[IB-matrix-model bosonic master field in “quenched” form [5]:

At = et (Pr—D1) Teq g1t (2a)

The p;, are random constants (see below) and the dimensionless time 7¢q
must have a sufficiently large value in order to represent an equilibrium
situation (7 is the fictitious Langevin time of the stochastic-quantization
procedure). The m-independent matrix a # on the right-hand side of
(2a) solves the following algebraic equation [5]:
o~ 08 N

i(Pe—pr)aly, = —%:ka 14 (2b)
in terms of the master momenta p;, (real uniform random numbers) and
the master noise matrices 7, (real Gaussian random numbers).

The algebraic equation (2b) is, of course, precisely the one in (1).
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3.2 Solutions of the simplified equation

The algebraic equation (1) is rather formidable and it makes sense to
first consider the simplified equation obtained by setting ' = 0:

(pk _pl) l]i — |:al/’ [al/, au]] + ﬁgl ) (3)

where we have flipped the sign of the double-commutator term (in
order to match the equation of Ref. [7]) by redefining p;, and 77 .

The matrices a # are N x N traceless Hermitian matrices and the
number of variables is

Nvar:D(N2_1)a (4)

which grows rapidly with increasing N. Remark also that the simplified
equation (3) is essentially a cubic polynomial
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3.2 Solutions of the simplified equation

It appears impossible to obtain a general analytic solution of (3)) in
terms of the master constants p;, and 774, Instead, we will try to get
solutions for an explicit choice for the random master constants.

For (D, N) = (2, 6), consider the simplified equation (3) for 70 real
variables, with a particular realization (the “alpha-realization”) of the
pseudorandom numbers entering the equation.

Other realizations give similar results.

Specifically, we take the following 6 pseudorandom numbers for the
master momenta:

53 9 441 217 371 19
}7 (5)

Porrealization = {%’ 1007 10007 1000° 1000° 40

and the following 70 pseudorandom numbers for the master noise
(splitting the matrices into real and imaginary parts):
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3.3 Solutions of the simplified equation

Re [77@ reallzatlon] —

Im [7704 reallzat|on] —

71
1000
_ 151

500
371
500

83

200
491
1000

[0

441
1000
17
250
87

1000
127
200

199
500

1 __ 151
1000 500
279 259
1000 500
259 413
500 1000
13 911
~ 1000 1000
493 203
500 250
449 299
1000 1000
441 17
1000 250
177
0 —35
177
550 0
783 14
1000 25
303 259
500 1000
__ 969 711
1000 1000
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371 83 491
500 200 1000
13 493 449
1000 500 1000
911 203 299
1000 250 1000
671 _ 417 913
1000 500 1000
417 51 181
~ 500 125 250
913 181 261
~ 1000 250 1000
87 127 199
1000 200 500
783 303 969
~ 1000 500 1000
_ 14 259 711
25 1000 1000
43 1
0 %50 195
_ 43 0 _ 491
250 1000
! 491 0
125 1000

, (6)

/

, (1)
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3.2 Solutions of the simplified equation

Re [77@ reallzatlon] =

Im [7704 reallzat|on] —

( 41
200
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3
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_ 5L
200

(0
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500
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~ 1000
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~ 1000

T
100
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~ 200

449
500

0
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~ 500

241 621
250 1000
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31 22
500 125
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25 ~ 1000
31 103
100 200
_ 31 233
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56 7
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409
0 35
409
— 2 0
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3. 5L
20 200
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100 200
4 31
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1000 1000
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1000 ~ 1000
__ 413 807
500 1000
_ 17 23
200 500
57 689
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9
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a7
0 200
47
—55 0 )
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3.2 Solutions of the simplified equation

A particular solution [7] for the 70 variables of the simplified equation
with the alpha-realization of pseudorandom constants is given by

al.anda?, . Consider the absolute values of the matrix entries:

AbS[é 1 a—sol] AbS[é 2a—sol]

1 2 3 4 5 6 1. 2 3 4 5 6

o O B~ WOWN -
SR SR SR
OO G A WOWN -
> o B ow N -

1 2 3 4 5 6 1 2 3 4 5 6

= no obvious band-diagonal structure.
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3.2 Solutions of the simplified equation

Now, change the basis, in order to diagonalize and order the ;, = 1
matrix. This gives the matricesa /% ,and a2 ,. Consider the absolute

«-S0 «-Sol *
values of the matrix entries:

Abs[a"" 4_soll Abs[4" 4-sol]
123456 123456
1 e 1 ¥
2.. 2 2! 12
3 3 3 13
4 4 4 4
5/ 5 5 5
6 s 6 6
1 2 3 4 5 6 1 2 3 4 5 6

=- a diagonal/band-diagonal structure, a highly nontrivial result !
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3.2 Solutions of the simplified equation

The values (D, N) = (2, 6) are, of course, rather small. But ...

... scientists at Google Research, Zurich, now have obtained
numerical solutions of the simplified equation (3) with (D, N) =
(10, 50) and these solutions apparently also display a diagonal/
band-diagonal structure [T. Fischbacher, private communication].

In short, work is in progress on solving and understanding the
simplified algebraic equation ...

... but, first, we need to make sure that dynamical fermions do not
spoil this structure.
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3.3 Solutions of the full equation

We now look for solutions of the full bosonic master-field equation (1)),
with F' = 1 to include the dynamic fermions, but, first, with rather small
values of D and N.

The Pfaffian is a K-th order polynomial, denoted symbolically by
Py (A), with K = (D — 2) (N? — 1) according to (1d).
The basic structure of the algebraic equation (1)) is then as follows:

5) - Py (@ o
PP (@) = P3(@)+F ;@(Kla())+Pé")(a), (10)

where the suffixes on P, and B, indicate their respective dependence
on the master momenta p;, and the master noise 7;.

Multiplying (10) by Pk (a ), we get a polynomial equation of order K + 3:

~

PPl (@) = Prys@) +FPeoy@)+P @) .
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3.3 Solutions of the full equation

As a start, we have considered the case
{D,N, F}=1{3,3,1}, (12)

for which the model still has a supersymmetry invariance and the eight
generators T/ are proportional to the 3 x 3 Gell-Mann matrices \’. The
bosonic matrices are expanded as 4, = AY T, with real coefficients A% .

Remarkably, there is now an explicit result for the Pfaffian [9],

P3,3[A] = —ZTV ([A“, AY] A7, AJ}) Tr ([AM’ AT {4, AJ})

+§Tr (A“ AV, AP] )Tr (A“ [{4v, A7), {4, A°Y] ) (13)

which corresponds to a real homogenous eighth-order polynomial in
the bosonic coefficients A~
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3.3 Solutions of the full equation

Taking an explicit realization of the random constants, we have

established the existence of several solutions of the full bosonic
master-field equation (1) for the case (D, N) = (3, 3).

Moreover, there is a suggested diagonal/band-diagonal structure, but
the value N = 3 is too small for definitive statements.

Further details can be found in Ref. [8].
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3.3 Solutions of the full equation

The (D, N) = (3, 3) result was obtained by a direct algebraic calculation.
Perhaps there can be further progress by an indirect numerical approach.

The idea (emphasized to me by Jun Nishimura) is to use the fact that
the square of the Pfaffian of the skew-symmetric matrix M = M (a)
equals its determinant,

[Pf(/\/l)} g det M, (14a)

so that we can write the variational term in the algebraic equation (1)
as a trace,

SPIM) 1 6detM 1 »
PIAM) 2 detM 2 MM, (14b)

and this trace can be evaluated numerically (as used in Ref. and
earlier papers). This work is still in progress, see the next slide.
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3.3 Solutions of the full equation

Table 1: Numerical solutions of the full (/' = 1) bosonic master-field equa-
tion (I). The number of variables [V, is given by (@) and the equation is a
polynomial of order Npqy = K + 3, with K given by (Lc).

Nvar Npo|y StatUS

(D, N)= (3, 3) 24 11 | done (~ 1/2hr)?
(D, N)=(10,3) | 80 67 | done (~ 76 hrs)
(D, N)=(10,4) | 150° | 123 | approximate solution (— App. B)

2 previous algebraic results reproduced
® complex variables in the solution, as the Pfaffian 7P (@) is complex
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4. Conclusions

It is conceivable that a new physics phase gives rise to classical
spacetime, gravity, and matter, as described by our current theories
(General Relativity and the Standard Model).

For an explicit calculation, we have considered the IIB matrix model
which has been proposed as a nonperturbative formulation of type-IIB
superstring theory (M-theory).

The crucial insight is that the emergent classical spacetime may reside
In the large-N master field A* of the 11B matrix model.

We have now started to solve the full bosonic master-field equation of
the 1IB matrix model: first results are in, but the road ahead is long and

arduous ...
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A. Background (short version)

The algebraic equation of interest arises from the IKKT matrix

model [1]. That model is also known as the IIB matrix model [2], as the
matrix model reproduces the basic structure of the light-cone string
field theory of type-1IB superstrings.

The 1IB matrix model has a finite number of N x N traceless
Hermitian matrices: ten bosonic matrices A* and eight fermionic

(Majorana—Weyl) matrices V.

The partition function Z of the IIB matrix model is defined by the
following “path” integral:

7 — / dA U ¢ S (A W) _ / dA dU ¢ bos(A) = Sterm(¥, A) (4 1

where the bosonic action Spes(A) is quartic in A and the fermionic action
Sterm(¥, A) is quadratic in ¥ and linear in A4, i.e., Sigrm = ¥ M(A) V.
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A. Background (short version)

The fermionic matrices ¥ can be integrated out exactly (Gaussian
integrals) and give the Pfaffian PfM(A)] = P(A):

Z = /dA P(A) e~ Sbos(A) = /dA e Seii(A) (A.2)

For the bosonic observable

wht ot = Tr (AR AR (A.3)

and arbitrary strings thereof, the expectation values are defined by the
same integral as in (A.2):

<,w,u1 cee m wl/l e Un wwl ...wz>

1 _
— E /dA (,w,u,l...,um wl/l N wwl...wz) e Seff . (A.4)
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A. Background (short version)

Now, the [IB matrix model just gives numbers , Z and the expectation
values (w w - - - ), while the matrices A* and ¥, in the “path” integral
are merely integration variables.

Moreover, there is no obvious small dimensionless parameter to
motivate a saddle-point approximation.

The conceptual question arises: | where is the classical spacetime?

Recently, we have suggested to revisit an old idea, the large-N master
field of Witten [3, 4], for a possible origin of classical spacetime in the
context of the [IB matrix model [5].
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A. Background (short version)

According to Witten [3], the large-N factorization of the expectation
values (A.4) implies that the path integrals are saturated by a single

configuration, the so-called master field An.

To leading order in N, the expectation values are then given by

N AN AN AN
<’LU’UJ1 e Hmog Pl Vi L gy Wt ...wz> = (ML Hmo gL Ve W ---wz’ (A.5a)
GHL - m = Ty (Am... Aﬂm), (A.5b)

Hence, we do not have to perform the path integrals on the right-hand

side of (A.4): we just need ten traceless Hermitian matrices A * to get
all these expectation values from the simple procedure of replacing

each A* in the observables by the corresponding An,
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A. Background (short version)

Now, the meaning of the suggestion at the bottom of slide 25 is clear:

classical spacetime may reside in the bosonic master-field matrices AW
of the [IB matrix model.

The heuristics is as follows [6]:

¥ The expectation values (w#t - H#m ... ¥t “=) from (A.4), infinitely
many numbers, correspond to a large part of the information content
of the 1IB matrix model (but, of course, not all the information).

B That same information is contained in the master-field matrices A *,
which, to leading order in NV, give the same numbers (w#t - #m ...
@« -«:), where @ is the observable w evaluated for A.

® From these master-field matrices A#, it appears possible to extract

the points and metric of an emergent classical spacetime (recall
that the original matrices A# were merely integration variables).
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A. Background (short version)

Assuming that the matrices A+ of the 11B-matrix-model master field
are known and that they are approximately band-diagonal (as
suggested by the numerical results of Ref. [11, 12, [10] and references
therein), it is possible [S] to extract a discrete set of spacetime points
{z;'} and an interpolating (inverse) metric g"*(x).

It has been established that, in principle, it is possible to get, from
appropriate distributions of the extracted spacetime points {z, }, the

metrics of the Minkowski and the spatially flat Robertson—Walker
spacetimes. See the recent review [6] for further discussion.

But, instead of assuming the matrices A*, we want to calculate them.
And, for that, we need an equation. — Sec. 3
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B. Approximate solution

The numerical results of the first two rows in Table [1 were obtained
from the NM ni m ze routine of MATHEMATICA 12.1, using the downhill-

simplex method of Nelder and Mead (1965).

But this procedure is no longer suitable for the 300 real variables of the
case of interest,

(D, N) = (10, 4). (B.1)

Instead, we have used a simple procedure, which could be partially
parallelized. In this way, we have obtained an approximate solution [13].

Before we describe the obtained result, we need to specify a particular
realization (the “s-realization™) of the pseudorandom numbers entering
the algebraic equation (1). As this involves 154 real numbers, the
details are rather cumbersome and are relegated to App. C.
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B. Approximate solution

We have obtained an approximate solution for the 300 real variables of
the algebraic equation (1) with the k-realization of pseudorandom
constants:

a” for pn=1,...,10. (B.2)

k-approx-sol ’

With complex coefficients a}, these (approximate) master-field
matrices are no longer Hermitian. The situation is perhaps analogous
to that of complex saddle-points appearing for a real problem.

Our interpretation is that these (approximate) master-field matrices
contain information both in their Hermitian and anti-Hermitian parts.

We suspect that the Hermitian parts of the master-field matrices (with
real eigenvalues) contain information about the emerging spacetime.

What the information in the anti-Hermitian parts corresponds to is not
clear for the moment.
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B. Approximate solution

Consider, therefore, the Hermitian parts

aM
k-approx-sol-HERM

DN | —

f
A~ A/“l’
[am-approx-sol + (a’m-approx-sol) ] ’ (B.3)

Getting the absolute values of these matrix entries, we observe no
obvious band-diagonal structure.

See the next 5 slides with five improving approximate solutions
(decreasing penalty function).
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B. Approximate solution

1 1 1 1 11 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4
1 1 1 1 1 1 1 1 1
2 2 2 2 12 2 2 2 2
3 3 '3 3 3 3 3 3 '3
4 4 4 0L 4 4 4 4 4 4 W4
1234 1234 1234 1234 1234
Fi - (D, N) = 4 ' ' at
gure 1: (D, N) = (10, 4) approximate solution Abs [aﬁ_apprOX_SO,_HERM]
with fpenay = 422.468. Shown are 4t = 1, ... ,5 on the top row and p =

0, ..., 10 on the bottom row.
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B. Approximate solution

’] 2 3 4 123 4 1 2 34
1 11 1 1 11 1 1 1
2 2 2 2 2 2 2 2 2 2
3 '3 3 3 3 13 3 3 3L 3
4. B .4 4 4 4 .4 4 4 4 | .4
1234 1234 1234
1 2 34 123 4 123 4
1 1 1 1 1 1 1 1 1 11
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 ‘.4
1234 1234 1234 1234 1234
Fi - (D, N) = 4 ' ' at
gure 2. (D, N) = (10, 4) approximate solution Abs |G\, oxsornerm]
with fpenay = 310.932. Shown are ¢t = 1, ... ,5 on the top row and p =

0, ..., 10 on the bottom row.
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B. Approximate solution

1234 1234 1234
1 L 1 1 1 1 11 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 BL 3
a4 14 4 4 4 4 4 4 400 4
1234 1234
'] 2 34 123 4
1 1 1 1 1 1 1 1 1 i
2 2 2 2 2 2 2 2 2 12
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 L4 4 4 4 W4
1234 1234 1234 1234 1234
Figure 3: (D, N) = (10, 4) approximate solution Abs |G\, - oxsornerm]
with fpenaty = 209.33. Shown are ;t = 1, ... ,5 on the top row and p =

6, ..., 10 on the bottom row.
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B. Approximate solution

1234 1234

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 13

4 4 4 4 4 4 4 4 4 4

1 1 1 1 1 1 1 1 1 i

2 2 2 2 2 2 2 2 2 12

3 3 3 3 3 3 3 3 3 3

4. 4 4 4 4 4 4 4 4 4

1234 1234 1234 1234

Figure 4: (D, N) = (10, 4) approximate solution Abs |G\, oxsornerm]
with fpenay = 108.094. Shown are t = 1, ... ,5 on the top row and p =
0, ..., 10 on the bottom row. (v2: update October 7, 2021)
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B. Approximate solution

1234 1234
1 11 11 11 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4

\ LEINES
A el
A WON-—-

123
12 3¢
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 12
3 3 3 3 3 3 3 3 3 3
4. 4 4 4 4 L4 4 4 4 L4
1234 1234 1234 1234 1234
Figure 5. (D, N) = (10, 4) approximate solution Abs |G\, oxsornerm]
With fpenaty = 39.882. Shown are ;4 = 1, ... ,5 on the top row and p =
0, ..., 10 on the bottom row. (v4: update January 3, 2022)
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B. Approximate solution

Now, change the basis, in order to diagonalize and order the ;1 = 1 matrix.
This gives the matrices

~1 _
G, approx-sol-HERM > TOF o =1,...,10. (B.4)

Considering the absolute values of the matrix entries, there is not yet a
strong signal for a diagonal/band-diagonal structure.

But perhaps we see a trend: look, for example, at the pattern of the
1 = 2 matrix as it evolves with improving approximations (decreasing
penalty function).
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B. Approximate solution

1234 1234 1234 1234 1234
100 " 1r 1 1 1 1 1 1 1
2 2 2 2 2 2 2 12 2 2
3 3 3 3 3 3 3 3 3 3
4 4 400 4 4 4 40 W4 4 4

1234 1234 1234
1 2 3 4 1234
1 1 1 1 1 1 10 11 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4. 4 4 W 4 4 W 4 4 4 4. M4
1234 1234 1234 1234
Figure 6: (D, N) = (10, 4) approximate solution Abs [&égpprox_sol_HERM]
With fpenay = 422.468. Shown are t = 1, ... ,5 on the top row and p =

0, ..., 10 on the bottom row.
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B. Approximate solution

1234 1234 1234 1234 1234
d | 1 1 1 1 1 1 1 1 1
2! 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4

1234 1234 1234

1234 1234

1 1 1 11 1 1 11 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4] 4 4. 4
123 4 1234 1234 1234

Figure 7. (D, N) = (10, 4) approximate solution Abs [a,;_gppmx_so,_HERM]

with fpenay = 310.932. Shown are t = 1, ... ,5 on the top row and p =

0, ..., 10 on the bottom row.
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B. Approximate solution

1234 1234 1234 1234 1234
10 11 11 1 1 11 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4

1234 1234
1234
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 12
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 40 M4
1234 1234 1234 1234
Figure 8: (D, N) = (10, 4) approximate solution Abs [&égpprox_sol_HERM]
with fpenaty = 209.33. Shown are ;4 = 1, ... ,5 on the top row and p =

0, ..., 10 on the bottom row.
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B. Approximate solution

1234 1234 1234 1234 1234
10 11 1 1 1 1 I 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 W4 4 4 4 Ll4 40 W4 4 4

1234 1234 1234 1234 1234

1234 1234 1234 1234 1234
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 12
3 3 3 3 3 3 3 3 3 13
4. 4 4 L4 4 4 4 4 400 W4

1234 1234 1234 1234 1234

Figure 9: (D, N) = (10, 4) approximate solution Abs [&égpprox_sol_HERM]
with fpenary = 108.094. Shown are ;t = 1, ... ,5 on the top row and p =
0, ..., 10 on the bottom row. (v2: update October 7, 2021)
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B. Approximate solution

1234 1234 , 1234
d | 1 1 1 1 1 1 1 1 1
2! 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 W4 4 4 4 4 4 4 4 4

1234 1234 1234

1234 1234 1234
1 1 1 11 1 1 11 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4. W4

123 4 1234 1234

Figure 10: (D, N) = (10, 4) approximate solution Abs [&égpprox_sol_HERM]
with fpenaty = 39.882. Shown are ;t = 1, ... ,5 on the top row and p =
0, ..., 10 on the bottom row. (v4: update January 3, 2022)
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C. Pseudorandom numbers

In this appendix, we give the explicit realization (the “k-realization”) of
the pseudorandom numbers used for the approximate solution of App. B.

Specifically, we take the following 4 pseudorandom numbers for the
master momenta:

(C.1)

R o 111 19 63 189
Pk-realization = 250° 200° 200’ 1000 [ °

and the following 150 pseudorandom numbers entering the Hermitian
master-noise matrices:
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C. Pseudorandom numbers

~1 o
T) -realization —

( 593 151 1 9 353 | 6i 987  5li \
2000~/2 500 2000 40 2000 ' 25 2000 ~ 400
1, 9 151 , 593 1 63 131 367i
2000 ' 40 500 ' 2000+/2 8 ~ 2000 400 ~ 2000 (C.2)
353 6i 1, 63 _ 369 593 _ 169 , 1715 |’ '
2000 ~ 25 8 T 2000 1000 ~ 2000+/2 400 " 500
_ 987 ., 51i 131 | 367i 169 1714 369 593
2000 ' 400 400 " 2000 400 ~ 500 1000 ~ 20002
~9 o
Tk -realization =
69 17 _ 153 47i 897 _ 6li 269 2377;\
2000  50v/2 500 500 2000 1000 2000 2000
_ 153 4, 4 69 _ _17 1 _ 13 _ 103 3671
500 " 500 2000 ~ 50./2 250 200 400 T 1000 (C.3)
897 | 6l 1, 13§ 17 123 1 713 ’ '
2000 ' 1000 250 ' 200 500/2 250 20 2000
260 | 237¢ 103 _ 367i 1 7li 123 | 17
2000 ' 2000 400 ~ 1000 20 ' 2000 250 ' 50+/2
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C. Pseudorandom numbers

77/;3 realization —
(313+ 7 7y 43l 17 59 _437_|_69z'\
1000 " 250/2 200 ' 2000 40 ~ 250 2000 ' 1000
7 431i 7 313 991 _ 49i 83 _ 279i
200 2000  250/2 1000 2000 ~ 250 1000 ~ 2000 (C.4)
17 | 59 _ 991 49i 871 7 49 | 121j ’ '
40 T 250 2000 " 250 2000 2502 250 ' 500
437 69i 83 | 279i 49 1215 871 7
2000 = 1000 1000 ' 2000 250 500 2000 25012
77/3 realization —
(293 4429 11 469i 439 483i _|_ 414 \
1000 " 2000v/2 250 2000 1000 ~ 2000 400
11 | 469i 429 293 409  343i i _407i
250 ' 2000 20002 1000 1000 ~ 2000 16 ~ 1000 (C.5)
439 | 483i 400 4 343i 6 429 141 31i |’ '
1000 " 2000 1000 ' 2000 125 20002 500 ~ 2000
K 11 414 3 | 407 _ 141, 31 6 429
50 400 16 ' 1000 500 T 2000 125 20002

F.R. Klinkhamer, Corfu2021, September 22, 2021 (v4) — p. 45



C. Pseudorandom numbers

n:-realization —
( 183 48 37 | 249i 511 _ 43 _ 129 192’\
50002 125 125 ' 1000 2000 500 2000 " 200
37 2490 48 | 183 49  463i 23 | 433i
125 = 1000 125 ' 5002 400 ~ 1000 200 T 2000
_ 511, 43; 49  463i 46 183 821 | 199 |’
2000 " 500 400 ' 1000 125 ~— 5002 2000 ' 2000
_ 129 195 23 433i 821  199; 46 183
2000 ~ 200 200 2000 2000 ~ 2000 125 5002
n;g-realization —
(& 181 143 | @ 921 _ 313i _ 603 _ 449i
1000 20002 500 ' 5 2000 ~ 1000 2000 2000
143 4 181 181 609 _ 39i 443 | 383
500 5 1000 ~ 2000+/2 2000 _ 2000 2000 " 1000
921 | 313i 609 | 39 941 181 17, 2T
2000 " 1000 2000 " 2000 2000 " 2000v/2 1000 T 2000
K_@ 449i 443 383 17 278 181 941
2000 T 2000 2000 ~ 1000 1000 2000 200042 2000
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C. Pseudorandom numbers

~7
T -realization

83 129  147i 387 _ 61li 313 | 191i \
2000 200\/_ 500 2000 2000 2000 2000 400
_ 120 147 83 _ 57 _ 61 _ 1li _ 969 | 927i
500 2000 20()\/5 2000 500 50 2000 2000 (C 8)
387 | 611i  _ 61 4 1li _ 2 _ _83 489 | 361 |- '
2000 2000 500 50 125 200\/5 1000 1000
313 191i _ 969 _ 927i 489 _ 361i 2 83
2000 400 2000 2000 1000 1000 125 200\/§
/\8 o
T -realization —
321 193 273 441i 427 3174 407 _ 5T \
2000 2()0()\/§ 2000 2000 1000 2000 2000 400
273 |, 441i 321 193 23 | 93i 163 | 18i
2000 2000 2000 2()0()\/5 2000 400 500 125 (C 9)
427 317 23 93i 307 193 333 9¢ '
1000 2000 2000 400 1000 20()0\/§ 2000 25
407 | 570 163 184 333 |, 9i 193 307
2000 400 500 125 2000 25 2()0()\/5 1000
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C. Pseudorandom numbers

~9
T -realization

39 7 1 _ 981 4 56i
400 2002 500 125 2000 ' 125
I ST 39 7 201 101
500 ' 125 400  200v2 1000 " 1000
_ 981 56 _ 201 _ 101i 197 | 7
2000 125 1000 ~ 1000 400 ' 200+/2
\__ 137 547i 63 31i 597 | 5Ti
1000 ~ 2000 500 125 2000 ' 125
n/i-?ealization —
( 577 319 969 | 2i _ 243 | 29
2000~/2 2000 2000 ' B 2000 ' 500
969  2i 319 | 577 17 | 1194
2000 5 2000 2000+/2 50 2000
243 29i 17 1194 119 577
2000 ~ 500 50 ~ 2000 1000 ~ 20002
K 19 | 151j 463 | 33i 257 2194
125 T 1000 2000 ' 400 1000 ~ 500

137
1000

63

_|_
_|_

547i\
2000
B 314
500 | 125
597  57i )
2000 ~ 125

(C.10)

7 197
200+/2 400

19

125

463
2000

257

1512
1000

331
400

219s
1000 500

119 577
1000 20002

(C.11)
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