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0. Introduction

Two preliminary remarks:

� The Future of Particle Physics may very well be tied to that of
Gravitation and Cosmology.

� The present talk has no definitive answers, only a few suggestive
results (the ermine on da Vinci’s painting appears to know it all, but does not tell us...).

[Czartoryski Museum, Kraków, PL]
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0. Introduction

Outline of main talk:

1. Standard Friedmann cosmology

2. Regularized big bang

3. New phase from M-theory

4. Conclusions
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Technical details:

A. Extraction of the spacetime points

B. Extraction of the spacetime metric

C. Various emergent spacetimes

D. More on the Lorentzian signature
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1. Standard Friedmann cosmology

The Einstein gravitational field equation of general relativity (GR)
reads [1]:

Rµν − 1

2
gµν R = −8πG T (SM)

µν , (1)

with Rµν the Ricci tensor, R the Ricci scalar, T (SM)
µν the energy-momentum

tensor of the matter described by the Standard Model (SM), and G the
Newton gravitational coupling constant. The spacetime indices µ, ν
run over {0, 1, 2, 3}.

For cosmology, the spatially flat Robertson–Walker (RW) metric is

ds2
∣∣∣
(RW)

≡ gµν(x) dx
µ dxν

∣∣∣
(RW)

= −dt2 + a2(t) δij dx
i dxj , (2)

with x0 = c t and c = 1. The spatial indices i, j run over {1, 2, 3}.
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1. Standard Friedmann cosmology

Considering a homogeneous perfect fluid with energy density ρM (t) and
pressure PM (t), we get the spatially flat Friedmann equations [1]:

(
ȧ

a

)2

=
8πG

3
ρM , (3a)

ä

a
+

1

2

(
ȧ

a

)2

= −4πGPM , (3b)

ρ̇M + 3
ȧ

a

[
ρM + PM

]
= 0 , (3c)

PM = PM

(
ρM
)
, (3d)

where the overdot stands for differentiation with respect to t and (3d)
corresponds to the equation-of-state (EOS) relation between pressure
and energy density of the fluid.

Epiphany Conference — Cracow (Zoom), January 9, 2021 (v1.04) – p. 5



1. Standard Friedmann cosmology

For relativistic matter with constant EOS parameter wM ≡ PM/ρM = 1/3,
the Friedmann–Lemaître–Robertson–Walker (FLRW) solution is [1]

a(t)
∣∣∣
(FLRW)

(wM=1/3)
=

√
t/t0 , for t > 0 , (4a)

ρM (t)
∣∣∣
(FLRW)

(wM=1/3)
= ρM0/a

4(t) ∝ 1/t2 , for t > 0 , (4b)

where the cosmic scale factor has normalization a(t0) = 1 at t0 > 0.

This FLRW solution displays the big bang singularity for t → 0+,

lim
t→0+

a(t) = 0 , (5)

with diverging curvature and energy density. But, at t = 0, the theory
(GR+SM) is no longer valid and we can ask what happens really?

Or, more precisely, how to describe the birth of the Universe?
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2. Regularized big bang

First, we set out to control the divergences by using a new Ansatz
for the “regularized” big bang [2]:

ds2
∣∣∣
(RWK)

≡ gµν(x) dx
µ dxν

∣∣∣
(RWK)

= − t2

t2 + b2
dt2 + a2(t) δij dx

i dxj , (6a)

b2 > 0 , a2(t) > 0 , (6b)

t ∈ (−∞, ∞) , xi ∈ (−∞, ∞) , (6c)

with x0 = c t and c = 1. The nonzero length scale b acts as regulator.

This metric gµν(x) is degenerate , with a vanishing determinant at t = 0.

Physically, the t = 0 slice corresponds to a spacetime defect .
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2. Regularized big bang

The standard Einstein equation (1) with the new metric Ansatz (6) and
a homogeneous perfect fluid gives modified spatially flat Friedmann
equations:

[
1 +

b2

t2

] (
ȧ

a

)2

=
8πG

3
ρM , (7a)

[
1 +

b2

t2

] (
ä

a
+

1

2

(
ȧ

a

)2
)

− b2

t3
ȧ

a
= −4πGPM , (7b)

ρ̇M + 3
ȧ

a

[
ρM + PM

]
= 0 , (7c)

PM = PM

(
ρM
)
, (7d)

where the overdot stands again for differentiation with respect to t.
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2. Regularized big bang

For constant EOS parameter wM = 1/3, the solution a(t) of (7) reads [2]

a(t)
∣∣∣
(FLRWK)

(wM=1/3)
= 4

√(
t2 + b2

)/(
t20 + b2

)
, (8)

which is perfectly smooth at t = 0 as long as b 6= 0. Setting b = 1, the
figure below compares this regularized solution (full curve) with the
singular FLRW solution (dashed curve).
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2. Regularized big bang

Two possible scenarios:

1. nonsingular bouncing cosmology [3, 4] from t = −∞ to t = ∞
(valid for b ≫ lPlanck?) [exp. signatures: modified Hubble diagrams
(→ backup slide), gravitational waves from the prebounce epoch, ... ];

2. new physics phase at t = 0 pair-produces [5] a “universe” for
t > 0 and an “antiuniverse” for t < 0 (valid for b ∼ lPlanck?).

For both scenarios, the t = 0 slice corresponds to a spacetime defect,
which manifests itself as a discontinuity of the extrinsic curvature K(t)

on constant-t hypersurfaces. Also, there is a discontinuity at t = 0 of
the expansion θ(t) for a bunch of timelike geodesics [Z.L. Wang, PhD
thesis, KIT, 2020].

It is not clear, for the first scenario, what physical mechanism determines
the relatively large value of b. For the second scenario, the hope is that
the new physics sets the value of b. ⇐ THIS TALK
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3. New phase from M-theory

M-theory is a hypothetical theory that
unifies all five consistent versions of
10D superstring theory (cf. [6, 7]);
see the well-known “nerve-cell” sketch.

For an explicit description of the new phase replacing the big bang, we
use the IIB matrix model of Kawai and collaborators [8, 9], which has
been proposed as a nonperturbative definition of type-IIB superstring
theory (and, thereby, of M-theory).
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3. New phase from M-theory

This IIB matrix model has N ×N traceless Hermitian matrices, ten
bosonic matrices Aµ and essentially eight fermionic (Majorana–Weyl)
matrices Ψα.
The partition function Z of the Lorentzian IIB matrix model is defined
by the following “path” integral [8, 9, 10, 11]:

Z =

∫
dAdΨ ei S/ℓ

4
=

∫
dA ei Seff/ℓ

4
, (9a)

S=−Tr

(
1

4

[
Aµ, Aν

] [
Aρ, Aσ

]
η̃µρ η̃νσ +

1

2
Ψβ Γ̃

µ
βα η̃µν

[
Aν , Ψα

]
)
, (9b)

η̃µν =
[
diag

(
− 1, 1, . . . , 1

)]
µν

, for µ, ν ∈ {0, 1, . . . , 9} . (9c)

A model length scale “ℓ” has been introduced, so that Aµ has the
dimension of length and Ψα the dimension of (length)3/2.
Expectation values of further observables will be discussed later.
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3. New phase from M-theory

Now, the matrices Aµ and Ψα in (9a) are merely integration variables.

Moreover, there is no obvious small dimensionless parameter to
motivate a saddle-point approximation.

Hence, the conceptual question: where is the classical spacetime?

Recently, I have suggested to revisit an old idea, the large-N master
field of Witten [12], for a possible origin of classical spacetime in the
context of IIB matrix model [13].

First, I will remind you of this mysterious master field (name coined by
Coleman) and give you the final result.

Then, time permitting, I will highlight a few of the technical details
collected in the Appendices.
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3. New phase from M-theory

Consider the gauge-invariant bosonic observable

wµ1 ... µm = Tr
(
Aµ1 · · · Aµm

)
. (10)

Strings of these observables have the following expectation values:

〈wµ1 ... µm wν1 ... νn · · · 〉 = 1

Z

∫
dA
(
wµ1 ... µm wν1 ... νn · · ·

)
ei Seff/ℓ

4
, (11)

with normalization 〈 1 〉 = 1.

For a string of two identical w observables, this factorization property
holds to leading order in N ,

〈wµ1 ... µm wµ1 ... µm 〉 N
= 〈wµ1 ... µm〉 〈wµ1 ... µm〉 , (12)

without sums over repeated indices. Similar large-N factorization
properties hold for all expectation values (11).

The leading-order equality (12) is a truly remarkable result for a
statistical (quantum) theory.
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3. New phase from M-theory

Indeed, according to Witten [12], the factorization (12) implies that
the path integrals (11) are saturated by a single configuration,

namely by the so-called master field Â
µ.

Considering one w observable for simplicity, we then have for its
expectation value:

〈wµ1 ... µm〉 N
= Tr

(
Âµ1 · · · Âµm

)
≡ ŵ µ1 ... µm , (13)

and similarly for the other expectation values (11),

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz 〉 N
= ŵ µ1 ... µm ŵ ν1 ... νn · · · ŵ ω1 ... ωz . (14)

Hence, we do not have to perform the path integrals on the right-hand
side of (11): we “only” need ten traceless Hermitian matrices Âµ to get
all these expectation values from the simple recipe of replacing each
Aµ in the observables by Âµ.
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3. New phase from M-theory

Now, the meaning of the suggestion on slide 13 is clear:

classical spacetime resides in the model master-field matrices Âµ.

Heuristics:

The expectation values 〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz 〉 from (11),
infinitely many numbers, contain a large part of the information
content of the IIB matrix model (but, of course, not all the information).

That same information is contained in the master-field matrices Âµ,
which give the same numbers

(
ŵ µ1 ... µm ŵν1 ... νn · · · ŵ ω1 ... ωz

)
, at least

to leading order in N and where ŵ is the observable w evaluated for Â.

From these master-field matrices, it appears possible to extract the
points and metric of an emergent classical spacetime (recall that the
original matrices Aµ were merely integration variables).
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3. New phase from M-theory

Next, assume that the matrices Âµ of the Lorentzian-IIB-matrix-model
master field are known and that they are approximately band-diagonal.

Then, it is possible [13] to extract a discrete set of spacetime points {x̂µ
k }

and the emergent inverse metric gµν(x), with the metric gµν(x) obtained
as matrix inverse.

It is even possible [14] that the large-N master field of the Lorentzian
IIB matrix model gives rise to the regularized-big-bang metric (6) of GR.

Final result: effective length parameter b of the emergent regularized-
big-bang metric (6) is calculated in terms of the IIB-matrix-model
length scale ℓ,

beff ∼ ℓ
?∼ lPlanck ≡

√
~G/c3 ≈ 1.62× 10−35 m . (15)

Technical details are collected in the Appendices.
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4. Conclusions

It is conceivable that a new physics phase replaces the big bang
singularity suggested by our current theories (GR&SM).

For an explicit calculation, we have considered the IIB matrix model ,
which has been proposed as a nonperturbative definition of type-IIB
superstring theory (M-theory).

The crucial insight is that the emergent classical spacetime may reside
in the large-N master field Âµ of the model.

In principle, the IIB-matrix-model master field Âµ can give rise to the
regularized-big-bang metric with length parameter b ∼ ℓ, where ℓ is the
length scale of the matrix model.

At this moment, the outstanding task is to calculate the exact IIB-matrix-
model master field Âµ or, at least, to get a reliable approximation of it...
.......................................................................................................................
Time permitting, we can mention a few technical details. (→ slide 3)
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A. Extraction of the spacetime points

Aoki et al. [9] have argued that the eigenvalues of the matrices Aµ of
model (9) can be interpreted as spacetime coordinates , so that the
model has a ten-dimensional N = 2 spacetime supersymmetry.

Here, we will turn to the eigenvalues of the master-field matrices Âµ.
Assume that the matrices Âµ of the Lorentzian-IIB-matrix-model
master field are known and that they are approximately band-diagonal
with width ∆N < N (as suggested by numerical results [10, 11]).
Then, make a particular global gauge transformation [10],

Â
µ

= Ω Âµ Ω † , Ω ∈ SU(N) , (16)

so that the transformed 0-component matrix is diagonal and has
ordered eigenvalues α̂i ∈ R,

Â
0

= diag
(
α̂1, α̂2, . . . , α̂N−1, α̂N

)
, (17a)

α̂1 ≤ α̂2 ≤ . . . ≤ α̂N−1 ≤ α̂N ,
N∑

i=1

α̂i = 0 . (17b)
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A. Extraction of the spacetime points

The ordering (17b) will turn out to be crucial for the time coordinate t̂ to
be obtained later.

A relatively simple procedure [13] approximates the eigenvalues of the

spatial matrices Â
m

but still manages to order them along the diagonal ,
matching the temporal eigenvalues α̂i from (17).

We start from the following two trivial observations:
If M is an N ×N Hermitian matrix, then any n× n block centered on
the diagonal of M is also Hermitian, which holds for 1 ≤ n ≤ N .
Moreover, if the matrix M is band-diagonal with width ∆N < N , then
the eigenvalues of the n× n blocks on the diagonal approximate the
original eigenvalues of M , provided n & ∆N .

Now, let K be an odd divisor of N , so that

N = K n , K = 2L+ 1 , (18)

where both L and n are positive integers.
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A. Extraction of the spacetime points

Consider, in each of the ten matrices Â
µ
, the K blocks of size n× n

centered on the diagonal.

We already know the diagonalized blocks of Â
0

from (17a), which
allows us to define the following time coordinate t̂ (σ) for σ ∈ (0, 1]:

x̂ 0
(
k/K

)
≡ c̃ t̂

(
k/K

)
≡ 1

n

n∑

j=1

α̂(k−1)n+j , (19)

with k ∈ {1, . . . , K} and a velocity c̃ to be set to unity later. The time
coordinates from (19) are ordered,

t̂
(
1/K

)
≤ t̂

(
2/K

)
≤ . . . ≤ t̂

(
1− 1/K

)
≤ t̂

(
1
)
, (20)

because the α̂i are, according to (17b).
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A. Extraction of the spacetime points

Next, obtain the eigenvalues of the n× n blocks of the nine spatial

matrices Â
m

and denote these real eigenvalues by
(
β̂m
)
i
, with

i ∈ {1, . . . , N}.

Define, just as for the time coordinate in (19), the following nine spatial
coordinates x̂m(σ) for σ ∈ {(0, 1]:

x̂m
(
k/K

)
≡ 1

n

n∑

j=1

[
β̂m

]
(k−1)n+j

, (21)

with k ∈ {1, . . . , K}.
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A. Extraction of the spacetime points

If the master-field matrices Â
µ

are approximately band-diagonal
and if the eigenvalues of the spatial n× n blocks show significant
scattering , then the expressions (19) and (21) may provide suitable
spacetime points, which, in a somewhat different notation, are denoted

x̂µ
k =

(
x̂ 0
k , x̂

m
k

)
≡
(
x̂ 0
(
k/K

)
, x̂m

(
k/K

) )
, (22)

where k runs over {1, . . . , K}.

Each of these coordinates x̂µ
k has the dimension of length, which

traces back to the dimension of the bosonic matrix variable Aµ as
mentioned below (9c).

To summarize, with N = K n and n & ∆N , the extracted space-
time points x̂µ

k , for k ∈ {1, . . . , K}, are obtained as averaged
eigenvalues of the n×n blocks along the diagonals of the gauge-

transformed master-field matrices Â
µ

from (16)–(17).
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B. Extraction of the spacetime metric

The points x̂µ
k effectively build a spacetime manifold with continuous

(interpolating) coordinates xµ if there is also an emerging metric gµν(x).

By considering the effective action of a low-energy scalar degree of
freedom σ “propagating” over the discrete spacetime points x̂µ

k , the
following expression for the emergent inverse metric is obtained [9, 13]:

gµν(x) ∼
∫

RD

dDy ρav(y) (x− y)µ (x− y)ν f(x− y) r(x, y) , (23a)

ρav(y) ≡ 〈〈 ρ(y) 〉〉 , (23b)

with continuous spacetime coordinates xµ having the dimension of
length and spacetime dimension D = 9+1 = 10 for the original model.

The average 〈〈 ρ(y) 〉〉 corresponds, for the extraction procedure of App. A,
to averaging over different block sizes n and block positions along the

diagonal in the master-field matrices Â
µ
.
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B. Extraction of the spacetime metric

The quantities that enter the integral (23) are the density function

ρ(x) ≡
K∑

k=1

δ(D)
(
x− x̂k

)
, (24)

the density correlation function r(x, y) defined by

〈〈 ρ(x) ρ(y) 〉〉 ≡ 〈〈 ρ(x) 〉〉 〈〈 ρ(y) 〉〉 r(x, y) , (25)

and a localized real function f(x) from the scalar effective action,

Seff[σ] ∼
∑

k, l

1

2
f
(
x̂k − x̂l

) (
σk − σl

)2
, (26)

where σk is the field value at the point x̂k (the scalar degree of freedom σ

arises from a perturbation of the master field Â
µ
; see App. A in Ref. [13]).

As r(x, y) is dimensionless and f(x) has dimension 1/(length)2, the
inverse metric gµν(x) from (23) is seen to be dimensionless.
The metric gµν is simply obtained as the matrix inverse of gµν .
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B. Extraction of the spacetime metric

A few heuristic remarks [14] may help to clarify expression (23a).

In the standard continuum theory [i.e., a scalar field σ(x) propagating
over a given continuous spacetime manifold with metric gµν(x)],
two nearby points x′ and x′′ have approximately equal field values,
σ(x′) ∼ σ(x′′), and two distant points x′ and x′′′ generically have very
different field values, |σ(x′)− σ(x′′′)|/|σ(x′) + σ(x′′′)| & 1.

The logic is inverted for our discussion. Two approximately equal field
values, σ1 ∼ σ2, may still have a relatively small action (26) if f(x̂1 − x̂2)
∼ 1 and inserting f ∼ 1 in (23a) gives a “large” value for the inverse
metric gµν and, hence, a “small” value for the metric gµν , meaning that
the spacetime points x̂1 and x̂2 are close (in units of ℓ).

Two different field values σ1 and σ3 have a small action (26) if f(x̂1 − x̂3)
∼ 0 and inserting f ∼ 0 in (23a) gives a “small” value for the inverse metric
gµν and, hence, a “large” value for the metric gµν , meaning that the space-
time points x̂1 and x̂3 are separated by a large distance (in units of ℓ).
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B. Extraction of the spacetime metric

To summarize, the emergent metric, in the context of the IIB matrix
model, is obtained from correlations of the extracted spacetime points
and the master-field perturbations.

The obvious question, now, is which spacetime and metric do we get?

We don’t know, as we do not have the IIB-matrix-model master field.

But, awaiting the final result on the master field, we can already
investigate what properties the master field would need to have in
order to be able to produce certain desired emerging metrics.
Some exploratory results are presented in App. C.

[Note that, in principle, the origin of the expression (23) need not be
the IIB matrix model but can be an entirely different theory, as long as
the emerging inverse metric is given by a multiple integral with the
same basic structure.]
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C. Various emergent spacetimes

We restrict ourselves to four “large” spacetime dimensions [10, 11],
setting

D = 3 + 1 = 4 , (27)

and use length units that normalize the Lorentzian-IIB-matrix-model
length scale,

ℓ = 1 . (28)

Then, it is possible to choose appropriate functions ρav(y), f(x− y),
and r(x, y) in (23), so that the Minkowski metric is obtained [as given
by (2) for a2(t) = 1].

Similarly, it is possible to choose appropriate functions ρav(y), f(x− y),
and r(x, y) in (23), so that the spatially flat Robertson–Walker metric
(2) is obtained.
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C. Various emergent spacetimes

In order to get an inverse metric whose component g00 diverges at

t = 0, it is necessary to relax the convergence properties of the y0

integral in (23a) by adapting the functions ρav(y), f(x− y), and r(x, y).

In this way, it is possible to obtain the following inverse metric [14]:

gµν(eff) ∼





− t2 + c−2

t2
, for µ = ν = 0 ,

1 + c2 t
2 + c4 t

4 + . . . , for µ = ν = m ∈ {1, 2, 3} ,

0 , otherwise ,

(29)

with real dimensionless coefficients cn that result from the requirement
that tn terms, for n > 0, vanish in g00(eff).
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C. Various emergent spacetimes

The matrix inverse of (29) gives the following Lorentzian metric:

g(eff)
µν ∼





− t2

t2 + c−2
, for µ = ν = 0 ,

1

1 + c2 t
2 + c4 t

4 + . . .
, for µ = ν = m ∈ {1, 2, 3} ,

0 , otherwise ,

(30)

which has, for c−2 > 0, a vanishing determinant at t = 0 and is,
therefore, degenerate.
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C. Various emergent spacetimes

The emergent metric (30) has indeed the structure of the regularized-
big-bang metric (6a), with the following effective parameters:

b2eff ∼ c−2 ℓ2 , (31a)

a2eff(t) ∼ 1− c2
(
t/ℓ
)2

+ . . . , (31b)

where the IIB-matrix-model length scale ℓ has been restored and
where the leading coefficients c−2 and c2 have been calculated [14].

By choosing the Ansatz parameters appropriately, we can get c2 < 0
in (31b), so that the emergent classical spacetime corresponds to the
spacetime of a nonsingular cosmic bounce at t = 0, as obtained in (8)
from Einstein’s gravitational field equation with a wM = 1/3 perfect fluid.
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C. Various emergent spacetimes

The proper cosmological interpretation of the emergent classical
spacetime is perhaps as follows.

The new physics phase (replacing the big bang singularity of GR&SM)
is assumed to be described by the IIB matrix model and the corresponding
large-N master field gives rise to the points and metric of a classical
spacetime.

If the master field has an appropriate structure, the emergent metric
has a tamed big bang, with a metric similar to the regularized-big-bang
metric of GR [2] but now having an effective length parameter beff

proportional to the IIB-matrix-model length scale ℓ , as given by (31a).

In fact, one possible interpretation is that the new phase has produced
a universe-antiuniverse pair [5], that is, a “universe” for t > 0 and an
“antiuniverse” for t < 0.
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D. More on the Lorentzian signature

Up till now, we have considered the Lorentzian IIB matrix model,
which has two characteristics:

1. the “Lorentzian” coupling constants η̃µν in the action (9c);

2. the Feynman phase factor ei S/ℓ
4

in the “path” integral (9a).

From the master field of this Lorentzian matrix model, we obtained
the spacetime points from expressions (19) and (21) in App. A and
the inverse metric from expression (23) in App. B.

Several Lorentzian inverse metrics were found in App. C, where the
Ansätze used [14] relied on having “Lorentzian” coupling constants η̃µν .

But there is another way [13] to obtain Lorentzian inverse metrics,
namely by making an appropriately odd Ansatz for the correlations
functions entering (23), so that the resulting matrix is off-diagonal.
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D. More on the Lorentzian signature

With this appropriately odd Ansatz, it is, in principle, also possible
to get a Lorentzian inverse metric from the Euclidean matrix model,

which has nonnegative coupling constants δ̃µν in the action and a

weight factor e−S/ℓ4 in the path integral. The spacetime points are
extracted from the Euclidean master field (no gauge transformation
needed) by the expression (21), where m now runs over {1, . . . , D}.

The details of a toy-model calculation are as follows (expanding on
a parenthetical remark in the last paragraph of App. B in Ref. [13]).

The calculation starts from the multiple integral (23) for spacetime
dimension D = 4 by writing in the integrand

f(x− y) r(x, y) = f(x− y) r̃(y − x) r(x, y) = h(y − x) r(x, y) , (32)

where the new function r(x, y) has a more complicated dependence
on x and y than the combination x− y.
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D. More on the Lorentzian signature

The D = 4 multiple integral (23), with y0 replaced by y4, is then
evaluated at the spacetime point

xµ = 0 , (33a)

with the replacement (32) in the integrand and two further simplifications:

〈〈 ρ(y) 〉〉 = 1 , r(x, y) = 1 , (33b)

and symmetric cutoffs on the integrals,

∫ 1

−1

dy1 . . .

∫ 1

−1

dy4 . (33c)

The only nontrivial contribution to the integrand of (23) now comes
from the correlation function h as defined by (32).
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D. More on the Lorentzian signature

From (23) and (33), we then get the emergent inverse metric at xµ = 0

gµνtest,E4(0) ∼
∫ 1

−1

dy1
∫ 1

−1

dy2
∫ 1

−1

dy3
∫ 1

−1

dy4 yµ yν htest,E4(y) , (34)

with the following Ansatz for the correlation function h :

htest,E4(y) = 1− γ
(
y1 y2 + y1 y3 + y1 y4 + y2 y3 + y2 y4 + y3 y4

)
, (35)

where γ multiplies monomials that are odd in two coordinates and even
in the two others.

Note that the Ansatz (35) treats all coordinates y1, y2, y3, and y4 equally,

in line with the coupling constants δ̃µν of the Euclidean matrix model.
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D. More on the Lorentzian signature

The integrals of (34) with Ansatz function (35) are trivial and we obtain

gµνγ (0) ∼ 16

9




3 −γ −γ −γ

−γ 3 −γ −γ

−γ −γ 3 −γ

−γ −γ −γ 3


 , (36a)

where the matrix on the right-hand side has the following eigenvalues
and normalized eigenvectors:

Eγ =
16

9

{
(3− 3 γ) , (3 + γ) , (3 + γ) , (3 + γ)

}
, (36b)

Vγ =





1

2




1

1

1

1


 ,

1√
2




1

−1

0

0


 ,

1√
2




0

0

1

−1


 ,

1

2




1

1

−1

−1








. (36c)
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D. More on the Lorentzian signature

From (36b), we have the following signatures:

(+−−−) for γ ∈ (−∞, −3) , (37a)

(+ + ++) for γ ∈ (−3, 1) , (37b)

(−+++) for γ ∈ (1, ∞) . (37c)

Hence, we obtain Lorentzian signatures for parameter values γ
sufficiently far away from zero, γ > 1 or γ < −3.

The conclusion is that it is, in principle, possible to get a Lorentzian
emergent inverse metric from the Euclidean IIB matrix model, provided
the correlation functions have the appropriate structure.

This observation, if applicable, would remove the need for working with
the (possibly more difficult) Lorentzian IIB matrix model.

———————————————————————————————-
Figure credits: en.wikipedia.org (Lady with an ermine), commons.wikimedia.org (M-theory sketch).
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Z. Backup slides

Assuming the existence of gravitational standard candles (or standard-
size sources) in both the postbounce and prebounce phases, we get
modified Hubble diagrams:

-1 -0.5 0 0.5 1 1.5 2
z0

0.5

1

1.5

2

2.5

3
dL �H3Τ0L

-1 -0.5 0 0.5 1 1.5 2
z0

0.5

1

1.5

2

2.5

3
dA �H3Τ0L

Figure 1: Modified Hubble diagrams for the luminosity distance dL(z) on the left
and the angular diameter distance dA(z) on the right. See Ref. [3] for details.

Message to astronomers of future generations: look for extremely faint
(or extremely small) images with reduced redshifts or even blueshifts.
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