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1. Introduction

ANALOGY

quantum phase??? liquid

↓?? ↓

classical spacetime and gravity crystal
(General Theory of Relativity)

+ +

possible “spacetime defects”? ?←− crystal defects
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1. Introduction

LITTLE IS KNOWN ABOUT THE QUANTUM PHASE OF SPACETIME.

Loop Quantum Gravity does have something like “atoms of space,”
but the emergence of a classical spacetime is not fully understood.

Here, we will stay at the classical level and use the framework of
Einstein’s General Relativity (GR).

Specifically, we will

� obtain soliton-like solutions to describe certain spacetime
defects (imperfections in the fabric of spacetime),

� investigate novel effects .
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1. Introduction

OUTLINE TALK:

1. Introduction

2. Skyrmion spacetime defect [K, 2014a]

3. Antigravity [K&Queiruga, 2018a]

4. Stealth defect [K&Queiruga, 2018b]

5. Lensing [K&Wang, 2018]

6. Discussion

REMARKS:

� Solution of GR, allowing for degenerate metrics.

� A few slides can be skipped over, initially.

� References on the last slide.
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2.1 Skyrmion spacetime defect – Manifold

BASIC IDEA:

Obtain a nonsingular defect solution of the Einstein field equation, with
parameter b > 0 and topology as suggested by the sketch below:

Π b

Crux is the use of appropriate coordinates. The standard Cartesian
coordinates of Euclidean 3-space are unsatisfactory, as a single point
may have different coordinates. For example, (x1, x2, x3) = (0, b, 0) and
(x1, x2, x3) = (0, −b, 0) correspond to the same point (dot in the figure).

It is possible to use three overlapping charts, each one centered on one
of the three Cartesian coordinate axes [Schwarz, 2010, Guenther, 2017].
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2.1 Skyrmion spacetime defect – Manifold

DETAILS:

Four-dimensional spacetime manifold:

M̃4 = R× M̃3 , (1)

where M̃3 is a noncompact, orientable, nonsimply-connected manifold
without boundary.

Up to a point, M̃3 is homeomorphic to the 3-dimensional real-projective
plane,

M̃3 ≃ RP 3 − p∞ , (2)

where p∞ corresponds to the “point at spatial infinity.”
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2.1 Skyrmion spacetime defect – Manifold

For the explicit construction of M̃3, we perform local surgery on the

3-dimensional Euclidean space E3 =
(
R

3, δmn

)
. We use the standard

Cartesian and spherical coordinates on R
3,

~x ≡ |~x| x̂ = (x1, x2, x3) = (r sin θ cosφ, r sin θ sinφ, r cos θ) , (3a)

with ranges

xm ∈ (−∞, +∞) , r ≥ 0 , θ ∈ [0, π] , φ ∈ [0, 2π) . (3b)

Now, M̃3 is obtained from R
3 by removing the interior of the ball Bb

with radius b and identifying antipodal points on the boundary Sb ≡ ∂Bb.

With point reflection denoted P (~x) = −~x, the 3-space M̃3 is given by

M̃3 =
{
~x ∈ R

3 :
(
|~x| ≥ b > 0

)
∧
(
P (~x) =̂ ~x for |~x| = b

)}
, (4)

where =̂ stands for point-wise identification.
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2.1 Skyrmion spacetime defect – Manifold

As mentioned before, a relatively simple covering of M̃3 uses three
charts of coordinates, labeled by n = 1, 2, 3.

Each chart surrounds one of the three Cartesian coordinate axes:

x1

x2

x1

x2

These coordinate charts are denoted

(Xn, Yn, Zn) , for n = 1, 2, 3 . (5)

CAREFUL: the triples (5) are non-Cartesian coordinates.
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2.1 Skyrmion spacetime defect – Manifold

Specifically, the set of coordinates surrounding the x2-axis segments
with |~x| ≥ b is given by

X2 =

{
φ for 0 < φ < π ,

φ− π for π < φ < 2π ,
(6a)

Y2 =

{
r − b for 0 < φ < π ,

b− r for π < φ < 2π ,
(6b)

Z2 =

{
θ for 0 < φ < π ,

π − θ for π < φ < 2π ,
(6c)

with ranges

X2 ∈ (0, π) , Y2 ∈ (−∞, ∞) , Z2 ∈ (0, π) . (6d)

The other two sets, (X1, Y1, Z1) and (X3, Y3, Z3), are defined similarly.
In the following, we explicitly give only one coordinate chart, which we
take to be (6), and drop the suffix ’2’.
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2.2 Skyrmion spacetime defect – Fields

Consider a Skyrme-type scalar field Ω(X) ∈ SO(3), which propagates
over the spacetime manifold (1) and has this action (c = ~ = 1):

S =

∫

M̃4

d4X
√−g

(
Lgrav + Lmat

)
, (7a)

Lgrav =
1

16πGN

R , (7b)

Lmat =
f2

4
tr
(
ωµ ω

µ
)
+

1

16 e2
tr
(
[ωµ, ων ] [ω

µ, ων ]
)

+
1

2
m2 f2 tr

(
Ω− 13

)
, (7c)

ωµ ≡ Ω−1 ∂µ Ω . (7d)
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2.2 Skyrmion spacetime defect – Fields
With “pions” πa defined by the following expansion:

Ω(X) = exp
[
Sa πa(X)/f

]
, (8)

for 3× 3 matrices Sa given by

S1 ≡




0 0 0

0 0 1

0 −1 0


 , S2 ≡




0 0 −1
0 0 0

1 0 0


 ,

S3 ≡




0 1 0

−1 0 0

0 0 0


 , (9)

we have

Lmat = −
1

2
∂µπ

a∂µπa − 1

2
m2 πaπa + · · · . (10)
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2.2 Skyrmion spacetime defect – Fields

Dimensional parameters of the theory:

GN ≥ 0 , (11a)

f > 0 , (11b)

m ≥ 0 . (11c)

Real dimensionless parameters:

η̃ ≡ 8πGN f2 ≥ 0 , (12a)

m̃2 ≡ m2

e2 f2
≥ 0 , (12b)

e > 0 . (12c)
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2.3 Skyrmion spacetime defect – Ansätze

The self-consistent Ansätze for the metric and the SO(3) matter field are

ds2
∣∣∣
M̃4 , chart−2

= −
[
µ(W )

]2
dT 2 +

(
1− b2/W

) [
σ(W )

]2
(dY )2

+W
[
(dZ)2 + sin2 Z (dX)2

]
, (13a)

Ω(X) = cos
[
F (W )

]
13 − sin

[
F (W )

]
x̂ · ~S

+
(
1− cos

[
F (W )

])
x̂⊗ x̂ , (13b)

W ≡ b2 + Y 2 , (13c)

with unit 3-vector x̂ ≡ ~x/|~x| from the Cartesian coordinates ~x defined in
terms of the chart-2 coordinates X , Y , and Z.

Note that the sine-F term in (13b) displays the hedgehog behavior.
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2.3 Skyrmion spacetime defect – Ansätze

The boundary conditions (BCS) on the three Ansatz functions are:

F (b2) = π , F (∞) = 0 , (14a)

σ(b2) ∈ (0, ∞) , (14b)

µ(b2) ∈ (0, ∞) . (14c)

The BCS (14b)–(14c) will be discussed later.
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2.3 Skyrmion spacetime defect – Ansätze

Two remarks. First, with finite Ansatz functions µ(W ) and σ(W ), the
metric from (13a) is degenerate at W = b2:

det(gµν)
∣∣∣
W=b2

= 0 , (15)

and the standard elementary-flatness property does not apply [K, 2014b].

Second, the matter-field Ansatz (13b) corresponds to a topologically
nontrivial scalar field configuration, a Skyrmion-like configuration with
unit winding number ,

N ≡ deg[Ω] = − 2

π

∫ 0

π

dF sin2(F/2) = 1 , (16)

where the endpoints of the integral on the right-hand side correspond
to the boundary conditions (14a).
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2.4 Skyrmion spacetime defect – ODEs

In the following, we will use dimensionless distances:

y ≡ e f Y ∈
(
−∞, ∞

)
, (17a)

y0 ≡ e f b ∈
(
0, ∞

)
, (17b)

w ≡ (e f)2 W ≡ (y0)
2 + y2 ∈

[
(y0)

2, ∞
)
. (17c)

The reduced field equations are three ordinary differential equations
(ODEs). With the following auxiliary functions:

A(w) ≡ 2 sin2
F (w)

2

(
sin2

F (w)

2
+ w

)
, (18a)

C(w) ≡ 4 sin2
F (w)

2
+ w , (18b)
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2.4 Skyrmion spacetime defect – ODEs

the three ODEs are (the prime stands for differentiation with respect to w):

4wσ′(w) = +σ(w)

[[
1− σ2(w)

]
+ η̃

2

w

(
A(w)σ2(w) + C(w) [wF ′(w)]

2
)]

+2w m̃2 η̃ σ3(w) sin2
F (w)

2
, (19a)

4wµ′(w) = −µ(w)
[[
1− σ2(w)

]
+ η̃

2

w

(
A(w)σ2(w)− C(w) [wF ′(w)]

2
)]

−2w m̃2 η̃ σ2(w) sin2
F (w)

2
, (19b)
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2.4 Skyrmion spacetime defect – ODEs

C(w)w2 F ′′(w) = +σ2(w) sinF (w)

(
sin2

F (w)

2
+

w

2

)

−1

2
C(w)σ2(w)wF ′(w)

×
[
1− 4 η̃

1

w
sin2

F (w)

2

(
sin2

F (w)

2
+ w

)]

−wF ′(w)
[
wF ′(w) sinF (w) + w

]

+
m̃2

2
w2 σ2(w) sin

F (w)

2

×
[
cos

F (w)

2
+ 2 η̃ C(w) sin

F (w)

2
F ′(w)

]
. (19c)
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2.5 Skyrmion spacetime defect – Numerics

These ODEs can be solved numerically with BCS from (14).

Specifically, we have F (y20) = π and F (∞) = 0 for the matter-field Ansatz
function F (w) and we take σ(y20) = 1 for the metric Ansatz function σ(w)

[the value of µ(y20) can be rescaled arbitrarily].

The next slide shows the Ansatz functions F (w), σ(w), and µ(w) of
one particular numerical solution. Also shown are:

the dimensionless Ricci curvature scalar R(w),

the dimensionless Kretschmann curvature scalar K(w), and

the negative of the 00 component of the dimensionless Einstein
tensor Eµ

ν(w) ≡ Rµ
ν(w)− (1/2)R(w) δµν .

For later use, we define a dimensionless Schwarzschild-type length
scale l(w) by setting

σ2(w) =
1

1− l(w)/
√
w

. (20)
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2.5 Skyrmion spacetime defect – Numerics
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Figure 1: Numerical solution with parameters η̃ ≡ 8π GN f2 = 1/20, m̃ ≡
m/(e f) = 0, and y0 ≡ efb = 1/

√
2, and BCS at the defect surface w =

(y0)
2 = 1/2: F = π, F ′ = −1.9718377138, σ = 1, and µ = 0.564337.
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2.5 Skyrmion spacetime defect – Numerics
The boundary condition σ(y20) = 1 may be called the “standard”
boundary condition, because the limit b→ 0 then connects to the
standard Minkowski spacetime manifold.

But with b 6= 0 and the nontrivial topology RP 3 from (2), the boundary
condition on the metric Ansatz function can be generalized:

σ(y20) ∈ (0, ∞) , (21)

where the value zero has been excluded, in order that the field
equations be well-defined at w = y20 [Guenther, 2017].

The next two slides give the numerical solutions for two different values
of σ(y20) < 1 with, respectively, positive and negative asymptotic
gravitational mass.

Recall the definition of the ADM mass in our context:

MADM = l∞
/(

2GN e f
)
, l∞ ≡ lim

w→∞

l(w) . (22)
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2.5 Skyrmion spacetime defect – Numerics
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Figure 2: Numerical solution with parameters η̃ = 1/10, m̃ = 0, and y0 = 1,

and boundary conditions at w = (y0)
2 = 1: F = π, F ′ = −0.82561881304,

σ = 1/
√

2, and µ = 0.725818. The solution has MADM > 0.
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2.5 Skyrmion spacetime defect – Numerics
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Figure 3: Same as Fig. 2, but with different boundary conditions at w = 1:

F = π, F ′ = −0.323978148, σ = 1/3, and µ = 2.21176. The solution

has MADM < 0.
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3. Antigravity

Any localized object made of ponderable matter (e.g., quarks and
leptons of the Standard Model) attracts a distant test particle. This
phenomenon is called gravity and was studied by Newton [1687].

With the solution of Fig 3, we have a localized object which repels a
distant test particle. The phenomenon may be called “antigravity.”

The crucial ingredients of this particular object are, in the framework of
Einstein’s General Relativity [1915], the nontrivial topology of space
[here, RP 3 ] and the nontrivial gravitational fields at the defect surface
[here, σ(b2) < 1 ].

Figures 2 and 3 suggest that a defect can have either a positive or a
negative gravitational mass, but we have a further result:

a sufficiently small defect solution exists only if it has a negative
gravitational mass [a more precise formulation will be given later].
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3. Antigravity
Consider, first, the nature of the solutions with “standard” boundary
condition σ(b2) = 1. It is, then, found that the solution collapses if it
becomes too small (loosely speaking, if b . RSchwarzschild) :

critical defect scale

bcrit»0.34

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
b170

180

190

200

210

220
MADM

Figure 4: Mass MADM in units f/e vs. defect scale b in units 1/(ef), for

parameters η̃ = 0.033 and m̃ = 0, and boundary condition σ(b2) = 1.
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3. Antigravity
There is then a critical curve in the (η̃, b) plane, above which there are
no globally regular solutions with σ(b2) = 1:

0

0

no solutions with Σ@b2
D=1

region of solutions with Σ@b2
D=1

1 2 3 4 5 6 7 8
b

0.02

0.04

0.06

0.08

0.10

Η
�

Figure 5: Curve of the critical defect scale bcrit [in units of 1/(ef)] and the

corresponding critical coupling constant η̃crit, with m̃ = 0 and σ(b2) = 1.
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3. Antigravity
HEURISTICS:

In order to get a globally regular solution in the region above the critical
curve of Fig. 5, we need to add a sufficiently negative effective mass at
the defect surface (y = 0).

Now, the dimensionless effective mass from (20) is given by

l(w) ≡
√
w

[
1− 1/σ2(w)

]
, (23)

with w ≡ y20 + y2. Then, l(y20) < 0 results from σ(y20) < 1.

For a fixed positive value of η̃ ≡ 8πGN f2, a sufficiently small globally
regular defect solution thus requires a sufficiently negative effective
mass at the defect surface W = b2 from a nonstandard boundary
condition on one of the metric functions, σ(b2) < 1.

For a small enough value of the coupling constant η̃, this boundary
condition at the defect surface directly gives a negative ADM mass at
spatial infinity.
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3. Antigravity

Explicit example with ζ a number of order 1 or larger.

MODEL PARAMETERS:

f2 ≪
(
Eplanck

)2 ≡ 1/(8πGN ) ≈
(
2.44× 1018 GeV

)2
, (24a)

e ≤ 1/ζ , (24b)

where the first inequality corresponds to η̃ =
(
f/Eplanck

)2 ≪ 1.

DEFECT SCALE [remnant of a quantum-spacetime (QST) phase]:

bQST = ζ lplanck , (25a)

lplanck ≡
√
8πGN ~/c3 ≈ 8.10× 10−35 m . (25b)

DEFECT MASS [from (22) with l∞ ∼ −1]:
MADM ∼ −

4π

e

(
Eplanck

)2

f
. (26)
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4. Stealth defect

We have seen that certain soliton-type defect solutions can have
positive gravitational mass but also negative gravitational mass.

As the gravitational mass of such a spacetime-defect solution is a
continuous variable, there must also be special spacetime defects with
vanishing gravitational mass.

These defects with positive energy density of the matter fields and zero
asymptotic gravitational mass will be called “stealth defects.”

An explicit solution with vanishing gravitational mass and an
exponentially-vanishing energy density of the matter fields is given on
the next slide.
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4. Stealth defect
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Figure 6: Numerical solution with parameters η̃ = 1/10, m̃ = 1, and y0 = 1.

The boundary conditions at w = 1 are: F/π = 1.00000, F ′ = −0.752388,

σ = 0.466343, and µ = 1.02282. The value of |l(103)| is less than 10−11.
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4. Stealth defect (skip)

Now, assume that all matter fields have some form of non-gravitational
interaction with each other. If so, there will, in principle, be some
interaction between the “pions” of the theory considered in (7) and the
elementary particles of the Standard Model.

Then, consider what happens with a head-on collision of a stealth
defect and a human observer made of Standard Model particles
(mostly up and down quarks, gluons, and electrons).

In close approximation, the observer will have no idea of what is going
to happen, until he/she is within a distance of order h/(mc) from the
defect, where m is the “pion” mass scale from the matter action (7c).

What happens during the collision itself and afterwards depends on the
details of the setup, for example, the size of the observer compared to
the defect scale b.

DICE2018 — Castiglioncello, Sept. 19, 2018 (v1) – p. 31



5. Lensing (skip)

Simplified discussion of light rays over a spacetime-defect manifold,
by use of an exact vacuum solution [K, 2014b]:

ds2
∣∣∣
(vac. sol.)

M̃4 , chart−2
= −

(
1− l̂/

√
w
)
(dt)2 +

1− y20/w

1− l̂/
√
w

(dy)2

+w
[
(dz)2 + sin2 z (dx)2

]
, (27a)

w ≡ y20 + y2 , (27b)

y0 ≡ e f b > 0 , (27c)

l̂ ∈ (−∞, y0) . (27d)

In the notation of (13a): [µ(w)]2 = 1/[σ(w)]2 = 1− l̂/
√
w .
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5. Lensing (skip)

Next, specialize to a stealth-defect vacuum solution with

l̂ = 0 , (28)

which has a flat spacetime.

Incidentally, exact multi-defect solutions of the vacuum Einstein equation
are obtained by superposition of these static l̂ = 0 defects, as long as
the individual defect surfaces do not intersect.

The geodesics for a single l̂ = 0 defect are readily calculated:

� straight lines in the ambient Euclidean 3-space, if there are no
intersections with the defect surface;

� straight-line segments (with or without a parallel shift in the
ambient Euclidean 3-space), if there are intersections with the
defect surface.
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Figure 7: Geodesic which does not cross the defect surface, with part of the

3-space manifold indicated by the shaded area. The dimensionless quasi-radial

coordinate y1 corresponds to an “impact parameter.”
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Figure 8: Radial geodesic which crosses the defect surface, where antipodal

points (dots) on the defect surface are identified.
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Figure 9: A family of geodesics crossing the defect surface.
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Due to the parallel shifts at the defect surface, there is a lensing effect:

Figure 10: Geodesics with intersection points P and P ′.
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The lensing of the flat-spacetime defect results in image formation:

Figure 11: Image formation by a stealth defect.
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A few remarks:

� The image in Fig. 11 is located at the reflection point on the other
side of the defect.

� The image is inverted and the image size is equal to the object
size. Note that this is also the case if an object in Minkowski
spacetime is located at a 2f distance from a thin double-convex
lens, where f is the focal length of the lens.

� The brightness of the image depends on the defect scale b and
the location of the object: the image will be brighter if b is
increased for unchanged object position or if the object is brought
closer to the defect for unchanged b.

� If a permanent pointlike light source is placed at point P of
Fig. 10, then an observer at point P ′ in the same figure will see
a luminous disk (different from the Einstein ring which the
observer would see if the defect were replaced by a patch of
Minkowski spacetime with a static spherical star at the center).
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6. Discussion

� The new type of Skyrmion solution is rather interesting:
it combines the nontrivial topology of spacetime with the nontrivial
topology of field-configuration space.

In fact, the nontrivial topology of the underlying space manifold
allows the internal SO(3) space to be covered only once (N = 1).

� It remains to be proved that the solution obtained is stable.

The scalar fields by themselves would be stable because of the
topological charge N = 1, but, in principle, there could be still more
branches of solutions with even lower values of the ADM mass.

� The Skyrmion-spacetime-defect metric from (13) is degenerate:
detgµν = 0 at the defect surface Y = 0, which corresponds to a
submanifold RP 2 ∼ S2/Z2.
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6. Discussion

� This degenerate metric makes that the Gannon singularity
theorem [1975] and the Schoen–Yau positive-mass theorem [1979]
are not directly applicable.

The special feature of the Skyrmion spacetime defect solution is that
certain geodesics at the RP 2 defect surface cannot be continued
uniquely (cf. Fig. 7 with y1 → 0+ and the dotted line in Fig. 9).

� The negative ADM mass found for a small enough defect scale b
is not due to ponderable matter but to the nontrivial gravitational
fields at the RP 2 defect surface (area 2πb2).

� The crucial open question is the origin and role of nontrivial
spacetime topology. Specialized to our Skyrmion defect solution,
some follow-up questions are:

1. what sets the constant defect scale b?
2. can this defect scale become a dynamic variable?
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