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Physical constants

Fundamental physical constants (Roemer, Cavendish, Planck):

c, G, ~

Theorists often set c = 1, G = 1, and ~ = 1,
by using appropriate units for length, time, and energy.

This practice considers SR (= special relativity), GR (= general relativity),
and QM (= quantum mechanics), to be closed chapters.

But what does Nature say?
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Physical constants

Table 1: Known constants of nature [1].

quantum matter classical relativity quantum spacetime
(Planck & Bohr) (Einstein) (Wheeler)

~ c , G lP ≡
√

~ G/c3

Possible argument for a single constant ~ controlling the quantum
nature of both matter (e.g., photons & electrons) and spacetime:

� quantized electrons ↔ quantized electromagnetic field ⇒ QED
[exps: Geiger and Bothe, 1925; Compton and Simon, 1925];

� similarly, quantized electrons ↔ quantized metric field? ⇒ ???

—————————————————————————————————
[1] P.J. Mohr, B.N. Taylor, and D.B. Newell, RMP 80, 633 (2008), arXiv:0801.0028.
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Physical constants

Table 2: Alternative constants of nature [2].

quantum matter classical relativity quantum space

~ c , G ≡ f c3 l2/~ l2

Possible arguments for a new constant l2 of quantized space:

� space (and gravity) may be emergent phenomena;

� natural to have a constant with dimension of length/area/volume.

Conceptual remark:

If Table 2 holds true, there may be physical situations where matter
quantum effects are negligible (“~ = 0”) but not spacetime quantum
effects (“l2 6= 0”), which is impossible if Table 1 holds (lP = 0 for ~ = 0).
—————————————————————————————————
[2] F.R. Klinkhamer, JETPL 86, 73 (2007), arXiv:gr-qc/0703009.
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Entropic gravity

Now, consider Newtonian gravity, specifically, the inward acceleration
~Agrav on a test mass m produced by a point mass M at a distance R:

~Agrav = −(GM/R2) êR . (1)

m
M

R

Newton (1713): “hypotheses non fingo”

ZARM, Bremen, July 28, 2010 (v1) – p. 5



Entropic gravity

Using the G formula from Table 2,

G = f c3 l2/~ , (2)

with a factor f > 0, the magnitude of this acceleration reads [2]

Agrav = GM/R2 = f c
(
Mc2/~

) (
l2/R2

)
, (3)

where all microscopic quantities are indicated by lower-case symbols.

Possible interpretation of the two factors in brackets on the RHS of (3):

� first factor is a decay rate of space triggered by external mass M ;

� second factor is a geometric dilution factor.

Interpretation perhaps suggestive but definitely vague.

Progress from a recent idea of Verlinde . . .
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Entropic gravity

Verlinde’s proposal [3] is that Newtonian gravity
arises as an entropic force from a holographic [4]
microscopic theory.

Main steps [3]:

m

S

� holographic screen Σ(x1, x2) with orthogonal dimension x3

emerging from coarse-graining degrees of freedom (d.o.f.) on Σ;
� entropy change from nearby mass m at distance ∆x3 is given by

∆SΣ ∝ (m c/~) ∆x3;

� first law of thermodynamics: T∆SΣ = Fgrav∆x3⇒Fgrav ∝ mM/R2,
with mass equivalent M of spherical screen with area 4πR2.

—————————————————————————————————
[3] E. Verlinde, arXiv:1001.0785v1.
[4] G. ’t Hooft, arXiv:gr-qc/9310026; L. Susskind, JMP 36, 6377 (1995), arXiv:hep-th/9409089.

ZARM, Bremen, July 28, 2010 (v1) – p. 7



Entropic gravity

m

S sph

mM

R

Left panel: Spherical holographic screen Σsph with area A = 4πR2 and test mass m.
Space has emerged outside the screen Σsph, which has N microscopic degrees of free-
dom at an equilibrium temperature T with total equipartition energy E =

1

2
N kBT .

Right panel: The gravitational effects of Σsph for the emergent space correspond, in lead-
ing order, to those of a point mass M = E/c2 located at the center of a sphere with
radius R (the Schwarzschild radius RSchw ≡ 2GM/c2 taken negligible compared to R).
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Entropic gravity
With this spherical holographic screen Σsph [3], a different ‘derivation’ [5]
may give a clue to the origin of the previous ‘suggestive’ formula (3):

Agrav
1©
= 2π c

(
kBT/~

)

2©
= 4π fc

(
1
2 N kBT/~

) (
f−1/N

)

3©
= 4π fc

(
E/~

) (
l2/A

)

4©
= f c

(
Mc2/~

) (
l2/R2

)
, (4)

where step 1© relies on the Unruh effect [6] and step 3© on the relation
between the number N of d.o.f. and the area A of the holographic screen:

N = f−1 A/l2 . (5)

—————————————————————————————————
[5] F.R. Klinkhamer, arXiv:1006.2094v3.
[6] W.G. Unruh, PRD 14, 870 (1976).
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Entropic gravity

The several steps of (4) constitute, if confirmed, a derivation of
Newton’s gravitational coupling constant G in the form (2).

New insight from (5): given the “effective quantum of area” l2, the
inverse of the constant f entering Newton’s constant (2) may be related
to the nature of the microscopic d.o.f. on the holographic screen.

For example, an “atom of space” with “spin” satom may give
f−1 = 2 satom + 1 ≡ datom, but satom need not be half-integer.

Therefore, rewrite (5) as

N = datom Natom , datom ≡ f−1 ∈ R
+ Natom ≡ A/l2 ∈ N1 , (6)

where the “atoms of space” (total number Natom) have no translational
degrees of freedom but only internal degrees of freedom (datom).
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G calculation
Next, calculate the factor f ≡ (datom)−1 entering formula (2) for G.

Consider a maximally-coarse-grained spherical surface (horizon) with
area A. Entropy given by the Bekenstein–Hawking black-hole result [7]:

SBH/kB = (1/4) A/(f l2) = (1/4) N . (7)

Equating the number of configurations of the “atoms of space” from (6)
with the exponential of the BH entropy (7) gives a set of conditions [5]:

(datom)Natom = e(1/4) datom Natom , (8)

which reduces to a single transcendental equation for datom :

4 ln datom = datom . (9)

This equation has two solutions:

d
(+)
atom ≈ 8.613 169 456 , d

(−)
atom ≈ 1.429 611 825 . (10)

—————————————————————————————————
[7] J.D. Bekenstein, PRD 7, 2333 (1973); S.W. Hawking, CMP 43, 199 (1975).
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G calculation

Given l2, there are then two possible values for the gravitational
coupling constant (2):

G± =
(
d

(±)
atom

)−1
c3 l2/~ . (11)

The detailed microscopic theory must tell which of the two datom values
from (10) enters (11).

It could, for example, be that the microscopic theory demands datom ≥ 2,

selecting the value d
(+)
atom ≈ 8.6 and giving

G+ ≈
(
8.613 169 456

)−1
c3 l2/~ ≈

(
0.116 101 280 1

)
c3 l2/~ . (12)
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G calculation

But the experimental value of Newton’s gravitational coupling constant
is already known (to 100 ppm [1]): GN = 6.6743(7) 10−11 m3 kg−1 s−2.

A more practical interpretation of result (10) for datom is, therefore, to
calculate two possible values for the “effective quantum of area”:

(l±)2 = d
(±)
atom

(
lP

)2
≈

{
2.2498 × 10−69 m2 ,

3.7343 × 10−70 m2 ,
(13)

with lP ≡ (~ GN )1/2/c3/2 ≈ 1.6162 × 10−35 m.

The microscopic theory would, again, have to choose between these
alternative values.

For either choice, the implication would be that l and lP are of the
same order of magnitude.
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G calculation
The crucial question, now, is if l2 can be measured directly.

Possible experiments:

� Cosmic-ray particle-propagation experiments (e.g., Auger) can
search for Lorentz-violating effects from a nontrivial small-scale
structure of spacetime [2] and may determine the ratio f = (lP /l)2

if the size of spacetime defects is set by lP and their separation by l.

� A Gedankenexperiment can measure quantum modifications [8]
of Newton’s gravitational acceleration (3) by a multiplicative factor[
1 − ã l2/R2

]
and determine l2 if ã > 0 is known from theory.

But the if’s make these experiments inconclusive, for the moment.

Perhaps further examples from the conceptual remark below Table 2.

—————————————————————————————————
[8] L. Modesto and A. Randono, arXiv:1003.1998v1.
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G calculation
Finally, two remarks on the numerical value of GN .

First, the order of magnitude is given by (using mks units):

GN ∼ c3 l2

~
∼

(
3 × 108

)3 3 × 10−70

1 × 10−34
∼ 10−10 m3 kg−1 s−2 , (14)

Second, note that the accurate measurement of one of the values of l2

in (13) allows for an equally accurate calculation of G from (11).

For example, measuring for l2 the larger value in (13) with a relative
uncertainty of 100 ppb would give G also with an uncertainty of
approximately 100 ppb from (12):

GN
?
= G+ ≈

(
0.116 101 280 1

)
c3 l2/~ . (15a)

If, instead, the smaller value for l2 would be measured to 100 ppb, then

GN
?
= G− ≈

(
0.699 490 576 9

)
c3 l2/~ . (15b)
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Conclusion

Two interesting results:

� ‘derivation’ of G = f c3 l2/~ via Unruh temperature & holography;

� calculation of f ≡
(
datom

)−1
= (lP /l)2 from BH black-hole entropy.

Many outstanding questions:

� Are space and gravity really emergent phenomena?

� If so, really from a holographic theory?

� Also, is Newton’s gravitational force really an entropic force ?

� Independently, is there a new fundamental constant l2 ?

� If so, what is the value of f in the relation G = f c3 l2/~ ?

� Also, how can l2 be measured, in principle and in practice?
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