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1. INTRODUCTION

Conditions for baryogenesis [Sakharov, 1967]:

1. C and CP violation Yes

2. Thermal nonequilibrium Yes

3. Baryon number (B) violation ?

Strictly speaking, we know of only one physical theory

that is expected to have B violation:

the electroweak Standard Model (EWSM).

[Side remark: the ultimate fate of black holes is uncertain.]

But the relevant physical processes of the EWSM are only

known at

T �M

W

� 10

2

GeV ;

and their rate is negligible,

� / exp[� 4 � sin

2

�

w

= � ℄ � 0 :
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Clearly, we should study electroweak baryon number

violation for the conditions of the early universe,

T

�

>

10

2

GeV :

This is a difficult problem, but entirely well-posed.

In this talk, we focus on the fundamental physics,

i.e., the microscopic process.

That is, we must really deal with the fermions.

—————————————————————————-
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2. CLASSIC RESULTS

Consider SU(2) Yang–Mills–Higgs theory with vanishing

Yukawa couplings. Actually, forget about the Higgs, which

may be reasonable above the EW phase transition.

Triangle anomaly in the AAA-diagram, provided the VVV-

diagram is anomaly-free [A69,BJ69].

[Side remark: this is Feynman perturbation theory.]

The gauge vertices of the EWSM are V–A and must be

nonanomalous (gauge invariance is needed for unitarity).

Instead, the B + L current is anomalous [H76]:

�(B � L) = 0 ;

�(B + L)

| {z }

fermion 
harges

= 2N

fam

| {z }


onstant

� �N

CS

| {z }

gauge �eld 
hara
teristi


:

In theA
0

= 0 gauge, one has the Chern–Simons number

N

CS

(t) = N

CS

[

~

A(~x; t)℄

and

�N

CS

� N

CS

(t

out

)�N

CS

(t

in

) :
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Figure 1: Potential energy surface over configuration space.

’t Hooft (1976) calculated the tunneling amplitude.

The BPST instanton, which is a finite action solution of

the imaginary-time theory (Euclidean spacetime), gives

�N

CS

= Q[A

�nite a
tion

℄ 2 Z ;

where the topological charge Q is the winding number of

the map

S

3

�

�

jxj=1

! SU(2) � S

3

:

This holds only for transitions from near-vacuum to

near-vacuum, i.e., at very low temperatures or energies.

As mentioned above, the rate is then effectively zero,

but, at least, �(B + L) is integer.
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3. CRUCIAL QUESTION

For real-time processes (e.g., in Minkowski spacetime),

the topological charge Q is, in general, noninteger.

Hence, the question

�(B + L) / whi
h gauge �eld 
hara
teristi
 ?

In the following, we consider pure SU(2) Yang–Mills

theory with a single isodoublet of left-handed fermions.

(The fermion number B + L of the EWSM follows by

multiplying with 2N

fam

. Note also that B � L remains

conserved in the EWSM.)

Furthermore, the gauge fields will be called dissipative if

their energy density approaches zero uniformly as t!

�1.
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4. PARTIAL ANSWER

Start from the eigenvalue equation of the time-dependent

Dirac Hamiltonian:

H(~x; t)	(~x; t) = E(t)	(~x; t) :

Then, fermion number violation is related to the so-called

spectral flow F . See, e.g., Refs. [C80,KR03].

Definition: F [ t
f

; t

i

℄ is the number of eigenvalues of

the Dirac Hamiltonian that cross zero from below minus

the number of eigenvalues that cross zero from above,

for the time interval [ t
i

; t

f

℄ with t
i

< t

f

.

E = 0

Figure 2: Spectral flow with F [ t
f

; t

i

℄ = +1.
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Strongly dissipative gauge fields have [C80,GH95,K95]:

F = �N

CS

[A

asso
iated va
uum

℄ � �N

winding

:

Now three weakly dissipative, spherically symmetric

gauge field solutions [Lüscher & Schechter, 1977]:

1: (low energy) �N

winding

= 0 and F = 0 ;

2: (moderate energy) �N

winding

= 1 and F = 1 ;

3: (high energy) �N

winding

= 1 and F = �1 :

) [F 6= �N

winding

℄

spheri
ally symmetri
 �elds

:

In fact, there is another gauge field characteristic [KL01]:

�N

twist

= 0 for case 1 and 2 ,

�N

twist

= �2 for case 3 .

) [F = �N

winding

+�N

twist

℄

spheri
ally symmetri
 �elds

:

For weakly dissipative gauge fields, one has thus

�(B + L) =

2N

fam

�

�

�N

CS

[A

asso
iated va
uum

℄ + extra terms

�

:

But the “extra terms” are not known in general.
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5. SOME DETAILS

Chiral SU(2) Yang–Mills theory over Minkowski space-

time (indices M;N running over 0, 1, 2, 3):

S = S

G

+ S

F

;

S

G

= �

1

2g

2

Z

d

4

x tr
�

F

MN

F

MN

�

;

S

F

=

Z

d

4

x

N

F

X

f=1

�

	

f

�

M

D

M

	

f

;

F

MN

� �

M

A

N

� �

N

A

M

+ [A

M

; A

N

℄ ;

A

M

� A

a

M

�

a

=(2i) ;

D

M

� �

M

+ A

M

P
L

; P
L

� (1� �

5

)=2 .

Spherical Ansatz: invariance under SO(3) rotations,

modulo SU(2) gauge transformations.

For N
F

= 1, this gives an effective (1+1)-dimensional

U(1) gauge field theory with:

� gauge field a
�

(t; r), � = 0; 1,

� complex scalar �(t; r),

� 2-component Dirac spinor  (t; r).
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Effective (1+1)-dimensional U(1) gauge field theory

(indices �; � running over 0, 1):

S =

4�

g

2

Z

+1

�1

dt

Z

1

0

dr (s

G

+ s

F

) ;

s

G

=

1

4

r

2

f

��

f

��

+ jD

�

�j

2

+

1

2 r

2

�

j�j

2

� 1

�

2

;

s

F

= g

2

�

 

�




�

D

�

+

1

r

(Re�+ i


5

Im�)

�

 ;

f

��

� �

�

a

�

� �

�

a

�

;

D

�

� � (�

�

� ia

�

)� ;

D

�

 � (�

�

+ i=2 a

�




5

) ;




0

= i�

1

; 


1

= ��

3

; 


5

= �


0




1

= �

2

.

The boundary conditions on the fields are for r ! 0 :

j�j ! 1; D

�

�! 0;  ! 0 ;

and for r !1 :

�! e

i!

; D

�

�! 0; a

�

! �

�

!;  ! 0 :
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Taking the gauge condition

�(t; 0) = �(t;1) = 1 ;

results in a closed loop in the �-plane.

Now write � in polar notation:

�(t; r) = �(t; r) e

i'(t;r)

;

�(t; r) � 0 :

Then define the WINDING NUMBER at time t ,

N

winding

(t) � ['(t;1)� '(t; 0)℄ = (2�);

and the WINDING FACTOR between t
i

and t
f

,

�N

winding

[t

f

; t

i

℄ � N

winding

(t

f

)�N

winding

(t

i

).

Note that �N
winding

= �N

CS

for near-vacuum fields.
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After a unitary transformation, put the resulting real Dirac

spinor ~

 (t; r) in polar notation:

~

 (t; r) � j

~

 (t; r)j e

i�

2

�(t;r)

0

�

0

1

1

A .

Fermion zero-mode equation H(~x; t)	(~x; t) = 0,

at fixed t, becomes:

�

r

� = �� sin 2� +R ;

�

r

j

~

 j = j

~

 j� 
os 2� ;

with boundary conditions

�(t; 0) = 0; j

~

 (t; 0)j = 0 ;

and definitions

� � �=r; R � (a

1

� �

r

')=2 :

With Y (t; r) = tan�(t; r), the first ODE transforms

into a Riccati equation:

�

r

Y �R

�

1 + Y

2

�

+ 2� Y = 0 :
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Then define the SPINOR TWIST NUMBER at time t ,

N

twist

(t) � [�(t;1)��(t; 0)℄ = � ,

and the TWIST FACTOR between t
i

and t
f

,

�N

twist

[t

f

; t

i

℄ � N

twist

(t

f

)�N

twist

(t

i

) .

Remark that the twist factor �N
twist

measures an

intrinsic property of the gauge field configuration:

�N

twist

[t

f

; t

i

℄ =

1

�

Z

1

0

dr

Z

t

f

t

i

dt �

t

�

r

�(t; r) ;

with

� = �[�; a

1

℄ :

Whether or not there exists a more direct way to obtain

�N

twist

remains an open question.
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Now consider a fermion zero-mode at t = t

�.

A careful study of the generic time dependence of the

zero-eigenvalue equation of the Dirac Hamiltonian, then

gives locally

sign

�

dE

dt

�

�

�

�

t=t

�

�

= ÆN

winding

j

t=t

�

+ ÆN

twist

j

t=t

�

:

For a finite time interval [ t
i

; t

f

℄ with t
i

< t

f

, this results

in the over-all spectral flow:

F [ t

f

; t

i

℄ = �N

winding

[ t

f

; t

i

℄ + �N

twist

[ t

f

; t

i

℄ :

Note that this relation has the form of an index theorem:

LHS = property of the fermions;

RHS = characteristic of the gauge fields.
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6. OUTLOOK

We know of only one physical theory with baryon number

violation, the electroweak Standard Model.

Most discussions of electroweak baryogenesis have been

based on the ’t Hooft selection rule �(B+L) / �N

CS

.

But this relation has been found to be invalid for gauge

field backgrounds that are weakly- or non-dissipative.

These are, of course, precisely the fields relevant to the

physics of the early universe.

At this moment, we have only a partial result for the

correct selection rule, namely for spherically symmetric

fields.

To generalize this result to arbitrary gauge fields will

be difficult, but is absolutely necessary for a serious

discussion of electroweak baryon number violation in

the early universe.
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