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1. Standard FLRW cosmology

The Einstein gravitational field equation of general relativity (GR)
reads [1]:

Rµν − 1

2
gµν R = −8πG T (SM)

µν , (1)

with Rµν the Ricci tensor, R the Ricci scalar, T (SM)
µν the energy-momentum

tensor of the matter (Standard Model), and G Newton’s gravitational
coupling constant. The spacetime indices µ, ν run over {0, 1, 2, 3}.

For cosmology, the spatially flat Robertson–Walker (RW) metric is

ds2
∣∣∣
(RW)

≡ gµν(x) dx
µ dxν

∣∣∣
(RW)

= −dt2 + a2(t) δij dx
i dxj , (2)

with x0 = c t and c = 1. The spatial indices i, j run over {1, 2, 3}.
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1. Standard FLRW cosmology

For a homogeneous perfect fluid with energy density ρM (t) and
pressure PM (t), we get the spatially flat Friedmann equations [1]:

(
ȧ

a

)2

=
8πG

3
ρM , (3a)

ä

a
+

1

2

(
ȧ

a

)2

= −4πGPM , (3b)

ρ̇M + 3
ȧ

a

[
ρM + PM

]
= 0 , (3c)

PM = PM

(
ρM
)
, (3d)

where the overdot stands for differentiation with respect to t and (3d)
corresponds to the equation-of-state (EOS) relation between pressure
and energy density of the fluid.
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1. Standard FLRW cosmology

For relativistic matter with constant EOS parameter wM ≡ PM/ρM = 1/3,
the Friedmann–Lemaître–Robertson–Walker (FLRW) solution is [1]

a(t)
∣∣∣
(wM=1/3)

FLRW
=

√
t/t0 , for t > 0 , (4a)

ρM (t)
∣∣∣
(wM=1/3)

FLRW
= ρM0/a

4(t) ∝ 1/t2 , for t > 0 , (4b)

where the cosmic scale factor has normalization a(t0) = 1 at t0 > 0.

This FLRW solution displays the big bang singularity for t → 0+,

lim
t→0+

a(t) = 0 , (5)

with diverging curvature and energy density. But, at t = 0, the theory
(GR+SM) is no longer valid and we can ask what happens really?

Or, more precisely, how to describe the birth of the Universe?
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2. Regularized big bang

First, we set out to control the divergences by using a new Ansatz
for the “regularized” big bang [2]:

ds2
∣∣∣
(reg-bb)

≡ gµν(x) dx
µ dxν

∣∣∣
(reg-bb)

= − t2

t2 + b2
dt2 + a2(t) δij dx

i dxj , (6a)

b2 > 0 , a2(t) > 0 , (6b)

t ∈ (−∞, ∞) , xi ∈ (−∞, ∞) , (6c)

with x0 = c t and c = 1. The length scale b 6= 0 acts as regulator.

This metric gµν(x) is degenerate , with a vanishing determinant at t = 0.

Physically, the t = 0 slice corresponds to a spacetime defect .

PONT2020 — Avignon (Zoom), December 11, 2020 (v1) – p. 6



2. Regularized big bang

The standard Einstein equation (1) with the new metric Ansatz (6) and
a homogeneous perfect fluid gives modified spatially flat Friedmann
equations:

[
1 +

b2

t2

] (
ȧ

a

)2

=
8πG

3
ρM , (7a)

[
1 +

b2

t2

] (
ä

a
+

1

2

(
ȧ

a

)2
)

− b2

t3
ȧ

a
= −4πGPM , (7b)

ρ̇M + 3
ȧ

a

[
ρM + PM

]
= 0 , (7c)

PM = PM

(
ρM
)
, (7d)

where the overdot stands again for differentiation with respect to t.
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2. Regularized big bang

For constant EOS parameter wM = 1/3, the new solution a(t) is

a(t)
∣∣∣
(wM=1/3)

(reg-bb)
= 4

√(
t2 + b2

)/(
t20 + b2

)
, (8)

which is perfectly smooth at t = 0
as long as b 6= 0. Figure compares
with the singular FLRW solution, as
shown by the dashed curve.
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Two possible scenarios:

� nonsingular bouncing cosmology [3, 4] from t = −∞ to t = ∞
(valid for b ≫ lPlanck?) [gravitational waves generated in the pre-
bounce epoch keep on propagating into the postbounce epoch];

� new phase at t = 0 pair-produces [5] a “universe” for t > 0 and
an “antiuniverse” for t < 0 (valid for b ∼ lPlanck?). ⇐ THIS TALK
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3. New phase from M-theory

M-theory is a hypothetical theory that
unifies all five consistent versions of
superstring theory (cf. Refs. [6, 7]).
[Fig. credit: commons.wikimedia.org]

For an explicit description of the new phase replacing the big bang, we
use the IIB matrix model of Kawai and collaborators [8, 9], which has
been suggested as a nonperturbative definition of superstring theory
(M–theory).
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3a. IIB matrix model

The IIB matrix model has N ×N traceless Hermitian matrices, ten
bosonic matrices Aµ and essentially eight fermionic (Majorana–Weyl)
matrices Ψα.

The partition function Z of the Lorentzian IIB matrix model is defined
by the following “path” integral [8, 9, 10, 11]:

Z =

∫
dAdΨ exp

(
i S/ℓ4

)
=

∫
dA exp

(
i Seff/ℓ

4
)
, (9a)

S=−Tr

(
1

4

[
Aµ, Aν

] [
Aρ, Aσ

]
η̃µρ η̃νσ +

1

2
Ψβ Γ̃

µ
βα η̃µν

[
Aν , Ψα

]
)
, (9b)

η̃µν =
[
diag

(
− 1, 1, . . . , 1

)]
µν

, for µ, ν ∈ {0, 1, . . . , 9} . (9c)

A model length scale “ℓ” has been introduced, so that Aµ has the
dimension of length and Ψα the dimension of (length)3/2.

PONT2020 — Avignon (Zoom), December 11, 2020 (v1) – p. 10



3b. Classical spacetime?

Now, the matrices Aµ and Ψα in (9a) are merely integration variables.

Moreover, there is no obvious small dimensionless parameter to
motivate a saddle-point approximation.

Hence, the conceptual question: where is classical spacetime?

Recently, I have suggested to revisit an old idea, the large-N master
field of Witten [12], for a possible origin of classical spacetime in the
context of IIB matrix model [13].

In this short talk, I have only time to remind you of this mysterious
master field (name coined by Coleman) and to give you the final result.
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3c. Large- N factorization

Consider the gauge-invariant bosonic observable

wµ1 ... µm = Tr
(
Aµ1 . . . Aµm

)
. (10)

Then, strings of these observables have expectation values

〈wµ1 ... µm wν1 ... νn · · · 〉 = 1

Z

∫
dA
(
wµ1 ... µm wν1 ... νn · · ·

)
ei Seff/ℓ

4

. (11)

The following factorization property holds to leading order in N :

〈wµ1 ... µm wµ1 ... µm 〉 N
= 〈wµ1 ... µm〉 〈wµ1 ... µm〉 , (12)

without sums over repeated indices.

In words, this leading-order equality (12) states that the expectation
value of the square of w equals the square of the expectation value of w,
which is a truly remarkable result for a statistical (quantum) theory.
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3d. Large- N master field

Indeed, according to Witten [12], the factorization (12) implies that
the path integrals (11) are saturated by a single configuration,

namely by the so-called master field Â
µ.

Considering one w observable for simplicity, we then have for its
expectation value (“Wilson loop”):

〈wµ1 ... µm〉 N
= Tr

(
Âµ1 . . . Âµm

)
, (13)

and similarly for the other expectation values (11).

Hence, we do not have to perform the path integrals on the right-hand
side of (11): we “only” need ten traceless Hermitian matrices Âµ to get
all these expectation values with the simple procedure of replacing Aµ

in the observables by Âµ, just as in (13).
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3e. Emergent classical spacetime

Now, the meaning of the previous suggestion [13] is clear:

classical spacetime resides in the model master-field matrices Âµ.

In fact, it is possible to extract the spacetime points x̂µ
k and the emergent

inverse metric gµν(x) [the metric gµν(x) is obtained as matrix inverse].
It is even possible [14] that the large-N master field of the Lorentzian
IIB matrix model gives rise to the regularized-big-bang metric (6) of GR.

Final result: effective length parameter b of the regularized-big-bang
metric (6) is calculated in terms of the IIB-matrix-model length scale ℓ,

beff ∼ ℓ
?∼ lPlanck ≡

√
~G/c3 ≈ 1.62× 10−35 m . (14)

Details skipped in this short talk (→ backup slides).

Outstanding task: calculate the exact IIB-matrix-model master field Âµ

or, at least, get a reliable approximation of it...
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A. Extraction of the spacetime points

Make a particular global gauge transformation [10] on the matrices Âµ

of the Lorentzian IIB-matrix-model master field,

Â
µ

= Ω Âµ Ω † , Ω ∈ SU(N) , (15)

so that the transformed 0-component matrix is diagonal and has
ordered eigenvalues α̂i ∈ R,

Â
0

= diag
(
α̂1, α̂2, . . . , α̂N−1, α̂N

)
, (16a)

α̂1 ≤ α̂2 ≤ . . . ≤ α̂N−1 ≤ α̂N , (16b)

N∑

i=1

α̂i = 0 . (16c)

The ordering (16b) will turn out to be crucial for the time coordinate t̂
obtained later.
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A. Extraction of the spacetime points

A relatively simple procedure [13] approximates the eigenvalues of the

spatial matrices Â
m

but still manages to order them along the diagonal.

This procedure corresponds, in fact, to a type of coarse graining of
some of the information contained in the master field.

We start from the following trivial observation:

if M is an N ×N Hermitian matrix, then any n× n block centered on
the diagonal of M is also Hermitian, which holds for 1 ≤ n ≤ N .

Now, let K be an odd divisor of N , so that

N = K n , K = 2L+ 1 , (17)

where both L and n are positive integers.
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A. Extraction of the spacetime points

Consider, in each of the ten matrices Â
µ
, the K blocks of size n× n

centered on the diagonal.

We already know the diagonalized blocks of Â
0

from (16a), which
allows us to define the following time coordinate t̂ (σ) for σ ∈ (0, 1]:

x̂ 0
(
k/K

)
≡ c̃ t̂

(
k/K

)
≡ 1

n

n∑

j=1

α̂(k−1)n+j , (18)

with k ∈ {1, . . . , K} and a velocity c̃ to be set to unity later. The time
coordinates from (18) are ordered,

t̂
(
1/K

)
≤ t̂

(
2/K

)
≤ . . . ≤ t̂

(
1− 1/K

)
≤ t̂

(
1
)
, (19)

because the α̂i are, according to (16b).
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A. Extraction of the spacetime points

Next, obtain the eigenvalues of the n× n blocks of the nine spatial

matrices Â
m

and denote these real eigenvalues by
(
β̂m
)
i
, with

i ∈ {1, . . . , N}.

Define, just as for the time coordinate in (18), the following nine spatial
coordinates x̂m(σ) for σ ∈ {(0, 1]:

x̂m
(
k/K

)
≡ 1

n

n∑

j=1

[
β̂m

]
(k−1)n+j

, (20)

with k ∈ {1, . . . , K}.

PONT2020 — Avignon (Zoom), December 11, 2020 (v1) – p. 20



A. Extraction of the spacetime points

If the master-field matrices Â
µ

are approximately block-diagonal, the
expressions (18) and (20) may provide suitable spacetime points,
which, in a somewhat different notation, are denoted

x̂µ
k =

(
x̂ 0
k , x̂

m
k

)
≡
(
x̂ 0
(
k/K

)
, x̂m

(
k/K

) )
, (21)

where k runs over {1, . . . , K}.

Each of these coordinates x̂µ
k has the dimension of length, which

traces back to the dimension of the bosonic matrix variable Aµ as
mentioned below (9c).

To summarize, with N = K n, the extracted spacetime points x̂µ
k ,

for k ∈ {1, . . . , K}, are obtained as averaged eigenvalues of
the n× n blocks along the diagonals of the gauge-transformed

master-field matrices Â
µ

from (15)–(16).
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B. Extraction of the spacetime metric

The points x̂µ
k effectively build a spacetime manifold with continuous

(interpolating) coordinates xµ if there is also an emerging metric gµν(x).

By considering the effective action of a low-energy scalar degree of
freedom σ “propagating” over the discrete spacetime points x̂µ

k , the
following expression for the emergent inverse metric is obtained [9, 13]:

gµν(x) ∼
∫

RD

dDy ρav(y) (x− y)µ (x− y)ν f(x− y) r(x, y) , (22a)

ρav(y) ≡ 〈〈 ρ(y) 〉〉 , (22b)

with continuous spacetime coordinates xµ having the dimension of
length and spacetime dimension D = 9+1 = 10 for the original model.

The average 〈〈 ρ(y) 〉〉 corresponds, for the extraction procedure of App. A,
to averaging over different block sizes n and block positions along the

diagonal in the master-field matrices Â
µ
.
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B. Extraction of the spacetime metric

The quantities that enter the integral (22) are the density function

ρ(x) ≡
K∑

k=1

δ(D)
(
x− x̂k

)
, (23)

the density correlation function r(x, y) defined by

〈〈 ρ(x) ρ(y) 〉〉 ≡ 〈〈 ρ(x) 〉〉 〈〈 ρ(y) 〉〉 r(x, y) , (24)

and a localized real function f(x) from the scalar effective action,

Seff[σ] ∼
∑

k, l

1

2
f
(
x̂k − x̂l

) (
σk − σl

)2
, (25)

where σk is the field value at the point x̂k (the scalar degree of freedom σ

arises from a perturbation of the master field Â
µ
; see App. A in Ref. [13]).

As r(x, y) is dimensionless and f(x) has dimension 1/(length)2, the
inverse metric gµν(x) from (22) is seen to be dimensionless.
The metric gµν is simply obtained as the matrix inverse of gµν .
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B. Extraction of the spacetime metric

A few heuristic remarks [14] may help to clarify expression (22a) for the
emergent inverse metric.

In the standard continuum theory [i.e., a scalar field σ(x) propagating
over a given continuous spacetime manifold with metric gµν(x)],
two nearby points x′ and x′′ have approximately equal field values,
σ(x′) ∼ σ(x′′), and two distant points x′ and x′′′ generically have
different field values, σ(x′) 6= σ(x′′′).

The logic is inverted for our discussion. Two very different field values
σ1 and σ3 have a relatively small action (25) if f(x̂1 − x̂3) ∼ 0 and
inserting f ∼ 0 in (22a) gives a “small” value for the inverse metric gµν

and, hence, a “large” value for the metric gµν , meaning that the space-
time points x̂1 and x̂3 are separated by a large distance (in units of ℓ).

To summarize, the emergent metric is obtained from correlations of
the extracted spacetime points and the master-field perturbations.
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C. Various emergent spacetimes

The obvious question, now, is which spacetime and metric do we get?

We don’t know, as we do not have the IIB-matrix-model master field.

But, awaiting the final result on the master field, we can already
investigate what properties the master field would need to have in
order to be able to produce certain desired emerging metrics.

The results presented here are, therefore, purely exploratory.
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C-a. Emergent Minkowski and RW metrics

We restrict ourselves to four “large” spacetime dimensions [10, 11],
setting

D = 3 + 1 = 4 , (26)

and use length units that normalize the IIB-matrix-model length scale,

ℓ = 1 . (27)

Then, it is possible to choose appropriate functions ρav(y), f(x− y),
and r(x, y) in (22), so that the Minkowski metric is obtained [as given
by (2) for a2(t) = 1].

Similarly, it is possible to choose appropriate functions ρav(y), f(x− y),
and r(x, y) in (22), so that the spatially flat Robertson–Walker metric
(2) is obtained.
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C-b. Emergent regularized-big-bang metric

In order to get an inverse metric whose component g00 diverges at
t = 0, it is necessary to relax the convergence properties of the y0

integral in (22a) by adapting the functions ρav(y), f(x− y), and r(x, y).

In this way, it is possible to obtain the following inverse metric [14]:

gµν(eff) ∼





− t2 + c−2

t2
, for µ = ν = 0 ,

1 + c2 t
2 + c4 t

4 + . . . , for µ = ν = m ∈ {1, 2, 3} ,

0 , otherwise ,

(28)

with real dimensionless coefficients cn that result from the requirement
that the tn terms, for n > 0, vanish in g00.
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C-b. Emergent regularized-big-bang metric

The matrix inverse of (28) gives the following Lorentzian metric:

g(eff)
µν ∼





− t2

t2 + c−2
, for µ = ν = 0 ,

1

1 + c2 t
2 + c4 t

4 + . . .
, for µ = ν = m ∈ {1, 2, 3} ,

0 , otherwise ,

(29)

which has, for c−2 > 0, a vanishing determinant at t = 0 and is,
therefore, degenerate.
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C-b. Emergent regularized-big-bang metric

The emergent metric (29) has indeed the structure of the regularized-
big-bang metric (6a), with the following effective parameters:

b2eff ∼ c−2 ℓ2 , (30a)

a2eff(t) ∼ 1− c2
(
t/ℓ
)2

+ . . . , (30b)

where the IIB-matrix-model length scale ℓ has been restored and
where the leading coefficients c−2 and c2 have been calculated [14].

By choosing the Ansatz parameters appropriately, we get c2 < 0 in
(30b), so that the emerged classical spacetime corresponds to the
spacetime of a nonsingular cosmic bounce at t = 0, as obtained in (8)
from Einstein’s gravitational field equation with a wM = 1/3 perfect
fluid.
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C-c. Cosmological interpretation

The proper cosmological interpretation of the emerged classical
spacetime is perhaps as follows.

The new physics phase (replacing the big bang singularity) is assumed
to be described by the IIB matrix model and the corresponding large-N
master field gives rise to the points and metric of a classical spacetime.

If the master field has an appropriate structure, the emerged metric
has a tamed big bang, with a metric similar to the regularized-big-bang
metric of GR [2] but now having an effective length parameter beff

proportional to the IIB-matrix-model length scale ℓ , as given by (30a).

In fact, one possible interpretation is that the new phase has produced
a universe-antiuniverse pair [5], that is, a “universe” for t > 0 and an
“antiuniverse” for t < 0.
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D. More on the Lorentzian signature

Up till now, we have considered the Lorentzian IIB matrix model,
which has two characteristics:

1. the “Lorentzian” coupling constants η̃µν from (9c);

2. the Feynman phase factor ei S/ℓ
4

in the “path” integral (9a).

From the master field of this Lorentzian matrix model, we obtained
the spacetime points from expressions (18) and (20) in App. A and
the inverse metric from expression (22) in App. B.

Several Lorentzian inverse metrics were found in App. C, where the
Ansätze used [14] relied on having “Lorentzian” coupling constants η̃µν .

But there is another way [13] to obtain Lorentzian inverse metrics,
namely by making an appropriately odd Ansatz for the correlations
functions entering (22), so that the resulting matrix is off-diagonal.
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D. More on the Lorentzian signature

With this appropriately odd Ansatz, it is, in principle, also possible to
get a Lorentzian inverse metric from the Euclidean matrix model,

which has nonnegative coupling constants δ̃µν in the action and a

weight factor e−S/ℓ4 in the path integral.

The details of a toy-model calculation are as follows (expanding on a
parenthetical remark in the last paragraph of App. B in Ref. [13]).

The calculation starts from the multiple integral (22) for spacetime
dimension D = 4 by writing in the integrand

f(x− y) r(x, y) = f(x− y) r̃(y − x) r(x, y) = h(y − x) r(x, y) , (31)

where the new function r(x, y) has a more complicated dependence
on x and y than the combination x− y.
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D. More on the Lorentzian signature

The D = 4 multiple integral (22), with y0 replaced by y4, is then
evaluated at the spacetime point

xµ = 0 , (32a)

with the replacement (31) in the integrand and two further simplifications,

〈〈 ρ(y) 〉〉 = 1 , r(x, y) = 1 , (32b)

and symmetric cutoffs on the integrals,

∫ 1

−1

dy1 . . .

∫ 1

−1

dy4 . (32c)

The only nontrivial contribution to the integrand of (22) now comes
from the correlation function h as defined by (31).
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D. More on the Lorentzian signature

From (22) and (32), we then get the emergent inverse metric

gµνtest,E4(0) ∼
∫ 1

−1

dy1
∫ 1

−1

dy2
∫ 1

−1

dy3
∫ 1

−1

dy4 yµ yν htest,E4(y) , (33)

with the following Ansatz for the correlation function h :

htest,E4(y) = 1− γ
(
y1 y2 + y1 y3 + y1 y4 + y2 y3 + y2 y4 + y3 y4

)
, (34)

where γ multiplies monomials that are odd in two coordinates and even
in the two others.

Note that the Ansatz (34) treats all coordinates y1, y2, y3, and y4 equally,

in line with the coupling constants δ̃µν of the Euclidean matrix model.
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D. More on the Lorentzian signature

The integrals of (33) with Ansatz function (34) are trivial and we obtain

gµνγ (0) ∼ 16

9




3 −γ −γ −γ

−γ 3 −γ −γ

−γ −γ 3 −γ

−γ −γ −γ 3


 , (35a)

where the matrix on the right-hand side has the following eigenvalues
and eigenvectors:

Eγ =
16

9

{
(3− 3 γ) , (3 + γ) , (3 + γ) , (3 + γ)

}
, (35b)

Vγ =





1

2




1

1

1

1


 ,

1√
2




1

−1

0

0


 ,

1√
2




0

0

1

−1


 ,

1

2




1

1

−1

−1








. (35c)
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D. More on the Lorentzian signature

From (35b), we have the following signatures:

(+−−−) for γ ∈ (−∞, −3) , (36a)

(+ + ++) for γ ∈ (−3, 1) , (36b)

(−+++) for γ ∈ (1, ∞) . (36c)

Hence, we obtain Lorentzian signatures for parameter values γ
sufficiently far away from zero, γ > 1 or γ < −3.

The conclusion is that it is, in principle, possible to get a Lorentzian
emergent inverse metric from the Euclidean IIB matrix model, provided
the correlation functions have the appropriate structure.

This observation, if applicable, would remove the need for working with
the (possibly more difficult) Lorentzian IIB matrix model.
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