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1. INTRODUCTION

Motivation for experimentalists (theorists):

Current paradigm for neutrino oscillations from mass

differences has mixing angles

θ 21 ≈ θ 32 ≈ π/4 , θ 13 ≈ 0 , (1)

with T and CP violation suppressed by factor sin θ 13 ≈ 0.

But, perhaps, one angle need not be small if there are

other mechanisms operative?

Here, we discuss a model which, at high energies, can

have all mixing angles large, allowing for strong T and CP

violation (cf. leptogenesis).

Motivation for theorists (experimentalists):

Lorentz invariance perhaps not a fundamental symmetry

but an emergent phenomenon?

Massless (or nearly massless) neutrinos could then

provide us with a window to “really new physics.”

Here, we discuss an idea based on an analogy with

condensed-matter physics [1–3] and a specific type of

models [4–7].
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2. BEC–BCS CROSSOVER

Ultracold quantum gases of fermionic atoms

(e.g., 6Li at nano-Kelvin temperatures) with tunable

interactions (magnetic-field Feshbach resonances).

BEC–BCS crossover:

For s–wave pairing, BCS–type condensate observed

[Regal, Greiner & Jin, PRL 92, 040403 (2004), cond-

mat/0401554].

Prediction for p–wave pairing [1]:

quantum phase transition between a vacuum state with

fully-gapped fermionic spectrum and vacuum state with

topologically protected Fermi points (gap nodes).

Simple illustration of this new type of quantum phase

transition:
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Bogoliubov–Nambu Hamiltonian for fermionic quasiparti-

cles in the axial state of p–wave pairing:

HBN =



 |p|2/2m − q c⊥ p · (ê1 + i ê2)

c⊥ p · (ê1 − i ê2) −|p|2/2m + q



, (2)

with m the mass of the fermionic atom, (ê1, ê2, l̂) an

orthonormal triad, l̂ ≡ ê1 × ê2 the direction of the orbital

momentum of the pair, c⊥ the maximum transverse speed,

and q a parameter which can be controlled by the mag-

netic field near the Feshbach resonance.

Energy spectrum:

E2(p) =

( |p|2
2m

− q

)2

+ c2
⊥

(
p × l̂

)2

. (3)

BEC regime for q < 0, with mass gap.

BCS regime for q > 0, with two Fermi points [ i.e., points

in 3–momentum space at which E(p) = 0 ] :

p1 = +pF l̂ , p2 = −pF l̂ , (4)

for Fermi momentum pF ≡ √
2mq .

Quantum phase transition at q = 0; see Figs. 1 and 2.
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Figure 1: Quantum phase transition at q = qc between a fully-gapped

vacuum and a vacuum with topologically-protected Fermi points (gap

nodes). At q = qc, there appears a marginal Fermi point with topo-

logical charge N = 0 (inset at the top). For q > qc, the marginal

Fermi point has split into two Fermi points characterized by nonzero

topological invariants N = ±1 (inset on the right). For a system of

ultracold fermionic atoms qualitatively described by Hamiltonian HBN,

the critical parameter is qc = 0.
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Figure 2: (a): Temperature-detuning phase diagram near a p–wave

Feshbach resonance, for intermediate splitting of m = 0, ±1 Fesh-

bach resonances. Shown are a second-order px to px + ipy super-

fluid transition at ω0c and a topological phase transition at µ = 0

between two different px + ipy phases (quantum critical point at

T = µ = 0). (b) and (c): Alternative phase diagrams for smaller

and larger values of the Feshbach resonance splitting, respectively.

From: Gurarie, Radzihovsky & Andreev, PRL 94, 230403 (2005),

cond-mat/0410620.
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3. FERMI-POINT-SPLITTING ANSATZ

The chiral fermions of the Standard Model (SM),

for vanishing Yukawa couplings, might also have

Fermi-point splitting (FPS) in their dispersion laws,

(
Ea,f(p)

)2
=

(
c |p| + b

(f)
0a

)2

, (5)

where a labels the 16 types of massless left-handed

Weyl fermions in the SM (with a hypothetical left-handed

antineutrino included) and f labels the fermion families,

f = 1, . . . , NF .

One example of FPS is based on a factorized Ansatz [2]:

b
(f)
0a = Ya b

(f)
0 , (6)

where Ya are the SM hypercharge values of the fermions.

For this special pattern, the induced electromagnetic

Chern–Simons (CS) term cancels out exactly. (Result

is directly related to the absence of perturbative gauge

anomalies in the Standard Model.)

This allows for b0 values larger than the experimental

upper limit on the CS energy scale ≈ 10−33 eV [Caroll,

Field & Jackiw, 1990].
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Independent of the particular pattern, the dispersion law

of a massless left-handed neutrino can be written as

(
EνL,f(p)

)2
=

(
c |p| − b

(f)
0

)2

. (7)

The right-handed antineutrino has

(
Eν̄R,f(p)

)2
=

(
c |p| − s b

(f)
0

)2
∣∣∣∣
s=1

. (8)

(A value s = −1 introduces CPT violation.)

More generally, one may consider for large momentum |p|:

E(p) ∼ c |p| ± b0 +
m2 c4

2|p|c + O
(
|p|−2

)
. (9)

The energy change from a nonzero b0 always dominates

the effect from mc2 for large enough |p| .

In order to search for Fermi-point splitting, it is preferable

to use neutrino beams with the highest possible energy

(or high-energy cosmic neutrinos . . . ).

Setting ~ = c = 1, we consider a relatively simple

NF = 3 model with both ∆b0 and ∆m2 nonzero.
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4. SIMPLE MODEL

For a three-flavor model with both nonzero mass

differences and timelike Fermi-point splittings, there are

many mixing angles and phases to consider.

The relevant terms of the Hamiltonian in the (νe, νµ, ντ )

flavor basis are:

Dp + X · Dm · X† + C · Y · Db0 · Y † · C† , (10)

with diagonal matrices

Dp ≡ diag ( |p| , |p| , |p| ) , (11a)

Dm ≡ diag

(
m2

1

2 |p| ,
m2

2

2 |p| ,
m2

3

2 |p|

)
, (11b)

Db0 ≡ diag

(
b
(1)
0 , b

(2)
0 , b

(3)
0

)
, (11c)

and SU(3) matrices given by

C ≡ diag
(
eiβ , e−i(α+β) , eiα

)
, (12a)

X ≡ M32(θ32) · M13(θ13, δ) · M21(θ21) , (12b)

Y ≡ M32(χ32) · M13(χ13, ω) · M21(χ21) , (12c)

in terms of
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M32(ϑ)≡





1 0 0

0 cos ϑ sin ϑ

0 − sin ϑ cos ϑ




, (13a)

M13(ϑ, ϕ)≡





cos ϑ 0 sin ϑ eiϕ

0 1 0

− sin ϑ e−iϕ 0 cos ϑ




, (13b)

M21(ϑ)≡





cos ϑ sin ϑ 0

− sin ϑ cos ϑ 0

0 0 1




. (13c)

Here, X is the standard MNS mixing matrix.

Further definitions:

Rm ≡ ∆m2
21

∆m2
32

≡ m2
2 − m2

1

m2
3 − m2

2

, (14a)

R ≡ ∆b
(21)
0

∆b
(32)
0

≡ b
(2)
0 − b

(1)
0

b
(3)
0 − b

(2)
0

. (14b)

A simple model alright, but a large number of parameters.
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Three particular models have been considered in detail:

R (for radical), S (for stealth), and T (for T-violating).

R–model [4,5] S–model [6] T–model [7]

Rm 0 0 0

∆m2
31 0 ∆m2 ∆m2

θ21

θ32

θ13

−
−
−

π/4

π/4

0

π/4

π/4

0





bi-max

δ – 0 0

R r 0 1

∆b
(31)
0 ∆b0 ∆b0 ∆b0

χ21

χ32

χ13

π/4

π/4

π/5

π/4

π/4

π/4

π/4

π/4

π/4





tri-max

ω −ǫ 0 π/4

α – 0 0

β – 0 0

In this talk, we focus on the S– and T–models.
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Two remarks on energy scales:

1. Absolute upper bounds from low-energy neutrino

physics [Di Grezia et al., hep-ph/0504245] and cosmology:

|b(e)
0 | . 1 keV , (15a)

3∑

i=1

mi . 100 eV , (15b)

to which neutrino oscillations can add relative bounds.

2. Emergent-physics scenario [3] with two cutoff scales:

• ELV of fundamental Lorentz-violating fermionic theory,

• Ec of compositeness scale of SM gauge bosons.

LEP values of the coupling constants give (NF = 3):

Ec ∼ 1013
GeV , ELV ∼ 1042

GeV . (16)

Perhaps ultrahigh-energy Lorentz violation re-enters at

ultralow energy scale:

|b0| ?∼ E2
c
/ELV ∼ 10−7

eV , (17a)

which may motivate the search for Fermi-point-splitting

effects at the sub–eV level.
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5. VACUUM OSCILLATION PROBABILITIES

For large enough neutrino energy Eν , the vacuum

neutrino-oscillation probability from flavor A to flavor B

over a travel distance L is readily calculated,

P (A → B, ω) = PAB( ∆m2, . . . , β︸ ︷︷ ︸
14 parameters

, Eν , L ) . (18)

The probability for antineutrinos (s = 1) is given by

P (Ā → B̄, ω) = P (A → B,−ω) (19a)

= P (B → A, ω) , (19b)

which displays CPT invariance.

The time-reversal asymmetry between A–type and

B–type neutrinos,

∆(T)

AB ≡P (B → A, ω) − P (A → B, ω) , (20)

is proportional to sin ω for the models considered.

The corresponding CP discriminant,

∆(CP)

AB ≡P (Ā → B̄, ω) − P (A → B, ω) , (21)

equals (20), for s = 1.
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6. PHENOMENOLOGY

With both mass differences (MD) and timelike Fermi-

point splittings (FPS) present, there are two methods to

determine the presence of FPS terms.

The first method is to use sufficiently high neutrino

energies Eν so that the mass-difference effects drop out,

|∆m2/(2Eν)| ≪ |∆b0|.

The second method is to look at a particular process

which is expected to be small for standard mass-

difference neutrino-oscillations. An example is provided

by the νµ → νe appearance probability at not too large

travel distance L,

PMD(νµ → νe) ∼ 1
2

sin2(2θ13) sin2

(
∆m2

31 L

4Eν

)
,

(22)

since θ13 is known to be small,

sin2(2θ13)
∣∣

CHOOZ
≤ 0.15 , (23)

at 90 % CL and ∆m2
31 = 2.5 × 10−3 eV

2
.
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For high-energy neutrino oscillations over travel distance L,

define (Eν ∼ |p| and ~ = c = 1):

ρ ≡ 2 Eν

L |∆m2
31|

≈ 1.5786

(
Eν

10 GeV

)

×
(

103 km

L

)(
2.5 × 10−3 eV

2

|∆m2
31|

)
, (24a)

τ ≡ L |∆b
(31)
0 | ≈ 5.0671

(
L

103 km

)

×
(

|∆b
(31)
0 |

10−12 eV

)
. (24b)

Table 1: ∆m2
31 = 2.5 × 10−3 eV2

; ∆b
(31)
0 = 1.0 × 10−12 eV.

experiment L [ km ] 〈Eν〉 [ GeV ] ρ τ

K2K 250 1.0 0.6 1.3

T2K 295 0.7 0.4 1.5

MINOS–ME 735 7.5 1.6 3.7

NOνA 810 2.0 0.4 4.1

ν–factory 1000 10 1.6 5.1
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Figure 3: Numerical results for the S–model vacuum probability

Pµe ≡ P (νµ → νe). Left: surface plot. Right: contour plot, with

equidistant contours at Pµe = 0.05, 0.10, . . .0.40, 0.45.

Analytic results (for Rm = 0):

• limτ→0 Pµe(ρ, τ) = 0

[pure MD model with ∆m2
21 = θ13 = 0 ];

• limρ→∞ Pµe(ρ, τ)|
R=0 = 1

2
sin2(τ/2)

[pure FPS model with ∆b
(31)
0 6= 0 and trimax mixing];

• for ρ → 0 and fixed τ (arbitrary R and ω),

Pµe ∼ (4R2/S) sin2 [
√

S τ/(8 + 8R)]

with S ≡ 4 + 4R + 9R2

[degenerate perturbation theory].
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Figure 4: Constant–τ slices of vacuum probability P ≡ P (νµ → νe)

from Fig. 3. The model has Fermi-point-splitting ratio R = 0 and

complex phase ω = 0. The curves for positive τ = 1, 2, 0

(mod 3) are shown as solid, long-dashed, and short-dashed lines.

R = 1 , = 0

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0
P

= 7,8,9

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0
P

= 10,11,12

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0
P

= 1,2,3

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0
P

= 4,5,6

ρρ

ρρ

ττ

ττ

ω

Figure 5: Same as Fig. 4 but for the model with FPS ratio R = 1, the

complex phase ω still vanishing.
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R = 1 , = �4
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Figure 6: Same as Fig. 5 but now for complex phase ω = π/4.
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Figure 7: Same as Fig. 6 but for the time-reversed process, with prob-

ability P ′ ≡ P (νe → νµ).
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Figure 8: Same as Fig. 6 but now for mass-sector parameters Rm =

1/30, sin2(2θ13) = 1/10, and δ = π/2. The heavy curve in the

upper left panel has τ = 0 (pure mass-difference neutrino oscill.).
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Figure 9: Same as Fig. 8 but for the time-reversed process, with prob-

ability P ′ ≡ P (νe → νµ). If CPT invariance holds, P ′ also corre-

sponds to P (νµ → νe).
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7. OUTLOOK

Possible hints of Fermi-point splitting in upcoming

neutrino-oscillation experiments:

1. More or less equal survival probabilities P (νµ → νµ)

for the medium- and high-energy beam of MINOS?

2. Appearance probability P (νµ → νe) from MINOS–

ME/HE (and perhaps ICARUS) above a few percent?

3. νe–energy spectrum from T2K or NOνA shifted

towards higher energy?

If seen, need to reconsider the future options based

on the relevant length scales of the combined mass-

difference/Fermi-point-splitting model. And pay special

attention to possible strong T–, CP–, CPT–violating effects

at the high end of the neutrino energy spectrum.

These future options include superbeams and neutrino

factories. [High-energy cosmic neutrinos (AMANDA,

IceCube) may also give valuable information.]

But, first, let’s see what we can learn from MINOS,

ICARUS/OPERA, T2K, . . .
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