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1. Introduction

The main Cosmological Constant Problem (CCP1) can be phrased as
follows (Pauli, 1933; Bohr, 1948; Veltman, 1974; see [1, 2] for two reviews):

why do the quantum fields in the vacuum not produce naturally a large
cosmological constant Λ in the Einstein field equations?

The magnitude of the problem is enormous:

|Λtheory|/|Λexperiment| ≥ 1054 ,

where the large number on the RHS will be explained on the next slide.

From now on, ~ = 1 = c.
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1. Introduction
With the ATLAS and CMS results [3, 4] in support of the Higgs
mechanism, it is clear that the EWSM in the laboratory involves a
vacuum energy density of order

∣∣ǫ (EWSM)
V

∣∣ ∼
(
100 GeV

)4 ∼ 1044 eV4 .

Moreover, this energy density can be expected to change as the

temperature T of the Universe drops,

ǫ (EWSM)
V = ǫ (EWSM)

V (T ) .

How can the Universe then end up with a vacuum energy density

∣∣Λ(obs)
∣∣ < 10−28 g cm−3 ∼ 10−10 eV4 ?

Here, there are 54 orders of magnitude to explain:∣∣Λ(obs)/ǫ (EWSM)
V

∣∣
≤ 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 .
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1. Introduction

In short, the main cosmological constant problem is

CCP1 – why |Λ| ≪ (EQCD)
4 ≪ (Eelectroweak)

4 ≪ (EPlanck)
4 ?

Still more CCPs after the discovery of the “accelerating Universe”:

CCP2a – why Λ 6= 0 ?

CCP2b – why Λ ∼ ρmatter
∣∣
present ∼ +10−11 eV4 ?

Hundreds of papers have been published on CCP2. But, most likely:

CCP1 needs to be solved first before CCP2 can even be addressed.
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1. Introduction

Here, a discussion of one particular approach to CCP1 by Volovik
and the speaker, which goes under the name of q–theory [5, 6, 7]
(a brief review appears in [8]).

It is instructive to consider two explicit realizations of q–theory:

1. with a three-form gauge field [9, 10, 11, 12],

2. with a massless vector-field [13, 14].

The vector-field realization, in particular, is found to give
Minkowski spacetime as an attractor of the field equations.
(But a new problem arises: the danger of ruining the standard Newtonian
physics of small self-gravitating systems [15]. This disaster can, however,
be avoided by a special model with two vector fields [16, 17].)

In this talk, we first focus on the 3-form-gauge-field realization of q–theory,
which keeps the Newtonian physics in tact, and then briefly turn to CCP2.
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1. Introduction

OUTLINE:

1. Introduction

2. Basics of q–theory

3. Two realizations

4. Remnant ρV : Electroweak-kick mechanism

5. Conclusion

6. References
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2. Basics of q–theory

Crucial insight [5]: there is vacuum energy and vacuum energy.

More specifically and introducing an appropriate notation:

the vacuum energy density ǫ appearing in the action

need not be the same as
the vacuum energy density ρV in the Einstein field equations.

How can this happen concretely . . .
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2. Basics of q–theory

Consider the full quantum vacuum to be a self-sustained medium
(as is a droplet of water in free fall).

That medium would be characterized by some conserved charge .

Study, then, the macroscopic equations of this conserved microscopic
variable (later called q), whose precise nature need not be known.

An analogy:

� Take the mass density ρ of a liquid, for example, liquid Argon.

� This ρ describes microscopic quantities (ρ = mAr nAr with number
density nAr and mass mAr of the atoms).

� Still, ρ obeys the macroscopic equations of hydrodynamics,
because of particle-number and mass conservation.

However, is the quantum vacuum just like a normal liquid?
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2. Basics of q–theory

No, as the quantum vacuum is known to be Lorentz invariant
(cf. experimental limits at the 10−15 level in the photon sector [18]).

The Lorentz invariance of the vacuum rules out the standard type of
charge density, which arises from the time component j0 of a
conserved vector current jµ.

Needed is a new type of relativistic conserved charge , called the
vacuum variable q.

In other words, look for a relativistic generalization (q) of the number
density (n) which characterizes the known material liquids.
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2. Basics of q–theory

With such a variable q(x), the vacuum energy density of the effective
action can be a generic function

ǫ = ǫ(q) = Λbare + ǫnonconstant(q) , (1)

including a possible constant term Λbare from the zero-point energies of
the fields of the Standard Model (SM).

From 1© thermodynamics and 2© Lorentz invariance follows that [5]

PV
1©
= −

(
ǫ− q

d ǫ

d q

)
2©
= −ρV , (2)

where the first equality corresponds to an integrated form of the
Gibbs–Duhem equation for chemical potential µ ≡ dǫ/dq.

Recall GD eq: N dµ = V dP − S dT ⇒ dP = (N/V ) dµ for dT = 0.
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2. Basics of q–theory

Both terms entering ρV from (2) can be of order (EPlanck)
4, but they

cancel exactly for an appropriate value q0 of the vacuum variable q.

Hence, for a generic function ǫ(q),

∃ q0 = const : Λ ≡ ρV =
[
ǫ(q)− q

d ǫ(q)

d q

]
q=q0

= 0 , (3)

with constant vacuum variable q0 [a similar constant variable is known
to play a role for the Larkin–Pikin effect (1969) in solid-state physics].

Great, CCP1 solved, in principle . . .

But, is a relativistic vacuum variable q possible at all?

Yes, there exist several theories which contain such a q (see Sec. 3).
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3.0 Two realizations for two questions

Explicit realizations of q-theory provide answers to the following two
obvious questions:

Q1: How does the adjustment-type solution (3) of CCP1 circumvent
Weinberg’s no–go “theorem” [2]?

Answer: q is a non-fundamental scalar field; see Sec. 3.1.

Q2: How did the Universe get the right value q0?

One possible answer is that q0 (or the corresponding chemical
potential µ0) is fixed globally as an integration constant, being
conserved throughout the history of the Universe [6].

Another possible answer uses a generalization of q–theory, for
which the ‘correct’ value q0 arises dynamically; see Sec. 3.2.
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3.1 Four-form realization
Vacuum variable q may arise from a 3–form gauge field A [9, 10].

Start from the effective action of GR+SM,

Seff[g, ψ] =

∫

R4

d4x
√

− det g
(
KN R[g] + ΛSM + Leff

SM[ψ, g]
)
, (4)

with gravitational coupling constant KN ≡ 1/(16πGN ) and ~ = c = 1.

Change this theory by the introduction of one field, A, to get [6, 7]:

S̃eff[A, g, ψ] =

∫

R4

d4x
√
− det g

(
K(q)R[g] + ǫ(q) + Leff

SM[ψ, g]
)
, (5a)

q ≡ − 1

24
ǫαβγδ ∇αAβγδ /

√−g , (5b)

where q arises from the four-form field strength F = dA.

Variational principle gives generalized Einstein and Maxwell equations:
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3.1 Four-form realization

2K(q)
(
Rαβ − gαβ R/2

)
= −2

(
∇α∇β − gαβ �

)
K(q)

+ρV (q) gαβ − TM
αβ , (6a)

dρV (q)

dq
+ R

dK(q)

dq
= 0 , (6b)

with a vacuum energy density,

ρV = ǫ− q

(
dǫ

dq
+R

dK

dq

)
= ǫ− q µ , (7)

for integration constant (chemical potential) µ. Eq. (7) is precisely of the
Gibbs–Duhem form (2) in Minkowski spacetime (R = 0). Technically, the
extra gαβ term on the RHS of (6a) appears because q = q(A, g).

Hence, an answer to Q1: (5b) shows that q is a non-fundamental scalar field,
which invalidates Weinberg’s argument (see [7] for details).
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3.2 Vector-field realization

Vacuum variable q comes from an aether-type velocity field uβ [13, 14],
setting EUV = EPlanck. For a flat RW metric with cosmic time t, there is
an asymptotic solution for uβ = (u0, ub) and Hubble parameter H(t):

u0(t) → q0 t , ub(t) = 0 , H(t) → 1/t , (8a)

u β
α ≡ ∇α u

β → q0 δ
β

α . (8b)

Define v ≡ u0/EPlanck, τ ≡ t EPlanck, h ≡ H/EPlanck, and λ ≡ Λ/(EPlanck)
4.

With an action quadratic in the variable u β
α , the field equations are [13]:

v̈ + 3h v̇ − 3h2 v = 0 , (9a)

2λ− (v̇)2 − 3 (h v)2 = 6h2 , (9b)

with the overdot standing for differentiation with respect to τ . Starting
from a de-Sitter universe with λ > 0, there is a unique value of q̂0 ≡
q0/(EPlanck)

2 to end up with a static Minkowski spacetime, q̂0 =
√
λ/2.
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3.2 Vector-field realization

Fig. 1: Four numerical solutions of ODEs (9ab) for λ = 2 and boundary conditions v(1) = 1± 0.25 and

v̇(1) = ±1.25.

⇒ Minkowski value q̂0 =
√
λ/2 = 1 arises dynamically [see left panel].

⇒ Minkowski spacetime is an attractor in this aether-type theory [7].

Hence, an answer to Q2. But, as mentioned above, there is serious
collateral damage [15] which needs to be avoided [16, 17].
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3.3 Recap

To summarize, the q–theory approach to the main Cosmological
Constant Problem (CCP1) provides a solution.

For the moment, this is only a possible solution, because it is not
known for sure that the “beyond-the-Standard-Model” physics contains
such a q–type variable.

GENERAL REMARK: it is clear that the SM harbors huge vacuum
energy densities, which somehow need to be cancelled by new d.o.f.,
possibly related to the fundamental theory of spacetime and gravity.

BAD NEWS: nothing is known for sure about these fundamental d.o.f.

GOOD NEWS: even though the detailed (high-energy) microphysics is
unknown, it may be possible to describe the macroscopic (low-energy)
effects along the lines of q–theory, just as for the hydrodynamics of water.
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4.1 Remnant ρV

Now, briefly the remaining problems (or puzzles, rather):

CCP2a – why Λeff 6= 0 ?

CCP2b – why Λeff ∼ ρmatter
∣∣
now ∼ 10−29 g cm−3 ∼ 10−11 eV4 ?

Last one also goes under the name of ‘cosmic coincidence puzzle’ (ccp).

In the framework of q–theory, we have given speculative discussions
of the remnant vacuum energy density from the physics of QCD [19] or
massive neutrinos [8]. But, here, our speculations will focus on the
electroweak (TeV) scale.

Seminar — KIAS, October 19, 2015 (v1) – p. 18



4.2 Remnant ρV – Electroweak kick

Reconsider the four-form realization of q, taken to be operative at a UV
(Planckian) energy scale.

In the very early Universe, the vacuum energy density ρV (t) rapidly
drops to zero and stays there, but small effects may occur at cosmic
temperatures T of the order of the TeV scale . . .

Simple picture:

Take a glass of water, hold it steady, and then shake it ⇒ water responds.

If vacuum energy density is really like a liquid, then it can be ‘shaken.’
Here, the ‘shaking’ is done by massive particles.
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4.2 Remnant ρV – Electroweak kick

Key steps of the frozen-electroweak-kick mechanism [20, 21]:

� Presence of massive particles with electroweak interactions
[ average mass M ∼ TeV ] changes the Hubble expansion rate
H(t) of the Universe compared to the radiation-dominated case.

� Change of the expansion rate kicks ρV (t) away from zero.

� Quantum-dissipative effects operating at cosmic time

tkick ≡ EP /M
2 may result in finite remnant value of ρV .

[Here, EP is the reduced Planck energy
√
1/(8πGN ) ≈

2.44× 1018 GeV.]

� Phenomenological description of this process with a simple
field-theoretic model.
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4.2 Remnant ρV – Electroweak kick

Core formula for the remnant vacuum energy density in a flat
Friedmann–Robertson–Walker (FRW) universe:

Λ ≡ lim
t→∞

ρV (t) = rV∞ M8 /(EP )
4 . (10)

Inverting this equation gives

M = (rV∞)−1/8 Λ1/8 (EP )
1/2

≈ 5.56 TeV
(
10−3

rV∞

)1/8(
Λ1/4

2.25 meV

)1/2

. (11)

The outstanding task is to calculate the “efficiency factor” rV∞ for
producing a remnant vacuum energy density Λ given the energy
scales involved, M and EP . BTW, the parametric behavior of (10) was
already discussed by Arkani-Hamed, Hall, Kolda, and Murayama [22].
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4.2 Remnant ρV – Electroweak kick

Main inputs for a simple model calculation [21]:
� Brans–Dicke-type term in the action density,

Lgrav = K[q,Φ]R[g] , (12)

where Φ stands for one or more of the matter fields and we
assume the following simplified behavior:

K[q, t] = q(t)/2 + θ(t− tK)
[
q0/2− q(t)/2

]
. (13)

� Two types of matter: type-1 for ultraheavy particles of mass M ;
type 2 for massless particles with Neff, 2 = 102 (≈ SM).

� For the K-freezing-model calculation, set tK = O(1).
For the dissipation-model calculation, set tK = ∞.

� Really unsolved question: what physics freezes ρV (t)???
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4.2 Remnant ρV – Electroweak kick
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Fig. 2: Numerical results for few new particles (see [21] for details).

For this case (“Neff, 1 = 1 ”): rV∞

∣∣∣
(case-1)

≤ max
[
rV (τ)

](case-1) ∼ 10−5.

From (11), using Λexp = (2.25 meV)4, this gives: M
∣∣∣
(case-1)

& 10 TeV.
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4.2 Remnant ρV – Electroweak kick

0 0.2 0.4 0.6 0.8
Τ0

0.3
0.6
0.9
1.2

a , ΘK

0 0.2 0.4 0.6 0.8
Τ0

0.3
0.6
0.9
1.2

Κ
�
M1 , Θ g

0 0.2 0.4 0.6 0.8
Τ0

0.2
0.4
0.6
0.8

10 * 1�8 HΚ�M1 rM1L
2

0 0.2 0.4 0.6 0.8
Τ0

0.2
0.4
0.6
0.8

10 * rV
diss, 10-2 * G�Γ

0 0.2 0.4 0.6 0.8
Τ0

0.2
0.4
0.6
0.8

Τ h º Τ Hda�dΤL�a

0 0.2 0.4 0.6 0.8
Τ0

0.6
1.2
1.8
2.4

10 * a4 rM1

0 0.2 0.4 0.6 0.8
Τ0

0.6
1.2
1.8
2.4

10 * a4 rM2 , 10-1 * rM2

0 0.2 0.4 0.6 0.8
Τ0

0.2
0.4
0.6
0.8

10 * rV = 10 * 1�2 x2

Fig. 3: Numerical results for many new particles (see [21] for details).

For this case (“Neff, 1 = 102 ”): rV∞

∣∣∣
(case-2)

≤ max
[
rV (τ)

](case-2) ∼ 10−1.

From (11), using Λexp = (2.25 meV)4, this gives M
∣∣∣
(case-2)

& 3 TeV.
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5. Conclusions

CCP1: Self-adjustment of a special type of vacuum variable q can
give ρV (q0) = 0 in the equilibrium state q = q0 = const.

CCP2: Within the q–theory framework, a finite remnant value of ρV (t)
may result from:

a “kick” by massive particles with M & 3 TeV

⇒ new TeV–scale physics beyond the SM?

⇒ surprises at the LHC or a next-generation proton-proton collider?
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