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1. Overview

Context of this talk: high-energy physics .

Now, all of our current knowledge of high-energy physics is contained
in the so-called Standard Model (SM).

Incomplete list of SM founding fathers:

. . . , Yang and Mills, 1954; Glashow, 1961;
Englert and Brout, 1964; Higgs, 1964;
Fadde’ev and Popov, 1967;
Weinberg, 1967; Salam, 1968; Glashow, Iliopoulos, and Maiani, 1970;
’t Hooft and Veltman, 1972; Lee and Zinn-Justin, 1972;
Weinberg, 1973; Fritzsch, Gell-Mann, and Leutwyler, 1973;
Gross and Wilczek, 1973; Politzer, 1973; . . .
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1. Overview

SM:

Elementary particles of the SM [https://commons.wikimedia.org/wiki].
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1. Overview

But there is more to the SM than particles and Feynman diagrams.

In the SU(3) Yang–Mills theory of QCD:

the instanton I [Belavin, Polyakov, Schwartz, and Tyupkin, 1975].

In the SU(2)× U(1) Yang–Mills–Higgs theory of the EWSM:

the sphaleron S [Klinkhamer and Manton, 1984].

The terminology will be explained on the next slide, but here we note
already that these nonperturbative results complete the perturbative
construction of the SM outlined previously.
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1. Overview

Terminology:

an “instanton” is a localized, finite-action solution of the classical field
equations for imaginary time τ (τ2 ≤ 0);

a “topological soliton” is a static, stable, finite-energy solution of the
classical field equations for real time t (t2 ≥ 0);

a “sphaleron” is a static, unstable, finite-energy solution of the
classical field equations for real time t.
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1. Overview

Generally speaking, instantons (and topological solitons) are relevant
to equilibrium properties of the theory, whereas sphalerons are
relevant to the dynamics.

Specifically, the two types of nonperturbative solutions of the SM are
relevant to the following physical effects:

instantons for the gluon condensate and the η′ mass,

sphalerons for the origin of the cosmic matter–antimatter asymmetry.
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1. Overview

OUTLINE:

1. Overview

2. SU(2) x U(1) sphaleron S and EWBNV ∗

3. Spectral flow and anomalies

4. SU(3) sphaleron Ŝ

5. Conclusion

6. References

∗ EWBNV = electroweak baryon number violation
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1. Overview

Admittedly, a difficult talk for a physics colloquium !!!!!!!!!!!!!

Goal is to explain to a general audience that “high-energy physics” is
more than “elementary particle physics.”

Primarily an introduction, but we can already emphasize three points:

1. The Higgs field is of importance for the sphaleron S.

2. EWBNV is not fully understood.

3. Sphalerons S, S∗, and Ŝ are related to chiral anomalies.
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2.0 General remarks

How to discover nonperturbative solutions, such as the instanton I or
the sphaleron S?

Well, just follow this recipe:

1. make an appropriate Ansatz for the fields;

2. solve the resulting reduced field equations.

Of course, the subtlety in getting the “appropriate” Ansatz of step 1.

Here, topological insights have played a role.
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2.1 SU(2) x U(1) sphaleron S

The electroweak Standard Model (EWSM), with sin2 θw ≈ 0.23 and
mH ≈ 125 GeV, has, most likely, no topological solitons but does have
two sphalerons, S [1] and S∗ [2]. The extended SU(3) theory also has

a third sphaleron, Ŝ [3].

The solution S is the best known [1, 4] and its energy is numerically
equal to

ES ∼ 10 TeV ,

and parametrically equal to

ES ∼ v/g ∼MW /α ,

with the Higgs vacuum expectation value v, the SU(2) coupling constant g,
the mass MW = 1

2 g v of the charged vector bosons W±,

and the fine-structure constant α = e2/(4π) = g2 sin2 θw/(4π) .
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2.1 SU(2) x U(1) sphaleron S

In simple terms, the sphaleron solution S of the EWSM

� is a slightly elongated blob of field energy with size of order
1/MW ∼ 10−2 fm and energy density of order (1/α)M4

W ;

� has “tangled” fields (hence, the existence of fermion zero modes;
see the discussion on spectral flow below) ;

� corresponds to an unstable configuration of fields, which, after a
small perturbation, decays to the vacuum by emission of many
particles (number of order 1/α ∼ 100) .
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2.1 SU(2) x U(1) sphaleron S

But how does S fit in configuration space?

A simple sketch is as follows (more details later):

0-1 1

E
SPHALERON

POT

N

E

CS

Figure 1: Potential energy over a slice of configuration space.

Side remark: small oscillations near NCS = 0 (or any other integer)
correspond to the SM elementary particles W , Z, γ, etc.
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2.1 SU(2) x U(1) sphaleron S

Now a technical remark, triggered by the ATLAS and CMS discovery [5, 6] :

the energy density of S is only finite because of the Higgs field .

Setting θw = 0, for simplicity, and using the dimensionless radial coor-
dinate ξ ≡ g v r (a prime indicating the derivative w.r.t. ξ), the energy is:

ES =
v

g

∫ ∞

0

dξ 4πξ2
[
4

ξ2
(f ′)2 +

8

ξ4
[f(1− f)]2 ←− (Fmn)

2 term

+
1

2
(h′)2 +

1

ξ2
[h(1− f)]2 ←− (DmΦ)2 term

+
1

4

λ

g2
(1− h2)2

]
, ←− V (Φ) term

with the following boundary conditions on the radial functions f(r) and h(r):

f(0) = h(0) = 0 , f(∞) = h(∞) = 1 .
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2.1 SU(2) x U(1) sphaleron S

The energy density from the above ES integral shows that having
h(r) ≡ 1 (i.e., absence of a dynamical Higgs field) would make the
YM-mass-term contribution ∝ r−2 (1− f)2 diverge at r = 0.

Physically, it is doubtful that such a divergent classical field
configuration would play a role. At the very least, the EWSM would
need to be modified if there were no Higgs field.∗

The Higgs field is also important for another reason (spectral flow), as
will be discussed in Sec. 3.

Having the nonperturbative classical solution S, the question remains
what it does for physics?

The answer is cosmic baryon number violation, so let us discuss that first.

———————————————————————————-
∗ A similar conclusion follows from the well-known W+W+

→ W+W+ unitarity argument.
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2.2 Electroweak baryon number violation

Conditions for cosmological baryogenesis [Sakharov, 1967]:

1. C and CP violation Yes (SM)

2. Thermal nonequilibrium Yes (FRW)

3. Baryon number (B) violation ?

Strictly speaking, we know of only one physical theory that is expected
to have B violation:

the electroweak Standard Model (EWSM).

[Side remark: the ultimate fate of black holes is uncertain and,
hence, it is not known if black-hole physics violates baryon number
conservation or not.]
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2.2 Electroweak baryon number violation

But the relevant physical processes of the EWSM at

T ≪MW ≈ 102 GeV ,

have a rate (tunneling through the barrier of Fig. 1) which is negligible [7],

Γ(tunneling) ∝ exp[− 2SBPST / ~ ] = exp[− 4π sin2 θw /α ] ≈ 0 ,

with an exponent given by twice the action of the BPST instanton.

For T ∼ 102 GeV, the rate (thermal excitation over the barrier of Fig. 1)
contains a Boltzmann factor [1],

Γ(thermal) ∝ exp[−ES / (k T ) ] ,

in terms of the barrier height, the sphaleron energy ES .

Note the respective factors of ~ and k in the two rates Γ: different physics!

Physics Colloquium – SNU, October 14, 2015 (v4) – p. 16



2.2 Electroweak baryon number violation

Clearly, we should study electroweak baryon number violation for the
conditions of the early universe,

T ∼> 102 GeV .

This is a difficult problem, but entirely well-posed.

In this talk, we focus on the fundamental physics, i.e., the microscopic
process, and we must really deal with the fermions [7, 8, 9, 10, 11, 12, 13].
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2.3 EWBNV – Classic results

Consider SU(2) Yang–Mills–Higgs theory with vanishing Yukawa
couplings. Actually, forget about the Higgs, which may be reasonable
above the EW phase transition.

Triangle anomaly in the AAA-diagram, provided the VVV-diagram is
anomaly-free [14, 15]. [Side remark: this is Feynman perturbation theory.]

The gauge vertices of the EWSM are V–A and must be nonanomalous
(gauge invariance is needed for unitarity). Then, the B + L current
becomes anomalous [7]:

∆(B − L) = 0 ,

∆(B + L)︸ ︷︷ ︸
change of fermion number

= 2Nfam︸ ︷︷ ︸
integer

× ∆NCS︸ ︷︷ ︸
gauge field characteristic

.
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2.3 EWBNV – Classic results

In the A0 = 0 gauge, one has the Chern–Simons number

NCS(t) = NCS[ ~A(~x, t)]

and

∆NCS ≡ NCS(tout)−NCS(tin) .

For the record (using differential forms and the Yang–Mills field
strength 2-form F ≡ dA+A2), we have

NCS[A] ≡
1

8π2

∫

M3

(
AdA+

2

3
A3

)
=

1

8π2

∫

M3

(
AF − 1

3
A3

)
.
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2.3 EWBNV – Classic results

’t Hooft [7] calculated the tunneling amplitude using the BPST instanton.
This BPST instanton, which is a finite action solution over Euclidean
spacetime (imaginary-time theory), gives

∆NCS = Q[A finite action] ∈ Z ,

where the topological charge Q is the winding number of the map

S3
∣∣
|x|=∞

→ SU(2) ∼ S3 .

This holds only for transitions from near-vacuum to near-vacuum, i.e.,
at very low temperatures or energies. As mentioned above, the rate is
then effectively zero, but, at least, ∆(B + L) is an integer, namely
2Nfam ×∆NCS.
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2.4 EWBNV – Open question

For real-time processes at nonzero energies or temperatures, the
topological charge Q is, in general, noninteger.

Hence, the question [12]

∆(B + L) ∝ which gauge field characteristic ?

In the following, we consider pure SU(2) Yang–Mills theory with a
single isodoublet of left-handed fermions.

(The fermion number B + L of the EWSM follows by multiplying with
2Nfam. Recall that B − L remains conserved in the EWSM.)

Furthermore, the gauge fields will be called dissipative if their energy
density approaches zero uniformly as t→ ±∞.
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2.5 EWBNV – Partial answer

Start from the eigenvalue equation of the time-dependent Dirac Hamiltonian:

H(~x, t)Ψ(~x, t) = E(t)Ψ(~x, t) ,

where H is a functional of the background gauge field ~A(~x, t).

Then, fermion number violation is related to the so-called spectral flow F .
See, e.g., Refs. [8, 13].

Definition:

F [ tf , ti ] is the number of eigenvalues of the Dirac Hamiltonian that
cross zero from below minus the number of eigenvalues that cross
zero from above, for the time interval [ ti, tf ] with ti < tf .
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2.5 EWBNV – Partial answer

E = 0

Figure 2: Spectral flow with F [ tf , ti ] = +1 − 0 = +1. Filling the

(infinite) Dirac sea at the initial time ti results in one extra fermion at the

final time tf .
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2.5 EWBNV – Partial answer

Strongly-dissipative∗ SU(2) gauge fields at finite energy have [8, 9, 10]:

F = ∆NCS[A associated vacuum] ≡ ∆Nwinding ∈ Z .

Now, there exist three weakly-dissipative,∗ spherically symmetric
gauge field solutions [Lüscher & Schechter, 1977] with

1. (low energy) ∆Nwinding = 0 and F = 0 ,

2. (moderate energy) ∆Nwinding = 1 and F = 1 ,

3. (high energy) ∆Nwinding = 1 and F = −1 .

⇒ [F 6= ∆Nwinding ] spherically symmetric fields
.

—————————————————————————
∗ For the precise definition of strongly/weakly-dissipative, see [11].
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2.5 EWBNV – Partial answer

In fact, there is another gauge field characteristic [11]:

∆Ntwist = 0 for case 1 and 2 ,

∆Ntwist = −2 for case 3 .

⇒ [F = ∆Nwinding +∆Ntwist ] spherically symmetric fields
.

For weakly dissipative or nondissipative gauge fields, one has thus

∆(B + L) = 2Nfam ×
(
∆NCS [A associated vacuum] + extra terms

)
.

But the “extra terms” are not known in general [12].

In short, the microphysics of EWBNV is not fully understood.
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3. Spectral flow and anomalies

Three sphalerons are relevant to the SM, each related to having a
nontrivial vacuum structure :

NCL of vacua

S*
VSV

S

NCS of vacua

where NCL/S stands for noncontractible loop/sphere.

Note that the V–S–V′ sketch above corresponds to Fig. 1.
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3. Spectral flow and anomalies

These sphalerons are, in fact, relevant to spectral flow (with fermion
masses from the Higgs field). The picture for S is well known (cone-like

for S∗ and Ŝ ):

E =    m

E = 0

F
er

m
io

n 
E

ne
rg

y

_

E = + m
Continuous Spectrum

Continuous Spectrum

S

In turn, these sphalerons are related to anomalies :

S to the chiral U(1) anomaly [Adler–Bell–Jackiw, 1969],
S∗ to the chiral nonperturbative SU(2) anomaly [Witten, 1982],

Ŝ to the chiral non-Abelian anomaly [Bardeen, 1969].
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3. Spectral flow and anomalies

These sphalerons are then relevant to the following physical processes:

S to B+L violation for the matter-antimatter asymmetry in the early universe,

S∗ to multiparticle production in high-energy scattering with
√
s ≥ ES∗ ,

Ŝ to nonperturbative dynamics of QCD.

The physics application of S is well known, even though far from being
understood completely (as discussed before).

For the rest of the talk, let me focus on Ŝ, which has an interesting
mathematical structure but a less clear physics application.
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4.0 Preliminary remarks

Before discussing the SU(3) sphaleron Ŝ, recall three basic facts of S.

First, the SU(2) sphaleron S can be embedded in SU(3) YMH theory
[strictly speaking, the embedded solution is the SU(2)× U(1) sphaleron].

Second, the SU(2) gauge and Higgs fields of S are determined by
two radial functions f(r) and h(r), as discussed before.

Third, the SU(2) sphaleron S has
a so-called hedgehog structure ,
i.e., a topologically nontrivial map

S
(space)
3 → SU

(internal)
2 = S

(internal)
3 .

Here a sketch of S(space)
2 → S

(internal)
2 :
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4.1 SU(3) sphaleron S-hat

Now turn to Ŝ, which is very different.

First, Ŝ exists in SU(3) YMH but not in SU(2) YMH theory.

Second, the self-consistent Ansatz of Ŝ requires eight axial functions
for the gauge field and three axial functions for the fundamental Higgs field.

Third, Ŝ does not have a hedgehog structure but a Jupiter-like structure :

for a given half-plane through the symmetry–axis with azimuthal angle
φ, the parallel components Ar and Aθ involve only one particular su(2)
subalgebra of su(3), whereas the orthogonal component Aφ excites
precisely the other five generators of su(3).
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4.1 SU(3) sphaleron S-hat

As to the reduced field equations, they are very difficult to solve,
even numerically.

Still it is possible to obtain an upper bound on the energy [3]:

EŜ

∣∣∣
λ/g2=0

< 1.72× ES , (2)

with ES ≡ 1.52× 4πv/g and λ the quartic Higgs coupling constant.

After several years of work, the numerical solution of the reduced field
equations has been obtained recently [K & Nagel, 2015] and the
numerical value for the energy is a

EŜ

∣∣∣
λ/g2=0

= (1.240± 0.003)× ES . (3)

a See, however, the Note Added on slide 34.
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4.1 SU(3) sphaleron S-hat
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ê p
ot

0 1 2 3 4 5 6

gvr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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Figure 3: Ŝ energy densities for λ/g2 = 0.

Physics Colloquium – SNU, October 14, 2015 (v4) – p. 32



4.1 SU(3) sphaleron S-hat
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Figure 4: Contours of the total energy density of Ŝ for λ/g2 = 0.
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4.1 SU(3) sphaleron S-hat

Mathematically, it is remarkable that the energy of Ŝ with eight gauge
fields is close to that of S with only four gauge fields. Most likely, this is
due to the highly-ordered (Jupiter-like) structure mentioned earlier.

Physically, it is important that the Ŝ barrier is low, as it implies that
related processes are little suppressed at high energies/temperatures
[the energy scale being set by QCD quantum effects, Λ ∼ 100 MeV].

Note Added (December 13, 2021):

The results of Eq. (3) and Figs. 3-4 are only approximative, as the
behavior of the fields near the origin was not treated properly.
Better numerical results have been obtained in Ref. [18].
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5. Conclusion

The mathematical physics of the sphaleron solutions is relatively
straightforward. Really difficult are the physics applications.

Let us mention three outstanding puzzles related to the three

sphalerons S, S∗, and Ŝ :

First, how does the B+L violation proceed microscopically at high
energies or high temperatures (the scale being set by ES ∼ 10 TeV)
and what is the proper selection rule?

Second, does EWSM multiparticle production in high-energy scattering
with

√
s ∼ ES∗ ∼ 20 TeV reach the unitarity limit?

Third, does Ŝ produce new physical effects in QCD?
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