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1. Introduction

We are motivated by the following question:

what happened at the birth of the Universe?

Or, at a more technical level:

what replaces the big bang singularity of Friedman cosmology?

How do we deal with infinities in QFT?
Easy: first, regularize and, then, find a better theory...

Let’s try to do something similar. First, we stay within GR and get a
“regularized” big bang.
Then, we look for a theory beyond GR (here, a nonperturbative

formulation of superstring theory) to get a “new phase” that replaces
the reqularized big bang and gives the “emergence of spacetime.”
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2. Big bang of Friedmann cosmology

Metric from the spatially flat Robertson—Walker (RW) Ansatz:

(RW)

5 5 (RW)
‘ = g (z) dat do

ds = —dt* + a*(t) bpn dz™ dx™, (1)

with 2 = ¢t and ¢ = 1. The spatial indices m, n run over {1, 2, 3}.

Matter as a homogeneous perfect fluid with energy density p,,(¢) and
pressure P, (t); define equation-of-state (EOS) parameter wy; = Py /pas-

Dynamics from Einstein’s gravitational field equation in GR.

= three ODEs, the Friedmann equations [1922, 1924].
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2. Big bang of Friedmann cosmology

For relativistic matter with constant EOS parameter wy; = 1/3, the
Friedmann—Lemaitre—Robertson—Walker (FLRW) solution is given by

(wrpr=1/3)
= t/t f t 2
a(t) e Vt/to, or t>0, (2a)
¢ =B A1) o< 1/ for t>0 2b
pum (t) e = pmo/a(t) oc 1/, >0, (2b)

with normalization a(tg) = 1 attg > 0.

The FLRW solution displays the big bang singularity for¢ — 07,

lim a(t) =0, (3)

t—0+

where the curvature and the energy density diverge.

But, at ¢t = 0, the theory (GR + SM) is no longer valid and we can ask:
what happens really at the big bang?
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3. Regularized big bang

Let us try to control the divergences by considering a new Ansatz for a
“regularized” big bang [1]:

(RWK) (RWK)
2
ds = gu(x)dz" dx”
t? 5

= —Ep dt* + a*(t) Spp dx™ dz™ (4a)
b > 0, (4b)
a*(t) > 0, (4c)
t € (—o0,00), z™ € (—o0,0), (4d)

where we set 2° = ¢t and ¢ = 1.

This metric g, (x) is degenerate , with a vanishing determinant at ¢ = 0.
In physical terms, there is a spacetime defect at ¢t = 0.
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2. Regularized big bang

With the standard Einstein equation and a homogeneous perfect fluid,
get modified spatially flat Friedmann equations:

_1+g- 92—% 5a
_ tz_ a — 3 PM ( )
2] (a1 fa\?\ v a

1+— | [=4= (= — 2= —47GP 5h
_+t2_ <a+2(a>> 5 G Py (5b)
, a

IOM“FSE[IOM“FPM]:Oa (5¢)
P = Pu(pur) s (5d)

where the overdot stands for differentiation with respect to t¢.

The standard Friedmann equations are recovered by setting the
singular b? /t* terms to zero.
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3. Regularized big bang

For constant EOS parameter wy; = 1/3, the new solution is

(wrpr=1/3) .
_ 2 2 2 2
a(t) ‘FLRWK = \/(t +02) /(83 + b?), (6a)
(war=1/3) 2 | 2.2 2 | 2.2
pal®) | = oo (4 07) /(12 4 1), (6b)
which is perfectly smooth at¢ =0 1
as long as b # 0. Figure compares 08N -
with the singular FLRW solution, as 0.6 \\ /
shown by the dashed curve. 0.4 N
0.2 -
'
0 t
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3. Regularized big bang

Two possible scenarios:

1. nonsingular bouncing cosmology fromt¢t = —ocotot = o0
(valid for b > Ilpjanck?) [gravitational waves generated in the pre-
bounce epoch keep on propagating into the postbounce epoch];

2. new phase att = 0 pair-produces a “universe” for ¢t > 0 and
an “antiuniverse” for t < 0 (valid for b ~ Ilpjanck?). < THIS TALK
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4. Emergent spacetime from IIB matrix model

For an explicit description of such a new phase, we can use the IIB
matrix model [Kawai and collaborators, 1997-1999], suggested as a
nonperturbative definition of superstring theory (M-theory).

The 1IB matrix model has a finite number of N x N traceless
Hermitian matrices: ten bosonic matrices A* and eight fermionic

(Majorana—Weyl) matrices V.

The partition function Z of the IIB matrix model is defined by the
following “path” integral:

7 = / dAdy e~ S V) = / dAdw e~ bos(A) = Stem (W, A) gy

where the bosonic action Sps(A) is quartic in A and the fermionic action
Sterm (¥, A) is quadratic in ¥ and linear in A4, i.e., Sierm = ¥ M(A) V.
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4. Emergent spacetime from IIB matrix model

The fermionic matrices ¥ can be integrated out exactly (Gaussian
integrals) and give the Pfaffian of M:

7 = / dA PHM(A)] e~ Sbos(A) = / dA ¢ Oeft(A) ®)

For the bosonic observable
WMt Hm — Ty (Aul Aum) : (9)

and arbitrary strings thereof, the expectation values are defined by the
same integral as in (8):

. Un wl...wz>

(wht - ‘
_/dA wﬂl CHm gy VL e ,,,wwl---wz)e_ eff (10)
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4. Emergent spacetime from IIB matrix model

But the 1IB matrix model just gives numbers , Z and the expectation
values (w w --- w ), and the matrices A* and ¥, in the “path” integral
are merely integration variables.

Moreover, there is no obvious small dimensionless parameter to
motivate a saddle-point approximation.

Hence, the conceptual question: |where is the classical spacetime?

Recently, we have suggested to revisit an old idea, the large-N master
field of Witten [1979].
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4. Emergent spacetime from IIB matrix model

According to Witten, the large-V factorization of the expectation values
implies that the path integrals are saturated by a single

configuration, the so-called master field An.
To leading order in IV, the expectation values are then given by

<w,u1 cee wl/l N ,wwl ...wz> ﬁ {U\Ml cor Um ,&]\I/l e Un ,&]\wl ...Wz’ (1161)
P B ETI'(A’ul"'A'um)- (11b)

Hence, we do not have to perform the integrals on the right-hand side

of (10): we just need ten traceless Hermitian matrices A* to get all
these expectation values from the simple procedure of replacing each

A" in the observables by the corresponding An.
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4. Emergent spacetime from IIB matrix model

Now, the boxed question on slide 11 can be answered [2]:

classical spacetime may reside in the bosonic master-field matrices AW
of the [IB matrix model.

The heuristics is as follows [3]:

B The expectation values (w#? -+ Hm ... ¥t “=) from (10Q), infinitely
many numbers, correspond to a large part of the information content
of the 1IB matrix model (but, of course, not all the information).

B That same information is contained in the master-field matrices 2“,
which, to leading order in IV, give the same numbers from the product
wht--km o wr--Yz where w IS the observable w evaluated for A.

B From these master-field matrices A#, it appears possible to extract
the points and metric of an emergent classical spacetime (recall
that the original matrices A* were merely integration variables).
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4. Emergent spacetime from IIB matrix model

Assuming that the matrices A+ of the 11B-matrix-model master field

are known and that they are approximately band-diagonal (as
suggested by certain numerical results), it is possible [2] to extract a
discrete set of spacetime points {z,'} and an interpolating metric g,,, ().
See also the review paper [3] for further discussion.

But, instead of assuming the matrices A+, we want to calculate them.

This project of getting solutions of the master-field equation  (an
algebraic-equation, in fact) has been started at the beginning of 2021.
These are some results but only for very small matrices; see details
and references in the review paper [4].

_ MWW2022 — Kiinkhamer (online) — Dec. 12, 2022 (v2) - p. 14




5. Conclusion

It is conceivable that a new physics phase gives rise to classical
spacetime, gravity, and matter, as described by our current theory
(GR + SM).

For an explicit calculation, we have considered the IIB matrix model

which has been proposed as a nonperturbative formulation of type-IIB
superstring theory (M-theory).

The crucial insight is that the emergent classical spacetime may reside
In the large-N master field A* of the 1IB matrix model.

We have now started to solve the full bosonic master-field equation of
the IIB matrix model: first results are in, but the road ahead is long and

arduous ...
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