Madrid Winter Workshop on Theoretical Physics

Dec. 12–15, 2022

Computense University of Madrid

Taming the Big Bang

Frans R. Klinkhamer

Institute for Theoretical Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany Email: frans.klinkhamer@kit.edu

On the MWW2022 webpage:

"What is it about? Why is it important? Perspectives."

 \rightarrow slide 2

We are motivated by the following question:

what happened at the birth of the Universe?

Or, at a more technical level:

what replaces the big bang singularity of Friedman cosmology?

How do we deal with infinities in QFT?

Easy: first, regularize and, then, find a better theory...

Let's try to do something similar. First, we stay within GR and get a "regularized" big bang.

Then, we look for a theory beyond GR (here, a nonperturbative formulation of superstring theory) to get a "new phase" that replaces the regularized big bang and gives the "emergence of spacetime."

2. Big bang of Friedmann cosmology

Metric from the spatially flat Robertson–Walker (RW) *Ansatz*:

$$ds^{2} \Big|^{(\mathsf{RW})} \equiv g_{\mu\nu}(x) \, dx^{\mu} \, dx^{\nu} \, \Big|^{(\mathsf{RW})} = -dt^{2} + a^{2}(t) \, \delta_{mn} \, dx^{m} \, dx^{n} \,, \quad (1)$$

with $x^0 = c t$ and c = 1. The spatial indices m, n run over $\{1, 2, 3\}$.

Matter as a homogeneous perfect fluid with energy density $\rho_M(t)$ and pressure $P_M(t)$; define equation-of-state (EOS) parameter $w_M \equiv P_M / \rho_M$.

Dynamics from Einstein's gravitational field equation in GR.

\Rightarrow three ODEs, the **Friedmann equations** [1922, 1924].

2. Big bang of Friedmann cosmology

For relativistic matter with constant EOS parameter $w_M = 1/3$, the Friedmann–Lemaître–Robertson–Walker (FLRW) solution is given by

$$a(t) \Big|_{\mathsf{FLRW}}^{(w_M = 1/3)} = \sqrt{t/t_0}, \qquad \text{for } t > 0, \quad (2a)$$

$$\rho_M(t) \Big|_{\text{FLRW}}^{(w_M = 1/3)} = \rho_{M0}/a^4(t) \propto 1/t^2, \quad \text{for } t > 0, \quad \text{(2b)}$$

with normalization $a(t_0) = 1$ at $t_0 > 0$.

The FLRW solution displays the **big bang singularity** for $t \to 0^+$,

$$\lim_{t \to 0^+} a(t) = 0,$$
(3)

where the curvature and the energy density diverge.

But, at t = 0, the theory (GR + SM) is no longer valid and we can ask: what happens **really** at the big bang?

Let us try to <u>control</u> the divergences by considering a new *Ansatz* for a "regularized" big bang [1]:

$$ds^{2} \Big|^{(\mathsf{RWK})} \equiv g_{\mu\nu}(x) \, dx^{\mu} \, dx^{\nu} \Big|^{(\mathsf{RWK})}$$
$$= -\frac{t^{2}}{t^{2} + b^{2}} \, dt^{2} + a^{2}(t) \, \delta_{mn} \, dx^{m} \, dx^{n} \,, \tag{4a}$$

$$b^2 > 0, (4b)$$

$$a^2(t) > 0, \qquad (4c)$$

$$t \in (-\infty, \infty), \quad x^m \in (-\infty, \infty),$$
 (4d)

where we set $x^0 = c t$ and c = 1.

This metric $g_{\mu\nu}(x)$ is **degenerate**, with a vanishing determinant at t = 0. In physical terms, there is a spacetime defect at t = 0.

With the standard Einstein equation and a homogeneous perfect fluid, get **modified** spatially flat Friedmann equations:

$$\left[1 + \frac{b^2}{t^2}\right] \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \rho_M , \qquad (5a)$$

$$\left[1 + \frac{b^2}{t^2}\right] \left(\frac{\ddot{a}}{a} + \frac{1}{2} \left(\frac{\dot{a}}{a}\right)^2\right) - \frac{b^2}{t^3} \frac{\dot{a}}{a} = -4\pi G P_M , \qquad (5b)$$

$$\dot{\rho}_M + 3 \,\frac{\dot{a}}{a} \left[\rho_M + P_M \right] = 0 \,, \tag{5c}$$

$$P_M = P_M(\rho_M) , \qquad (5d)$$

where the overdot stands for differentiation with respect to t.

The standard Friedmann equations are recovered by setting the singular b^2/t^2 terms to zero.

For constant EOS parameter $w_M = 1/3$, the new solution is

$$a(t)\Big|_{\mathsf{FLRWK}}^{(w_M=1/3)} = \sqrt[4]{(t^2+b^2)/(t_0^2+b^2)}, \qquad (6a)$$

$$\rho_M(t) \Big|_{\mathsf{FLRWK}}^{(w_M = 1/3)} = \rho_{M0} \left(t_0^2 + b^2 \right) / \left(t^2 + b^2 \right), \tag{6b}$$

which is **perfectly smooth** at t = 0as long as $b \neq 0$. Figure compares with the singular FLRW solution, as shown by the dashed curve.

Two possible scenarios:

- 1. **nonsingular bouncing cosmology** from $t = -\infty$ to $t = \infty$ (valid for $b \gg l_{\text{Planck}}$?) [gravitational waves generated in the prebounce epoch keep on propagating into the postbounce epoch];
- 2. **new phase** at t = 0 pair-produces a "universe" for t > 0 and an "antiuniverse" for t < 0 (valid for $b \sim l_{\text{Planck}}$?). \Leftarrow THIS TALK

For an explicit description of such a new phase, we can use the IIB matrix model [Kawai and collaborators, 1997-1999], suggested as a nonperturbative definition of superstring theory (M-theory).

The IIB matrix model has a **finite number** of $N \times N$ traceless Hermitian matrices: ten bosonic matrices A^{μ} and eight fermionic (Majorana–Weyl) matrices Ψ_{α} .

The partition function Z of the IIB matrix model is defined by the following "path" integral:

$$Z = \int dA \, d\Psi \, e^{-S(A, \Psi)} = \int dA \, d\Psi \, e^{-S_{\text{bos}}(A) - S_{\text{ferm}}(\Psi, A)}, \quad (7)$$

where the bosonic action $S_{\text{bos}}(A)$ is quartic in A and the fermionic action $S_{\text{ferm}}(\Psi, A)$ is quadratic in Ψ and linear in A, i.e., $S_{\text{ferm}} = \overline{\Psi} \mathcal{M}(A) \Psi$.

The fermionic matrices Ψ can be integrated out exactly (Gaussian integrals) and give the Pfaffian of \mathcal{M} :

$$Z = \int dA \operatorname{Pf}[\mathcal{M}(A)] e^{-S_{\operatorname{bos}}(A)} \equiv \int dA e^{-S_{\operatorname{eff}}(A)}.$$
 (8)

For the bosonic observable

$$w^{\mu_1 \dots \mu_m} = \operatorname{Tr} \left(A^{\mu_1} \cdots A^{\mu_m} \right), \tag{9}$$

and arbitrary strings thereof, the expectation values are defined by the same integral as in (8):

$$\langle w^{\mu_1 \dots \mu_m} w^{\nu_1 \dots \nu_n} \cdots w^{\omega_1 \dots \omega_z} \rangle$$

$$= \frac{1}{Z} \int dA \left(w^{\mu_1 \dots \mu_m} w^{\nu_1 \dots \nu_n} \cdots w^{\omega_1 \dots \omega_z} \right) e^{-S_{\text{eff}}}.$$
(10)

But the IIB matrix model just gives **numbers**, Z and the expectation values $\langle w w \cdots w \rangle$, and the matrices A^{μ} and Ψ_{α} in the "path" integral are merely integration variables.

Moreover, there is no obvious small dimensionless parameter to motivate a saddle-point approximation.

Hence, the **conceptual** question: | where is the classical spacetime?

Recently, we have suggested to revisit an old idea, the large-N master field of Witten [1979].

According to Witten, the large-*N* factorization of the expectation values (10) implies that the path integrals are saturated by a <u>single</u> configuration, the so-called **master field** \hat{A}^{μ} .

To leading order in N, the expectation values are then given by

$$\langle w^{\mu_1 \dots \mu_m} w^{\nu_1 \dots \nu_n} \cdots w^{\omega_1 \dots \omega_z} \rangle \stackrel{N}{=} \widehat{w}^{\mu_1 \dots \mu_m} \widehat{w}^{\nu_1 \dots \nu_n} \cdots \widehat{w}^{\omega_1 \dots \omega_z},$$
 (11a)

$$\widehat{w}^{\,\mu_1\,\dots\,\mu_m} \equiv \operatorname{Tr}\left(\widehat{A}^{\,\mu_1}\,\cdots\,\widehat{A}^{\,\mu_m}\right). \tag{11b}$$

Hence, we do not have to perform the integrals on the right-hand side of (10): we just need ten traceless Hermitian matrices \hat{A}^{μ} to get *all* these expectation values from the simple procedure of replacing each A^{μ} in the observables by the corresponding \hat{A}^{μ} .

Now, the boxed question on slide 11 can be answered [2]:

classical spacetime may reside in the bosonic master-field matrices $\widehat{A}^{\,\mu}$ of the IIB matrix model.

The heuristics is as follows [3]:

- The expectation values $\langle w^{\mu_1 \dots \mu_m} \dots w^{\omega_1 \dots \omega_z} \rangle$ from (10), infinitely many numbers, correspond to a large part of the **information content** of the IIB matrix model (but, of course, not all the information).
- That **same** information is contained in the master-field matrices \widehat{A}^{μ} , which, to leading order in N, give the same numbers from the product $\widehat{w}^{\mu_1 \dots \mu_m} \dots \widehat{w}^{\omega_1 \dots \omega_z}$, where \widehat{w} is the observable w evaluated for \widehat{A} .
- From these master-field matrices \widehat{A}^{μ} , it appears possible to **extract** the points and metric of an emergent classical spacetime (recall that the original matrices A^{μ} were merely integration variables).

Assuming that the matrices \widehat{A}^{μ} of the IIB-matrix-model master field are known and that they are approximately band-diagonal (as suggested by certain numerical results), it is possible [2] to extract a discrete set of spacetime points $\{\widehat{x}_{k}^{\mu}\}$ and an interpolating metric $g_{\mu\nu}(x)$. See also the review paper [3] for further discussion.

But, instead of assuming the matrices \widehat{A}^{μ} , we want to **calculate** them.

This project of getting **solutions of the master-field equation** (an algebraic-equation, in fact) has been started at the beginning of 2021. These are some results but only for very small matrices; see details and references in the review paper [4].

5. Conclusion

It is conceivable that a **new physics phase** gives rise to classical spacetime, gravity, and matter, as described by our current theory (GR + SM).

For an <u>explicit</u> calculation, we have considered the **IIB matrix model**, which has been proposed as a nonperturbative formulation of type-IIB superstring theory (M-theory).

The crucial insight is that the emergent classical spacetime may reside in the large-N master field \hat{A}^{μ} of the IIB matrix model.

We have now started to **solve** the full bosonic master-field equation of the IIB matrix model: first results are in, but the road ahead is long and arduous ...

6. Two research papers and two reviews

[1] F.R. Klinkhamer,

"Regularized big bang singularity," Phys. Rev. D **100**, 023536 (2019), arXiv:1903.10450.

[2] F.R. Klinkhamer,

"IIB matrix model: Emergent spacetime from the master field," Prog. Theor. Exp. Phys. **2021**, 013B04 (2021), arXiv:2007.08485.

[3] F.R. Klinkhamer,

"M-theory and the birth of the Universe," Acta Phys. Polon. B **52**, 1007 (2021), arXiv:2102.11202.

[4] F.R. Klinkhamer,

"IIB matrix model, bosonic master field, and emergent spacetime," PoS CORFU2021 259, arXiv:2203.15779.