Madrid Winter Workshop on Theoretical Physics
Computense University of Madrid

Taming the Big Bang

Frans R. Klinkhamer

Institute for Theoretical Physics,
Karlsruhe Institute of Technology (KIT),
76128 Karlsruhe, Germany
Email: frans.klinkhamer@kit.edu

On the MWW2022 webpage:
"What is it about? Why is it important? Perspectives."

1. Introduction

We are motivated by the following question:
what happened at the birth of the Universe?
Or, at a more technical level:
what replaces the big bang singularity of Friedman cosmology?
How do we deal with infinities in QFT?
Easy: first, regularize and, then, find a better theory...
Let's try to do something similar. First, we stay within GR and get a "regularized" big bang.
Then, we look for a theory beyond GR (here, a nonperturbative formulation of superstring theory) to get a "new phase" that replaces the regularized big bang and gives the "emergence of spacetime."

2. Big bang of Friedmann cosmology

Metric from the spatially flat Robertson-Walker (RW) Ansatz:

$$
\begin{equation*}
\left.\left.d s^{2}\right|^{(\mathrm{RW})} \equiv g_{\mu \nu}(x) d x^{\mu} d x^{\nu}\right|^{(\mathrm{RW})}=-d t^{2}+a^{2}(t) \delta_{m n} d x^{m} d x^{n}, \tag{1}
\end{equation*}
$$

with $x^{0}=c t$ and $c=1$. The spatial indices m, n run over $\{1,2,3\}$.

Matter as a homogeneous perfect fluid with energy density $\rho_{M}(t)$ and pressure $P_{M}(t)$; define equation-of-state (EOS) parameter $w_{M} \equiv P_{M} / \rho_{M}$.

Dynamics from Einstein's gravitational field equation in GR.
\Rightarrow three ODEs, the Friedmann equations [1922, 1924].

2. Big bang of Friedmann cosmology

For relativistic matter with constant EOS parameter $w_{M}=1 / 3$, the Friedmann-Lemaître-Robertson-Walker (FLRW) solution is given by

$$
\begin{align*}
\left.a(t)\right|_{\text {FLRW }} ^{\left(w_{M}=1 / 3\right)} & =\sqrt{t / t_{0}}, \tag{2a}\\
\left.\rho_{M}(t)\right|_{\text {FLRW }} ^{\left(w_{M}=1 / 3\right)} & \text { for } t>0, \tag{2b}\\
\rho_{M 0} / a^{4}(t) \propto 1 / t^{2}, & \text { for } t>0,
\end{align*}
$$

with normalization $a\left(t_{0}\right)=1$ at $t_{0}>0$.
The FLRW solution displays the big bang singularity for $t \rightarrow 0^{+}$,

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} a(t)=0 \tag{3}
\end{equation*}
$$

where the curvature and the energy density diverge.
But, at $t=0$, the theory ($\mathrm{GR}+\mathrm{SM}$) is no longer valid and we can ask: what happens really at the big bang?

3. Regularized big bang

Let us try to control the divergences by considering a new Ansatz for a "regularized" big bang [1]:

$$
\begin{align*}
\left.d s^{2}\right|^{(\mathrm{RWK})} & \left.\equiv g_{\mu \nu}(x) d x^{\mu} d x^{\nu}\right|^{(\mathrm{RWK})} \\
& =-\frac{t^{2}}{t^{2}+b^{2}} d t^{2}+a^{2}(t) \delta_{m n} d x^{m} d x^{n}, \tag{4a}\\
b^{2} & >0 \tag{4b}\\
a^{2}(t) & >0, \tag{4c}\\
t & \in(-\infty, \infty), \quad x^{m} \in(-\infty, \infty), \tag{4d}
\end{align*}
$$

where we set $x^{0}=c t$ and $c=1$.
This metric $g_{\mu \nu}(x)$ is degenerate, with a vanishing determinant at $t=0$. In physical terms, there is a spacetime defect at $t=0$.

2. Regularized big bang

With the standard Einstein equation and a homogeneous perfect fluid, get modified spatially flat Friedmann equations:

$$
\begin{align*}
& {\left[1+\frac{b^{2}}{t^{2}}\right]\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho_{M},} \tag{5a}\\
& {\left[1+\frac{b^{2}}{t^{2}}\right]\left(\frac{\ddot{a}}{a}+\frac{1}{2}\left(\frac{\dot{a}}{a}\right)^{2}\right)-\frac{b^{2}}{t^{3}} \frac{\dot{a}}{a}=-4 \pi G P_{M},} \tag{5b}\\
& \dot{\rho}_{M}+3 \frac{\dot{a}}{a}\left[\rho_{M}+P_{M}\right]=0, \tag{5c}\\
& P_{M}=P_{M}\left(\rho_{M}\right), \tag{5d}
\end{align*}
$$

where the overdot stands for differentiation with respect to t.
The standard Friedmann equations are recovered by setting the singular b^{2} / t^{2} terms to zero.

3. Regularized big bang

For constant EOS parameter $w_{M}=1 / 3$, the new solution is

$$
\begin{align*}
\left.a(t)\right|_{\text {FLRWK }} ^{\left(w_{M}=1 / 3\right)} & =\sqrt[4]{\left(t^{2}+b^{2}\right) /\left(t_{0}^{2}+b^{2}\right)}, \tag{6a}\\
\left.\rho_{M}(t)\right|_{\text {FLRWK }} ^{\left(w_{M}=1 / 3\right)} & =\rho_{M 0}\left(t_{0}^{2}+b^{2}\right) /\left(t^{2}+b^{2}\right), \tag{6b}
\end{align*}
$$

which is perfectly smooth at $t=0$ as long as $b \neq 0$. Figure compares with the singular FLRW solution, as shown by the dashed curve.

3. Regularized big bang

Two possible scenarios:

1. nonsingular bouncing cosmology from $t=-\infty$ to $t=\infty$ (valid for $b \gg l_{\text {Planck }}$?) [gravitational waves generated in the prebounce epoch keep on propagating into the postbounce epoch];
2. new phase at $t=0$ pair-produces a "universe" for $t>0$ and an "antiuniverse" for $t<0$ (valid for $b \sim l_{\text {Planck }}$?). \Leftarrow THIS TALK

4. Emergent spacetime from IIB matrix model

For an explicit description of such a new phase, we can use the IIB matrix model [Kawai and collaborators, 1997-1999], suggested as a nonperturbative definition of superstring theory (M-theory).

The IIB matrix model has a finite number of $N \times N$ traceless Hermitian matrices: ten bosonic matrices A^{μ} and eight fermionic (Majorana-Weyl) matrices Ψ_{α}.

The partition function Z of the IIB matrix model is defined by the following "path" integral:

$$
\begin{equation*}
Z=\int d A d \Psi e^{-S(A, \Psi)}=\int d A d \Psi e^{-S_{\mathrm{bos}}(A)-S_{\mathrm{ferm}}(\Psi, A)}, \tag{7}
\end{equation*}
$$

where the bosonic action $S_{\text {bos }}(A)$ is quartic in A and the fermionic action $S_{\text {ferm }}(\Psi, A)$ is quadratic in Ψ and linear in A, i.e., $S_{\text {ferm }}=\bar{\Psi} \mathcal{M}(A) \Psi$.

4. Emergent spacetime from I|B matrix model

The fermionic matrices Ψ can be integrated out exactly (Gaussian integrals) and give the Pfaffian of \mathcal{M} :

$$
\begin{equation*}
Z=\int d A \operatorname{Pf}[\mathcal{M}(A)] e^{-S_{\mathrm{bos}}(A)} \equiv \int d A e^{-S_{\mathrm{eff}}(A)} \tag{8}
\end{equation*}
$$

For the bosonic observable

$$
\begin{equation*}
w^{\mu_{1} \ldots \mu_{m}}=\operatorname{Tr}\left(A^{\mu_{1}} \cdots A^{\mu_{m}}\right), \tag{9}
\end{equation*}
$$

and arbitrary strings thereof, the expectation values are defined by the same integral as in (8):

$$
\begin{align*}
& \left\langle w^{\mu_{1} \ldots \mu_{m}} w^{\nu_{1} \ldots \nu_{n}} \cdots w^{\omega_{1} \ldots \omega_{z}}\right\rangle \\
& =\frac{1}{Z} \int d A\left(w^{\mu_{1} \ldots \mu_{m}} w^{\nu_{1} \ldots \nu_{n}} \cdots w^{\omega_{1} \ldots \omega_{z}}\right) e^{-S_{\text {eff }}} . \tag{10}
\end{align*}
$$

4. Emergent spacetime from IIB matrix model

But the IIB matrix model just gives numbers, Z and the expectation values $\langle w w \cdots w\rangle$, and the matrices A^{μ} and Ψ_{α} in the "path" integral are merely integration variables.

Moreover, there is no obvious small dimensionless parameter to motivate a saddle-point approximation.

Hence, the conceptual question: where is the classical spacetime?

Recently, we have suggested to revisit an old idea, the large- N master field of Witten [1979].

4. Emergent spacetime from I|B matrix model

According to Witten, the large- N factorization of the expectation values (10) implies that the path integrals are saturated by a single configuration, the so-called master field \widehat{A}^{μ}.

To leading order in N, the expectation values are then given by

$$
\begin{align*}
& \left\langle w^{\mu_{1} \ldots \mu_{m}} w^{\nu_{1} \ldots \nu_{n}} \cdots w^{\omega_{1} \ldots \omega_{z}}\right\rangle \stackrel{N}{=} \widehat{w}^{\mu_{1} \ldots \mu_{m}} \widehat{w}^{\nu_{1} \ldots \nu_{n}} \cdots \widehat{w}^{\omega_{1} \ldots \omega_{z}}, \tag{11a}\\
& \widehat{w}^{\mu_{1} \ldots \mu_{m}} \equiv \operatorname{Tr}\left(\widehat{A}^{\mu_{1}} \cdots \widehat{A}^{\mu_{m}}\right) \tag{11b}
\end{align*}
$$

Hence, we do not have to perform the integrals on the right-hand side of (10): we just need ten traceless Hermitian matrices \widehat{A}^{μ} to get all these expectation values from the simple procedure of replacing each A^{μ} in the observables by the corresponding \widehat{A}^{μ}.

4. Emergent spacetime from I|B matrix model

Now, the boxed question on slide 11 can be answered [2]:
classical spacetime may reside in the bosonic master-field matrices \widehat{A}^{μ} of the IIB matrix model.

The heuristics is as follows [3]:

- The expectation values $\left\langle w^{\mu_{1} \ldots \mu_{m}} \cdots w^{\omega_{1} \ldots \omega_{z}}\right\rangle$ from (10), infinitely many numbers, correspond to a large part of the information content of the IIB matrix model (but, of course, not all the information).
- That same information is contained in the master-field matrices \widehat{A}^{μ}, which, to leading order in N, give the same numbers from the product $\widehat{w}^{\mu_{1} \ldots \mu_{m}} \ldots \widehat{w}^{\omega_{1} \ldots \omega_{z}}$, where \widehat{w} is the observable w evaluated for \widehat{A}.
- From these master-field matrices \widehat{A}^{μ}, it appears possible to extract the points and metric of an emergent classical spacetime (recall that the original matrices A^{μ} were merely integration variables).

4. Emergent spacetime from I|B matrix model

Assuming that the matrices \widehat{A}^{μ} of the IIB-matrix-model master field are known and that they are approximately band-diagonal (as suggested by certain numerical results), it is possible [2] to extract a discrete set of spacetime points $\left\{\widehat{x}_{k}^{\mu}\right\}$ and an interpolating metric $g_{\mu \nu}(x)$. See also the review paper [3] for further discussion.

But, instead of assuming the matrices \widehat{A}^{μ}, we want to calculate them.
This project of getting solutions of the master-field equation (an algebraic-equation, in fact) has been started at the beginning of 2021. These are some results but only for very small matrices; see details and references in the review paper [4].

5. Conclusion

It is conceivable that a new physics phase gives rise to classical spacetime, gravity, and matter, as described by our current theory (GR + SM).

For an explicit calculation, we have considered the IIB matrix model, which has been proposed as a nonperturbative formulation of type-IIB superstring theory (M-theory).

The crucial insight is that the emergent classical spacetime may reside in the large-N master field \widehat{A}^{μ} of the IIB matrix model.

We have now started to solve the full bosonic master-field equation of the IIB matrix model: first results are in, but the road ahead is long and arduous ...

6. Two research papers and two reviews

[1] F.R. Klinkhamer,
"Regularized big bang singularity,"
Phys. Rev. D 100, 023536 (2019), arXiv:1903.10450.
[2] F.R. Klinkhamer, "IIB matrix model: Emergent spacetime from the master field," Prog. Theor. Exp. Phys. 2021, 013B04 (2021), arXiv:2007.08485.
[3] F.R. Klinkhamer, "M-theory and the birth of the Universe," Acta Phys. Polon. B 52, 1007 (2021), arXiv:2102.11202.
[4] F.R. Klinkhamer, "IIB matrix model, bosonic master field, and emergent spacetime," PoS CORFU2021 259, arXiv:2203.15779.

