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1. Algebraic equation

The equation of the title is an algebraic equation for D traceless
Hermitian matrices â µ of dimension N ×N :

i
(
p̂k − p̂l

)
â µ

kl =
[
â ν ,

[
â ν , â µ

]]
kl
− F

1

P(â)

∂ P(â)

∂ â µ
lk

+ η̂ µ
kl , (1a)

P(â) = homogeneous polynomial of degree K , (1b)

K ≡
(
D − 2

) (
N2 − 1

)
, (1c)

(D, F ) = (10, 1), N ≫ 1 , (1d)

with matrix indices k, l running over {1, . . . , N} and directional indices
µ, ν running over {1, . . . , D}, while ν in (1a) is implicitly summed over.
The p̂k are fixed uniform random numbers and the η̂ µ

kl fixed Gaussian
random numbers.
There is an explicit expression for the Pfaffian P to be discussed later.
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1. Algebraic equation

The algebraic equation (1) is quite a challenge for mathematics and
computational science.

But why is that equation also of interest to physics?

Well, the answer is that its solution may contain information about

the emergence of spacetime and the birth of the Universe .

Here, I can only give some background in an ultrashort version
(a short version appears in Appendix A), as the main focus will be
on discussing preliminary solutions of this algebraic equation.
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2. Background (ultrashort version)

We start from the IIB matrix model [1, 2], which reproduces the
structure of the light-cone string field theory of type-IIB superstrings.

The IIB matrix model has a finite number of N ×N traceless
Hermitian matrices: ten bosonic matrices Aµ and eight fermionic
(Majorana–Weyl) matrices Ψα.

The partition function Z of the IIB matrix model is defined by a “path”
integral over A and Ψ with a weight factor exp[−Sbos(A)− Sferm(Ψ, A)].
The fermionic matrices Ψ can be integrated out exactly (Gaussian
integrals) and then give the Pfaffian P(A).

For strings of bosonic observables, the expectation values are defined
by the same A-integral as Z, that is, involving the exponential weight
factor with the bosonic action, exp[−Sbos(A)], and the Pfaffian P(A).

For large N , these expectation values can also be obtained by
inserting the matrices Âµ of the so-called master-field [3, 4] directly
into the observables, without need of any integration.
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2. Background (ultrashort version)

Recently, we have suggested [5] that precisely the master-field
matrices Âµ of the IIB matrix model may give rise to an emergent
classical spacetime.

Assuming that the matrices Âµ of the IIB-matrix-model master field
are known and that they are approximately band-diagonal, it relatively
easy [5] to extract a discrete set of spacetime points {x̂µ

k } and an
interpolating (inverse) metric gµν(x).

It has also been established that, in principle, it is possible to get, from
appropriate distributions of the extracted spacetime points {x̂µ

k }, the
metrics of the Minkowski and the spatially flat Robertson–Walker
spacetimes. See the recent review [6] for further discussion.

But, instead of assuming the matrices Âµ, we want to calculate them.
And, for that, we need an equation . . .
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3. Equation and solutions

GOOD NEWS:

the master-field equation has already been established, nearly 40
years ago, by Greensite and Halpern [4], who write in the first line of
their abstract:

“We derive an exact algebraic (master) equation for the euclidean
master field of any large-N matrix theory, including quantum
chromodynamics.”

Now, “any” means “any” and we may as well consider the large-N IIB
matrix theory of Kawai and collaborators [1, 2].
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3.1 Bosonic master-field equation

Building on this work by Greensite and Halpern [4], we then have the
IIB-matrix-model bosonic master field in “quenched” form [5]:

Â µ
kl = ei (p̂k − p̂l) τeq â µ

kl . (2a)

The dimensionless time τeq in (2a) must have a sufficiently large value
in order to represent an equilibrium situation (τ is the fictitious
Langevin time of the stochastic-quantization procedure).
The τ -independent matrix â µ on the right-hand side of (2a) solves the
following algebraic equation [5]:

i
(
p̂k − p̂l

)
â µ

kl = −
∂ Seff

∂ âµ lk

+ η̂ µ
kl , (2b)

in terms of the master momenta p̂k (uniform random numbers) and the
master noise matrices η̂ µ

kl (Gaussian random numbers). The algebraic
equation (2b) is, of course, precisely (1).
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3.2 Solutions of the simplified equation

The algebraic equation (1) is rather formidable and it makes sense to
first consider the simplified equation obtained by setting F = 0:

i
(
p̂k − p̂l

)
â µ

kl =
[
â ν ,

[
â ν , â µ

]]
kl
+ η̂ µ

kl . (3)

The matrices â µ are N ×N traceless Hermitian matrices and the
number of variables is

Nvar = D
(
N2 − 1

)
, (4)

which grows rapidly with increasing N . Remark also that the simplified
equation (3) is essentially a cubic polynomial .

It appears impossible to obtain a general analytic solution of (3) in
terms of the master constants p̂k and η̂ µ

kl. Instead, we will try to get
solutions for an explicit choice for the random master constants.

F.R. Klinkhamer, Moscow (Zoom), September 6, 2021 (v1.01) – p. 8



3.2 Solutions of the simplified equation

For (D, N) = (2, 6), consider the simplified equation (3) for 70
variables, with a particular realization (the “alpha-realization”) of the
pseudorandom numbers entering the equation. Other realizations
give similar results.

Specifically, we take the following 6 pseudorandom numbers for the
master momenta:

p̂α-realization =

{
53

500
, −

9

100
, −

441

1000
,

217

1000
,

371

1000
,
19

40

}
, (5)

and the following 70 pseudorandom numbers for the master noise
(splitting the matrices into real and imaginary parts):
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3.3 Solutions of the simplified equation

Re
[
η̂ 1
α-realization

]
=




− 81
125

71
1000 − 151

500
371
500 − 83

200
491
1000

71
1000 − 279

1000 − 259
500 − 13

1000 − 493
500

449
1000

− 151
500 − 259

500 − 413
1000

911
1000

203
250

299
1000

371
500 − 13

1000
911
1000

671
1000 − 417

500 − 913
1000

− 83
200 − 493

500
203
250 − 417

500
51
125

181
250

491
1000

449
1000

299
1000 − 913

1000
181
250

261
1000




, (6)

Im
[
η̂ 1
α-realization

]
=




0 − 441
1000 − 17

250 − 87
1000 − 127

200 − 199
500

441
1000 0 − 177

250 − 783
1000 − 303

500
969
1000

17
250

177
250 0 − 14

25
259
1000 − 711

1000
87

1000
783
1000

14
25 0 43

250
1

125
127
200

303
500 − 259

1000 − 43
250 0 − 491

1000
199
500 − 969

1000
711
1000 − 1

125
491
1000 0




, (7)
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3.2 Solutions of the simplified equation

Re
[
η̂ 2
α-realization

]
=




41
200

53
1000 − 241

250
621
1000

3
20 − 51

200
53

1000 − 139
500

23
200 − 557

1000
7

100 − 137
200

− 241
250

23
200 − 31

500 − 22
125

14
25 − 31

100
621
1000 − 557

1000 − 22
125

289
1000 − 227

1000 − 103
200

3
20

7
100

14
25 − 227

1000
17

1000
369
1000

− 51
200 − 137

200 − 31
100 − 103

200
369
1000 − 171

1000




, (8)

Im
[
η̂ 2
α-realization

]
=




0 449
500 − 31

250
233
1000 − 413

500 − 807
1000

− 449
500 0 − 56

125
7
50 − 77

200
23
500

31
250

56
125 0 409

500
57
250 − 689

1000

− 233
1000 − 7

50 − 409
500 0 189

500 − 953
1000

413
500

77
200 − 57

250 − 189
500 0 47

200
807
1000 − 23

500
689
1000

953
1000 − 47

200 0




, (9)
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3.2 Solutions of the simplified equation

A particular solution [7] for the 70 variables of the simplified equation
(3) with the alpha-realization of pseudorandom constants is given by
â 1
α-sol and â 2

α-sol . Consider the absolute values of the matrix entries:

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

Abs[a
1

α sol]

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

Abs[a
2

α sol]

⇒ no obvious band-diagonal structure.
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3.2 Solutions of the simplified equation

Now, change the basis, in order to diagonalize and order the µ = 1

matrix. This gives the matrices â ′ 1
α-sol and â ′ 2

α-sol . Consider the absolute
values of the matrix entries:

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

Abs[a '1α-sol]

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

Abs[a '2α-sol]

⇒ a diagonal/band-diagonal structure, a highly nontrivial result !
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3.2 Solutions of the simplified equation

The values (D, N) = (2, 6) are, of course, rather small. But . . .

. . . scientists at Google Research, Zürich, now have obtained
numerical solutions of the simplified equation (3) with (D, N) =
(10, 50) and these solutions apparently also display a diagonal/
band-diagonal structure [T. Fischbacher, private communication].

In short, work is in progress on solving and understanding the
simplified algebraic equation . . .

As mentioned before, the diagonal/band-diagonal structure of the
master-field matrices allows for the extraction of a classical spacetime,
but, first, we need to make sure that dynamical fermions do not spoil
this structure.
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3.3 Solutions of the full equation

We now look for solutions of the full bosonic master-field equation (1),
with F = 1 to include the dynamic fermions, but, first, with rather small
values of D and N .

The Pfaffian is a K-th order polynomial, denoted symbolically by
PK(A), with K = (D − 2) (N2 − 1) according to (1c).

The basic structure of the algebraic equation (1) is then as follows:

P
( p̂ )
1 (â ) = P3 (â ) + F

PK−1 (â )

PK (â )
+ P

( η̂ )
0 (â ) , (10)

where the suffixes on P1 and P0 indicate their respective dependence
on the master momenta p̂k and the master noise η̂ µ

kl .

If we multiply (10) by PK (â ), we get a polynomial equation of order K + 3:

P
( p̂ )
K+1 (â ) = PK+3 (â ) + F PK−1 (â ) + P

( η̂ )
K (â ) . (11)
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3.3 Solutions of the full equation

As a start, we have considered the case
{
D, N, F

}
=

{
3, 3, 1

}
, (12)

for which the model still has a supersymmetry invariance and the eight
generators T I are proportional to the 3× 3 Gell-Mann matrices λI . The
bosonic matrices are expanded as Aµ = Aµ

I T
I , with real coefficients Aµ

I .

Remarkably, there is now an explicit result [9] for the Pfaffian,

P3, 3[A] = −
3

4
Tr
([

Aµ, Aν
] {

Aρ, Aσ
})

Tr
([

Aµ, Aν
] {

Aρ, Aσ
})

+
6

5
Tr
(
Aµ

[
Aν , Aρ

] )
Tr
(
Aµ

[{
Aν , Aσ

}
,
{
Aρ, Aσ

}] )
, (13)

which corresponds to a real homogenous eighth-order polynomial in
the bosonic coefficients Aµ

I .
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3.3 Solutions of the full equation

Taking an explicit realization of the random constants, we have
established the existence of several solutions of the full bosonic
master-field equation (1) for the case (D, N) = (3, 3).

Moreover, there is a suggested diagonal/band-diagonal structure, but
the value N = 3 is too small for definitive statements. Further details
can be found in Ref. [8].
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3.3 Solutions of the full equation

The result for the case (12) was obtained by a direct algebraic calculation.
Further progress may be obtained by an indirect numerical approach.

The idea (emphasized to me by Jun Nishimura) is to use the fact that
the square of the Pfaffian of the skew-symmetric matrix M = M(â)
equals its determinant,

[
Pf(M)

]2
= detM , (14a)

so that we can write the variational term in the algebraic equation (1)
as a trace,

1

Pf(M)
δ Pf(M) =

1

2
Tr
[
M−1δM

]
, (14b)

and this trace can be evaluated numerically (as used in Ref. [10] and
earlier papers). This work is still in progress, see the next slide.
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3.3 Solutions of the full equation

Table 1: Numerical solutions of the full (F = 1) bosonic master-field equa-

tion (1). The number of variables Nvar is given by (4) and the equation is a

polynomial of order Npoly = K + 3, with K given by (1c).

Nvar Npoly status

(D, N) = (3, 3) 24 11 done (∼ 1/2 hr) a

(D, N) = (10, 3) 80 67 done (∼ 76 hrs)

(D, N) = (10, 4) 150 b 123 work in progress (?)

a previous algebraic results reproduced
b complex variables in the solution, as the Pfaffian P(â) is complex
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4. Conclusions

It is conceivable that a new physics phase gives rise to classical
spacetime, gravity, and matter, as described by our current theories
(General Relativity and the Standard Model).

For an explicit calculation, we have considered the IIB matrix model ,
which has been proposed as a nonperturbative formulation of type-IIB
superstring theory (M-theory).

The crucial insight is that the emergent classical spacetime may reside
in the large-N master field Â

µ of the IIB matrix model.

We have now started to solve the full bosonic master-field equation of
the IIB matrix model: first results are in, but the road ahead is long and
arduous ...
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A. Background (short version)

The algebraic equation of interest arises from the IKKT matrix
model [1]. That model is also known as the IIB matrix model [2], as the
matrix model reproduces the basic structure of the light-cone string
field theory of type-IIB superstrings.

The IIB matrix model has a finite number of N ×N traceless Hermitian
matrices: ten bosonic matrices Aµ and eight fermionic (Majorana–Weyl)
matrices Ψα.

The partition function Z of the IIB matrix model is defined by the
following “path” integral:

Z =

∫
dAdΨ e−S(A, Ψ) =

∫
dAdΨ e−Sbos(A)− Sferm(Ψ, A), (A.1)

where the bosonic action Sbos(A) is quartic in A and the fermionic action
Sferm(Ψ, A) is quadratic in Ψ and linear in A, i.e., Sferm = ΨM(A)Ψ.
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A. Background (short version)

The fermionic matrices Ψ can be integrated out exactly (Gaussian
integrals) and give the Pfaffian Pf[M(A)] ≡ P(A):

Z =

∫
dA P(A) e−Sbos(A) ≡

∫
dA e−Seff(A) . (A.2)

For the bosonic observable

wµ1 ... µm = Tr
(
Aµ1 · · · Aµm

)
, (A.3)

and arbitrary strings thereof, the expectation values are defined by the
same integral as in (A.2):

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz〉

=
1

Z

∫
dA

(
wµ1 ... µm wν1 ... νn · · · wω1 ... ωz

)
e−Seff . (A.4)
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A. Background (short version)

Now, the IIB matrix model just gives numbers , Z and the expectation
values 〈w w · · · 〉, while the matrices Aµ and Ψα in the “path” integral
are merely integration variables.

Moreover, there is no obvious small dimensionless parameter to
motivate a saddle-point approximation.

The conceptual question arises: where is the classical spacetime?

Recently, we have suggested to revisit an old idea, the large-N master
field of Witten [3, 4], for a possible origin of classical spacetime in the
context of the IIB matrix model [5].
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A. Background (short version)

According to Witten [3], the large-N factorization of the expectation
values (A.4) implies that the path integrals are saturated by a single

configuration, the so-called master field Âµ.

To leading order in N , the expectation values are then given by

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz〉
N
= ŵ µ1 ... µm ŵ ν1 ... νn · · · ŵ ω1 ... ωz , (A.5a)

ŵ µ1 ... µm ≡ Tr
(
Âµ1 · · · Âµm

)
. (A.5b)

Hence, we do not have to perform the path integrals on the right-hand
side of (A.4): we just need ten traceless Hermitian matrices Âµ to get
all these expectation values from the simple procedure of replacing
each Aµ in the observables by the corresponding Âµ.
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A. Background (short version)

Now, the meaning of the suggestion at the top of slide 5 is clear:

classical spacetime may reside in the bosonic master-field matrices Âµ

of the IIB matrix model.

The heuristics of this idea has been discussed in Sec. 4.4 of Ref. [6].

Assuming that the matrices Âµ of the IIB-matrix-model master field
are known and that they are approximately band-diagonal (as
suggested by the numerical results of Ref. [10] and references
therein), it is possible [5] to extract a discrete set of spacetime points
{x̂µ

k } and an interpolating (inverse) metric gµν(x).

It has been established that, in principle, it is possible to get, from
appropriate distributions of the extracted spacetime points {x̂µ

k }, the
metrics of the Minkowski and the spatially flat Robertson–Walker
spacetimes. See the recent review [6] for further discussion.
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